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NONLINEAR SCIENCE THEORY AND APPLICATIONS

Numerical experiments over the last thirty years have revealed that simple nonlinear
systems can have surprising but complicated behaviours. Nonlinear phenomena include
waves that behave as particles, deterministic equations having irregular, unpredictable
solutions, and the formation of spatial structures from an isotropic medium.

The applied mathematics of nonlinear phenomena has provided metaphors and models
for a variety of physical processes: solitons have been described in biological macromole-
cules as well as in hydrodynamic systems; irregular activity that has been identified with
chaos has been observed in continuously stirred chemical flow reactors as well as in
convecting fluids; nonlinear reaction diffusion systems have been used to account for the
formation of spatial patterns in homogeneous chemical systems as well as biological
morphogenesis; and discrete-time and discrete-space nonlinear systems (cellular auto-
mata) provide metaphors for processes ranging from the microworld of particle physics to
patterned activity in computing neural and self-replicating genetic systems.

Nonlinear Science: Theory and Applications will deal with all areas of nonlinear sci-
ence - its mathematics, methods and applications in the biological, chemical, engineering
and physical sciences.
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Preface

This book presents new ideas and theories that account for oscillatory
contraction in muscle and the various modes of flagellar and ciliary move-
ments. Despite the great variety of dynamical behaviours, attempts have been
made to model some of the specific modes, though not to account for the
overall properties. I have tried to develop theoretical models and to interpret
nearly all of the dynamical behaviours in terms of these models. This book
is intended for students and specialists in biology, physics, chemistry and
mathematics, as cellular motility is a subject of interdisciplinary interest.

The book consists of an Introduction, Part I and Part II. Nearly all the
chapters are self-contained, so that the reader can start with any of them.
Although there are a lot of mathematical equations in this book, the reader
need not follow each step, but rather should try to understand the overall
conepts behind them. For this purpose, I include more than 200 illustrations.

Chapter 1 gives basic examples of temporal and spatial orders. The
problems of these orders are not just restricted to biology, but apply also to
mechanics and chemistry.

Part I deals with the mechanical properties of vertebrate skeletal muscle
and insect flight muscle. I am concerned with the oscillatory properties of
these muscles, as the molecular mechanism for oscillation has been one of
the most intriguing subjects for experimentalists and theoreticians.

Chapter 2 describes the experimental observations. Oscillatory contractions
have been observed, not only in heart muscle, but in skeletal and insect
flight muscle as well. Thus a common molecular mechanism for oscillation
might exist in various types of muscle. Starting from the organic structure of
muscle, experimental results are outlined.

Chapter 3 discusses some of the mathematical models for muscle contrac-
tion. Instead of giving a detailed explanation of each model, its essential
features are summarized. After the quick review of these models, I propose a
simplified model that accounts for oscillatory contraction. The analogy be-
tween the muscle system and the nerve system is discussed, based on this
simplified model behaviour.



xiv Preface

Part II sketches the self-organization of flagellar and ciliary bending
patterns. Like other nonlinear distributed systems, the flagellar system, which
is viewed as a one-dimensional array of functional units, gives rise to regular
and irregular dynamical behaviours.

Chapter 4 starts with the definition of flagella and cilia, and then describes
their internal structure. Functional as well as structural hierarchy is discussed.

Chapter 5 discusses fluid-dynamical principles of flagellar and ciliary
motion. Then, the fundamental equation which governs the behaviour of a
thin filament through a viscous medium is derived. With these theoretical
backgrounds, important mathematical models are discussed, with emphasis on
their significance and their status.

Chapter 6 discusses the molecular mechanism underlying bend initiation
and propagation. Using computer simulations, the one-demensional array of
excitable units not only shows symmetric beating patterns typical of flagella,
but also demonstrates asymmetric beating patterns typical of cilia. Although
these simulation results are restricted to the zero external viscosity and small-
amplitude oscillations, the two different types of behaviours are demonstrated
by using a similar mechanism.

Chapter 7 develops simplified models for flagellar motility, to examine
whether the excitable mechanism that was studied in Chapter 6 generates
bend propagation of small amplitudes. In the limit of zero external viscosity,
simulation results show self-organization of symmetric bends as occurred in
the previous chapter. At non-zero external viscosity, the model shows regular
base-to-tip and irregular tip-to-base propagating waves, depending on the
structural asymmetry along the axoneme.

Chapter 8 develops simplified models for ciliary dynamics at non-zero
external viscosity. Besides regular repetitive beating with alternate effective
and recovery strokes of small amplitudes, these models exhibit a resting
phase called quiescence, and mechano-sensitivity.

Chapter 9 extends the simplified models proposed in Chapter 7, in order to
demonstrate large-amplitude oscillations and bend propagation. Recent ex-
perimental observations are briefly summarized, and are used to develop new
models.

Chapter 10 discusses the various types of dynamical behaviours at the
molecular level. Using a simple model of dynein-tubulin interaction, I pre-
dict many interesting phenomena.

Like other nonlinear phenomena in biology, such as pattern formation in
developmental biology, recognition in neurobiology and immunology, and
enzyme reaction in biochemistry, cellular motility has exhibited attractive and
interesting phenomena. However, the subject of cellular motility has not
drawn interdisciplinary attention, probably because the mathematical models
that have been developed are too complicated to deal with, and also because
the details of molecular structure and function have not been completely
unders tood.



Preface xv

It is impossible to refer to all of the experimental and theoretical studies.
Instead, I prefer to emphasize interesting results from a point of view of
nonlinear science, and to develop simple models in order to make qualitative
interpretations and predictions rather than quantitative data fittings. Of course,
there are many ways to develop theoretical models. My standpoint is 'simple
isbest'.

I hope that this book stimulates greater interest in cellular motility.

Tokyo, Japan Masatoshi Murase
26 October 1990
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1 Introduction

One of the important problems in biology is to clarify the mechanisms
underlying self-organization at various levels. From a thermodynamic point
of view, self-organizating phenomena are likely to occur in non-equilibrium
open systems close to or beyond instability of a stationary state (Nicolis and
Prigogine, 1977). States possessing such properties are called dissipative
structures (Prigogine et al., 1969). Their occurrence depends on (i) specific
nonlinear dynamics taking place in each subsystem (i.e. each part of the
system), and (ii) the way the subsystems couple.

An example of self-organizating phenomena occurs in a nervous system.
Under space clamp conditions, where the state of the nerve membrane is
spatially uniform or homogeneous, the nervous system exhibits temporal
orders such as excitability, oscillations and multiple steady-state transitions
in the form of all-or-none responses to external stimuli. If one removes
the spatially homogeneous condition, to take into account the electrotonic
coupling of nearby regions of the membrane, the system is no longer
uniformly stable; instead, space-dependent patterns like action potentials can
appear.

Self-organizating phenomena are also observed in biochemical systems,
such as metabolic pathways. Under the spatially homogeneous conditions,
when the medium is well stirred, time-dependent properties of concentration
like excitability and oscillations appear. Without continuous stirring we must
take into account diffusion, and the system gives rise to space-dependent
travelling patterns known as chemical waves.

Another example is seen in a mechano-chemical system, such as muscle,
cilia or flagella. This system not only exhibits excitability and oscillations,
but also shows bending waves. Like electrotonic and diffusion coupling, an
elastic coupling is responsible for the generation of space-dependent travel-
ling patterns. It seems that these three biological systems may share, in spite
of their detailed differences, commonprinciples for the self-organization of
spatio-temporal structures. The key requirements for these properties seem to
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be: (i) the excitable and/or oscillatory dynamics operating as a functional unit
(or subsystem); and (ii) an attractive type of interaction between the units (or
subsystems).

Recent theoretical and experimental studies, however, have revealed that
the above two requirements are not always met. Under spatially homogene-
ous conditions, the nervous and biochemical systems show complex temporal
patterns such as chaos and bursting oscillations. It will not be surprising if
the mechano-chemical system shows similarly complex behaviours, though
they have not been studied yet.

Much more complex dynamical behaviours occur when there is a repulsive
type of interaction in addition to the attractive type. Under these conditions
self-turbulization phenomena of spatio-temporal structures appear in the one-
dimensional case, which leads to spatio-temporal chaos. The most interesting
point is that the total system exhibits chaos through two functionally different
interactions, even though an individual subsystem persists with its ordered
temporal structure in isolation. Some spatio-temporal irregular behaviours
have been observed in the flagellar system. These irregular behaviours may
probably be interpreted in terms of the destabilization process similar to that
found in the self-turbulization phenomena.

The mechano-chemical systems considered in this book provide various
types of behaviours. These behaviours are worth studying not only from a
physiological, but also from a theoretical point of view. Before considering
this system, it is instructive to survey some of the mechanical and biological
models which exhibit various types of order and disorder.

In this introduction, we shall begin with a single unit exhibiting temporal
structures. Then we will consider spatio-temporal structures in a system
which consists of an ensemble of units.

1.1 Temporal order

Periodic behaviours or rhythms seem to be the basis of temporal order in
biology, chemistry, physics and mathematics. From a mathematical point of
view, it is simple to say that any time-dependent evolution can be described
as an algebraic sum of periodic contributions via the Fourier transform.
Therefore, an understanding of oscillation is necessary before we study more
complex temporal phenomena. This section begins with the mechanisms
underlying simple temporal order.

1.1.1 Rhythms out of rhythms

The classical example of oscillations is a parametrically excited system (i.e.
vibration of a swing or a pendulum) whose point of suspension moves
harmonically in the vertical direction. Suppose that the support of the
pendulum is moved up and down with angular frequency 2co, then the pen-
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dulum is accelerated up and down and finally an oscillation with angular
frequency go is observed.

This system is described by the well-known Mathieu equation (see e.g.
Struble, 1962; Scarborough, 1965):

d20
+(co2 -asin2(008 = 0 (1.1)

at2

where 9 is the angle between the vertical line and the pendulum as shown
in Figure 1.1. Interestingly the stable oscillation is also obtained under the
inverse pendulum conditions when particular values for parameters co and a
are chosen.

If the suspension moves in the horizontal direction, equation (1.1) changes
to

d20
+ co26 = asin2ciM (1.2)

At2

thereby describing the forced oscillation. Thus we can distinguish the para-
metrically excited oscillation described by equation (1.1) from the forced
oscillation described by equation (1.2). In the parametric excitation, a definite
point in the system is subject to the indirect action of inertial forces; while,
in the forced oscillation, the direct action of the driving force acts on the
mass. On the basis of this parametrically excited system, we can postulate
that rhythms result from rhythms.

1.1.2 Rhythms out of constant flow

Another well-known system exhibiting oscillatory behaviour can be seen in
a mechanical device where the dynamic phenomena depend on relative dry
friction arising on the surface between a body having mass, m, supported by
an elastic spring with spring constant, k, and a uniformly moving band with
velocity, v0 (Fig. 1.2).

The motion of the system is described by the following equation (cf. Cook,
1986):

m£+tc=F{V *) (1.3)
At2 \ At )

where x is the displacement of the mass from the equilibrium position at zero
band velocity and F(u) is the friction-force functibn against the relative
velocity, u (= v0 - dx/dt), between the mass and the band. This friction force
depends on whether the mass is sliding over the belt (slip) or adhering to it
(stick) as shown in Figure 1.2B.

Interestingly, the equilibrium position jc = 0 becomes unstable because of
the existence of the region with negative friction (i.e. negative slope of the
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(A)
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2C0

(B)

Figure 1.1 A parametrically excited pendulum. (A): The support of the pendulum is
moved up and down. The pendulum is accelerated up and down, hence the oscillatory
motion. (B): If the pendulum is upside down, we call this the inverse pendulum. This
system also shows stable oscillatory modes under certain parameter values.

F(u) curve), and then oscillation appears. This system can be described by
the van der Pol equation1 (see e.g. Schmidt and Tondl, 1986):

^ -s(l-^+*=O
dt2 At

(1.4)

where the damping parameter e(l - x2) changes sign at x = ±1. (Ifx < 1,
then the system switches on to increase x, and vice versa.) Here, e plays an
important role in determining oscillatory behaviour (Fig. 1.3). The characteristic
function of equation (1.4) is given by

A.2-eX+1=0. (1.5)
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Figure 1.2 (A): A tethered body placed on a moving band. The body has mass, m,
supported by an elastic spring with spring constant, k, and a uniformly moving band
with velocity, v0. The distance x is the displacement of the mass from the equilibrium
position at zero band velocity. (B): The friction-force function, F(u), plotted against the
relative velocity, u (= v0 - dx/df). The value of F(u) depends on whether the mass is
sliding over the belt (slip) or adhering to it (stick). The negative slope of F(u) causes
instability that leads to oscillations.
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x =
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D = e 2 - 4 .
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( 1 . 7 )

I f e i s s m a l l ( e . g . e = 0 . 1 o r 1 i n F i g . 1 . 3 ) , t h e d i s c r i m i n a n t ,D , i s n e g a t i v e
a n d t h u s w eh a v et w oc o m p l e xc o n j u g a t er o o t s .I n t h e ( x , d x / d t ) p h a s e p l a n e ,
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d e c o u p l e df i r s t - o r d e re q u a t i o n sa r e o b t a i n e d

( 1 . 8 a )

A t

d r   d U

A t   A r

0
- = c on stan t (1.8b)
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Figure 1.4 The limit-cycle oscillation illustrated by a circle on the (x, dx/df) plane (below)
and the movement of a ball on the rotational potential function (above) for small e
values. The temporal oscillations are quasi-sinusoidal because of the small £ values. The
singular point (0, 0) becomes an unstable focus.

where r is the amplitude, 0 is the phase, and U is the potential-energy
function which has a vertical axis of rotation (Fig. 1.4). Then we can imagine
a ball moving along the wall with the angular velocity d6/dt.

When e becomes large, highly nonlinear oscillation called relaxation oscil-
lation results. In this case, the singular point (x0, 6xo/dt) = (0, 0) becomes an
unstable node. By using Lienard's transformation (see Minorsky, 1947), the
following differential equations are obtained:

-=t(y-x3+x)
at

dv 1

-=-x.At e

(1.9a)

d-9b)
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Since y is a more slowly changing variable than x (except for near the
horizontal isocline or the y-nullcline or dy/dt = 0), the potential function is
defined over the (x, y) phase plane (Fig. 1.5). According to the motion of a
ball acted on by the potential function, we can recognize two processes: the
slow change of the energy-accumulating process and the fast change of the
energy-supplying process. The relaxation oscillations are characterized by
these two distinct processes.

It is interesting to notice the close link between oscillations and excitabil-
ity. The most famous example of excitability is provided by the nervous
system as modelled by Hodgkin and Huxley (1952).2 FitzHugh (1961, 1969)
and Nagumo et al. (1962) developed a simple model, which is described by
the following set of differential equations:

-=e(y-x3+x)+Z (1.10a)
dt

-=--(jc-a+iy) (1.10b)
dt e

where a and b are fixed parameters and Z is stimulus intensity. Since this
model resembled the phase-plane model used by Bonhoeffer to explain the
behaviour of passivated iron wires, FitzHugh called it the Bonhoeffer-van der
Pol model (BVP for short). When a = b = Z = 0, the BVP model described
by equations (1. 10) can be reduced to the model for the relaxation oscillation
described by equations (1.9).

Figure 1.6 shows the typical x- and y-nullclines of the BVP model. When
Z = 0, the x-nullcline (solid curve) intersects with the j-nullcline (solid line)
at the stable point (denoted by s). All trajectories approach this stable point.
There is excitability in that movement of the phase point depends on the
initial displacement of the phase point from the stable point. Of course, this
system exhibits the oscillations under negative constant values of Z. This occurs
because the x-nullcline is raised by the negative Z values as shown by the
broken curve and the intersection (denoted by u) becomes unstable which
leads to limit-cycle oscillation.

Many excitable-oscillatory phenomena (e.g. Belouzov-Zhabotinsky reac-
tions, glycolitic systems) can be accounted for by this mechanism (see e.g.
Krinsky, 1984 and Zykov, 1987). Here, we can see an interesting analogy
between these oscillations and the machine sketched in Figure 1.2. That is, a
constant flow causes oscillations.

1.1.3 Noise-induced order out of chaos

Aperiodic dynamics, called chaos in a deterministic system, has been studied
in various fields over recent years.3 Since chaos is structurally stable, it can
be distinguished from thermal noise or random fluctuation. This makes sense
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Figure 1.5 The relaxation oscillation illustrated by a bi-phasic path on the (x, y) phase
plane (below) and the movement of a ball on the potential function (above) for large
e values. There are two distinct time-scales corresponding to the fast equation (1.9a)
and the slow equation (1.9b). The movement of the ball summarizes the trajectory on
the phase plane. The numbered balls correspond to the phase points numbered on the
trajectory.
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Figure 1.6 x- and y-nullclines of the BVP model described by equations (1.10). When
Z =0, the cubic x-nullcline intersects with the straight y-nullcline at the stable point. As
Z is decreased from 0, the jc-nullcline is raised without any change in the y-nullcline. For
certain values of Z, the two nullclines intersect in the region where the x-nullcline has
a negative slope. This means that the intersection, or the steady state, becomes unstable,
which leads to oscillations.

when both kinds of 'randomness' coexist. Matsumoto and Tsuda (1983)
noted the interesting phenomenon that under a certain noise level a chaotic
orbit becomes unstable and temporal order appears.

They used a simple model that takes into account the Belouzov-Zhabotinsky
reaction, which explained the bifurcation sequence obtained in experiments.
This model is described by

(x < 0.125)

(0.125 < x < 0.3)

f(x) = [-(0.125 - jc)1/3 + A] exp(-jt) + b

f{x) = [ix - 0.125)1'3 + A] exp(-x) + b

f(x)=B 10xexpj--xj expi-x)+b (0.3<x)

(1.ll)

where A = 0.50607357, B = 0.121205692, and b is the bifurcation parameter
(Fig. 1.7).
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Figure 1.7 Graph of the model for the Belouzov-Zhabotinsky reaction described by
equations (1.1 1). Once an initial value for x (say x0) is specified, a series of xt values
(k = 1, 2,...) can be defined by successive operation of this model. Depending on the
bifurcation parameter, b, the model can show chaotic behaviour.

They studied the power spectrum with and without noise (Fig. 1.8). In the
absence of noise, the model exhibits chaotic behaviour as indicated by the
continuous power spectrum. In the presence of large amounts of noise,
however, the sharp peak appears. This implies some kind of order. They
called this effect noise-induced order. This finding suggests that it is very
important to distinguish the pure periodic phenomena from noise-induced
periodic patterns out of chaos. According to their studies, we can distinguish
the above two cases by studying the bifurcation diagram at various noise
levels.

Feller (1968), in his famous book (p. 231), pointed out a striking fact about
Bernoulli trials* with variable probabilities. Suppose that n mutually inde-
pendent trials succeed with variable probabilities Pk (k = 1,... , «), such
variability of Pk decreases the magnitude of chance fluctuations. In the
context of the noise-induced order described by Matsumoto and Tsuda, this
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Figure 1.8 Fourier spectrum of the B-Z model for b =0.0232885279. (A): In the absence
of noise, the model displays typical chaotic behaviour. (B): In the presence of noise,
there is a sharp peak in the spectrum. This proves that chaos is transformed into periodic
order. From Matsumoto and Tsuda (1983). Reprinted with permission.

situation means that variability of individual probabilities leads to order in
the total number of trials. In relation to this fact, Feller mentioned the
following examples :

The number of annual fires in a community may be treated as a random
variable; for a given average number, the variability is maximum if all
households have the same probability of fire. Given a certain average
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Figure 1.9 Model of autocata ly t ic enzyme react ion . E denotes the al los ter ic enzyme.
The subst ra te , S , is cons tant ly suppl ied wi th the inf lux , V. The product , P , is taken away
through a f i rs t -order react ion , wi th propor t ional i ty cons tant , Ks . The normal ized con-
cent ra t ions of S and P are denoted by a and y. The normal ized parameter values of V
and Ks are denoted by v and ks .

quanti ty P of n machines, the output wil l be least uniform if al l machines are
equal . (An applicat ion to modern educat ion is obvious but hopeless .)

1.1.4 Birhythmici ty

As a simple model of biochemical osci l la t ion and excitabi l i ty , consider a
react ion catalysed by an alloster ic enzyme? E, which transforms the substrate ,
S, into product , P (Fig. 1.9) . The system is subject to a constant substrate
influx, V, and the product degrades in a l inear proport ion to its concentrat ion
with a proport ional i ty constant , Ks. This model is governed by a set of two
kinet ic equat ions for the normalized concentrat ions of substrate , a , with a
normalized influx, v, and product , y, with a normalized degradat ion rate , ks
(Goldbeter , 1980):

da
-=v-cO (1.12a)
df

^-=qa0- ksy (1.12b)

at

where <D is the rate funct ion of the product-act ivated alloster ic enzyme, E. I t
is composed of n subunits and behaves according to the concerted transi t ion
model of Monod et al . (1965) with the al loster ic constant , L:

=aa+a^O+YL. (L12c)
L+( l+a)" ( l+Y)"
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Figure 1.10 The a- and y-nullclines of the model described by equations (1.12). For
a well-defined parameter range, the Y-nullcline is an S-shaped sigmoid. When there is
the cc-nullcline denoted by a solid curve, the two nullclines intersect at the stable point.
This case leads to excitability. When there is the a-nullcline denoted by a broken curve,
the steady point becomes unstable. As a result, the limit-cycle oscillations appear.

ct is the normalized maximum activity of the enzyme and q is a constant
arising from the normalization process. Figure 1.10 illustrates the a- and y-
nullclines. The y-nullcline is an S-shaped sigmoid for a well-defined para-
meter range, which accounts for excitability and oscillations.

As a possible extension of this model, Li and Goldbeter (1989) proposed a
simple model for two biochemical reactions coupled in parallel (Fig. 1.ll).
Each of the two reactions is catalysed by a distinct isozyme transforming,
though with different kinetic properties, the given substrate into the same
product. This model is described by the following equations:

da 1,
-=-(v-a4>)At q

dv K
-j-=^>--T
df <?a

(1.13a)

(1.13b)



Introduc tion 15

E .

A > l̂ ^ ^ l

V ¥ +
¥

K ｫ

> s p *ｻ.
E dI ̂ ^ ^ ^ H /

/ ' +

V - Î ^ H
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Figure 1.1 1 Model of two autocatalytic isozyme reactions coupled in parallel. The two
enzymes catalyse the same biochemical reaction with different kinetic properties. Similarly
to the model in Fig. 1.9, there is a constant influx, V, of the substrate, S, and a degra-
dation of the product, P, with a proportionality constant, Ks. Each of the two enzymes
is capable of generating oscillations in isolation.

where

4>, =
c,a(l + c,a)"H(l + tJ,-Y)"'

A- + (l + c,a)"'(l + 4y)"'

(1.13c)

(1.13d)

In equation (1.13c), <|), refers to the rate function of the allosteric enzyme,
E,, which consists of n, subunits. They assumed that n, = 2 and n2 = 4. To
identify the relative difference in parameters of enzyme E2, with respect to
the parameters of enzyme E,, they assumed that c, = dx = r{ = 1 and wrote
the ratios of the parameters of the enzyme E2 as c2 = c, d2 = d, and r2 = r.
Parameter d plays an important role in producing birhythmicity. For small values
of d (say d = 0.0456), the y-nullcline has two separate regions of negative
slope (Fig. 1.12). There are small- and large-amplitude oscillations (solid
closed orbits) separated by an unstable oscillation (broken closed orbit) in
Figure 1.12A. The corresponding time variation of a and P is shown in
Figure 1.12B. The reversible transition between the two modes of oscillations
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Figure 1. 12 (A): Phase-plane demonst ra t ion of birhythmici ty . The a- and y-nul lc l ines
resemble those in Fig . 1 .10 except that the y-nul lc l ine has two separa te regions of
negat ive s lope . There are three closed tra jec tor ies : two stable l imi t cycles (sol id curves)
and one unstable l imi t cycle (broken curve) . The ar rowsshow how the trans i t ion from
one stable cycle to the other s table cycle can occur in response to the addi t ion of a
cer ta in amount of subst ra te . (B): Trans i t ion between the two stable osci l la tory modes
shown in (A). The trans i t ion is induced by an abrupt change in the subs t ra te . The two
ver t ica l a r rows correspond to the increase of a f rom 68.5 to 75, and f rom 45.5 to 60,
respect ive ly . From Li and Goldbeter (1989) . Repr in ted wi th permiss ion .
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Figure 1.13 Model of two autocatalytic enzyme reactions coupled in series. The
normalized concentrations of S, P, and P2 are denoted by a, (3 and y.

can be triggered by perturbations of appropriate magnitude in the form of
step increases in a at appropriate phases in the cycle.

1.1.5 Bursting

As another example of a coupled biochemical system, Decroly and Goldbeter
(1987) developed the model of two autocatalytic enzyme reactions coupled in
series (Fig. 1.13). This model is described by the following equations:

da

-=9,0,(1), - o2<|)2

dy
~=O2<t>2-*sY
a/

where

4>i =
g(l + a)(l + ft)2

L, +(1+a)2(l+p)2

4>2 = pg+y)2
L2 +(1+y)2

(1.14a)

(1.14b)

(1.14c)

(1. 14d)

(1.14e)

Similarly to the previous model, this system is driven by a constant input of
substrate with the normalized rate, v, and the end product is taken away with
a normalized proportionality constant, ks. c^ and o2 are the normalized maxi-
mumactivities of enzymes E, and Ej. Their allosteric constants are denoted by
L[ and L2, and qx and q2 are constants arising from the normalization process.

They assumed the following set of parameter values: o{ = a2 = 10 s~\ qx



18 In troduction

Figure 1. 14 Three-dimensional phase-space representation of bursting. Bursting occurs
when the (a - P) subsystem passes into a region of the phase space where the (P - 7)
subsystem undergoes rapid oscillations. This means that bursting results from the coupling
of a fast, spike-generating mechanism with a slow oscillation. From Decroly and Goldbeter
(1987). Reprinted with permission.

=50, q2 = 0.02, L, = 5 x 108, L2 = 100. For these parameter values, the first
positive feedback loop, or the (a - P) subsystem, undergoes slow oscilla-
tions, which are relatively independent of y because of the small value of L2.
The second feedback loop, or the ((3 - y) subsystem, gives rise to faster
oscillations under the control of the slow oscillatory (a - 3) subsystem. The
parameters v and ks determine the dynamical behaviour of this model. Figure
1.14 illustrates the three-dimensional trajectory of the bursting solution to
equation (1.14) for v = 0.25 s"1 and ks = 5 s"1.

Of course this model also displays chaotic behaviour for v = 0.25 s"1 and ks
=1.537 s"1. These complex behaviours such as bursting, chaos and birhythmicity,
are also found in the nervous system. Most of the complex behaviours result
from different parameter values or multiple time-scales.

1.2 Spatial order

1.2.1 Pattern formation in the two-component system

The problems of spatial order were first studied by Rashevsky (1940) and
Turing (1952) in the context of morphogenesis and pattern formation. Their
idea was that chemical substances passed through from one cell to its
neighbouring cell by diffusion. Suppose that the concentrations of the two
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morphogenes in cell r are written by ur and vr, and that their reaction rates
are f(ur, vr) and g(un vr), respectively, then the following equations describe
the changes in ur and vr taking into account diffusion as well as the chemical
reaction:

du-^=f{ur,vr) + £>,(«r+1 - 2ur + «,_,) (1.15a)
at

dv
-^=g(ur,vr) + £>2(vr+1 - 2vr + vr_,) (1.15b)
d/

where r = 1,..., N. The second terms of these equations describe the
representation of diffusion where D, and D2 are the diffusion constants for ur
and vr, respectively.

Interestingly, the initial homogeneous (symmetrical) system, being an
ensemble of cells, gives rise to inhomogeneous (asymmetrical) structures
as the concentrations of chemical substances change due to diffusion. We
sometimes call this effect diffusion instability or Turing instability. Symmetry-
breaking phenomena of this kind are very suggestive, not only because they
seem to conflict with the general concept that diffusion is likely to cause
symmetry, but also because no change appears when we consider the total
system instead of the individually divided cell.

Gierer and Meinhardt (1972) (see the book by Meinhardt (1982) for
details) developed Rashevsky and Turing's idea into a reaction-diffusion
system with continuous formulas:

d u d2u
-=f(U,V)+Ux-ti t dx
2 ., 32

^ \J
=QUA.V) + /J- -

d t dx

^ =/(«,v)+A^ (1.16a)

-

=g(u,v)+D2- (1.16b)

where u and v denote concentrations of an activator and an inhibitor, re-
spectively. Both the activator and inhibitor diffuse, with diffusion coefficients
£\ and D2.

It turned out that biologically interesting patterns appeared when an
autocatalytic activation with a small diffusion coefficient value was coupled
with an inhibition with a large diffusion coefficient value (Fig. 1.15). The
essential point is the combination of short-range activation and long-range
inhibition.6 Figure 1.16 illustrates the spatial representation of short-range
activation and long-range inhibition.

The diffusion instability responsible for spatial structures is qualitatively
interpreted as follows. Consider first the diffusionless reaction. If the activator
concentration deviates slightly from its equilibrium value, it grows
autocatalytically as time proceeds. This occurrence, however, immediately
induces the production of the inhibitor. The accumulated inhibitor in turn
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Aut ocatalysis

Diffusion

Inhib iti o n

Diffusi on

Figure 1.15 Diagram showing the coupling of an autocatalytic activator and an inhibitor
with different diffusion coefficients.

Short-range activation

Long-range inhibition
Figure 1.16 Spatial representation of short-range activation and long-range inhibition.
The signs + and - indicate the short-range activation (or local activation) and the long-
range inhibition (or lateral inhibition), respectively.
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suppresses the increase of the activator and leads to a recovery toward its
equilibrium value. Due to the intrinsically stable nature of the inhibitor,
its concentration returns to its equilibrium value. For small deviations, this
stabilization process takes place, so that spatially inhomogeneous structures
do not appear.

Now consider what happens when the diffusion is taken into account.
If the activator concentration deviates from its equilibrium, it grows
autocatalytically as long as it does not diffuse out too rapidly. As a result of
the increase in the activator, the inhibitor accumulates in the local region.
Since the diffusion of the inhibitor is rapid, the local inhibitor concentration
is no longer high enough to suppress the autocatalytic growth of the activator
concentration, which consequently leads to spatial structure.

Babloyantz (1977, 1986) developed a theoretical model for pattern for-
mation on the assumption that direct cell-cell interactions affected the rates
of reactions between them without the actual passage of chemicals. This
model not only generates all the self-organizing phenomena seen in reaction-
diffusion systems but also other phenomena previously non-existent, because
of the assumption that the direct intercellular contact relaxes the principle of
micro-reversibility, i.e. the loss of matter is compensated by the influx of
matter from surrounding regions at any point in space.

1.2.2 Solitons in the reaction-diffusion system

As an interesting extension of the reaction-diffusion system, Tuckwell (1 980)
introduced spontaneous 'on' and 'off switches to the reaction rates. The
modified system is described by the following equations:

d u 32«

-=nu,v)+ui-
-

=F(u,v)+D, - (1.17a)

3v 82v
-=G(u,v)+ D2 -j- (1.17b)
dt dx

where the reaction rates F(u, v) and G{u, v) are the nonlinear functions
F*(u, v) and G*(u, v) giving rise to excitable phenomena, plus spontaneous
'on' and 'off switches which depend on whether the phase point enters the
predetermined region on the (m, v) plane. This is mathematically described as
follows.

10

F(u,v) = F*(«,v) + £a,./A(«,v) (1.17c)
i=i

10

G(u,v) = G*(u,v) + J^b,IAi(u,v) (1.17d)



22

(A)

u

Introduc tion

t=.725

t=.2

(B)

u

25

20

15

10

5

t=2

.4 .5

X

.6

Figure 1.17 (A): Collision of solitons travelling in opposite directions. At t = 0 the
solitons were at x = 0.68 and x = 0.32. The collision occurs at about t = 0.650. Two
solitons merged at t = 0.725, and the resultant envelope decreases at t = 0.825. (B): Two
solitons pass through on collision. From Tuckwell (1980). Reprinted with permission.

where

IAu, v) =
1 (u,v)à¬At

0 (m,v)gA,

A, = {(u,v)lu e (wj,uf),v e(vj, vf)}.

(1.17e)

(1.17f)

It is generally accepted that in the reaction-diffusion system the two waves
travelling in opposite directions annihilate one another on collision. Tuckwell
wanted to adjust the reaction rates described above in such a way that the
two waves would pass through on collision like solitons (see Scott, 1981; see
also books by Jackson, 1990; Olver and Sattinger, 1990; and Infeld and
Rowlands, 1990). Figure 1.17 shows the soliton-like solutions of the model
described by equations (1.17) with specific parameter values.
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Figure 1. 18 A one-dimensional array of coupled limit-cycle oscillators. A limit-cycle
oscillator is represented by a closed orbit whose phase is represented by a point in the
local state space. Many limit-cycle oscillators are arranged along the physical space to
form a one-dimensional array of coupled oscillators. Modified from Kuramoto (1984).

1.2.3 Complex behaviours in the one-component system

Kuramoto (1984) considered a one-dimensional array of diffusion-coupled
limit-cycle oscillators (Fig. 1.18). The phase dynamics of this coupled-
oscillator system can be described by the following equation:

3<i>_ ,32<t> D3>

dt
^7=A^T~*TT+m

a y- ay
(1.18)

where <j) is a phase of the limit-cycle oscillator in physical space, y, and time,
t, and A and B are constants, while F(§) is a nonlinear function. Phase in-
stability arises when A < 0 and B > 0, which leads to chaotic behaviours. The
same equation not only accounts for the wavefront instability of a two-
dimensional wave (Kuramoto, 1984), but also explains the hydrodynamic
instability in a laminar flame (Sivashinsky, 1977; 1979; 1980). Thus equation
(1.18) is often called the Kuramoto-Sivashinsky equation.

The essence in equation (1.18) is captured by a linear stability analysis.
Consider a wave-like solution to the linearized version (say F(<)>) = 0) of
equation (1.18) in the form

§(y, f) oe exp(cor + iky) (1.19)
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where k is a wave number (i.e. k = 2nfk, where X is a wavelength). Substi-
tuting solution (1. 19) into the linearized equation, we obtain the dispersion
relation for co in terms of the wave number k as

CO = -Ak2 - Bk\ (1.20)

The growth or decay of the solutions is determined by exp(cor) in equation
(1.19). IfA < 0 andB > 0, then short waves (k < Xc ork>kc) are stable, and
long waves (k > Xc or k < kQ) are unstable. The critical wavelength, A,c, and
its critical wave number, kc, are

9-ir

(1.21)

For long waves, the terms of A < 0 and B > 0 correspond to the destabilization
and stabilization processes, respectively. This competing interaction leads to
self-turbulization phenomena, in which the ordered structure is replaced by a
chaotic structure. This type of instability is quite different from the diffusion
instability discussed in Section 1.2.1 as follows. In the previous case, the
spatial order results when the spatially homogeneous state is destabilized via
diffusion, while in the present case, the ordered state is replaced by a chaotic
behaviour via the competing mechanism.

Equations similar to equation (1.18) have also been developed in order
to account for population dynamics (Cohen and Murray, 1981) and the
morphogenesis of multicellular systems formed by motile cells (Lara Ochoa,
1984). Such equations are often called the generalized reaction-diffusion
equations. When A < 0 in equation (1.18) the first term on the right-hand side
corresponds to a negative diffusion coefficient in a Fickian sense or the short-
range activation that occurs in system (1.16). In population dynamics, for
example, the diffusion coefficient exhibits population pressure which effec-
tively gives a negative diffusion for aggregative behaviour. An example of
this is the schooling of fish. The second term on the right-hand side of
equation (1.18) accounts for long-range inhibition when B > 0.

We have seen that the same type of equation appears in totally different
contexts, and that the dynamic variable has different meanings depending on
the context. It is not surprising, therefore, that completely different phenom-
ena may have a commonnature. In the rest of this book, we will study the
muscle system (Part I) and the flagellar system (Part II) in the context of the
nonlinear science outlined in this chapter.

Notes

1 For van der Pol equation, see van der Pol (1926), and van der Pol and van der
Mark (1928).

2 For a classical two-factor model of excitation and inhibition, see Rashevsky (1933)
and Hill (1936).
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3 For books see Guckenheimer and Holmes (1983), Berge et al. (1986), Holden (1986),
Thompson and Stewart (1986), Moon (1987), Glass and Mackey (1988), Devaney
(1989), Jackson (1989, 1990), Baker and Gollub (1990), Rasband (1990), Wiggins
(1990) and Schroeder (1991).

4 Bernoulli trials refer to repeated independent trials, each of which leads to only
one of two possible outcomes (i.e. 'success' or 'failure') with the same proba-
bility.

5 The term 'allosteric' means that the binding of a ligand molecule to a protein at
one site affects the binding of a second, identical or different, ligand, through the
mediation of a conformation change in the protein. If the enzyme protein, or
oligomer, is constructed from several identical subunits, or protomers, cooperative
interactions between the subunits result. There are two different models for this
cooperativity. One is the concerted transition model, in which any conformational
change occurs simultaneously within all subunits of the oligomer (Monod et al.,
1965). The other is the sequential transition model, in which the subunit con-
formational change only occurs as a result of the binding of a ligand molecule
(Koshland et al., 1966). Both models lead to similar results.

6 The requirement of unequal diffusion constants for two substrates in generating
spatially inhomogeneous structures is analogous to the requirement of multiple
time-scales in producing temporally complex behaviours.



Part I Oscillatory contraction in
muscle

Muscle contraction is the most familiar type of cellular motility. When the
muscle shortens the thin and thick filaments actively slide against each other
by the use of the chemical energy of the ATP hydrolysis. This is known as
the sliding filament mechanism. Although the active sliding between the two
filaments occurs unidirectionally, the muscle often gives rise to sustained
oscillations under appropriate conditions. Wing beats of flying insects and
heart beats of living animals are typical examples of such oscillations.
Interestingly, oscillatory contraction has also been observed in experiments
using the vertebrate skeletal muscle. The oscillatory capability of this muscle
can be, therefore, ascribed to the intrinsic property of common muscle
components. There arises the problem of what mechanism produces oscilla-
tory contraction in muscles. Part I of this book attempts to solve this
problem.



2 Muscle structure and function

This chapter provides experimental observations of various types of muscles.
In Section 2.1 the historical background is briefly outlined. Section 2.2
describes the basic structure of vertebrate muscle and compares it with the
structure of insect flight muscle. In Section 2.3 two different interpretations
of the mechano-chemical cycle underlying muscle contraction are briefly
described. The mechanical properties of both vertebrate muscle and insect
flight muscle are summarized in Section 2.4. Section 2.5 discusses mechanisms
for oscillatory contraction based on measurements of oscillation-induced
ATPase activity and stretch-induced changes in stiffness.

2.1 Introduction

Insects fly by beating their wings up and down. Their wing-beat frequencies
range from about 5 Hz for butterflies to about 1000 Hz for mosquitos. The
wing-movements of some insects result from oscillatory contraction of
antagonistic pairs of direct flight muscles (Fig. 2.1), while others are produced
by indirect flight muscles (Fig. 2.2). The direct muscles are inserted into the
wing base so that the wing-movements are directly caused by these muscles.
The indirect muscles occur in the thorax and they are not connected to the
wing base; by distortions of the thorax, the wing-movements are indirectly
produced.

Upon the arrival of motor nerve impulses, the muscle cell membrane is
excited and causes a contraction. Usually a single nerve impulse or its
associated muscle membrane excitation causes a single muscle contraction.
Muscles of this type are called synchronous.1 Pringle (1949), however, found
that specialized insect flight muscle contracts several times in response to a
single electrical stimulus (Fig. 2.3). Such muscles are described as asyn-
chronous.1 A nerve impulse is necessary to initiate contractions, but subse-
quent contractions result from intrinsic properties of the muscle itself. Further
nervous stimulation is necessary only to maintain the excited state of the
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Figure 2.1 Synchronous, direct flight muscles of the type found in dragonflies. The
thorax sections show that antagonistic pairs of flight muscles are directly connected to
the wing base. The hinges are represented by black circles with white centres. (A):
Contraction of the inner pair of muscles raises the wings and stretches the antagonistic
pair. (B): Contraction of the outer pair of muscles lowers the wings and stretches the
inner pair. Modified from Davydov (1982). Reprinted with permission.

(A)

(B)

Figure 2.2 Asynchronous, indirect flight muscles of the type found in mosquitos.
Antagonistic pairs of flight muscles are not directly connected to the wing base, but are
connected to the thorax. The wings are driven up and down via the deformation of the
thorax. The hinges are represented by black circles with white centres. (A): The outer
pair of muscles contract vertically and raise the wings, stretching the antagonistic pair.
(B): The inner pair of muscles contract horizontally and lower the wings, stretching the
outer pair. Modified from Davydov (1982). Reprinted with permission.
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Figure 2.3 Electrical (upper trace) and mechanical (lower trace) records from the thorax
of various insects. (A), (B) Synchronous type; (C), (D) asynchronous type. (A) Cock-
roach; (B) moth; (C) fly; (D) wasp. The wing-beat frequencies are 25, 43.5, 155 and
120 Hz for (A), (B), (C) and (D), respectively. Whereas the wing-beat frequency of
insects with synchronous flight muscles is low, not more than about 100 Hz, the frequency
is high in insects with asynchronous muscles. From Pringle (1957). Reprinted with
permis sion.

muscle. Asynchronous muscle is, therefore, capable of oscillating at very
high frequencies.

Following Pringle's discovery of asynchronous muscle, sustained oscilla-
tions were also demonstrated when a glycerol-extracted vertebrate skeletal
muscle (rabbit psoas muscle) was coupled to an appropriate inertial load
(Goodall, 1956; Lorand and Moos, 1956). These observations revealed that
oscillatory contractions were not caused by properties of the structures
particular to flight muscles, but resulted from intrinsic properties of the force-
generating mechanisms commonto different types of muscles.

2.2 Muscle structure

2.2.1 Vertebrate muscle

As a typical example of muscle, the vertebrate muscle is detailed in Figure
2.4. The whole muscle consists of a number of muscle fibres. Individual fibres
appear striated under a light microscope. An individual fibre is a single
muscle cell. This fibre cell contains several nuclei and a large number of
mitochondria. Each muscle fibre, in turn, consists of myofibrils in a regular
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Figure 2.4 Structure of vertebrate muscle. The whole muscle consists of a number
of muscle fibres. The motor nerves terminate on the fibres. Each muscle fibre contains
many myofibrils. The myofibril has a series of sarcomeres, each of which contains the
myosin thick (A) filaments and F-actin thin (I) filaments. There are three helices of
projections (shown as white, grey and black) along a single filament. These projections
are called cross-bridges. They convert the chemical energy of ATP hydrolysis into the
mechanical energy necessary to produce active sliding. The thin filament has two helices,
which are formed by G-actins.



Muscle structure and function 33

parallel arrangement. The myofibril is divided into a series of functional units
called sarcomeres. The sarcomere can be distinguished by a pair of Z-lines.

In each sarcomere, there are two filaments: the thick or A-filament and the
thin or I-filament. These two filaments slide against each other during muscle
contraction. The thick filament is formed by three myosin helices; that is, at
each level three myosins protrude. These projections are called cross-bridges,
and can transform the chemical energy of ATP hydrolysis into the mechanical
energy necessary to generate active sliding. Adjacent cross-bridges are stag-
gered by 14.3 nm with respect to one another. Since there is a rotation of 60°
between successive cross-bridges, the cross-bridges in the same direction
occur every 42.9 nm (Huxley and Brown, 1967). The thick filaments reverse
polarity at the midline of the sarcomere, because two oppositely oriented sets
of myosins come together to form the thick filaments.

The thin filament contains two strands of actin filaments. These actin
filaments are called filamentous actin or F-actin. The pitch of the F-actin
is considered to be 2 x 37nm (Huxley and Brown, 1967). Each F-actin
is formed by globular subunits, which are known as globular actin or G-actin.
The thin filaments are polar structures, so that their two ends are different.
This polarity determines the direction of active sliding between the thick and
thin filaments.

2.2.2 Insect flight muscle

Insect flight muscle and vertebrate muscle have basically similar structures,
but differ as follows. First, as illustrated in the upper panels of Figure 2.5,
insect flight muscle has relatively longer thick filaments than vertebrate
muscle.

Second, insect flight muscle contains another filament, which connects the
thick filament and the Z-line (see the upper panel of Fig. 2.5B). This filament
is often called a connecting or C-filament. The C-filament is responsible for
the high stiffness of relaxed insect flight muscle as compared with vertebrate
muscle.

Third, as shown in the lower panels of Figure 2.5, the ratio of thin to thick
filaments differs in the two muscles. In vertebrate muscle the myofilament
array is such that each thick filament is surrounded by six thin filaments and
each thin filament by three thick filaments. As a result, the ratio of thin
to thick filaments is 2 : 1. In insect flight muscle each thick filament is
surrounded by six thin filaments, but each thin filament is placed between
two thick filaments. The thin-to-thick ratio is 3 : 1.

Fourth, the thick filaments are different in the two muscles. In vertebrate
muscle three myosin cross-bridges protrude at each level of the thick filament
(see Fig. 2.4), while in the insect flight muscle there are four cross-bridges at
each level (Wray, 1979).
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Figure 2.5 The structures of vertebrate muscle (in panel A) and insect flight muscle (in
panel B). In both cases, there are thick (A) and thin (I) filaments between the two Z lines
forming sarcomeres (upper figures). There is the C-filament between the thick filament
and Z line in insect flight muscle. The arrangement of thin filaments around the thick
filaments is different in the two muscles: the ratio of thin to thick filaments is 2 : 1 in
vertebrate and 3 : 1 in insect flight muscle. From White and Thorson (1973). Reprinted
with permission.

2.3 Mechano-chemical cycle of a myosin cross-bridge

It was originally thought that a change in shape or in the angle of cross-
bridge attachment to actin produces active sliding between the thick and thin
filaments in association with the hydrolysis of ATP (Fig. 2.6). This mechano-
chemical cycle is detailed as follows. A molecule of ATP binds to the
myosin cross-bridge attached to the thin filament, making it detach (A -> B).
The bound ATP is hydrolysed to ADP + Pi, allowing the cross-bridge to
relax (B -» C), and make contact with the thin filament (C -> D). This at-
tached cross-bridge undergoes the power stroke which causes active sliding,
and the subsequent release of ADP + Pi (D -» A).

The characteristic features of this model are that (i) the distance of one
power stroke is at most ~10nm due to the conformation change of the
attached cross-bridge and (ii) a single power stroke is associated with one
ATP hydrolysis.

Recent experimental observations seem to contradict these two proposed
features. Yanagida et al. (1985) examined the sliding distance induced by a
myosin cross-bridge during one ATP hydrolysis cycle under the conditions of
shortening without a load. When the muscle is free from an external load, it
contracts by its maximal sliding velocity (cf. Fig. 2.19). The results show that
the average sliding distance is more than 60 nm during one ATP cycle. This
is much longer than the length of the myosin power stroke. Such a long
sliding distance cannot be explained in terms of the cross-bridge cycle shown
in Figure 2.6.
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Figure 2.6 A mechano-chemical cycle of a myosin cross-bridge. (A -» B): After the
power stroke, a cross-bridge detaches following the binding of an ATP molecule. (B ->
C): Hydrolysis of the bound ATP to ADP + Pi makes the cross-bridge relax to its
original conformation. (C -» D): The cross-bridge prepares for the next power stroke.
(D -> A): The cross-bridge undergoes a change in conformation accompanied by the
release of ADP + Pi. A single power stroke is 'tightly' coupled to one ATP hydrolysis.

Another important experiment was performed by Tsukita and Yano ( 1985)
using the rapid-freezing electron-microscope technique. In isometrically con-
tracting muscles, they found that most cross-bridges protrude from the thick
filaments in a perpendicular orientation. This cross-bridge configuration is
different from the previously considered one shown in Figure 2.6.

A new mechano-chemical cycle is needed to account for the above
experimental observations. Figure 2.7 shows one possible cycle. This cycle
contains two important features. First, the active sliding distance induced
by one ATP cycle is not restricted to being less than 10nm. Second, the
generation of active force is not associated with the conformation change of
the attached cross-bridges.

Unfortunately, similar experimental techniques lead to substantially differ-
ent conclusions. In reality, the molecular mechanism responsible for muscle
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Figure 2.7 The newly proposed mechano-chemical cycle of a myosin cross-bridge.
(A -> B): ATP is hydrolysed to ADP + Pi. Sliding movement is not 'tightly' coupled
to this ATP cycle, but instead it is 'loosely' coupled.

contraction is still undetermined. According to the recent review by Huxley
(1990), 'it seems that much of the original sliding filament cross-bridge
scheme is correct, but there may be some unexpected twists in the tale'.

2.4 Mechanical properties

As we have briefly seen in Section 2.2, muscles are surrounded by a
membrane and contain regulatory systems which are activated via the motor
nerve stimuli. To investigate the origin of myogenic oscillation, it is very
useful to have a 'model system' made up simply of sarcomeres. Such a
'model' was obtained by a glycerol-extraction procedure. With the membrane
gone, muscles are easily activated by supplying a solution containing Mg-
ATP and Ca2+. The merit of using this model system is that any mechanical
properties can be ascribed to the well-known structure of the sarcomere.

2.4. 1 Free-oscillation experiment

Asynchronous muscles are capable of oscillating at higher frequencies than
the rate of electrical stimulation (see Fig. 2.3). The wing-beat frequency of
insects with these asynchronous muscles is altered by cutting off the tips
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Figure 2.8 Experimental set-up for free oscillation. The preparation (P) is immersed in
a bath (B) of ATP salt solution. The resonant lever system has mass M and the elasticity
S. Under certain magnitudes of the mass and elasticity, the preparation gives rise to
oscillations of amplitude AL. From Riiegg (1 968). Reprinted with permission of Birkhauser
Verlag AG.

of the wings or by loading them with small amounts of wax. This probably
occurs because the frequency of oscillation depends on mechanical para-
meters such as inertia of the wings and stiffness of the thorax. If this is true,
the wing-beat frequency would be determined by the resonant frequency of
the thorax-wing system.

To ascertain whether the wing-beat frequency was near the resonant
frequency, a lever system was developed which involved the mass (M) and
the elasticity (S) (Fig. 2.8). The mass and the elasticity corresponded to the
inertia of the wings and elasticity of the thorax. By changing either the mass
or elasticity, the resonant frequency of the lever system was easily changed.

Jewell and Riiegg (1966) used the indirect muscles of huge tropical
waterbugs which had a wing-beat frequency of about 10-20 Hz. A prepara-
tion obtained from the glycerol-extraction procedure was attached to the
resonant lever system. This preparation gave rise to oscillations when it was
immersed in a bath of ATP salt solution with high concentrations of Ca2+
(Fig. 2.9). Their results showed that the observed frequency was always near
the resonant frequency, over the range of about 5-20 Hz. If the resonant
frequency was set to be out of this range, non-oscillatory contraction resulted.

Similarly, the glycerol-extracted vertebrate muscle showed auto-oscillations
when coupled with an inertial load (Goodall, 1956; Lorand and Moos, 1956).
It appeared that oscillatory capability can be ascribed to the intrinsic prop-
erties in the common structure of the muscles as mentioned in Section 2.1.

This free-oscillation experiment is, thus, useful for directly demonstrating
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Figure 2.9 Free oscillation of glycerinated insect muscles. This oscillation requires a
steady level of free calcium. From Jewell and Riiegg (1966). Reprinted with permission
of the Royal Society.
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Figure 2.10 Experimental set-up for driven oscillation. The preparation (P) is immersed
in a bath (B) of ATP salt solution. The preparation is driven by a sinusoidal wave
generator (V), and the tension response is measured. From Riiegg (1968). Reprinted
with permission of Birkhauser Verlag AG.

the possibility of oscillations. However, it is not suitable for analysing the
dynamic characteristics of the muscle, because the experimental set-up
contains 'artificial' mass and elasticity.

2.4.2 Driven-oscillation experiment

The free-oscillation experiment was soon replaced by a driven-oscillation
experiment in order to obtain more information about the dynamic properties
of muscle (see the review by Pringle, 1978). The muscle is subjected to a
sinusoidal length change of small amplitude, and the resulting sinusoidal
change in tension is measured (Fig. 2.10). This method is called sinusoidal
analysis. In response to a sinusoidal length change, the tension also shows a
sinusoidal wave form with the same frequency as that of the length change
though different in its phase. Therefore, this tension response can be
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Figure 2. 1 1 (A): Sinusoidal analysis. The length change is imposed sinusoidally at one
particular frequency. In response to this length change, tension shows sinusoidal change
with the same frequency but with a different phase. This panel shows that the tension
change advances the length change by (j). (B): Length-tension loop. When the tension
is plotted as a function of length, we have a length-tension loop for one frequency. If
the phase shift, <|>, is positive, as occurs in panel A, the direction of rotation on the loop
is clockwise. (C): Nyquist plot. The phase shift, §, is converted into the phase angle, 9,
through equation (2.1) such that a point is plotted whose distance is equal to the am-
plitude, A, and whose angle is equal to the phase angle, 0. At different frequencies, these
points are plotted and connected by a continuous curve.

characterized by its amplitude and resulting phase shift with respect to the
length change. Figure 2.llA shows that there is a phase advance, <j>, of
tension on length at a particular frequency.

Depending on the applied frequency of the sinusoidal length change, the
amplitude and phase shift of tension responses are altered. In order to obtain
a lot of tension response data at different frequencies we must repeat this
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sinusoidal analysis with the same amplitude of length changes at various
frequencies. One way to express these results is to draw the length-tension
loops at different driven frequencies. The shapes of these loops and the
direction of their rotation are specified by the amplitude and phase shift of
tension response. Figure 2.1IB shows that a loop rotates clockwise. This
corresponds to the phase advance of tension on length, as shown in Figure
2.llA.

The area of the loop represents work per cycle or oscillatory work. If the
loop rotates clockwise, the muscle absorbs oscillatory work from the oscil-
lating lever system. If, however, the direction of the rotation is anti-
clockwise, the muscle is doing oscillatory work on the lever system. Driven
oscillations with positive oscillatory work are functionally equivalent to free
oscillations against a particular load.

Another way of representing the data obtained from sinusoidal analysis is
the Nyquist plot. The Nyquist plot is obtained in the following way. At a
given frequency, the tension response has either positive or negative phase
shift. This phase shift, <|), is transformed into the phase angle, 0, by the
following equation:

6 = 27t- (2.1)

where T is the period of the applied oscillation. Then, a point is plotted on
a graph at a distance from the origin equal to the amplitude of the tension
and at an angle to the abscissa equal to the phase angle. The abscissa and
ordinate of this graph now represent the in-phase and quadrature compo-
nents, respectively. For one frequency, one point is plotted on the graph.
There are many points on the graph corresponding to data at different
frequencies. The resulting points are connected to give a complete Nyquist
plot as shown in Figure 2.llC.

For convenience, the in-phase and quadrature components of tension are
converted into elastic and viscous moduli, respectively:

AF-L
^ =^T (2-2b)

where Ee and Ev are the elastic and viscous moduli, AFt and AFV are the in-
phase and quadrature components of the tension response, L is the length of
the muscle, AL is the amplitude of the length change, and A is the cross-
sectional area of the muscle (Machin and Pringle, 1960). The Nyquist plot is
now converted into a vector modulus plot. This representation is useful in
comparing results from different muscles.

An example of the viscous modulus plot was obtained for insect flight
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Figure 2.12 Vector modulus plot of glycerinated insect flight muscle. The amplitude
of length change is 0.12% Lo, where Lo is the initial fibre length before the length change.
From Jewell and Riiegg (1966). Reprinted with permission of the Royal Society.

muscle by Jewell and Riiegg (1966). At relatively high frequencies
(~30-150Hz), the phase angle was positive; while at relatively low
frequencies (~0.1-20Hz) it was negative, which means that the muscle
performed positive oscillatory work over the range of these frequencies
(Fig. 2.12).

Another example was obtained for vertebrate muscle by Kawai and Brandt
(1980). At high and low frequencies, the phase angle was positive; while
over an intermediate range of frequencies it was negative (Fig. 2.13).

2.4.3 Length-step experiment

Besides the driven-oscillation experiment, Jewell and Riiegg (1966) also
performed a quick-release and quick-stretch experiment. As shown in Figure
2.14, there is an initial rapid tension change (phase 1) in phase with a quick
length change, followed by an immediate recovery phase (phase 2). The rate
of recovery slows down and then reverses (phase 3). This is characterized by
a delayed tension fall or release de-activation in response to a step decrease
in length, and a delayed tension rise or stretch activation in response to a
step increase of length.

Insect flight muscles occur in antagonistic pairs, so that contraction of one
set of muscles stretches the antagonist, which in turn responds with stretch
activation. Of course, as we have seen in Section 2.4.1, auto-oscillation
appears even in a single set of the antagonistic muscles when connected to
the resonant lever system. Nevertheless, by the alternate activation of these
two sets of muscles, oscillations of high frequencies are maintained.
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Figure 2.13 Vector modulus plot of glycerinated vertebrate muscle. For simplicity,
some of the frequency points are omitted from the plots, and the filled symbols correspond
to decade frequencies (1, 10, 100 Hz). The peak-to-peak amplitude of length change is
0.23% Lo, where Lo is the initial fibre length before the length change. From Kawai and
Brandt (1980). Reprinted with permission of chapman & Hall.
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Figure 2.14 Tension transients following quick release and quick stretch of insect
flight muscle. Upper panel shows a sequence of release and stretch. Lower panel shows
the corresponding tension transients. The tension transients involve three phases: phase
1 is the immediate elastic response; phase 2 is the early tension recovery; and phase 3
is the delayed tension change. From Jewell and Riiegg (1966). Reprinted with permis-
sion of the Royal Society.
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Figure 2. 15 Schematic tension transients of skeletal muscle to quick release (in A) and
quick stretch (in B). Four phases can be recognized: phase 1 occurs in phase with the
change in length, which is ascribed to instantaneous elasticity; phase 2 is the quick
recovery of tension; phase 3 is the delayed tension change; and phase 4 is the slow
change in tension toward the isometric level. To: isometric tension; T,: tension ap-
proached at the end of phase 1; and T2: tension approached at the end of phase 2. From
Heinl et al. (1974). Reprinted with permission.

Tension responses to a length-step experiment on vertebrate muscle are
schematically represented in Figure 2.15. The tension generated by muscle is
called the isometric tension To when it is neither shortening nor lengthening.
Following the quick tension changes in phase with the quick length changes,
three distinct phases (phases 2, 3 and 4) appear successively. The tension is
designated Tt and T2 at the end of phases 1 and 2, respectively. Phase 3
corresponds to release de-activation (in Fig. 2.15A) or stretch activation (in
Fig. 2.15B). While in insect flight muscles the delayed tension is large and
functionally significant, in vertebrate muscles it is small and transient. This
difference is ascribed to structural differences such as the presence of the
C-filament.

It is important to clarify the correlation between the results of sinusoidal
analysis and those of length-step analysis. Let us first consider a simple first-
order rate process. The Nyquist plot produced by the first-order delay (or
advance) becomes semicircular in shape, where the frequency at the lowest
(or highest) point is referred to as the characteristic frequency. On the basis
of a linear-response theory, the rate constant, re, of an exponential response in
step analysis is related to the characteristic frequency, fc, by the simple for-
mula:

rc = 2nfc (2.3)
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Figure 2.16 Correlation between sinusoidal and length-step analyses. (A): Typical form
of a Nyquist plot which consists of three semicircular arcs. Characteristic frequencies,
/, for each semicircle are a, b and c, respectively in order from small to large. (B):
Tension time-course in response to step-length change. There are four phases in the
tension transients. The rate constants of phases 2, 3 and 4 are 2%c, 2nb and 2na, re-
spectively. From Kawai and Brandt (1980). Reprinted with permission of Chapman &
Hall.

where 2nfc is its angular frequency. This formula combines the results of the
step analysis with those of the sinusoidal analysis.

Nowconsider the Nyquist plot obtained from muscle. Generally, the plots
are approximately composed of three semicircles, whose characteristic fre-
quencies are quite different in the orders of their magnitudes. We can,
therefore, consider that the dynamical response of muscle is approximated by
three different first-order rate processes. Each phase appearing in the tension
transients after the step-length change corresponds to each semicircle of the
Nyquist plot (Fig. 2.16). Since insect flight muscle has no phase 4 in the
tension transients (see Fig. 2.14), the related Nyquist plot consists of two
semicircles (see Fig. 2.12). Consequently, the delayed tension change in the
length-step experiment is related to the phase lag of tension on length in
the sinusoidal experiment.

Results of the length-step experiment have been expressed by means of Tt
and T2 curves as a function of a step change in length (Fig. 2.17A). 7\ is a
linear function of the amplitude of stretch but departs from this linear
function as the amplitude of release is increased. The slope of this T, curve
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Figure 2.17 Analysis of length-step experiment on vertebrate muscle. (A): T, and T2
values are plotted as a function of the step change in length. (B): Rate constant r of the
immediate recovery phase (phase 2) as a function of the amplitude of the length step.
The rate of tension recovery is much faster for releases than for stretches. Data from
three experiments are plotted. The curve is r = 0.2(1 + e"05aL). From Huxley and Simmons
(1971). Copyright © Macmillan Magazines Ltd. Reprinted with permission.
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F i g u r e 2 . 1 8 T e n s i o n - s t e pe x p e r i m e n to n s i n g l e f r o g m u s c l e f i b r e . T h e m u s c l e s t a r t s
t o s h o r t e n( u p p e r t r a c e ) w h e nt h e l o a d i s s u d d e n l y r e d u c e d( l o w e r t r a c e ) . F r o mH u x l e y
( 1 9 7 4 ) . R e p r i n t e d w i t h p e r m i s s i o n .

( o r s i m p l y t h e h e i g h t o f p h a s e 1 ) i s c o n s i d e r e d t o b e t h e s t i f f n e s s o f m u s c l e ,
w h i c h i n t u r n c o r r e s p o n d s t o t h e n u m b e ro f c r o s s - b r i d g e s i n t h e a c t i v e o r
a t t a c h e d s t a t e . T 2 i s a n e x t r e m e l y n o n l i n e a r f u n c t i o n , w h i c h i s n e a r l y f l a t
i n t h e r e g i o n o f s m a l l s t e p s a n d d e c r e a s e s c o n t i n u o u s l y w i t h r e l e a s e s o f
m o d e r a t es i z e .

S t u d y i n g t h e r a t e c o n s t a n t r o f t h e e a r l y t e n s i o n r e c o v e r y( p h a s e 2 ) t o w a r d
T 2 , H u x l e y a n d S i m m o n s( 1 9 7 1 ) f o u n d t h a t t h i s p h a s e o c c u r s m u c hm o r e
r a p i d l y i n r e l e a s e s t h a n i n s t r e t c h e s ( F i g . 2 . 1 7 B ) . T h i s s u g g e s t s t h a t t h e r e
m u s t b e a n i n t r i n s i c a s y m m e t r ya t t h e l e v e l o f c r o s s - b r i d g e b e h a v i o u r . A n d
t h i s p r o v i d e s u s e f u l i n f o r m a t i o nf o r d e v e l o p i n g a m a t h e m a t i c a lm o d e l , w h i c h
i s t h e s u b j e c t o f C h a p t e r 3 .

2 . 4 . 4 T e n s i o n - s t e pe x p e r i m e n t

W h e nt h e l o a d , w h i c h i s b a l a n c e d t o t h e t e n s i o n g e n e r a t e d b y t h e m u s c l e , i s
s u d d e n l y r e l e a s e d , t h e m u s c l e b e g i n s t o s h o r t e n a g a i n s t a c o n s t a n t l o a d w i t h
i n i t i a l t r a n s i e n t s , b e f o r e t h e s t e a d y - s t a t e s h o r t e n i n g . T h e t e n s i o n g e n e r a t e d b y
m u s c l e w h e n s h o r t e n i n g o r l e n g t h e n i n g i s c a l l e d t h e i s o t o n i c t e n s i o n . O n e
e x a m p l e o f t h e t e n s i o n - s t e p e x p e r i m e n t o n t h e v e r t e b r a t e m u s c l e i s s h o w n
i n F i g u r e 2 . 1 8 . L i k e t h e l e n g t h - s t e p e x p e r i m e n t , t h e r e a r e f o u r c h a r a c t e r i s t i c
p h a s e s : i n p h a s e 1 t h e r e i s s i m u l t a n e o u ss h o r t e n i n g , p h a s e 2 i s r a p i d e a r l y
s h o r t e n i n g ,p h a s e 3 i s e x t r e m er e d u c t i o n o r e v e nr e v e r s a l o f s h o r t e n i n g s p e e d ,
a n d p h a s e 4 i s s h o r t e n i n g a t a s t e a d y s p e e d . S i n c e i n s e c t f l i g h t m u s c l e s h a v e
t h e C - f i l a m e n tw h i c h i n t e r r u p t s t h e s t e a d y - s t a t e s h o r t e n i n g , t h i s k i n d o f
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experiment has not been extensively performed to determine properties of
these muscles.

Although transients obtained from the tension-step experiment resemble
those from the length-step experiment, these transients have not been con-
ventionally expressed on a graph like the T, and T2 curves. Instead, the steady-
state shortening phase (phase 4) has been used to characterize the relationship
between the load and steady-shortening velocity. The resulting relationship
is roughly hyperbolic and is known as the force-velocity relation. This is
written as follows (Hill, 1938):

(P + a){V + b) = (Po + a)b (2.4)

where P is the isotonic tension, V the shortening velocity, and Po the iso-
metric tension. The asymptotes of this hyperbola are P = -a and V = -b, but
not P = 0 and V = 0. The maximal shortening velocity Vo is denned as the
velocity under no-load conditions as follows:

Vo = ^. (2.5)

a
The schematic representation of the Hill's force-velocity relationship is
shown in Figure 2.19.

2.5 Advanced experiments on insect flight muscle

Wehave seen that the mechanical properties of muscle can be analysed by
many types of experiments such as the driven-oscillation experiment and
length-step experiment. It is now clear that the oscillatory capability of
muscle can be ascribed to the positive oscillatory work that occurs when the
driven-oscillation experiment is performed at particular frequencies, and also
ascribed to the stretch activation which appears in the length-step experiment.
Although some of these experimental results are simply expressed on graphs,
the underlying molecular mechanism is still unclear. This section deals with
two other experiments which provide us with an important insight into the
basic oscillatory mechanism.

2.5.1 Oscillation-induced ATPase

Steiger and Riiegg (1969) measured the dependence of oscillatory power (i.e.
oscillatory work x frequency) and extra ATPase activity (ATPase activity in
excess of that obtained in the absence of oscillation) upon the frequency for
applied sinusoidal length oscillations of large peak-to-peak amplitudes (e.g.
2.5% of the fibre length).

At a low Ca2+ concentration (10"6M), there is a close correlation between
the power output and the extra ATPase activity over a wide range of
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Relative force

Relative velocity
V

Figure 2. 19 The force-velocity curve. Po is the isometric tension generated by muscle
when its length is held constant. Vo is the maximal shortening velocity of muscle when
there is no load. Relative force, P/Po, is plotted against relative velocity, V/Vo. The
asymptotes for the hyperbola are represented by broken lines.

frequencies (Fig. 2.20). Suppose that both power output and extra ATPase
activity depend on the rate of actin-myosin interaction. The frequency
dependence of the power output and the extra ATPase activity reflects the
frequency dependence of actin-myosin interaction rates. As the rate of
filament sliding is increased, actin sites slide past to interact with myosin
sites more frequently. This results in an increase in the power output and
extra ATPase activity. However, if the oscillatory frequency exceeds the
optimal value, there is not sufficient time for the actin-myosin interaction
to take place. As a result, both power and ATPase activity decrease. The
parallel correlation between the power and ATPase activity indicates a 'tight'
coupling of chemo-mechanical energy conversion.

By contrast, at a high Ca2+ concentration (10"5M), the optimal frequencies
of the power and ATPase activity differ (Fig. 2.21). This suggests a less
'tight' chemo-mechanical coupling. In either case, however, the presence of
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Figure 2.20 Frequency dependence of power output and extra ATPase activity at a low
Ca2+ concentration. The oscillatory power (in A) and oscillation-induced extra ATPase
activity (in B) are represented as a percentage of the power and the extra ATPase
activity at the reference frequency 2 Hz. From Steiger and Riiegg (1969). Reprinted with
permission of springer Verlag.
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2 . 5 . 2 D o u b l e l e n g t h - s t e pe x p e r i m e n t

S t i f f n e s s m e a s u r e m e n t sp r o v i d eu s e f u li n f o r m a t i o na b o u tc r o s s - b r i d g ed y n a m i c s
b e c a u s es t i f f n e s s i s c o n s i d e r e dt o b e p r o p o r t i o n a lt o t h e n u m b e ro f a t t a c h e d
c r o s s - b r i d g e s( H u x l e y a n d S i m m o n s ,1 9 7 1 ) . T h e i m m e d i a t ee l a s t i c r e s p o n s e s ,
A T ( - T l - T o ) ,o b t a i n e di n p h a s e w i t h t h e q u i c k l e n g t h c h a n g e ,A L , a r e
r e l a t e d t o s t i f f n e s s , S , a c c o r d i n gt o t h e f o l l o w i n g e q u a t i o n :

S = - x L 0A L
( 2 . 6 )
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Figure 2.22 Stiffness measurements at various moments during stretch activation (Double
length-step experiment). The first length-step is 3% Lo, where Lo is the initial fibre length
before the length change. Following this quick stretch, tension transients appear. At a
certain moment, the second length-step is applied as a test to measure the stiffness. This
corresponds to the peak height of the quick tension change in phase with the quick
stretch. Note that this peak height remains constant during the delayed tension devel-
opment. From Herzig (1977). Reprinted with permission of Elsevier Science Publishers.

where Lo is the initial fibre length before the length change (Herzig, 1977).
Equivalently, stiffness is defined as the slope of the 7, curve which is a
function of the length-step (see Fig. 2.17).

Since the delayed tension change (e.g. stretch activation and release de-
activation) following the quick length change is highly responsible for the
oscillatory capability of muscle, stiffness measurements during this delayed
phase in tension are worth studying. For this purpose, a double length-step
experiment was performed, in which the first length-step was applied to
induce tension transients during which the second length-step was used to
measure the stiffness (Fig. 2.22).

Herzig (1977) examined the time-course of stiffness in detail and concluded
that changes in stiffness depend on the amplitude of the first length-step. In
response to a quick stretch of less than 1% Lo, the delayed tension devel-
opment is associated with a parallel increase in stiffness (Fig. 2.23A). For a
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Figure 2.23 Time-course of tension and stiffness. (A): The delayed rise of tension
(upper curve) in response to a quick stretch of 0.5% Lo (LQ: the initial fibre length before
the length change) is parallel with the increase in stiffness (°-°). (B): When the size
of the quick stretch is 1.5% Lo, stiffness (°-°) reaches a plateau immediately after the
onset of the delayed tension rise (upper curve). From Herzig (1977). Reprinted with
permission of Elsevier Science Publishers.

quick stretch of more than 1% Lo, stiffness reaches a plateau phase imme-
diately after the onset of delayed tension development (Fig. 2.23B).

These results suggest an important feature of the cross-bridge behaviour. If
there is only one attached or force-generating state for a cross-bridge, the
increase in tension is caused by the increase in the fraction of cross-bridges
attached. If this is the case, the increase in tension must always be parallel
with the increase in stiffness as shown in Figure 2.23A. However, depending
on the initial length-step, tension develops even after stiffness reaches its
plateau phase (see Fig. 2.23B). This can only be explained if there are two
different attached states: a force-generating state and a non-force-generating
state. After the large length-step, the fraction of cross-bridges in the non-
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force-generating state begins to increase, which causes the increase in
stiffness but does not result in tension development. When the transition of
these cross-bridges synchronously occurs to the force-generating state, tension
develops at the plateau phase of stiffness as shown in Figure 2.23B.

Consequently, at least two mechanically distinguishable states of attached
cross-bridges are present during contraction. The critical length-step (1% Lo)
may reflect the range of motion of the attached cross-bridges.

Notes

Since myofibrils are not easily recognized in synchronous muscle, though they are
present, it is referred to as afibrillar muscle.
In contrast to synchronous muscle, asynchronous muscle contains easily distin-
guishable myoflbrils so that it is referred to as fibrillar muscle.



3 Models for muscle contraction

Many models have been proposed to account for the experimental observa-
tions since the A. F. Huxley (1957) model. This chapter discusses some of
them. In Section 3.1 the essence of Huxley's two-state model is described.
This model mimics the force-velocity curve observed in vertebrate muscle
when it is shortening, but does not account for muscle lengthening.

There are two distinct ways to modify this model. One way is to modify
it in order to demonstrate oscillatory contraction typical in insect flight
muscle, which is discussed in Section 3.2. The other way is to modify the
two-state model so that it matches other dynamical properties such as the
lengthening region of the force-velocity curve and many transients, in
response to length- or tension-step changes. After a further slight change in
this modified two-state model, it produces oscillatory behaviour as discussed
in Section 3.3.

Despite the attempts to explain all of the mechanical properties of muscle,
it turns out that no two-state model can successfully demonstrate these
properties. The two-state model is, therefore, replaced by the three-state
model. Section 3.4 shows that nearly all the important experimental data are
clearly demonstrated by the three-state model. The stretch activation (i.e. the
delayed tension development that follows a quick stretch of muscle length) is
interpreted in terms of the three-state model in Section 3.5. Section 3.6
provides a simplified model which accounts for the typical dynamical
properties of muscle, and then discusses the similarity between the muscle
system and the nerve system based on this simplified model.

3.1 The Huxley (1957) two-state model

To explain steady-state muscle contraction, A. F. Huxley (1957) proposed the
two-state model (Fig. 3.1). The essential features of this model are sum-
marized as follows:1
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(i) The cross-bridge dynamics within the half-sarcomere are considered.
(ii) The sliding coordinate x is defined as the distance of an attachment site

on a thin filament from a reference point on a thick filament. Note that
increasing x corresponds to release.

(iii) All the cross-bridges in the half-sarcomere are distributed uniformly (or
homogeneously) over the x values (Fig. 3.ID).

(iv) These cross-bridges are either in the attached or detached state, de-
pending on the sliding coordinate x (Figs. 3.1A and C).

(v) The cross-bridges cannot reach out a distance greater than h to make
attac hment.

(vi) An active force, F(x), generated by an attached cross-bridge is given by

F(x) = -kx (3.1)

where k is the 'spring constant' of the cross-bridge. Its potential-energy
function, U(x), is obtained by the integration of equation (3.1) with
respect to x (Fig. 3.IB):

U(x) = ^x2. (3.2)

(vii) Attachment and detachment of these cross-bridges are represented by a
first-order kinetic equation:

^ ^ = [1 - n(x)]f(x) - n(x)g(x) (3.3)

at

where n(x) is the fraction of attached cross-bridges, and f(x) and g(x)
are the rate constants between the two states (Fig. 3.1A). These rate
constants depend only on x. They are asymmetric about x = 0: the
attachment rate constant is zero in the negative-force generating
region x > 0, and it exceeds the detachment rate constant in the region
-h < x < 0. This asymmetry guarantees that the cross-bridges tend to
attach in the positive force region, and hence the contraction of muscle
(Figs. 3.1C and D).

(viii) The force-velocity relationship is obtained in the following way. First,
the total derivative in equation (3.3) is expanded by the chain rule to
become:

dn dn dxdn
Tt =Tt +TtYx- (3-4)

Now we assume that dn/dt = 0 and dx/dt = V (sliding velocity) under
the steady-state conditions. Substituting equation (3.4) into equation
(3.3) under these conditions, we solve a cross-bridge distribution, n(x),
for a given sliding velocity, V. At any time, if n(x) is known, the force
produced by all the attached cross-bridges in the half-sarcomere is:



56

(A)

Oscillatory contraction in muscle

l -n(x)
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fix) I t g(x )

n(x)

Attached state

Figure 3.1 A. F. Huxley (1957) two-state model. (A): There are two states: a detached
and an attached state, whose fractions are represented by 1 - n{x) and n(x), respectively.

fix) and g(x) denote the attachment and detachment rate constants, respectively. (B):
Potential-energy function, U(x). A cross-bridge in the region x < 0 produces a positive
force, whereas that in the other region x > 0 generates a negative one. (C): Rate con-
stants for attachment and detachment which are not symmetric about x = 0. Now/,, gl
and g2 are the constants, which are defined by/, =f(h), g, = g(h) and g2 = 3.919(/, +
g,), and h is the maximum value of x where attachment is permitted during shortening.
(D): The cross-bridges are uniformly distributed over all of the x values as shown by the
striped region. The distribution of the attached cross-bridges (indicated by a dark rec-
tangle) is positioned in the region -h < x < 0 under the isometric conditions. Note that
the increase in x corresponds to release. This correspondence is retained throughout this
book, although it was the reverse in the original paper.

p= [ F(x) n(x) dx. (3.5)

Figure 3.2 shows the force-velocity relationship obtained by the
Huxley model (broken curve) compared with the result obtained in
experiments (solid curve).
Although the Huxley model was developed in order to account for the
steady-state muscle contraction, it is interesting to examine the dy-
namic properties in response to step-length changes. Under isometric
conditions, the steady-state attached cross-bridge distribution is shown
at t = 0 in Figure 3.3A. Instantaneous stretch of AL makes it shift by
x - -ALat / = f[, because the lengthening process is so fast that the
transition between the attached and detached states is not allowed at
this instant. Since the force generated by the attached cross-bridge is
proportional to jc as defined by equation (3.1), this step stretch causes
a spontaneous increase in tension (see the right-hand panel of Fig.
3.3B) Subsequent changes in the distribution occur in two different
regions at t = t2: one for region 1 (-h - AL < x < -h) and the other
for region 2 {-AL < x < 0).
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F r o me q u a t i o n( 3 . 1 ) , t h e t e n s i o nd e c r e a s ei n r e g i o n1 i s m u c hl a r g e r
t h a n t h e i n c r e a s ei n t e n s i o ni n r e g i o n2 ( s e e t h e l e f t p a n e l o f F i g .
3 . 3 B ) . T h u s ,t o t a l t e n s i o n ,o b t a i n e db y t h e s u mo f t h e t w o t e n s i o n
c h a n g e s ,a l w a y sd e c r e a s e si n a m o n o t o n i cf a s h i o n .C o n s e q u e n t l y ,t h e
H u x l e yt w o - s t a t em o d e lc a n n o td e m o n s t r a t et h e s t r e t c ha c t i v a t i o no r
t h e d e l a y e dt e n s i o nd e v e l o p m e n ti n i t s o r i g i n a l f o r m .

3 . 2 M o d e l sf o r s t r e t c ha c t i v a t i o n

J u l i a n ( 1 9 6 9 ) m o d i f i e dt h e H u x l e ym o d e ls u c ht h a t t h e r e s u l t a n tm o d e lg a v e
r i s et o a d e l a y e dt e n s i o nc h a n g ea s o b s e r v e di n i n s e c tf l i g h tm u s c l e .F o rt h i s
p u r p o s e ,a n a c t i v a t i o nf a c t o r ,r ( 0 < r < 1 ) , i s i n t r o d u c e dt o t h e a t t a c h m e n t
r a t e c o n s t a n tf ( x ) a s a r e g u l a t o r yf e e d b a c ks y s t e mv i a C a 2 +b i n d i n g .T h e
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Figure 3.2 Force-velocity relationship. The broken curve shows the result of the Huxley
model. The solid curve shows the result of experiments. From A. F. Huxley (1957).
Reprinted with permission.

product rf(x) becomes the net rate constant for attachment. In order to
account for stretch activation, r is initially reduced such that the steady-state
attached cross-bridge distribution under isometric conditions is reduced from
that of the Huxley model. Suppose that r is sensitive to length change, and r
is increased up to 1 after stretch with a delay, then a large number of cross-
bridges begin to attach with a delay.2

After this modification, the model accounts for stretch activation as
schematically illustrated in Figure 3.4B. With the step increase in length at
t = t{, the attached cross-bridge distribution, n, is shifted to regions where
the force generated by the attached cross-bridges is large. This leads to a
spontaneous increase in tension, as in the original Huxley model. In region 1
where the detachment rate constant is large, a rapid decay of n occurs which
results in a quick fall in tension at t = t2. Since the amount of tension in-
crease caused by the new attachment of cross-bridges in region 2 is larger
than that of tension decrease in region 1, a delayed tension development
appears following the increase in rf(x).

In the Julian model, r was assumed to be sensitive to length change, while
f(x) was constant. Alternatively, it is possible that r could be constant and
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Figure 3.4 Transients in response to a step-length change predicted by the Julian model.
(A): The distribution of attached cross-bridges as a function of x. The top panel: the
distribution under isometric steady-state conditions at t = 0. Since the net attachment
rate constant is initially reduced, the distribution is smaller than that of the Huxley
model (see Fig. 3.3). The middle panel: the distribution shifted by -AL at t = tv The
bottom panel: the distribution at t = t2, when the detachment (in region 1) and attach-
ment (in region 2) occur. (B): Tension transients as a function of time. The left panel:
the tension decreases due to the detachment of cross-bridges in region 1. The increase
in tension caused by the attachment in region 2 is very large because a large number of
cross-bridges begin to attach under 'full' activation. The right panel: the total tension
shows a stretch activation.
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f(x) a length-dependent variable. A simple version of this model was
proposed by Thorson and White (1969), White and Thorson (1972), and
Abbott (1973). The essence of their models is as follows.

(i) As illustrated in Figure 3.5A, the attachment rate constant, f(x), is in-
fluenced by length changes via strain of the filaments or displacement
between the filaments (see Thorson and White, 1983).

(ii) The rate constants are chosen so that the attached cross-bridges are
located at x = x0 under steady-state conditions at t = 0. For example, f(x)
is positive only at x = x0, while g(x) is constant everywhere. Then the
steady-state distribution of attached cross-bridges is positioned at x = x0
as shown in the top panel of Figure 3.5B

(iii) Similarly to the previous models, step-length changes shift the attached
cross-bridge distribution at t = tv This leads to an instantaneous increase
in tension. The rapid fall in tension is caused by detachment in region 1,
which is followed by the delayed tension development induced by re-
adjustment of attached cross-bridges in region 2.

Consequently, in these models, the critical delay in tension is actually the
delay in the re-adjustment of the fraction of attached cross-bridges caused by
the change in the rate constant.

It is very useful to derive a phenomenological equation which describes the
stretch activation. For simplicity, let us assume the following conditions:

AP = Q&n (3.6a)

/ =/0 + RAL (3.6b)

g »/. (3.6c)

Equation (3.6a) shows that the increase in tension, AP, is proportional to the
fraction of extra attached cross-bridges, An. Equation (3.6b) is a possible
expression for a length change, AL, influencing the attachment rate constant,

/, where f0 is the attachment rate constant in the absence of length change.
Equation (3.6c) accounts for the condition where the detachment rate, g, is
much larger than the attachment rate,/. Both Q and R are constants. We ignore
the x-dependence of/, g and n.

Substituting equations (3.6a, b) into equation (3.3), we obtain the following
equation:

å ^ =-(GAL - AP) (3.7)
df x

where X (= g~l) is the relaxation time for the stretch activation and G =
QR/g. Here we ignore the contribution from/ in the second term on the right-
hand side of equation (3.3) because of condition (3.6c). Equation (3.7)
describes the first-order delay of tension change, following the step-length
change, with a time constant, x.
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Figure 3.5 The modif ied two-s ta te model . (A) : There are two sta tes : a de tached and an
at tached sta te , whose frac t ions are represented by 1 - n(x) and n(x) , respec t ive ly . f (x)
and g(x) denote the a t tachment and detachment ra te cons tan ts , respec t ive ly . f (x) is as-
sumed to be per turbed by the length of muscle . (B) : The dis t r ibut ion of a t tached cross-
br idges as a funct ion of x . The top panel : the dis t r ibu t ion under isometr ic s teady-s ta te
condi t ions a t t = 0 . Sincef (x) is pos i t ive only at x = x0,the dis t r ibut ion is loca l ized . The
middle panel : the dis t r ibu t ion shi f ted by -AL at t = f , . The bot tom panel : the dis t r ibu t ion
at t = t2 , when the de tachment ( in reg ion 1) and a t tachment (in reg ion 2) occur . (C) :
Tens ion trans ien ts as a funct ion of t ime. As in the Jul ian model , a s t re tch ac t iva t ion is
observed .

If we consider the tension, P, and the fract ion of at tached cross-bridges, n,
instead of their increments , equat ion (3.6a) is replaced by

P = Qn. (3 .6a ' )

In this case, equat ion (3.7) is replaced by

-=-(/>+GAL-P) ( 3 . 7 ' )
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Figure 3.6 Force-velocity relationship of cross-bridge models. Curve A is the relation-
ship of the Huxley (1957) model. Curve B is an relationship of the modified Huxley
model which contains the inverse attachment rate, f'(x), as shown in Fig. 3.7A. Curve
C is the relationship of the Brokaw (1975) model with rate constants shown in Fig.
3.8A. Po is the isometric tension. Vo is the maximal shortening velocity. From Brokaw
(1975). Reprinted with permission.

where Po is the isometric steady-state tension at AL = 0.
Although equation (3.7) or (3.71) clearly describes how the length change

has a delayed influence on the tension, the underlying molecular mechanism
is still unclear. Furthermore, we do not know any direct evidence which
supports the assumption that length perturbs the rate constants. An alternative
interpretation of the stretch activation was proposed by Brokaw (1975; 1976)
in order to model the oscillatory behaviour in muscle and flagella. The next
section discusses this class of model.

3.3 The two-state models with reverse rate constants

The Huxley model only produced the force-velocity curve in accordance with
experimental observation of shortening (curve A in Fig. 3.6). For stretching,
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Figure 3.7 The modified Huxley model. (A): The rate functions are the same as those
of the Huxley (1 957) model except that there is an inverse attachment rate, f'(x). This
causes rapid breakage of cross-bridges, when they exceed -h'. (B): The distribution of
steady-state attached cross-bridges under isometric conditions.

the force calculated by this model increases monotonically with velocity,
while experimental data show that its changes are bi-phasic: there is a critical
stretching velocity below which the tension is monotonically increased, and
above which it is decreased.

This inconsistency was partially removed in the two-state model when the
reverse rate constants were introduced to the model (Brokaw, 1975). Within
the framework of cross-bridge dynamics developed by T. L. Hill and
colleagues (1974; 1975), the forms of the reverse attachment rate, f'(x), and
the reverse detachment rate, g'(;t), are self-consistently determined once F(x),

f(x), and g(x) are specified. Here we emphasize the effects of f'(x) on the
force-velocity curve.

As suggested by Huxley (1957), the more realistic force-velocity curve
might be demonstrated by a two-state model when the reversal of the
attachment reaction is taken into account during the stretch. Brokaw (1975)
introduced f'(x) into the original Huxley model, as shown in Figure 3.7. This
model, demonstrated a new force-velocity curve (curve B in Fig. 3.6).
Although the peak of the tension during stretch is much smaller than that of
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Figure 3.8 The Brokaw (1975) model . (A) : f ' (x) i s incorpora ted in to the Brokaw model
in the same way as in the modif ied Huxley model (see Fig . 3 .7) . f (x) is pos i t ive only
in a nar row region . (B) : Due to the loca l ized f{x) , the dis t r ibut ion of s teady-s ta te a t -
tached cross-br idges is loca l ized .

the experimental observat ion, this modif icat ion would be the firs t s tep in
developing a model for self-osci l lat ions.

Brokaw specif ied the rate constants of the two-state model in such a way
that the force-veloci ty curve had its peak during shortening, but not during
stretching (curve C in Fig. 3.6) . Figure 3.8A shows a set of rate constants .
Since f(x) is posi t ive only in a narrow region, -h ' < x < -h, the steady-state
at tached cross-bridge distr ibut ion under isometric condit ions is local ized in
that region (Fig. 3.8B).

Nowconsider what happens in response to step-length changes (Fig. 3.9) .
Similar ly to the previous model behaviour, a step stretch shif ts the at tached
cross-bridge distr ibut ion in the direct ion of decreasing x at t = f, . Now f\x)
is so large that spontaneous detachment occurs, which causes a rapid tension
drop at that t ime. Brokaw called this 's t retch de-act ivat ion ' . Then detached
cross-bridges begin to at tach and thus tension is monotonical ly developed
toward the init ial level .

As a model of an antagonist ic set of muscles, such as insect fl ight muscles,
Brokaw combined two cross-bridge systems with the above propert ies . The
result ing antagonist ic pair of cross-bridges gave rise to the net steady-state
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Figure 3.9 Transients in response to a step-length change predicted by the Brokaw
model. (A): The distribution of attached cross-bridges as a function of x. The top panel:
the distribution under the isometric steady-state conditions at / = 0. The middle panel:
the distribution shifted by -AL at t = tv Spontaneous breakage of cross-bridges occur
due to/'(x). The bottom panel: the distribution at t = t2. Attachment occurs (in region
2). (B): Tension transients as a function of time. The total tension reverts to its original
tension.

force-velocity curve as shown in Figure 3.1OA.3 Here the net force, Pa, is given
by

P3 = P(V) - P(-V). (3.8)

In order to investigate whether this force-generating system is capable of
demonstrating oscillatory motion, the system was connected to an appropriate
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Figure 3. 10 Dynamical behaviors of the antagonistic pair of the Brokaw cross-bridge
model. (A): Force-velocity behavior of the coupled cross-brdiges. The viscous force,
yV, is described by a broken line. Po and Vo are the same as in Fig. 3.6. (B): Displace-
ment-velocity plot for the coupled Brokaw models. When combined with a viscous load,
yV, and an elastic restoring force, -Ky, the system will oscillate as represented by the
arrows indicating trajectory. From Brokaw (1975). Reprinted with permission.

load which consisted of linear elastic, -KY (Y is defined as displacement),
and viscous resistances, yV (= ydY/dt).

The force-balance equation is represented by:

yV=P.-KY, (3.9)

In Figure 3.10, y is equal to 0.5PJV0. To obtain the displacement-velocity
relationship on the (Y, V) plane, equation (3.9) is rewritten as follows:

Y = ~(Pa ~IV).
K

(3.10)
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Figure 3.10B illustrates the Y-V curve, on which a closed trajectory is drawn.
This trajectory represents a stable limit cycle. As the peak height of this
Y-Vcurve is inversely proportional to K, the amplitude of oscillation be-
comes small when the /sT-value is large, and vice versa.

The Brokaw model was the first that could demonstrate oscillatory
behaviour at the molecular level. However, the oscillatory behaviour was
demonstrated by the antagonistic pair of cross-bridges. A single site of the
cross-bridge system revealed that after step-length change, there was an
instantaneous stretch de-activation followed by a delayed tension develop-
ment (see Fig. 3.9B). These tension transients were quite different from
experimental ones. Since the flagellar system was considered to consist of a
number of antagonistic cross-bridge pairs, Brokaw extended this model to
account for flagellar beating (see Section 5.3.4).

3.4 Three-state model for oscillatory contraction

The models considered in the previous sections assumed only one attached
state. These models can account for some of the dynamical properties of
muscle such as the force-velocity relationship and delayed tension develop-
ment. One of the key features of these models is that the early tension
recovery after a step-length change (i.e. phase 2 in Figs. 2.14 and 2.15) is
interpreted in terms of a very rapid detachment of force-generating cross-
bridges. By contrast, Huxley and Simmons (1971) considered that this
process is ascribed to the quick transition between the two attached states.
This consideration was directly supported by the stiffness measurements, in
which stiffness (corresponding to the number of attached cross-bridges) does
not change in the early tension-recovery phase (see Section 2.5.2). One may
expect, therefore, that the three-state model which contains two attached
states and one detached state would mimic many dynamical properties better
than the two-state model.

Since the three-state model proposed by Nishiyama et al. (1977) demon-
strated almost all of the mechanical properties of muscle (Nishiyama and
Shimizu, 1979; 1981; Murase et al., 1986), in this section the three-state
model is modified so that it accounts for the oscillatory contraction and
related properties.

3.4.1 The model

The three-state model assumes the presence of one detached and two attached
states denoted by 0, 1 and 2, respectively (Fig. 3.llA). State 1 is a preactive
state, in which a cross-bridge produces only a little tension. State 2 is an
active state, in which a cross-bridge generates a lot of tension. The cyclic
transition among these states (0 -> 1 -> 2 -> 0) is considered to be coupled
with the hydrolysis of one ATP molecule. The sliding coordinate, x, is
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chosen as the distance between an actin and a myosin site with ~dm/2 < x <
du,/2, where dm (taken as 37.0 nm) is a unit length of two nearest actin sites.

The mechanical potential of each state is defined as a function of sliding
coordinate, x (Fig. 3.1 IB). The analytical form of each potential is written as:

State0: UQ(x)=0

<r- r.\2
S tate 1: t/,(x)= AT, å -u?

State 2: U2(x) = K2

2

(x-x2y
å us

(3.lla)

(3.llb)

(3.llc)

where Kx = 0.075pNnm~\ K2 = 0.1 pNnm~\ x, = -5.0nm, x2 = 3.0nm, U?
=3.37 pNnm, and t/° = 49.98 pNnm.

Rate constants of transitions among the three states are also defined as a
function of x (Fig. 3.llC). Here, k^x) represents the rate constant of the
transition from state i to j. There are three important characteristics of these
rate constants. First, the rate constants are asymmetric with respect to x = 0,
which is analogous to the asymmetric rate constants in the Huxley (1957)
model. Second, kn(x) and k21(x) are denned as an extremely nonlinear function
of x: kn{x) is an exponentially increasing function of x and kn(x) an
exponentially decreasing function of x. The form of these rate constants re-
flects the rate constant for the early tension recovery from 7", to T2, which is
expressed by an exponential function of the length step (see Fig. 2.17). That
is, the rate constant is low for step increases of length, but increases rapidly
with step decreases of length. This is again the intrinsic asymmetry in the
transition rate constants. Third, the magnitudes of the rate constants at xx (the
minimum position of potential U,) have three different orders: 250 s"1 for kn(x{)
and £2i(*iX 10 s~l for Jfcol(jc,) and k20(x{), and 1 s"1 for kl0(x{). This will account
for three different rate processes as represented by three arcs of a Nyquist plot
(cf. Fig. 2.13).

The analytic form of k^x) is given as follows:

*oi(*) = cOi exp -Kx (x- xtf
2knT •E2

< X< (3.12a)

*10V*/ "~A( -^-<x<^-\ (3.12b)

kl2(x) =
exp

K2(x2 - Xi)(x + 5)

kRT

H

--<x<-3.62

-3.6<x<- 2

(3.12c)
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Figure 3. 1 1 Three-state model. (A): There are three states: one detached state (denoted
by state 0) and two attached states (denoted by states 1 and 2). ku denotes the rate constant
of the transition from state i toj. (B): Potential-energy functions as a function of x, where
Uo, Ul and U2 are the potential functions of states 0, 1 and 2, respectively. From Murase
et al. (1986). Reprinted with permission of Chapman & Hall. (C): Rate constants as a
function of x. From Murase et al. (1986). Reprinted with permission of Chapman &
Hall.

*2lOO =

e

xp
K2(x2 - XXX-x- 5)

It T

-*£-<X<-6.0

2

-6.0<x<-^
2

(3.12d)

k20(x) =
(4> - c20)(x - 2)

-^2- < x <2.0
2

+
c2 0 (2.0 < x < 6.0)

6.0<x<- 2

(3.12e)

*02(*) = 0
A H *

_:2HL £ jc < rSL (3.12f)
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where c01 = 10s"1, c10 = 1s"', c,2 = 250s"1, c,'2 = 4000s"1, c21 = 62.5sT1,
c'2i = 500s"1, c20 = 9.375s"1, c^ = 100s"1,K, = 0.075pNnm"1,K2 = 0.1pN
nm"1,A"Bis the Boltzmann constant; T is the absolute temperature.

The distributions of cross-bridges in the three states 0, 1 and 2 at the slid-
ing coordinate x and time ; are represented by no(x, t), «,(*> 0 and n2{x, t),
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respectively. The kinetic equations for the distributions can be written as
follows:

=a-ioWiV-*. i) t /i2oV-*;«2(.-*i '; ~ *oi^^"o^. l> yj.ua>
d;

dnt(x, t)
=km(x)n0(x, t) + kn(x)n2(x, t) - [k]0(x) + k^x^ix, t) (3.13b)

= kn{x)nx{x, t) - [k2l(x) + k20(x)]n2(x, t) (3.13c)

At

dn2(x, 0

df

where

no(x, t) + n.Cx, t) + n2(x, r) = 1. (3.13d)

In order to obtain simulation results of the sinusoidal analysis (see Section
2.4.2), length change, AL, is forced to oscillate at frequency, /:

AL = 5sin(2jr/?) (3.14)

where 8 is the amplitude of sinusoidal length change. In this simulation 8 is
taken as 2.0 nm per half-sarcomere. As the length change, AL, is identical
with the change in the sliding coordinate, x, but has opposite sign, x is
perturbed as follows:

x = -AL= -8sin(2ji/0. (3.15)

When the distributions are specified, tension per cross-bridge, P, the number
of elementary cycles per cross-bridge per unit of time, A, and power output
per cross-bridge, W, can be calculated:

i.

H
<<att

f n r~A = | At | Axn2(x,t)klo{x) (3.16b)
dm Jn
---2

IIn this model, A is considered to correspond to ATPase activity.

/W =fI dLP. (3.16c)
0

3.4.2 Simulation results

Length-tension relationship. Figure 3.12 shows the length-tension loop of a
three-state model in response to sinusoidal length changes. The loop rotates
clockwise at high (a) and low (e) frequencies while over an intermediate
range of frequencies (c) it rotates anti-clockwise, and a twist of the loop can
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Figure 3.12 Length-tension loop of the three-state model. Tension is plotted vertically
and length horizontally. Arrows indicate the direction around the loop. Spots denote the
position of the isometric steady state tension, Po (= 5.88 x 10"2 pN per cross-bridge).
The five loops differ in the frequency of sinusoidal analysis: a, 80 Hz; b, 8.8 Hz; c,
3.2Hz; d, 0.72Hz; e, 0.20Hz.

be seen in the critical ranges of frequencies (b), (d). This reflects that the
system absorbs work at high (a) and low (e) frequencies, while it produces
positive oscillatory work over an intermediate range of frequencies (c), and
the work absorption and production of the system are almost the same at the
critical frequencies (b), (d).

A Nyquist plot. Figure 3.13 illustrates the Nyquist plot calculated by using
the fast Fourier transform (see Murase et al., 1986). The results are con-
sistent with those obtained by Kawai and Brandt (1980). This plot consists
of three arcs with characteristic frequencies of approximately 80, 3.2 and
0.2 Hz. The middle arc with a characteristic frequency of 3.2 Hz corresponds
to a change in the phase delay of tension. The other two arcs correspond to
high- and low-frequency phase advances.

The power output and the number of elementary cycles. Figure 3.14 shows
the calculated power output and the number of elementary cycles per cross-
bridge per time at various frequencies. The results are qualitatively similar to
those by Steiger and Riiegg (1969) at high Ca2+ concentration (see Fig. 2.21).
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Figure 3. 13 A Nyquist plot of the in-phase and quadrature components of the dynamic
force. Frequencies are (from right to left): 1273, 400, 159, 120, 80(a), 40, 16, 8.8(b), 4.0,
3.2(c), 2.0, 1.1, 0.72(d), 0.64, 0.55, 0.45, 0.4, 0.3, 0.2(e). Symbols a, c and e at the open
circles correspond to the approximate characteristic frequencies. The points extrapolated
to the zero frequency and to the infinite frequency correspond to the origin and the value
of 2.69 x 10"' pN on the abscissa. From Murase et al. (1986). Reprinted with permission
of Chapman & Hall.

Spatio-temporal distributions of attached cross-bridges. Since the Nyquist
plot consists of three arcs, we can expect that there should be three dis-
tinguishable rate processes in the cross-bridge mechanism. To detail such a
mechanism, spatio-temporal cross-bridge distributions are calculated at each
characteristic frequency.

Figure 3. 15 shows the distributions of attached cross-bridges changing with
space and time in response to a sinusoidal length change at 80 Hz. The top
panel shows the spatio-temporal distribution of cross-bridges in state 1 and
the time course of the force, Pu generated by these cross-bridges. We can see
that the change in />, is almost in phase with the length change, AL. The middle
panel shows the distribution of cross-bridges in state 2 and the time course
of the force, P2, generated by these cross-bridges. A large phase advance
between P2 and AL can be seen. The bottom panel is the sum of the above
two distributions. There is a phase advance between P (= f, + P2) and AL,
which chiefly results from the phase advance between P2 and AL.

At 80 Hz, the period of oscillation is too fast to allow the cross-bridges to
attach and detach, so the total number of attached cross-bridges does not vary
significantly. The only effective change is caused by the large rate constants.
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Figure 3. 14 The power output per cross-br idge (•E) and the number of e lementary cycles
(A). The number of e lementary cycles is cons idered to be propor t ional to ATPase ac-
tiv i ty . Symbols b , c and d correspond respect ive ly to those of Fig . 3 .13 . The maximum
power (1.23 x 10" ' pN nm s~'cross-br idge" ' a t 4 .0 Hz) is taken as 100% power . From
Murase et a l . (1986) . Repr in ted wi th permiss ion of Chapman & Hal l .

This is the transi t ion between states 1 and 2. The kinet ic equation describing
the tension change of this rate- l imit ing process is obtained by different iat ing
equation (3.16a) with respect to t and subst i tut ing dnjdt = -dn-Jdt (i .e . the
total number of at tached cross-bridges is almost constant) . The equation is
represented by :

*£=J_ f* r^L_ ^l^dx (3.17a)
dt dMJ_^[dx dx]dt
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Figure 3. 15 Spatio-temporal distributions of attached cross-bridges at 80 Hz. Distribu-
tions are plotted as a function of x, during one time period, T. The top panel: the
distribution of cross-bridges in state 1 (at the left) and the relationship between />, and
AL (at the right). The middle panel: the distribution of cross-bridges in state 2 (at the
left) and the relationship between P2 and AL (at the right). The bottom panel: the
distribution of cross-bridges in states 1 and 2 (at the left) and the relationship between
P and AL (at the right). Note that AL > 0 corresponds to stretch, which makes distri-
butions move to the left. From Murase et al. (1986). Reprinted with permission of Chapman
&Hall.
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where

-=knn,-k2Xn2. Or, -8 <x <xx +8) (3.17b)
At

Equation (3.17b) is restricted to the narrow region *, - 8 < x < xx + 8, be-
cause the transition between states 1 and 2 chiefly occurs in this region. The
rate constant of this process is kn + k2l with an approximate value in the
region (x, - 8 < x < xx + 5) of ~500s"1. This value is almost equal to the
applied angular frequency 2rc x 80 s"1. This relationship reflects equation (2.3)
in Section 2.4.3, when we substitute rc = kl2 + A^, andfc = 80.

Figure 3.16 shows the distributions of cross-bridges at 3.2 Hz, when there
is a phase delay between P and AL. Because rate constants kl2 and k2l are
much larger than the rate of length change, the transition between states 1
and 2 reaches a steady state. There is almost zero phase difference between
Px and AL (see the top panel), whereas there is a phase delay between P2 and
AL (see the middle panel). As we can see from the bottom panel, there is a
phase delay between P and AL which results from the phase delay between
P2 and AL. After the lengthening phase, the distribution in state 2 increases
due to further attachment. This is obvious because the distribution in state 1
has a shoulder, the result of new attachment in the region xt - 8 < x < x,. After
the shortening phase, the distribution in state 2 decreases due to detachment.

Consequently, the rate-limiting process is the combination of the attach-
ment to state 1 due to k0l with the detachment from state 2 due to k20. The
kinetic equation becomes:

^.l i^ l^i^ 0.18.)
At dmJ_^lL dxJAt

where

^ 1=£01n0-k2orh. (x, <x<xl + 8) (3.18b)

at

The relaxation rate of this process is obtained as £01 + k20 (~20 s"1). This value
is almost equivalent to the applied angular frequency 2ji x 3.2 s"1. This re-
lationship reflects equation (2.3) in Section 2.4.3, when we substitute re = £01
+ k20 and /c = 3.2. Strictly speaking, the right-hand side of equation (3.18a)
should contain the contribution of the distribution in state 1 as in equation
(3.17a). However, it is not necessary to consider its contribution as it does
not produce any force in this region.

Figure 3.17 shows the distribution of cross-bridges at 0.20Hz. The
distribution in state 2 does not change significantly during the oscillation,
which reflects the fact that the transitions which occur at x, such as x > jc15
have reached a steady state. As a result, the change in P2 is not so large (see
the middle panel). We can see that there is a phase advance between P and
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Figure 3. 16 Spatio-temporal distributions of attached cross-bridges at 3.2 Hz. The dis-
tribution in state 1 has a 'shoulder' when muscle length is stretched, which is caused by
further attachment to state 1 (see the top panel). The distribution in state 2 alternately
increases and decreases with a phase delay according to sinusoidal length oscillation
(see the middle panel). For details see the legend to Fig. 3.15. From Murase et al. (1986).
Reprinted with permission of Chapman & Hall.
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Figure 3.17 Spatio-temporal distributions of attached cross-bridges at 0.20 Hz. The
distribution in state 1 changes due to length oscillation in the region x < -10 nm (see
the top panel). The distribution in state 2 shows a steady state (see the middle panel).
For details see the legend to Fig. 3.15. From Murase et al. (1986). Reprinted with
permission of Chapman & Hall.
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AL (see the bottom panel) which reflects the phase advance between Px and
AL (see the top panel). The most remarkable change appears in the
distribution in state 1 for x < -10 nm, where the transition between states 0
and 1 is a rate-limiting process.

At 0.20 Hz, the kinetic equation is written as:
dP 1 f^"[dt/,1d«,J
t~~t~ rV-hrd* (3-19a)

where

^ =kmnQ-*,/!,. (x <10) (3.19b)

d;

Since the distribution in state 2 does not change greatly, its contribution to
equation (3.19a) is negligible. The rate constant of this process is £01 + k10
(~1 s~')> which is approximately equal to the angular frequency 2rc x
0.20 s"1. This relationship reflects equation (2.3) in Section 2.4.3, when we
substitute re = k0l + kw and/c = 0.2.

As we have seen, the characteristic frequencies obtained from a sinusoidal
analysis are closely related to the transition rate constants at the molecular
level. From this close correlation, we can easily modify the calculated
Nyquist plot by changing these rate constants, which would mimic the actual
Nyquist plot obtained from muscle.

3.5 Interpretation of stretch activation

Let us consider the difference in the explanation of a stretch activation
between the three-state model considered in the previous section and the two-
state model in Section 3.2. Figure 3.18 illustrates how the three-state model
gives rise to the stretch activation. The steady-state attached cross-bridge
distribution is shown under isometric conditions in the top panel of Figure
3.18B. Due to a quick stretch in length, the distribution is moved in the
direction of decreasing x at t = ty According to the order of the magnitudes
of rate constants, the transition from state 2 to 1 occurs quickly, which
corresponds to a quick tension recovery as shown in Figure 3.18C. Then the
attachment to state 2 via state 1 occurs. This results in the stretch activation
or the delayed tension development. Finally, detachment from state 1 occurs.

The key requirement for the stretch activation in the two-state model is
that the attachment rate constant is proportional to the step-length change as
simply described by equation (3.6b). As a result, the amount of delayed
tension change, AP, or the fraction of the excess attached cross-bridges, An,
is approximately proportional to AL:

AP = QAn = -AL (3.20)
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where we assume the condition g » f. Its rate process is described by
equation (3.7).

In the three-state model, as shown in Figure 3.18B, the new attachment to
state 2 occurs in order to maintain the equilibrium determined by the rate
constants. This rate process is described by equation (3.18b). How much the
new attachment occurs depends on how far the distribution is moved by AL.
It turns out that the amount of the fraction of cross-bridges available for
attachment (i.e. 1 - n) is also roughly proportional to AL. Now we know the
molecular basis of the stretch activation.

Mathematically, it does not matter whether/ or (1 - ri) is perturbed by AL
as long as the first-order rate process like equation (3.3) is considered in the
small-signal case (AL « 1). Consequently, the phenomenological equation
(3.7) or (3.7') provides a good approximation to the rate process governed by
equation (3.18b) since in both cases the fraction of new attachment of cross-
bridges is proportional to the step-length change.

3.6 Simplified model of muscle contraction

It is very interesting to obtain a simplified model that accounts for oscillatory
behaviour. As the first step in developing a simplified model, let us start from
the force-balance equation:

yV= P -Z (3.21a)

where y is the viscous resistance, V the sliding velocity, P the tension of the
muscle system, and Z the external load. Since the essential feature necessary
for oscillation is the stretch activation, we ignore the initial tension change
that appears in T, (see Fig. 2.17A). Thus, tension is given as follows:

P = T2(AL) + AP (3.21b)

where AP is the delayed tension change from the T2 curve in Figure 2.17A.
The T2 curve is roughly represented by a cubic function of AL:

T2(AL) = AL3 + a AL + Po (3.21c)

where a is a constant and Po is the isometric tension at AL = 0. The sign of
a depends on the slope of the T2 curve at AL = 0. Whereas a is almost equal
to 0 in vertebrate muscle, a can be negative such as in heart muscle (see
Figure 3 in Steiger, 1977). AP in equation (3.21b) is determined by equation
(3.7). From equations (3.21) and (3.7), we have a set of the following
equations :

dAL ,. . ., , . , ,
=-(AL-1+ aaL+ r0 + /\r)+ z, p.zza;

dt

^=i(GAL
A t x

A F) (3.22b)
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Figure 3.18 Transients of the three-state model in response to a step-length change.
(A): Potential-energy functions of states 1 and 2 with cross-bridge distributions. Under
isometric conditions, the steady-state distributions are shown as the filled regions. (B):
The distributions of cross-bridges in states 1 and 2 as a function of x. The top panel:
the steady-state distributions at t = 0. The middle panel: the distributions immediately
after the stretch at t = tx. The bottom panel: the distributions will revert to their original
distributions until t = t2. There are three major changes in the distributions. In region 1,
the fast transition from state 2 to 1 occurs as indicated by a shadowed part. In region
2, re-adjustment of cross-bridges in state 2 appears. In region 3, detachment from state
1 slowly occurs. (C): Time course of tension in response to a step-length change. The
circled numbers indicate the changes resulting from the changes in the three regions
detailed in (B). Modified from Murase et al. (1 986). Reprinted with permission of Chapman
&Hall.
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(C)

0 tx Time

where y. «» t, G and Po are constants; and V = -dAL/df. Replacing f0 + AP
by />, we have

dAL
i

At
=-(AL3+aAL+P)+Z

-=-(Po+GAL-P).
dt x

(3.23a)

(3.23b)

Generally, y is extremely small compared with x, so that (3.23a) and (3.23b)
are the 'fast' and 'slow' equations, respectively. The simplified model de-
scribed by equations (3.23) is equivalent to the BVP model described by
equations (1.10).

Using a similar procedure to FitzHugh (1961), we can obtain the (Z, AL)
characteristics of the model (Fig. 3.19A). Since equation (3.23a) describes a
very fast change compared with the process determined by equation (3.23b),
we can tentatively omit the effects caused by equation (3.23b). This is done
by setting

df
=0 (3.24a)

[orP=P0. (3. 24b)

Then the set of equations (3.23) are reduced to just equation (3.23a).
According to FitzHugh, this is called the (AL) reduced system. The charac-
teristics for the (AL) reduced system are obtained by setting

fdAL = 0 (3 .2 5 a )
A t

o r Z = A 3 L + a A L + P o . (3 .2 5 b )

To obtain the characteristics for the (AL, P) complete system, equation (3.23b)
is allowed to reach its steady state P = Po + GAL. Substituting this steady-
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Figure 3.19 Similarity between the muscle system and the nervous system. (A): The
simplified model behaviour. The left panel shows the (Z, AL) characteristics for (AL)
reduced system and (AL, P) complete system. The (Z, AL) characteristics for (AL)
reduced system corresponds to the T2 tension-length curve. The right panel shows the
delayed tension change after a step stretch by AL,. (B): The BVP model behaviour. The
left panel shows the (/, x) characteristics for the (x) reduced system and (x, y) complete
system. The (/, x) characteristics for the (x) reduced system correspond to an N-shaped
current-voltage relationship. The right panel shows the time course of the membrane
current after a step increase in the voltage by x,. This indicates that the inward Na+-current
is followed by the outward K+-current.

state value into equation (3.25a), we obtain the characteristics for the (AL, P)
complete system

Z=A2L +(a+G)AL+Po. (3.26)

The BVP model was originally proposed to account for nerve excitation. It
is very instructive to compare the characteristics of the present simplified
model and the BVP model, by which we can understand the mathematical
similarity between the muscle system and the nervous system. For this purpose,
we rewrite the BVP model as follows:
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e*£ = _(jts _,+,)+/ (3.27a)

At

^l = x+b-cy <3-27b)
At

where / is the membrane current, x the fast variable such as the membrane
potential, y the slow variable responsible for refractoriness, and e, b and c are
the constants. The (/, x) characteristics of the BVP model are shown in
Figure 3.19B.

It is now clear that the tension-length relationship in the muscle system is
analogous to the current-voltage relationship obtained by the voltage-clamp
experiment in the nervous system. Especially, when a is negative, the T2
curve in the muscle system is analogous to the N-shaped current-voltage
curve mediated by influx of sodium ions.

Under the current-clamp conditions, we know that repetitive firing of the
membrane potential occurs. This corresponds to the length oscillations under
isotonic conditions as observed by Armstrong et al. (1966).

The analogy that has been pointed out seems attractive and would provide
us with an important insight into the molecular mechanism underlying these
dynamical phenomena. In the nervous system, channel proteins operate to
give rise to action potentials; whereas in the muscle system, cross-bridges
turn over during contraction. Despite the diversity of biological phenomena at
the system level, I believe that the underlying mechanisms can be described
by commonmathematical terms.

Notes

1 In order to avoid confusion, definitions and notations are used consistently
throughout this chapter. So detailed descriptions are different from the original
papers, but of course the essence is retained.

2 Julian (1969) assumed that r is changed with a delay after a step increase in
length. However, irrespective of a delay, it is only necessary that r or the product
rf(x) is increased after the step stretch. Then, the delayed tension development can
result from a delayed re-adjustment of attached cross-bridges.

3 The reader should notice the similarity between the force-velocity curve in Figure
3.10A and that in Figure 1.2B.



Part II Nonlinear dynamic phenomena
in flagella and cilia

Next to muscle contraction powered by myosin-actin mechano-chemical
cycles, the best understood type of cellular motility is flagellar and ciliary
beating produced by dynein-tubulin mechano-chemical cycles. Although it is
well established that flagellar and ciliary movements are based on active
sliding similar to the well-known mechanism in muscle, the flagellar system
seems to be more complicated. This is because the muscle system shows only
one-dimensional contraction, due to active sliding occurring homogeneously
along the muscle filaments, whereas the flagellar system gives rise to
rhythmic initiation and propagation of two- or three-dimensional bends, due
to a time- and space-dependent pattern of active sliding within the flagellum.
One challenging problem that immediately arises is how bending waves are
self-organized in cilia and flagella. Structural and functional considerations of
cilia and flagella are necessary in solving this problem.

If many such flagella or cilia are close together, they exhibit on a large
scale propagating waves known as metachronal waves. In ciliated surfaces
of protozoa, for example, where beating cilia occur in large numbers, the
activity of adjacent cilia is coordinated via hydrodynamic interactions to
produce metachronal waves passing over the surface. Another interesting
problem then arising is how metachronal waves are self-organized in the
ciliated surface. In attempting to solve this problem, it is important to
consider the advantage of these wave phenomena from a functional point of
view. Through the metachronal coordination of ciliary activity, ciliated
systems seem to achieve higher efficiency for the propulsion of fluids than
could be achieved by random movement of the cilia.

Of particular interest is the presence of the two self-organizational phe-
nomena on quite different levels. On one hand, the coordination in time and
space of mechano-chemical processes at the molecular level produces bend-
ing waves at the level of an individual cilium. On the other hand, the
metachronal coordination of such activity in individual cilia in turn generates
wave phenomena at the level of a ciliated system. This suggests that
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regardless of the system level, universal principles may apply to the coordina-
tion in time and space of the 'active' processes at the lower level leading to
self-organization of temporal, spatial and functional orders at the upper level.
Cilia and flagella, thus, provide a good example for studying functional and
structural hierarchy. In spite of many studies of the structure, biochemistry
and motility of individual organelles, few attempts have been made to
identify the universal principles.

Like other nonlinear distributed systems, these motile systems exhibit a
large repertoire of self-organizational phenomena at each level. At the
individual organelle level, flagella and cilia show regular beating patterns
such as oscillations and excitability, with or without the absolute and relative
refractory period. They also show irregular patterns such as reversal of the
direction of wave propagation and intermittent beating caused by spontaneous
stopping and starting transients. At the ciliated-system level, groups of cilia
show at least four types of regular metachronal waves depending on the
relationship between the beat direction of individual organelles and the
propagating direction of the metachronal waves. They often show irregular
patterns due to a weak metachronism, e.g. sometimes two oppositely propa-
gated metachronal waves collide to disappear {annihilating waves) or some-
times they collide to evoke a new metachronal wave {non-annihilating wave
or solitori). Irregular patterns of this kind have been studied less intensively
than regular patterns. Recently the presence and role of irregularity, or chaos,
have been pointed out in various biological systems. This suggests that rather
than considering them separately, we should consider both regular and
irregular patterns as general phenomena characterized by their degree of order
(or the degree of disorder).

In Part II, the above-mentioned phenomena are discussed in detail
including consideration of both experimental observations and theoretical
calculations. Also attempts are made to answer some of the important
problems.



4 Hierarchy in structure and function

This chapter provides a brief overview of experimental observations, which
may help us to understand more precisely the mechanisms underlying
flagellar and ciliary dynamics, with emphasis on the hierarchy in structure as
well as in function.

A brief introduction to cilia and flagella is made in Section 4.1. Then, the
classical definition and the common internal structure for flagella and cilia are
described in Section 4.2. Section 4.3 outlines the historical hypotheses and
important experimental evidences for the sliding-filament mechanism. Section
4.4 discusses force-generating mechanisms and possible control mechanisms
for bending movements in terms of molecular dynamics. In Section 4.5
functional properties of individual cilia and flagella are summarized. Finally,
how metachronal waves propagate over groups of cilia is discussed in Section
4.6.

4.1 Introduction

Flagella and cilia are living motile organelles projecting from the surface of
eukaryotic cells. They produce bending waves to propel single cells in a
medium or to move fluid over the fixed cell surface. Most of them beat at
~10-40 Hz, but the form of the beat is quite variable. Their length ranges
from 2 |0.m to several millimetres and the diameter is about 0.2 |im. Strictly
speaking, flagella and cilia have very diverse ultrastructures depending on the
species from which they come (Phillips, 1974), but they are generally similar
to one another and have a basic structure of microtubules in arrangements
called axonemes (Warner, 1974). So these different names are merely a
matter of definition and the experimental results of one system can be
assumed to apply to the other. In most cases, therefore, it is not necessary to
distinguish between the two systems.

Confusingly, bacterial flagella share the same name as those of eukaryotes.
They will not be considered in this book. For even though many attractive
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Figure 4.1 Typical beating patterns of flagella and cilia. (A): Successive waves with
sustained amplitude (1 - 3) propagated toward the tip of a flagellum move water and
thus propel the sperm head forward. (B): The beating cycle of a cilium consists of the
effective stroke (1 - 3) in which the extended cilium moves rapidly toward one side by
making an 'oar-like' movement, and the recovery stroke (4 - 6) in which the cilium
moves more slowly back by propagating a bend from the base to the tip. The effective
stroke occurs more or less in one plane. The recovery stroke swings either in the same
plane or out of the plane. The arrows indicate the water flow caused by activity of the
organelles.

problems have arisen from their characteristic properties (cf. Berg, 1983;
Murata et ah, 1989), they are only 12-20nm thick and their function is
entirely different.

4.2 Internal structure and physiological function

4.2.1 Typical movements offlagella and cilia

The names of flagella and cilia are often used interchangeably, though a
fundamental distinction can be made between them, as illustrated in Figure
4.1.

Flagella are very long and occur alone or in small numbers per cell.
Sperm tails are typical examples of flagella. They show the propagation of
undulatory bending waves with sustained amplitude along the length of the
flagellum. The resultant effect is to move water along the flagellar axis and



Hierarchy in structure and function 91

thus propel the cell in the opposite direction. As Gray (1955) observed, the
movement of many flagella is confined to a single plane.

Cilia are short and occur in large numbers per cell where they generate a
flow of fluid parallel to the cell surface. They are found on many self-
propelling protozoa (e.g. Opalina, Paramecium), where they are used for
locomotion, and also within multicellular animals where they perform trans-
port functions such as mucous transport in the lungs.

Cilia generally show asymmetric beating in a cycle that can be separated
into two phases: the effective stroke and the recovery stroke. During the
effective stroke the cilium only bends a little, except near its base, and then
swings rapidly around the basal region more or less in one plane. This is
followed by the recovery stroke in which a bend is initiated at the base and
propagates to the tip of the cilium. As a result, the cilium moves more slowly
back to the starting point of the effective stroke. The resultant beat cycle is
either planar or three-dimensional depending on whether the cilium recovers
in the same plane as the effective stroke.

4.2.2 Typical structure offlagella and cilia

As pointed out before, many flagella and cilia possess an identical axoneme
structure in spite of their various beating patterns. Throughout the length of
the cilium, nine microtubules are arranged to form a basic structure of the
axoneme though its cross-sectional patterns vary with the distance from the
tip. To emphasize this 'structural asymmetry' one of the ciliary axonemes,
seen in a longitudinal section, and a series of base-to-tip cross-sections at
different levels are illustrated in Figure 4.2.

At level (1), nine singlet microtubules and a central pair of singlet
microtubules are arranged. No other specific structures can be seen. At level
(2), instead of singlet microtubules, nine outer doublet microtubules are
arranged around the central pair. This microtubule arrangement is known as
the '9 + 2' axoneme (Summers, 1975). Level (3) is the transition zone where
the central pair terminates. At level (4), instead of doublet microtubules, nine
triplet microtubules are arranged to form a basal body.

The intact ciliary or flagellar axoneme is surrounded by an extension of the
cell membrane and bathed in cytoplasm. This cytoplasmic communication
with the cell body, where ATP is produced by mitochondria, provides the
necessary channel for supplying the ATP to the motile system of the
axoneme. The transport process of the ATP along the flagellum is simple
diffusion. A function of the membrane is thus to maintain the proper
concentration of ATP and essential ions (e.g. Mg2+) around the axoneme.

9 + 2 axoneme. As illustrated in detail in Figure 4.3, within the 9 + 2
axoneme the nine doublets are in part connected via radial spokes to a sheath
which surrounds the central pair, and in part interconnected via nexin links at
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Figure 4.2 Schematic drawing of a median longitudinal section of an axoneme (left),
and the cross-section as viewed from base to tip (right) at each level as indicated: A,
B and C, are the A-, B- and C-subtubules; CN, the central pair of singlet microtubules;
M, the cell membrane; R, radial spokes; L, the ciliary necklace (cf. Gilula and Satir,
1972). (1): At the tip, the B-subtubules disappear, but the A-subtubules remain in the
axoneme. (2): The '9 + 2' axonemal structure is retained along most of the length of the
flagellum. (3): The transition zone is described as the interval between termination of
the central tubules and origin of the C-subtubules. (4): The basal body is composed of
nine sets of triplet microtubules, each triplet containing the A-, B- and C-subtubules.
Modified from Baba (1974). Reprinted with permission.
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Figure 4.3 Schematic diagram of the 9 + 2 axoneme in cross-section as viewed from
base to tip: A and B, the A- and B-subtubules; CN, a central pair of singlet microtubules;
O and I, outer and inner arms; M, the cell membrane; N, nexin links; R, radial spokes;
S, a sheath. A 'permanent' bridge is often present between doublets 5 and 6, instead of
outer and inner arms. A single bend usually occurs in a plane (indicated by P) perpendicular
to the plane formed by the central pair of microtubules.

intervals along their length. In addition, the nine doublets possess two rows
of arms. The central pair lies in a plane restricting the bend direction of the
motile organelle. A single bend prefers to occur in the plane denoted by P in
Figure 4.3, which is perpendicular to the central microtubule plane.

Microtubules. The central pair of microtubules are complete, while each of
the outer doublets consists of one complete and one partial microtubule -
known as the A- and B-subtubules. Figure 4.4 shows a cross-sectional view
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Figure 4.4 (A): Diagram of a doublet microtubule in cross section. A and B are the
A- and B-subtubules. The A-subtubule is the complete microtubule composed of 13
protofilaments (in this section 13 globular subunits can be seen), while the B-subtubule
is the incomplete microtubule formed from 10 or in this case ll protofilaments. The
1 lth subunit is frequently missing. The B-subtubule spans 4 (or 5) protofilaments of the
A-subtubule. Modified from Linck and Langevin ( 1981). Reprinted with permission of
the Rockefeller University Press. (B): A proposed model showing the surface lattice of
the microtubule doublet in cylindrical form. Each tubulin monomer is represented by a
circle (black = oc-tubulin, open = P-tubulin). a- and p-tubulin monomers combine to form
the ap-tubulin heterodimer, giving rise to the dumb-bell-shaped unit. Such heterodimers
associate head-to-tail to form protofilaments. Note that both the A- and B-subtubules
have the same arrangement of 'monomers' (as marked by the oblique lines indicated by
arrows a and b) but a different 'dimer' lattice. The resultant arrangements of these
heterodimers, however, show a right-handed helix for the A-subtubule as marked by the
oblique lines (indicated by the arrow a') and a left-handed helix for the B-subtubule
(shown by the arrow b). Modified from Amos and Klug (1974). Reprinted with per-
mission of the Company of Biologists Ltd.

and a side view of the doublet microtubule. As indicated in Figure 4.4A, the
A-subtubule is formed from 13 protofilaments, whereas the B-subtubule
comprises 10 (or ll) protofilaments sharing a common wall with 4 (or 5)
protofilaments of the A-subtubule (Warner, 1974).

Each protofilament is an assembly of heterodimers composed of two
monomers, a-tubulin and $-tubulin, whose diameters are about 4 nm. Many
models have been proposed to account for the doublet microtubule structure
(cf. Stephens, 1974). One reliable configuration of the doublet microtubule is
illustrated in Figure 4.4B (see Amos and Klug, 1974; Linck et al, 1981; Linck
and Langevin, 1981; Mandelkow et al., 1986). It should be noted that each
subtubule has the same 4 nm 'monomer' lattice arrangement, but a different
8 nm 'dimer' lattice. This indicates that each subtubule has its particular
repeat period based on the helical structure, in addition to inherent 4 nm
(monomer) and 8 nm (dimer) longitudinal periodicities.



Hierarchy in structure and function

(B) A B

95

a

a'

Dynein cross-bridges and permanent bridge. Two rows of ATPase or dynein
cross-bridges (referred to as inner and outer arms) extend from each A-
subtubule toward the B-subtubule of the adjacent doublet in a clockwise
manner, when the axoneme is viewed in transverse section from the base of
the organelle to its tip (see Fig. 4.3). These arms are spaced along the
microtubule at regular 24 nm intervals. The presence of ATPase along the
entire length of the flagellum strongly suggests that the flagellum itself is
composed of active elements. From a morphological point of view, one
question arises: what is the role of two rows of arms whose structures differ
slightly? It was found that the outer arms could be selectively removed
while the other structures remained intact, and that such axonemes could beat
with little change in wave form but at a low frequency (Gibbons and Gibbons,
1973). However, axonemes lacking the entire inner arm were found to be
non-motile (Kamiya et ah, 1989). This behaviour suggests that inner and
outer arms have somewhat different functions in beating axonemes (see
Chapter 9).

Some flagella and cilia have a 'permanent' bridge between the two
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doublets. This bridge is a useful marker for numbering the doublets. The
two bridged doublets are numbered 5 and 6 and doublet 1 lies completely
opposite, perpendicular to the central microtubule plane (see Satir, 1974).
Other outer doublets are then numbered clockwise when the axoneme is
viewed from base to tip (see Fig. 4.3). Using this numbering method, each
outer doublet can be assigned a specific unchanging number.

Basal plate and basal body. The two central microtubules end at the level of
the cell surface, or a little above it, where there is usually a basal plate. While
the outer doublet microtubules terminate inside the cell in the basal body (see
Fig. 4.2). The basal body is composed of nine sets of triplet microtubules that
form a short cylinder. Each of the outer doublet microtubules of the axoneme
extends into the basal body, where the extra C-subtubule joins part of the
doublet microtubules (i.e. the A- and B-subtubules) to form triplet microtubules.

Interestingly, almost all animal cells have centrioles in which the nine fold
array of triplet microtubules are the same as those in the basal body and are
interchangeable in function. For example, the egg does not usually seem to
possess active centrioles, while the sperm contains basal bodies that are
donated to the egg during fertilization. These sperm basal bodies act as
centrioles to organize the mitotic spindle for the first cleavage divisions. A
comparable organizing effect can be seen by artificially injecting purified
basal bodies from the ciliated protozoan Tetrahymena into frog eggs. Further
information on their function may be obtained from the review by Pitelka
(1974).

4.3 How do individual flagella and cilia move?

The nature of the basic mechanism producing wave phenomena in a cilium
(or a flagellum) has been a subject of interest for many years (see books by
Gray (1928) and by Sleigh (1962); and reviews by Brokaw (1972a, 1989), by
Blum and Hines (1979), by Gibbons (1981a), and by Satir (1985)). The
investigation of this mechanism provides a lot of information, not only about
functioning properties of the individual cilium, but also about dynamic
properties of groups of cilia leading to metachronal waves on large scales.
Before describing the nature of these metachronal waves (see Section 4.6),
we shall first try to understand the underlying mechanism by focusing our
attention on the bending movements of flagella and cilia.

4.3.1 Hypotheses

The first important question is whether flagella are 'passive' organelles set in
motion by something within the cell, or whether they are 'active' organelles
specialized for motility. Three different hypotheses have been proposed: the
passive microtubule mechanism; the active contractile microtubule mecha-
nism; and the active sliding microtubule mechanism. Since wave phenomena
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Figure 4.5 Calculated bending waves along a passive flagellum. The boundary condi-
tions are: 'pinned' at the base where movement of the flagellum is constrained to move
about a rigid hinge, and 'free' at the tip where the flagellum is completely free to move.
In order to initiate successive bends, a forced oscillation is applied to the basal end
by angular displacement. The elastic properties of the passive flagellum cause bend
propagation. The system sizes are L in (A), AL in (B) and 10L in (C), where L is the
'scale length'. When the system size is small (A), the motion is similar to that of a
relatively rigid cilium. However, this model cannot account for bend propagation, of
sustained amplitude, along a long flagellum (B, C). From Machin (1958). Reprinted with
permission of the Company of Biologists Ltd.

in a flagellum are usually ascribed to two processes, bend initiation and bend
propagation, we shall discuss the three hypotheses in terms of the two
processes.

Passive microtubule mechanism. The flagellum is considered to be a passive
cellular appendage whose components, microtubules, lack autonomous motility.
It is therefore assumed that the bend initiation is triggered by an active
process at its proximal end within the cell, and that as a result of elastic
properties of the microtubules bend propagation can occur. However, since
Machin (1958) showed that the amplitude of such a wave decreases
exponentially along the length of the flagellum (Fig. 4.5), it is difficult to



98

(A)

Nonlinear dynamic phenomena in flagella and cilia

(B)

(C)

Figure 4.6 Diagrams showing how local contraction causes a bend in a simple flagellum
represented by a series of bilaterally arranged contractile elements. (A): Before active
contraction, each element is at its equilibrium length and the flagellum is straight. (B):
Elements on one side are actively contracting and elements on the other side are stretching
in a particular region (indicated by arrows). A local bend is thus produced in the region
where an active process takes place. (C): The bend propagation is achieved by the
propagated wave of contraction in phase with the active region.

explain the observed wave propagation by this passive mechanism. Instead,
the hypothesis that flagella are active organelles appears to be attractive.

Active contractile microtubule mechanism. The flagellum is assumed to be
composed of active contractile microtubules (Machin, 1958; 1963). When
the microtubules change their length actively, relative to one another, they
produce local contraction at a particular point along the length of the
flagellum, and a local bending is initiated at that point (Fig. 4.6). The
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characteristic feature of this mechanism is that the bending region is a direct
reflection of the active region within the flagellum. A bend propagation is,
therefore, achieved by a propagated wave of contraction in phase with the
active region. This may be similar to the bending movements of eels and
snakes.

Active sliding microtubule mechanism. This hypothesis was suggested on
the basis of the analogy of the muscle system with the flagellar system after
the discovery of 'arms' projecting from the outer doublets (Afzelius, 1959). It
is considered that the microtubules do not change their length but slide
actively relative to one another (Fig. 4.7). When such sliding occurs
inhomogeneously along the flagellum, bend initiation occurs between points
that have different shear (Brokaw, 1971; Shingyoji et al., 1977). This means
that the bending region is not a direct reflection of the active region, but is
the result of sliding processes occurring throughout adjacent regions of the

flagellum. Consequently, a propagated bending wave is associated with a
propagated wave of active sliding, but they are out of phase.

4.3.2 Reactivation

To study details of the mechano-chemistry of flagellar dynamics, it was
necessary to have a 'model system' that could be subjected to well-controlled
conditions. Such a 'model' was developed by Hoffmann-Berling in the early
1950's. First glycerin was added to flagella and then it was washed away.
The resulting model was then reactivated by adding chemical energy, ATP,
and the necessary ions, Mg2+. ADP was also effective in reactivating the
model due to its conversion into ATP-AMP by a kinase present on the
axoneme. It was seen, afterwards, that the glycerin had destroyed the flagellar
membrane and the cell, but had left the 9 + 2 axonemes intact.

It is of great importance that this treatment often resulted in the separation
of sperm tails from the cell, because such isolated flagella were useful in
directly answering the question of whether or not flagella are 'active'
organelles. Since Brokaw (1961) observed that the isolated flagella could beat
and swim through a medium, the idea that flagella are 'active' organelles,
which do not require any structures within the cell for movement, has turned
out to be true.

The goal, to get a good 'model' which can be reactivated to beat when
supplied with ATP and certain ions, is 'complete' disruption of the mem-
brane without changing any other structures. Unfortunately the glycerin
procedures caused 'partial' disruption of the membrane leading to two main
shortcomings: a low percentage of reactivation and an often somewhat
abnormal waveform. Gibbons and Gibbons (1972) extended this 'extraction'
technique using a detergent, Triton X-100, to overcome these shortcomings.
The Triton-extracted 'model' flagella move just like a living organelle and
their beating frequency is determined by the concentration of ATP.
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Figure 4.7 Diagrams showing how active sliding causes a bend in a flagellum consisting
of two inextensible filaments. (A): The flagellum is straight and no bending occurs
without active sliding. (B): No bending is initiated when active sliding occurs homo-
geneously (or equally) throughout the length of the flagellum. (C): If there is resistance
to sliding at both ends, two bends are formed in opposite directions on either side of the
region of active sliding. There is a phase shift between the active region and the bending
region. The arrows indicate the active sliding direction of each filament. (D): The re-
sultant bends propagate in accordance with the propagated wave of active sliding with
some phase shift. Modified from Shingyoji et al. (1977). Copyright © Macmillan
Magazines Ltd. Reprinted with permission.
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4.3.3 Evidence for active sliding

It is clear that flagella are active motile systems. The next question is which
of the two proposed mechanisms is responsible for movement: the contractile
microtubule mechanism, by which microtubules actively change in length at
a particular point along the length of the axoneme to generate a bend at the
same point; or the sliding microtubule mechanism, wherein microtubules
remain at a constant length but move longitudinally relative to one another in
some region, to cause a bend in adjacent regions.

As pointed out by Brokaw (1972a), this difference is of great importance
particularly in cilia, because a cilium beats against the greatest viscous
resistance during its effective stroke, where its bending is restricted to a
relatively short region near its base. A contractile microtubule mechanism
requires very high energy liberation in the bending region, whereas a sliding
microtubule mechanism allows this energy liberation to take place along most
of the cilium.

In addition to the above difference, each mechanism predicts the character-
istic relationship between ciliary stroke positions and changes in the microtubule
configuration at the tip of the cilium, on the assumption that the distance
between the adjacent microtubules is constant along the whole length of the
cilium and the positions of the microtubules remain fixed at the base. A
contractile microtubule mechanism predicts that the microtubule on the outer,
convex, side of a bend will change in position tipward relative to that on the
inner, concave, side of a bend because of the contraction occurring on this
side (see Fig. 4.8B).

On the contrary, a sliding microtubule mechanism has the microtubule on
the inner side of the bend sliding tipward and results in a displacement
different from that of the contractile microtubule mechanism (see Fig. 4.8C).
Electron-microscope observations of microtubule configuration strongly sup-
port the configuration predicted by the sliding microtubule mechanism (Satir,
1965; 1968).

Much more direct evidence for the occurrence of active sliding between
flagellar microtubules is provided by Summers and Gibbons (1971), who
isolated Triton-extracted flagellar axonemes from sea-urchin sperm and
treated them briefly with trypsin (Fig. 4.9). This technique is excellent be-
cause the radial spokes and the intermicrotubule nexin links, which are
considered to provide the shear resistance, are sensitive to disruption by
trypsin, while the dyneins and the microtubules themselves are relatively
resistant to a brief treatment with trypsin. The subsequent addition of ATP
and Mg2+causes active sliding of the microtubules leading to a disintegration
of the axoneme into separated microtubules. As a result of this disintegration,
dark-field micrographs showed that the axoneme grows up to eight times
longer than the original axonemal fragment.

It is therefore concluded that active sliding generated by ATP-induced
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Figure 4.8 Comparison of a typical relationship between microtubule position and
bending pattern: (A) straight up; (B) bent by the 'contractile microtubule mechanism ';
and (C) bent by the 'sliding microtubule mechanism'. The contractile microtubule
mechanism suggests that the microtubule on the outer side of a bend will change its
position tipward relative to that on the inner side (shown by the arrow). The outer side
of the microtubule will stretch and the inner side will relatively contract, to cause a
bend. In contrast the sliding microtubule mechanism predicts that the microtubule on the
inner side of a bend will slide tipward (shown by the arrow) to form the bend.

dynein-tubulin interaction is converted into bending by the series of inter-
microtubule connections within the axoneme which are chiefly destroyed by
trypsin.

4.4 Functional mechanisms

4.4.1 Force-generating mechanisms

Although it has been established that ATP-induced force generation by
dynein cross-bridges causes active sliding between a pair of doublet micro-
tubules, little information is available on whether or not the active sliding
occurs only in one direction. Investigation of this problem provides insight
into not only how cilia and flagella beat but also how dynein cross-bridges
undergo the mechano-chemical cycle.

Unidirectional active sliding. Sale and Satir (1977) followed the method
of Summers and Gibbons (1971) by using electron microscopy to examine
a 'polarity' of active sliding between a pair of doublets. In the pair of
doublets, the dynein cross-bridges extend from the A-subtubule of one
doublet (conventionally referred to as AO and point toward the B-subtubule of
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the adjacent neighbouring doublet (conventionally referred to as N + 1) as
illustrated in Figure 4.10.

The active sliding occurs between the two doublets due to the mechano-
chemical cycle of the dynein cross-bridges on doublet N. For lack of doublet
N + 2, the dynein cross-bridges on doublet N + 1 would not contribute to the
sliding interaction. The relative movement thus depends only on whether the
direction of force generation of dynein is toward the tip or toward the base.
If the direction of force generation of dynein is from base to tip, doublet
N + I will move toward the tip relative to doublet N (Fig. 4.1OB). If, on
the other hand, the direction of force generation is from tip to base, doublet
N + I will move toward the base relative to doublet N (Fig. 4.IOC).

Sale and Satir found that the case shown in Figure 4.1OB always occurs
such that the dynein cross-bridges on doublet N push the doublet N + 1
toward the tip of the axoneme. This strongly suggests that there is a single
polarity for active sliding, and that active sliding cannot reverse along the
same pair of doublets. That is, active sliding occurs 'unidirectionally', but not
'bidirectionally '.

Unidirectional mechano-chemical cycle. The polarity of dynein force gen-
eration is analogous to that of myosin force generation, which facilitates the
sliding of filaments in striated muscle. Figure 4.ll shows major features of
the mechano-chemical activity of dynein-tubulin interactions summarized by
Satir et al. (1981). A cross-bridge on doublet N is attached to doublet N + 1
(A). ATP binds to the cross-bridge, causing it to be detached (B). Hydrolysis
of ATP to ADP + Pi relaxes the cross-bridge to its original conformation
(B -> C). The cross-bridge re-attaches to doublet N + 1 (D). Sliding move-
ment is generated when the attached cross-bridge performs a unidirectional
'power stroke' to return to its equilibrium position accompanied by the
release of ADP + Pi (D -> A).

4.4.2 Control mechanisms

It is now clear that the forces in cilia and flagella are produced by a sliding
microtubule mechanism, similar to that of striated muscle. However, to pro-
duce the observed motion in cilia and flagella, forces have to be developed
in the right sequence in time and at the right location in space. This suggests
the presence of temporal and spatial control mechanisms. Without such
control mechanisms all dyneins would operate at once - since every dynein
arm is potentially identical and every microtubule slides in the same way -
and the resultant forces would cancel and no movement would occur (Satir,
1984). Thus one apparent question arises: How is the activity of dyneins
coordinated in time and in space?
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Figure 4.9 Schematic representation of axoneme: (A) intact; (B) demembranated by
Triton; (C) followed by a brief treatment with trypsin; (D) before ATP addition; and (E)
after ATP addition. Since the radial connections, i.e. nexin links and radial spokes, are
partially destroyed by the treatment with trypsin, a disintegration of the axoneme into
separated microtubules occurs due to active sliding of the microtubule (as indicated by
the arrows).
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uooooouooooooFigure 4.10 Diagram showing a single pair of doublets. (A): Before adding ATP. The
upper doublet is conveniently numbered N and the adjacent doublet N + 1. The dynein
cross-bridges extend from the A-subtubule of doublet N toward the B-subtubule of
doublet N + 1. Base and tip correspond to left and right. (B): If the direction of force
generation of dynein is from base to tip (indicated by the arrow on the left panel),
doublet N + 1 moves toward the tip relative to doublet N (indicated by the arrow). (C):
If the direction of force generation is from tip to base, doublet N + 1 moves toward the
base relative to doublet N + 1. Experimental results always show the case (B).
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Figure 4. 1 1 Mechano-chemical cycle of dynein cross-bridge. Two successive binding
sites on the B-subtubule of doublet N + 1 are indicated by filled rectangles. (A): A cross-
bridge on the A-subtubule of doublet N attaches to the B-subtubule of doublet N + 1.
(B): ATP binds to the cross-bridge, which causes the release of the attached dynein. (C):
During hydrolysis of ATP to ADP + P;, the detached dynein changes conformation. (D):
Re-attachment of the dynein to the B-subtubule of doublet N + 1 occurs. Subsequently,
a sliding motion takes place between the two doublets upon the release of ADP + P;.

Temporal control mechanism. Active sliding between each pair of outer
doublets only occurs in one direction (Sale and Satir, 1977) due to a
unidirectional dynein power stroke (Satir et al., 1981). Because of the closed
ring of doublets, backward sliding of the same pair of doublets is passively
induced by active sliding of other pairs in the axoneme. Assuming that
bending occurs in a single bend plane, the 9 + 2 axoneme would behave as
if it were only a two-filament system as illustrated in Figure 4.8.

For convenience, the two sides of the axoneme are identified by the
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orientation of the dyneins projecting into the bend plane: one is the left half
(doublets 6-9) of the cross-section of the axoneme at which all dyneins
project into the plane incline in the same direction, and the other is the right
half (doublets 1-5) of the axoneme at which all dyneins incline in the
opposite direction.

As illustrated in Figure 4.12A, if dyneins on the right half of the axoneme
(especially dyneins on doublet 3) are active, unidirectional active sliding
takes place between doublets 3 and 4. The two-filament model assumes that
9 doublets are divided into two groups with respect to their direction of
relative sliding. One is the upper half (doublets 8-3) of the axoneme, which
slides toward the base, and the other is the lower half (doublets 4-7), which
slides toward the tip.

Of course 'doublet subsets' of the upper and lower halves can be rather
arbitrary, i.e. the axoneme can be divided into different subsets of doublets.
But such arbitrariness does not matter as long as one assumes the two-
filament system to account for planar beating. Although sliding between
doublets 3 and 4 is 'active', sliding between doublets 7 and 8 is completely
'passive'. It is passive because the sliding direction is opposed to the
'preferred' direction of the dynein power stroke. The sliding movement of
doublets causes the cilium to bend to one side (or downward in this figure).

If dyneins on the left half of the axoneme (especially dyneins on doublet
7) are active, the upper half moves relative to the tip and the lower half
relative to the base as illustrated in Figure 4.12B. In this case sliding between
doublets 7 and 8 is 'active', whereas sliding between doublets 3 and 4 is
'passive'. Thus the cilium bends toward the opposite side (or upward).

The temporal control mechanism, therefore, seems to be an 'on' and 'off'
switch for the activity of dyneins attached to doublets at each side (doublets
1-5 and doublets 6-9) of the axoneme (see Satir, 1984; 1985). Since this

control mechanism is allowed to initiate active sliding in the proximal
direction and in the distal direction alternately, it may have profound effects
on the beat frequency.

Spatial control mechanism. The temporal control mechanism produces alter-
nate active sliding and is probably responsible for the successive changes of
bend angle of a cilium between the two opposing stroke positions. However
this mechanism cannot produce a typical ciliary cycle which alternates
between effective and recovery strokes (see Fig. 4.1).

As illustrated in Figure 4.13, these different beating patterns seem to reflect
the strength of microtubule interaction along the length of the cilium - the spatial
control mechanism. According to the relationship between the geometry of
the bent cilium and the sliding displacement of the microtubules, the effective
stroke must involve synchronous sliding, where simultaneous sliding occurs
throughout the length of the axoneme except near its base. The recovery
stroke, however, must involve metachronous sliding, where sliding occurs in
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Figure 4.12 Correlations among the activity of dyneins on 9 outer doublets (left), the
resultant sliding of doublets (right) and the related configuration of the cilium (middle).
(A): If dyneins on the right half (doublets 1-5) of the cross section of the axoneme,
especially dyneins on doublet 3, are active (as seen from base to tip, where bending
direction is indicated by the arrow), 'active' sliding occurs between doublets 3 and 4
and at the same time 'passive' sliding occurs between doublets 7 and 8. Assuming that
beating occurs in a plane, these 9 outer doublets are divided into two subsets according
to the direction of sliding: the upper half (doublets 8-3) and the lower half (doublets
4-7) of the axoneme. The resultant planar bending is shown in the middle panel. (B):
If dyneins on the left half (doublets 6-9) of the axoneme, especially dyneins on
doublet 7, are active, the sliding direction is reversed and the cilium bends toward the
opposite side.
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Figure 4. 13 Correlations between the strength of 'triggering' interaction and the beating
pattern of the cilium. (A): The power stroke of most of the dyneins on doublet 3 is
triggered at once (as shown by the dark circles), when there is strong coupling between
dyneins along the length of this doublet. Synchronous sliding results (indicated by
arrows S and S') and the effective stroke is produced (indicated by arrow E). (B): When
dyneins on doublet 7 are weakly coupled, the power stroke of the dyneins (shown by
dark circles) is triggered in the restricted region of the doublet. As a result of this local
activation, metachronous sliding occurs (indicated by arrows M and M') and the re-
covery stroke is generated (indicated by arrow R). Flagellar beating patterns are ascribed
to this type of metachronous sliding alternately occurring on the two halves of the axoneme.
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a restricted region along the length of the cilium to form a bend (Sleigh and
Barlow, 1982).

One can expect that synchronous sliding occurs when the active processes
of most dyneins on the same doublet are strongly coupled by the sliding
movement of the doublet itself, and undergo their mechano-chemical cycles
almost as a unit. Metachronous sliding, however, takes place when there is
weak coupling between dyneins and they perform the mechano-chemical
cycles in a limited region. This suggests that activation of dyneins may be
triggered in two different ways, one essentially local and one occurring
almost simultaneously throughout most of the length of the axoneme
(Rikmenspoel and Sleigh, 1970; Sleigh and Barlow, 1982).

4.5 Dynamics of individual flagella and cilia

4.5.1 Excitability and oscillations in dynein cycles

In the preceding section, we examined how molecular dynamics is amplified
into the macroscopic behaviour of flagella and cilia. However, we have not
examined what properties are essentially important for generating bending
waves. Investigation of the ability of 'modified' flagella to initiate and
propagate bending waves is helpful in answering this question. Flagella are
modified by damaging and constraining local regions, or inversely reactivat-
ing a specific region. Using this technique we can focus on the function and
role of particular regions of the flagellum.

The pulsed-laser microbeam is one possible method of modifying a
flagellum as it causes an almost instantaneous lesion or break. Goldstein
( 1969, 1974) amputated sea-urchin sperm flagella during steady-state bending
and observed that pre-existing bends in an amputated flagellum propagated
more or less normally to the tip, but that no new bends were initiated by
the amputated flagellum. Mechanical constraint by a microneedle during the
bending movement gave similar results (Okuno and Hiramoto, 1976). It was
also found that bends, passively initiated by a microneedle, propagated to the
tip with a constant bend angle (Okuno and Hiramoto, 1976).

Instead of inhibiting them, reactivating particular regions of a flagellum
reveals other aspects of flagellar function. Triton-extracted 'model' flagella
were placed in a reactivation solution without ATP but local reactivation was
achieved by iontophoretic application of ATP (Shingyoji et al., 1977). Some
amount of ATP applied to a relatively straight region of the axoneme caused
a local bend, while a much smaller amount of ATP was enough to straighten
this bend with consequent displacement of the bend in the distal direction.
On the basis of these results, Shingyoji et al. (1977) speculated that a bend
was able to propagate even in a low concentration of ATP once it was
formed, though a new bend would not be initiated at this concentration.

All these observations suggest that the process of bend initiation is
different from the process of bend propagation. When considering self-
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organization in non-equilibrium thermodynamics excitability is denned as the
capability of a system, initially at a 'resting' state, to trigger an 'action' in
response to superthreshold perturbations, while oscillations are considered
to be sustained autonomous phenomena. Bend propagation and bend initia-
tion may be interpreted in terms of excitability and oscillations in dynein
mechano-chemical cycles, respectively. In the following chapters theoretical
models are developed to account for flagellar and ciliary movements based on
these assertions.

4.5.2 Excitability, oscillations and bursts in ciliary beat cycles

Oscillations and excitability are much more obvious when we consider the
behaviour at the level of an organelle. Detailed experimental observations
identify many 'oscillatory' and 'excitable' cilia.

'Oscillatory' cilia exhibit repetitive beat cycles, where ciliary activity is
normally continuous over many cycles alternating between effective and
recovery strokes. Cilia of protozoa such as Opalina and Paramecium belong
to the 'oscillatory' type. 'Excitable' cilia, however, normally rest every cycle
at the end of either the recovery or the effective stroke. Compound cilia (or
comb plates) of ctenophores Pleurobrachia (Sleigh and Jarman, 1973) are
examples of 'excitable' cilia that rest at the end of the recovery stroke and
commencethe beat cycle with a full effective stroke. Cilia of mammalian
tracheal epithelium and similar mucus-propelling cilia (Sanderson and Sleigh,
1981) are the other examples of 'excitable' cilia which rest at the end of the
effective stroke.

Unlike the above-mentioned cilia the macrocilia of the ctenophore Beroe
stop at two different positions: the end of the effective stroke and the end
of the recovery stroke (Tamm, 1983). The resting phase at the end of the
effective stroke is the more stable, because initiation of the recovery stroke
requires a mechanical stimulus though the effective stroke is initiated
spontaneously after a rather constant time delay without external stimuli. Of
course, it is possible for mechanical stimulation to trigger this effective stroke
at an earlier time.

The anal cirri of Euplotes show bursts of repeated cycles of beating. They
rest between bursts in a fully extended position, about half-way through their
effective stroke (see Sleigh and Barlow, 1982).

4.5.3 Mechano-sensitivity

Absolute and relative refractory period. Like other excitable and oscillatory
systems, e.g. nerve membranes, cilia show a refractory period of insensitivity
to mechanical stimuli before responding with an active stroke. On running
photographic film through a slit camera Murakami (1963) recorded the
movement of motile cilia in ciliary pads of Mytilus gill.
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Figure 4.14 Schematic diagrams showing how the movement of cilia is recorded by
the slit camera. (A): An image of the surface of cilia within a ciliary pad is projected
through a narrow slit (indicated by dot lines) of a microscope onto the screen. (B): The
image of the moving cilia is recorded on photographic film running at a constant speed
to the left (indicated by an open arrow). On the image, an abscissa (r-axis) corresponds
to time elapsed and an ordinate (L-axis) corresponds to the surface of the cilia seen
through the slit. Two wave-like traces thus represent the movements of two rows of cilia
parallel to the slit.

Figure 4.14 illustrates how the microscopic image was projected onto
photographic film running at a constant speed. Cilia are illuminated so that
each cilium appears to be a light spot at a given time. When such micro-
scopic images were projected onto the running film, wave-like traces were
recorded. Note that this device records exclusively the component of ciliary
movement parallel to the slit. Thus measurement of amplitude, frequency and
the conduction velocity of metachronal waves record the movement in this
component.

Murakami investigated temporal responsiveness of motile cilia to mechani-
cal stimuli. During the recovery stroke he made a momentary shift of a
microneedle in the direction of the effective stroke. In response to this
stimulation, the cilia showed an extra effective stroke. As shown in Figure
4.15, the magnitude of the resulting effective stroke depended on the timing
when the stimulation was given to cilia exhibiting the previous recovery
stroke. Such temporal responsiveness (or 'graded' responsiveness) can be
interpreted as the absolute or relative refractory period during which mechano-
sensitivity of motile elements is lost or reduced, respectively.

Since the extra effective stroke was not initiated during the recovery stroke
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Figure 4.15 Temporal responsiveness of motile cilia to mechanical stimuli. Each me-
chanical shock S, induces a corresponding response A, (i = 1, 2, 3, 4 and 5). A,, indicates
normal stroke before stimulation. The stimulation signals indicate the moments of
microneedle, 10 Jim per 0.1 s. From Murakami (1963). Reprinted with permission.

by a mechanical stimulus in the direction of the recovery stroke (Murakami,
personal communication), the effectiveness of a stimulus seems to be a
function of its direction. However, the situation is much more complicated
because no extra recovery stroke was ever triggered during the effective stroke,
irrespective of the direction of stimulation (Murakami, 1963). This means that
the mechano-sensitivity of motile cilia to stimuli depends, not only on the
direction of the stimulus, but also on the direction of the beating cilia (Fig.
4.16).

Since cilia in a ciliary pad possess an intrinsic rhythm (i.e. 'oscillatory'
property), the effects of pre-existing beating makes it difficult to investigate
directional mechano-sensitivity. For this reason, 'excitable' cilia are more
suitable for this investigation.

Directional mechano-sensitivity. Tamm (1983) used macrocilia of the
ctenophore Beroe resting at the end of the effective stroke to study directional
sensitivity (Fig. 4.17A). These compound cilia are 35-40 |0.m in length and
contain many thousands of axonemes within a common membrane.

When the mechanical stimulus by a microneedle is applied to the 'excit-
able' macrocilia in the direction of recovery stroke, a recovery stroke is
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Figure 4.16 Schematic illustrations showing directional sensitivity of 'beating' cilia to
mechanical stimuli. (A): Effective stroke (E.S.) is triggered during recovery stroke (R.S.)
when a microneedle (black cross-section) is moved in the direction of the effective
stroke. (B): Recovery stroke is not initiated by a microneedle irrespective of the direction
of stimulation.

triggered. However, movement of the microneedle in the opposite direction
does not stimulate the recovery stroke. Similarly macrocilia resting at the end
of the recovery stroke (although this state is less stable than that at the end
of the effective stroke) can generate an effective stroke in response to a
mechanical stimulus in the direction of the effective stroke. Therefore the
direction of the active bending response reflects the direction of the stimulus.

As bending in opposite directions is considered to result from the
activation of doublet sliding alternately in two halves of the axoneme, the
directional sensitivity of the cilia to mechanical stimuli indicates that each set
of microtubules can be activated independently by mechanical stimuli applied
in the direction of force generation.

In contrast, the compound cilia of the ctenophore Pleurobrachia resting
at the end of the recovery stroke showed different mechano-sensitivity to
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Figure 4. 17 Schematic illustrations showing directional sensitivity of 'quiescent' cilia
to mechanical stimuli. (A): Compound cilia of ctenophore Beroe resting at the end of
the effective stroke (E.S.) as well as at the end of the recovery stroke (R.S.). Mechanical
stimuli in the direction of the recovery stroke (shown by a) cause the recovery stroke,
while mechanical stimuli in the opposite direction (shown by b) produce no effect on
the initiation of the recovery stroke (upper left). At the end of the recovery stroke cilia
exhibit a resting phase, though it is not very stable, as an effective stroke is intrinsically
triggered (from upper right to lower left). Mechanical stimuli applied before the intrinsic
returning phase can initiate the effective stroke (from lower right to lower left). (B):
Compound cilia of the ctenophore Pleurobrachia resting at the end of the recovery stroke.
Mechanical stimuli in either direction (shown by a and b) can stimulate the effective
stroke. The recovery stroke occurs automatically.
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external stimuli (Sleigh and Jarman, 1973). A single beat cycle, consisting of
the effective and recovery strokes, is triggered by the shift of a microneedle,
irrespective of the direction of the stimulus (Fig. 4.17B).

4.5.4 Quantal steps in angular changes

Large abfrontal cilia (giant compound cilia) of Mytilus gill are suitable for
cinematographic analysis, because they exhibit planar and slow beat cycles.
Baba (1979) examined successive beat cycles and found that the effective
stroke consists of alternating rapid and slow phases of angular changes
particularly in the most distal part of the cilium.

Figure 4.18A shows changes in angular direction as a function of time at
different points (indicated in the figure) along a cilium. The effective stroke
is interrupted five times by slow phases of various durations (indicated by
arrowheads a, b, c, d and e). Figure 4.18B shows a histogram of the slow
phases over four successive beats. Five peaks appear in this histogram
corresponding to the five slow phases during the effective stroke. These
observations suggest that the microtubules slide in quantal steps or, simply
stated, with 'intermittent' movements.

The reason why such intermittent movements occur particularly in the
distal part of a cilium is as follows. Supposing that active sliding takes place
simultaneously between doublets on one side of the axoneme, a single large
bend and hence an effective stroke is formed (cf. Fig. 4.8C). However, this
is not always the case when the effective stroke begins earlier in the proximal
region. A space-dependent change in angular movement results and two
bends are formed: the proximal bend pointing in a forward direction and the
distal bend pointing backward. Gibbons and Gibbons (1972) referred to the
resultant proximal and distal bends as principal and reverse bends respectively,
noting that the proximal bend was sharper than the distal bend. (In asymmet-
ric bending waves the bends with larger angles are usually defined as the
principal bends.) The effective stroke is performed with a continuous increase
in the principal bend, whereas the reverse bend initiates and propagates to
counteract the resultant rapid motion in the distal region. This alternating
initiation and propagation of the reverse bend in the distal region may be
responsible for the slow- and rapid-phase angular changes observed in the
distal part.

Baba (1979) interpreted these abrupt changes in sliding speed (or angular
velocity) in terms of axonemal substructures. The sliding speed is essentially
determined by the balance between the active force generated by dyneins,
and the resistive force due to the strength of the radial link systems such as
the strength of radial spokes. When dyneins are activated to generate force
in the proximal region, the microtubules in this region slide to form the
principal bend near the base. However, dyneins in the distal region are not
active enough to cause sliding, reflecting the fact that the angular direction of
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Figure 4.18 Changes in angular direction of large abfrontal cilia of Mytilus gill. The
length of the cilium is 90 Jim. (A): The angular direction is plotted against time at 10 \un
intervals along the cilium. Arrowheads a, b, c, d and e show slow phases during the
effective stroke, s is the distance from the base along the cilium. (B): Histogram of
angular direction of the distal part of a cilium during the effective stroke. The upper four
histograms plot the four successive effective strokes. Each histogram represents the
relationship between the number of frames and the angular direction, within a range of
0.03 rad widths. The framing speed is 270 frames per second. The bottom histogram
is a combination of the four histograms. From Baba (1979). Copyright © Macmillan
Magazines Ltd. Reprinted with permission.
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Figure 4. 1 9 Schematic diagrams showing the dynamic relationship between the axonemal
substructures and the bent cilium. (A): A side view of a segment of the axoneme
showing the relationship between doublet 1 and the central tubule. The stroke distance
of the radial spokes (rs) during interactions with the central sheath projections (sp)
corresponds to 28.6 nm. This stroke distance causes the segment to change its direction
by 0.32 rad, on the assumption that the vertical centre-to-centre distance between the
doublet 1 and the central tubule is always 90 nm. (B): A cross-sectional view of the
axoneme. (C): A side view showing the relationship between doublets 3 and 4. Dyneins
on doublet 3 undergo a complete cycle of attachment-detachment interactions with
doublet 4 to slide by 22.5 nm. This causes the segment to change direction by 0.36 rad
on the assumption that the centre-to-centre distance of adjacent doublets is 62 nm. From
Baba (1979). Copyright © Macmillan Magazines Ltd. Reprinted with permission.

this region is in its slow phase at this stage. As a result, the reverse bend
appears in the distal region. The rapid phase appears when the force
generated by dyneins, plus the elastic force of the bent cilium, overcomes the
resistance in the distal region in accordance with the propagation of sliding
toward the tip. This releases the energy stored in the elastic components, thus
sliding in the distal region tends to cease again. This effect appears as the
second slow phase. At this time, dyneins and radial spokes on the sliding
doublet change position relative to their sites of interaction on the adjacent
doublet and the central tubules, respectively. This suggests a cyclic regulation
of the force generation and resistance (Fig. 4.19).

For simplicity, let us consider dyneins on doublet 3 and spokes on doublet
1, since they are efficient in generating force and resistance due to their
location relative to the bend plane (see Fig. 4.19B). During one cycle of
interaction, dyneins and radial spokes are thought to slide by 22.5 nm (see
Takahashi and Tonomura, 1978) and 28.6 nm (see Warner and Satir, 1974),
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respectively. Assuming a basic relationship of 8 = u/h where 0 is the bend
angle, h the centre-to-centre distance between interacting filaments, and u the
net sliding displacement. These sliding displacements in turn correspond to
0.36 rad for dyneins on doublet 3 and 0.32 rad for radial spokes on doublet
1.

An interesting fact is that the observed minimum change in angle (about
0.2-0.3 rad) corresponds to the theoretical minimum change in angle (say,
0.32 rad for radial spokes). This suggests that multiple stable states are
possibly induced by the periodic arrangement of dyneins and spokes within
the axoneme, which may in turn account for movement of the cilia.

Of course, further investigations using 'simple' cilia are necessary to
clarify whether the intermittent bending movements of Mytilus 'compound'
cilia reflect an inherent property of the axoneme or interactions of many
component cilia.

4.5.5 Intermittentflagellar beating

The distally propagating waves, typical of flagella of protozoa and spermato-
zoa, propel the cell through a medium. However, flagella of trypanosomatids,
Crithidia oncopelti (Holwill, 1965) or Leishmania (Alexander and Burns, 1983),
show an unusual ability to propagate bending waves from either the base or
the tip. Normally these flagella propagate bending waves from tip to base, by
which the cell is pulled in the direction of the flagellum. This proximally
directed wave propagation is intermittently replaced by a distally directed
wave propagation in response to mechanical, chemical, or electrical stimuli
(Holwill, 1965; Holwill and McGregor, 1974).

Without such stimuli, these flagella could show an ability to reverse the
direction of wave propagation (Holwill, 1965). Figure 4.20 shows such
intermittent movements of a Leishmania promastigote. The flagellar-like tip-
to-base waveforms are intermittently interrupted by five successive ciliary-
like base-to-tip wave forms. Each ciliary-like beat is initiated with an effective
followed by a recovery stroke and has the effect of rotating the animal by
~10-30°. As a result, the cell rotates about 180°. This alternating pattern of
beating thus seems to be an avoiding reaction that allows the organism to
reverse its direction of movement.

In abnormal conditions where the viscosity of the medium is increased
(Holwill, 1965) or some chemical agent is added (Alexander and Burns,
1983), it is found that two waves travel in opposite directions. When the two
waves pass each other the flagellum appears to be frozen. The following
wave propagates along the flagellum from tip to base (Holwill, 1965). This
phenomenon may be somewhat analogous to the non-annihilating metachronal
waves propagating over a mat of cilia (see Subsection 4.6.2).

Since there are no special structures at the tip that are initiating the tip-
to-base bending waves, the reversal of the direction of propagating waves



Hierarchy in structure and function 121

1 5 10 15 22 27

1nnj
28 34 36 40 42 45

<T f <r <r r
47 5 1 56 58 65 70

74 76 80 86 9 1 97

C\*! 1 •E< (
Figure 4.20 Movement of a free-swimming Leishmania promastigote. The cell is
being propelled forward (70 |J.m/s) by the flagellar-like tip-to-base waveform (frames 1 -
27). These forward movements are suddenly interrupted by five successive ciliary-like
base-to-tip beats (frames 28-36, 36-45, 45-56, 56-74 and 74-91). The framing speed
is 50 frames per second. From Alexander and Burns (1983). Copyright © Macmillan
Magazines Ltd. Reprinted with permission.

remains a mystery to be solved. Attempts have been made to solve the
mystery by isolating the flagellum from the cell by laser irradiation (Goldstein
et al., 1970; Goldstein, 1974). Interestingly, the amputated flagellar segments
could beat, not only from the tip or the irradiated point, but also first from
the tip and then from the irradiated point (Fig. 4.21) or vice versa. This
indicated that the influence of the cell was not important in the reversal of
wave propagation.
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Figure 4.21 Selected frames illustrating the effect of laser radiation on a flagellum of
Crithidia oncopelti. Panels 1 and 2: Tip-to-base waves are observed before irradiation.
Panels 3 and 4: The laser beam hits a basal region. The flagellum is completely severed
from the cell. The disturbance produced by the laser beam is indicated by the arrow.
Panels 5-8: After irradiation, bends continue to propagate from the tip of the isolated
flagellum. Panels 9-12: At a later time (about 1 s), bends are now traveling toward the
tip. Elapsedtime (ms): Panel 1, 0; 2, 10; 3, 20; 4, 30; 5, 120; 6, 160; 7, 200; 8, 230;
9, 900; 10, 930; ll, 970; 12, 1020. From Goldstein et al. (1970). Reprinted with per-
mission of the Company of Biologists Ltd.

Further understanding came from an investigation of demembranated
model flagella under various chemical conditions (Douglas and Holwill,
1972; Holwill and McGregor, 1975). The results suggested that Ca2+ was able
to control the direction of the bend propagation, because at low concentra-
tions of Ca2+ (less than 10~7M) only tip-to-base waves were observed, whereas
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at higher concentrations only base-to-tip propagations were seen (Holwill and
McGregor, 1975; 1976). There is always the possibility, however, that the
control mechanism suggested by these model systems may be different from
the intact mechanism in the living cell.

Intermittent swimming of sea-urchin sperm of Tripneustes gratilla (a
Hawaiian species) was observed in both living cells (Gibbons, 1980; 1981b;
Gibbons and Gibbons, 1980b) and demembranated models in a reactivation
medium containing Ca2+ (Gibbons, 1986). This phenomenon involves the
stopping and starting transients of flagellar movement (Fig. 4.22). The stop-
ping transients are triggered by the abrupt failure of a reverse bend to be
developed at the basal end of the flagellum at the expected time in the beat
cycle. As a result, the preceding principal bend remains at the base and the
flagellum becomes quiescent, maintaining a shape that resembles a cane with
a sharp bend in the basal region and little curvature in the rest of the
flagellum (Gibbons and Gibbons, 1980a). The starting transients begin when
a reverse bend is initiated at the base. Comparison of the timing of the peaks
and the valleys in 9ljp before and after the quiescent episode indicates that the
flagellar oscillation does not maintain its phase but shifts by about half a
cycle corresponding to the quiescent interval (Fig. 4.22B).

Intermittent oscillations were also observed in the bending pattern of short
demembranated sea-urchin sperm flagella (Brokaw, 1982). The sperm head
was attached to a microscope slide and no movement of the head was
allowed. As illustrated in Figure 4.23, flagella shorter than 4 u.m were usually
observed to beat with irregular duration of pauses before initiation of new
bends (i.e. onset of sliding reversals). It is interesting to note that pauses
in bend initiation are also evident in the discontinuous beating cycle of
'excitable' cilia, as mentioned in the preceding sections.

From the above evidence, I suspect that intermittent bending movements
are not 'species specific', but are common to all cilia and flagella (see
Chapters 7 and 8).

4.6 Dynamics of groups of flagella and cilia

4.6.1 Synchronism and metachronism

It has been observed that two or more nearby flagella, originally beating with
different frequencies, tend to beat with a common frequency and wavelength
due to mechanical coupling via moving fluid near the flagella (Fig. 4.24).
Such behaviour is typical of a certain class of nonlinear oscillators and is
called synchronization.

As pointed out by Gray (1928), a well-known example of this phenomenon
is given by two pendulum clocks hung on a common support. Because each
clock transmits its vibrations to the support and at the same time receives
from the support vibrations set up by the other, the pendulum of the slower
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Figure 4.22 Intermittent swimming of sea-urchin sperm of Tripneustes gratilla. (A):
Tracings of flagellar waveforms showing the stopping transient (frames 8-16), brief
quiescence (16-17) and the subsequent starting transient (1 8-32). The angular orien-
tation and vertical position of each tracing are fixed, though the relative horizontal
positions are arbitrary. The framing speed is 170 frames per second. (B): The total angle
between the central axis of the sperm head and the tangent to the flagellum at its tip,
8dp, as a function of time. Non-zero mean value of 8lip indicates the degree of asymmetry
inherent in the flagellar wave form. From Gibbons (1986). Reprinted with permission of
Chapman & Hall.
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Figure 4.23 The total angle between the axis of the sperm head and the distal 0.5 \im
of a very short sperm flagellum with a length of only about 3 (im as a function of time.
The movement is asymmetrical with respect to the axis of the sperm head: the bend in
one direction is larger (about 1.2 rad) than in the other (about 0.9 rad). Brokaw (,1982).
Reprinted with permission of Cambridge University Press.

Figure 4.24 Spirochaeta balbianii exhibiting synchronism and metachronism. Each
individual flagellum has a different wave form. When positioned close to each other,
their movements tend to be coordinated by hydrodynamic interaction. Forces generated
in the transverse direction (horizontal direction in the figure) presumably exceed those
in the main axis of the flagellum (vertical direction in the figure). As a result, syn-
chronization occurs parallel to the transverse forces. Metachronal waves propagate
perpendicular to the direction of synchronization. From Gray (1928). Reprinted with
permis sion.

clock is forced to swing by the faster clock resulting in acceleration of its
vibrations. This example is simpler than the case of flagella because clocks
counting time give rise to only 'temporal' synchronization whereas flagella gen-
erating bending waves exhibit both 'temporal' and 'spatial' synchronization.

Like other wave phenomena, populations of synchronized flagella transmit
wave fronts and possess two coordinates: one along which all elements
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oscillate in phase (i.e. zero phase-shift) leading to synchronization and
another, perpendicular to the first coordinate, along which elements beat out
of phase (i.e. maximal phase-shift) and cause metachronal waves with a
particular wavelength (see Machemer, 1975). In Figure 4.24, the coordinates
of synchronism and metachronism correspond to the horizontal and vertical
axes, respectively.

Synchronism and metachronism are also found in populations of cilia. Cilia
are generally arranged in rows across and along the cell surface of protozoa
and on respiratory-tract epithelia. The movements of adjacent cilia are
synchronized to beat in phase along one direction, but out of phase along
another direction which is at right angles (often perpendicular) to the lines
of synchronism. Waves of ciliary movements, known as metachronal waves,
propagate along this out-of-phase direction. The metachronal waves passing
across the ciliated surface would look something like the waves of motion of
wheat when the wind blows over a field. The advantages of the metachronal
coordination of cilia are to increase the amount of fluid propelled and to
maintain continuity of flow (see Sleigh, 1976).

Individual ciliary movement takes a different form depending on the ciliary
system (e.g. planar, helical, oscillatory, or excitable beating). Thus, as shown
in Figure 4.25, at least four main patterns of metachronism have been
recognized according to the relationship between the direction of the effective
stroke of the ciliary beat and the direction of propagation of the metachronal
waves (Knight-Jones, 1954). When metachronal waves travel in the same
direction as the effective stroke, this is called a symplectic metachronism. The
coordination is called antiplectic when metachronal waves and the effective
stroke point in opposite directions. When an observer, looking in the
direction of metachronal wave transmission, observes an effective stroke
toward the right perpendicular to the wave direction, it is called a dexioplectic
metachronism. The mirror-image of this configuration is called laeoplectic.

The latter two types of metachronism are due to the three-dimensional beat
cycle of the cilium. In dexioplectic and laeoplectic metachronism, the ciliary
beat cycle consists of a relatively faster effective stroke, in which the cilium
is extended and rotates in a vertical plane about its base, and a relatively
slower recovery stroke, in which the cilium bends closer to the cell surface
and rotates in a horizontal plane, either anti-clockwise or clockwise as
viewed from above the plane. This sideways recovery stroke is of great
advantage in reducing the resistive forces which may interfere with the
continuity of the forward flow generated by the effective strokes.

Figure 4.26 illustrates the fluid volume influenced by the movement of a
cilium (termed 'envelope of flow') exhibiting a beat cycle typical of the
lateral cilia of Mytilus gill and the corresponding laeoplectic metachronal
wave. Strong viscous coupling takes place between cilia in the plane of the
effective stroke, as the envelope of flow of the effective stroke is more
extensive than that of the recovery stroke (producing faster fluid flows during
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Figure 4.25 Diagram showing metachronal waves. (A): Cilia are arranged in rows
across and along the cell surface. The arrow E shows the direction of the effective
stroke. The arrows S, A, L and D represent the directions of symplectic, antiplectic,
laeoplectic and dexioplectic metachronal waves. In the case of symplectic or antiplectic
metachronism, cilia in lines (1,2,3), (4,5,6) and (7,8,9) beat synchronously. In the case
of laeoplectic or dexioplectic metachronal waves, cilia in lines (1,4,7), (2,5,8) and (3,6,9)
beat synchronously. (B): The full cycle of a typical ciliary beating position at equal
intervals in time (left) and the position of an array of cilia at a given time (right). The
upper array (denoted by S) and lower array (denoted by A) represent symplectic
metachronism and antiplectic metachronism, respectively. M.D. and E.D. represent the
direction of metachronal waves and the effective stroke, respectively. Each cilium has
the same number assigned to the identical bending position during a cycle. From Murakami
(1974). Reprinted with permission.

the effective stroke than during the recovery stroke). Moving cilia in this
plane synchronize when the large envelopes of the effective strokes overlap
extensively in the plane of beat. Perpendicular to the plane of the effective
stroke, relatively weak coupling takes place between adjacent motile cilia
because the cilia move to one side in their recovery stroke and the envelope
of flow in the recovery stroke will be asymmetrical with respect to the plane
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Figure 4.26 (A): The shape and relative size of the 'envelopes of flow' formed by the
effective and recovery strokes of a ciliary beat. The dotted area is a rough image of the
extent of the envelope. During the recovery stroke the cilium moves back in a clockwise
direction (as shown in the view from above), causing asymmetry in the recovery stroke.
The resulting asymmetry provides viscous coupling between adjacent motile cilia,
perpendicular to the plane of the effective stroke. Every other stage in the beat cycle is
numbered. The recovery stroke starts at stage 2 and ends at stage 5, followed by the
effective stroke which starts at stage 5 and ends at stage 7 (or 1). From Sleigh (1976).
Reprinted with permission. (B): Laeoplectic metachronal waves. The cilia in row 1
(identical to row 7) are at the end of their effective stroke. The numbers assigned to the
various stages of the beat cycle are the same for Fig. 4.26A and B. E.D. and M.D.
indicate the direction of the effective stroke and that of the propagation of the metachronal
wave, respectively. From Satir (1974). Copyright Scientific American, Inc., George V.
Kelvin, all rights reserved. Reprinted with permission.

of the synchronism. Through this asymmetrical viscous coupling, the lateral
movement of one cilium in its recovery stroke can interact with the lateral
movement of the adjacent cilium in the direction of the sideways recovery
stroke. Consequently, adjacent cilia will be out of phase with one another,
hence the metachronism.

Table 4.1 shows examples of the activity of cilia and the types of
metachronism in the ciliary systems. Opalina is an example of an organism
showing the symplectic metachronism, the comb plates of ctenophores
Pleurobrachia show the antiplectic type; the metachronism of Paramecium is
regarded as a dexioplectic type; and the lateral cilia of Mytilus gill display
laeoplectic metachronal waves (see Sleigh, 1976).
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Table 4.1 Examples of cilia showing metachronal waves

T y p e  o f  c ilia ry A rra n g em e n t T y p e  o f M e ta ch ro n a l C ilia ry
sy ste m c iliu m ty p e a c tiv ity

O p a lin a F ie ld S  im p le S  im p le c tic 2 -D
O sc  illa to ry

C te n o p h o re S in g le  r o w C  o m p o u n d A n tip le c tic 2 -D
P le  u ro b ra c h  ia E x c ita b le  -R

P a ra m e c iu m F ie ld S  im p le D e x i  o p le c tic 3 -D
O  sc illa to ry

M y tilu s B  an d S  im p le L a e o p le c tic 3 -D
la te ra l  c ilia E x c ita b le -R

R ab b it F ie ld S  im p le A n tilae o p le c tic 3 -D
tra c h e a l  c ilia E x c ita b le  -E

2-D and 3-D represent 2-dimensional and 3-dimensional beats, respectively. Excitable-
R and Excitable-E represent properties of cilia resting at the end of the recovery
stroke and at the end of the effective stroke, respectively.

4.6.2 Strange behaviour of ciliary activity

Cilia often exhibit irregular spatio-temporal orders over the ciliated surface.
In order to understand mechanical interaction between individual cilia, it is
useful to get a 'model' system for a dense mat of cilia by using micro-
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Figure 4.27 Tracings showing the surface view of motile cilia in a ciliary pad of
Mytilus gill. Each arrow indicates the direction of the effective stroke produced by an
individual cilium. From Murakami (1963). Reprinted with permission.

surgery techniques. Two typical ciliary model systems are given: one comes
from water-propelling cilia and the other from mucus-propelling cilia.

Water-propelling cilia. Murakami (1963) isolated a ciliary pad from Mytilus
gill and found that four types of metachronal waves passed across the same
part of the pad although the beating direction of each cilium remained
constant (Fig. 4.27). This means that the type of metachronism (i.e. the
relation between the direction of metachronal wave propagation and the
beating direction of cilia) is controlled 'extrinsically' rather than 'intrinsically'.

Figure 4.28 shows the successive collisions of two sets of naturally,
occurring symplectic and antiplectic metachronal waves. The first collision
between the two waves results in their mutual annihilation; however, the
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Figure 4.28 A photographic record showing the collision of two types of metachronal
waves (i.e. symplectic and antiplectic waves) by using a slit camera. The slit is set up
to be parallel to the vertical axis in Fig 4.27. The movements recorded in this photo-
graph represent the component parallel to this axis (see Fig. 4.14). The symplectic
metachronal waves are represented by 1, 2, 3 and 4. The antiplectic waves are indicated
by V and 2'. Two metachronal waves (1 and 1') propagate in opposite directions. When
the two waves meet, annihilation of the waves occurs on the first collision. However,
after the second collision (2 and 2') a new symplectic wave emerges and the symplectic
metachronal waves become dominant. The arrows indicate the collision point of the two
waves. From Murakami (1963). Reprinted with permission.

second collision evokes a new symplectic wave. The type of the first
collision is analogous to annihilation of action potentials in the nerve
membrane, where the two oppositely propagated impulses disappear on
collision (Tasaki, 1949). It is believed that the refractoriness left behind by
the impulses blocks the further transmission of the impulses.

The type of the second collision is more interesting because it suggests the
properties of 'soliton' or non-annihilating waves. A soliton is usually denned
as a solitary wave which asymptotically maintains its shape and velocity even
after a collision with other solitary waves (see Scott, 1981; see books by
Jackson, 1990; Olver and Sattinger, 1990; and Infeld and Rowlands, 1990).
Although the detailed mechanism for metachronal waves is different from
that of waves generated in 'reaction-diffusion' systems, the numerical
computations for the modified reaction-diffusion systems not only show that
two identical waves can pass through on collision as in the soliton but also
that one wave more or less destroys the other and continues to propagate
after the collision when two asymmetric waves collide (see Section 1.2.2).

In the case of ciliary metachronal waves, the emphasis is made on direc-
tional mechano-sensitivity of beating cilia to hydrodynamic forces imposed
by adjacent cilia, because a symplectic wave always emerges after the
collision of symplectic and antiplectic waves.

Mucus-propelling cilia. Sanderson and Sleigh (1981) cultured rabbit tracheal
epithelium to investigate ciliary activity of mucus-transporting epithelia.
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Figure 4.29 (A): Schematic illustration of the muco-ciliary system in the human lung
(upper panel) and cross-sectional view of a major bronchiole. This muco-ciliary system
has two layers: a mucous layer, and an underlying periciliary (or serous) layer, within
which the cilia beat. Mucus is secreted by goblet cells. From Fluford and Blake (1986).
Reprinted with permission, (B): A side view of the three-dimensional beat cycle of
rabbit tracheal cilia. The cilium rests at the end of the effective stroke. After stimuli, the
cilium shows the recovery stroke (0-5) followed by the effective stroke (6-9). If we
observe this beat cycle from above, the recovery stroke shows a clockwise rotation.
From Sanderson and Sleigh (1981 ). Reprinted with permission of the company of Bio-
logists Ltd. (C): The spatial relationships of cilia on an epithelial surface. All cilia are
equally spaced and the assigned number for each one represents the phase of the cilium
in its beat cycle in panel B. The metachronal wave originates from a single cilium as
it triggers its recovery stroke. This stroke has two components of hydrodynamic inter-
actions which in turn trigger the recovery stroke of neighbouring cilia. The short arrows
indicate the directions of these two interactions. As a result, the metachronal waves
propagate in the direction indicated by the arrow, m. The effective stroke returns the
cilia to the initial resting phase by moving in the direction indicated by the arrow, e. The
line, s, shows the cilia beating synchronously. From Sanderson and Sleigh (1981).
Reprinted with permission of the Company of Biologists Ltd.
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Muco-ciliary clearance is of great importance to normal lung function as a
defence system. The continually secreted mucus provides a protective barrier
against dust and bacteria and is transported toward the oropharynx from the
lung by the underlying cilia. Foreign particles once trapped can be removed
from the airways. The muco-ciliary transport system has two layers: the
mucous layer, containing viscoelastic secretion, and the underlying serous
layer, of low viscosity within which the cilia beat back and forth.

Mucous-propelling cilia are shorter (with lengths approximately 5-6 Jim) than
most water-propelling cilia (10-20 |im) but perform an essentially similar
beat, composed of a fast effective stroke and a slower recovery stroke (Fig.
4.29). This beat cycle is three-dimensional and involves a resting phase at the
end of the effective stroke. Fluid is propelled in the direction of the effective
stroke. For an observer facing in the direction of metachronal wave propaga-
tion, this direction is toward the back and to the left resulting in the
metachronism called antilaeoplectic (Sanderson and Sleigh, 198 1).

In contrast to the prominent metachronal waves of water-propelling cilia,
this metachronism is observed only in small patches distributed over the
epithelial surface. This is partly because the cilia are shorter in length, partly
because the clefts provide the discontinuities in the ciliated surface and partly
because viscoelastic mucus covers the ciliated surface.

The areas of ciliary activity are observed through numerous beat cycles
with little change in their orientation or position. Since adjacent areas of
ciliary activity do not seem to influence each other, metachronal fields of
activity are functionally independent. However, the discontinuous areas
of ciliary activity may enhance the transport efficiency of the more 'solid'
mucus.



5 Models of flagella and cilia
exhibiting regular behaviour

Wehave observed different types of dynamical behaviour in cilia and flagella
-for example, normal base-to-tip wave propagation typical of flagella, the
repetitive beat cycle typical of cilia with its effective- and recovery-stroke
phases, intermittent flagellar movement involving stopping and starting tran-
sients, excitable-oscillatory dynamics with or without mechano-sensitivity
in cilia, and other irregular behaviour. Now we need to understand these
observations in terms of mathematical models. There are many models that
should be discussed, though they have been developed to account for regular
behav iour.

Section 5.1 provides a brief introduction to Reynolds numbers. In Section
5.2 we will discuss the principles of fluid dynamics in flagellar and ciliary
motion, and then derive the basic equation governing the behaviour of a thin
filament through a viscous medium within the framework of Newton's laws.
After the overview of this theoretical background, mathematical models
displaying some of the regular dynamics are discussed, with emphasis on
their significance and their status in Section 5.3.

5.1 Introduction

We are familiar with the propulsion of larger and faster organisms such as
fish, birds and insects. They propel themselves in water or air by using the
volume forces such as inertial effects, set up in the surrounding fluid. The
dynamics of their motion is ascribed to the dual effects of (i) a propelling
mechanism pushing the fluid backward, and (ii) resistance of the body giving
the fluid a forward momentum.By considering these two effects separately,
an analysis of their motion can be made. For example, consider a swimming
fish that is initially held and then released. Its motion will accelerate until the
backward and forward momenta balance exactly. The viscosity of the fluid,
which is important only in the boundary layer, hardly affects the resulting
motion.



136 Nonlinear dynamic phenomena in flagella and cilia

This is not the case, however, for the propulsion of ciliated micro-
organisms or of spermatozoa. Because they are very small and move with
slow velocities their propulsion is caused by the surface forces - pressure and
viscous stress. It is no longer possible to consider the propulsive effects and
fluid resistance separately. Because the motion of fluid around the body
follows the same rule as the motion of the micro-organism itself the motions
of both the fluid and the body should be considered at once. This means that
momentumis instantly diffused throughout the fluid; and thus, the forces on
any particle of fluid are in equilibrium.

The two extremes above suggest that the motion of a body depends on the
ratio between the viscous and inertial effects. It is the Reynolds number, Re,
that indicates the non-dimensional ratio between these two effects. The
Reynolds number is denned by

Re=^=^, (5.1)
\x v

where U and L are the velocity and some characteristic length of the body;
p, \y and v (= ^/p) are the density, the viscosity and the kinematic viscosity
of the fluid, respectively.

To understand the fluid-mechanical concept of the Reynolds number, it is
instructive to illustrate the types of flow fields around a moving cylinder of
circular cross-section at different Reynolds numbers (Fig. 5.1). (A). When the
Reynolds number is small, about 10~2, the viscous effects are dominant and
the flow field is symmetric. (B). At a Reynolds number of about 20, a pair of
stationary vortices appears. (C). At a Reynolds number of about 102, the in-
ertial effects dominate and the asymmetries are realized in the flow field past
the cylinder, resulting in Karman vortices. (D). The turbulentflow appears at
Reynolds numbers greater than about 104.

From this illustration, we can expect the fluid dynamics of flows, or more
generally, dynamical problems in nature, to conform to an elementary
classification in terms of the Reynolds number. Indeed, organisms exist
throughout the range of Reynolds numbers. For example, values of this
quantity range on one hand from about 10~6 for bacteria to about 10~2 for
spermatozoa (cf. Brennen and Winet, 1977), and on the other hand from
about 104 for flying insects to about 105 for flying birds. Thus the motion of
micro-organisms and that of relatively large bodies such as insects and birds
can be roughly characterized by the magnitude of their Reynolds number. Of
course, small insects exist that show neither a large nor small Reynolds
number. Consideration of this phenomenon is found in Chapter ll of the
book by Childress (1981).

In this book, we restrict ourselves to the swimming micro-organisms
characterized by extremely small Reynolds numbers. A typical feature of
such a swimming micro-organism is that the mean propulsive motion of the
body is associated with the oscillatory movements of cilia or flagella. The
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Figure 5.1 Schematic illustrations showing streamlines around a circular cylinder at
different Reynolds numbers. (A): At Re = 10"2, the flow field is symmetric. (B): At Re
=20, a pair of stationary vortices appear. (C): At Re = 102, the asymmetries are realized
in the flow field past the cylinder, resulting in Karrnan vortices. (D): At Re > 10*, the
turbulent flow appears. From Feynman et al. (1964). Copyright © Addison-Wesley
Publishing Co., Inc. Reprinted with permission.

flow fields around the body are, therefore, characterized by (i) the fluid
motion due to the mean propulsion of the organism, and (ii) the fluid field
occupied by the beating organelle (cilium or flagellum). For each motion, it
is useful to define a particular Reynolds number.

The Reynolds number concerned with (i) is already given by definition
(5.1), where U and L must be replaced by the velocity of propulsion and the
length of the micro-organism, respectively. An alternative Reynolds number
based on (ii), often called an oscillatory Reynolds number Rm, is denned by

_

P10'2 _ (n'2

Ko- ~-•E (5.2)

Here co is the angular beating frequency of the organelle (cilium or flagellum)
and / is its typical length. The oscillatory Reynolds numbers of the cilium or
the flagellum are very small, of the order of 10"3 (cf. Brennen and Winet,
1977). Thus, as pointed out before, inertial forces are less important when
studying the motion of micro-organisms as the viscous forces dominate the
fluid motions around the micro-organisms.

One of the interesting problems for fluid dynamicists to consider is the
effect of the combination of the two flow fields. This problem is discussed
deeply in the review by Lighthill (1976).
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5.2 Fluid dynamics of micro-organism propulsion

The problem is how a flagellum or a ciliated micro-organism can propel itself
in a viscous fluid characterized by extremely small Reynolds numbers. To
answer this problem, it is necessary to specify the force with which the fluid
acts on the flagellum or the cilium. Once the external viscous force is
specified, we can investigate the internal mechanisms responsible for flagellar
or ciliary motion.

5.2.1 Historical background

The Stokes equations. An analysis of low-Reynolds-number fluid motion is
made by using the Stokes equations which describe the stationary nature of
an incompressible inertialess fluid of viscosity [l.1 They consist of a continu-
ity condition on the velocity field u = (u(r, i), v(r, t), w(r, *))>

Vu =0 (5.3)

and a condition of force equilibrium

Vp - uV2u = 0 (5.4)

containing the pressure field, p(r, t), where r = (x, y, z) stands for vector
displacement from the origin and t is time. These equations have the merit of
being linear, which allows us to use linear superposition of singular solutions.
The problem is thus to search the singular solutions appropriate to the given
boundary conditions (see e.g. Lunec, 1975). Before attempting to obtain and
analyse the singular solution, we shall start with an analysis by Taylor (1951)
to find a relatively straightforward solution to the Stokes equations.

Swimming-sheet model. From a mathematical point of view, Taylor (1951)
was the first to answer the problem concerning the self-propulsion of a body
in a viscous fluid. He developed a two-dimensional sheet model that under-
went propagating waves to investigate whether such waves give rise to viscous
forces that drive the sheet forward (Fig. 5.2). The sheet model was originally
designed to model flagellar propulsion and so it was taken to be inextensible.
Unfortunately, this sheet model was based on two-dimensional geometry,
which being unrealistic, restricted its application to one-dimensional flagella.

The model was, however, successfully extended to examine the behaviour
of a population of cilia as a two-dimensional envelope model, whose surface
'particle' was assumed to be roughly equivalent to the locus of the tip of an
individual cilium (see Fig. 5.30). Thus the application of the sheet model to
ciliary propulsion has meant that both extensibility and two-dimensional
geometry of the envelope can be used. In Section 5.3.6, an extensible
envelope model is discussed in the context of metachronal waves propagating
over the surface of numerous oscillating cilia.
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Figure 5.2 Two-dimensional swimming-sheet model. The waves propagate in the positive
x-direction with a wave velocity U. When the velocity of the fluid at infinity is V (i.e.
the propulsion fluid velocity), the sheet will swim in the negative ^-direction with
velocity, -V.

Without loss of generality, we consider here the swimming of the
extensible sheet. To simplify the analysis, we further assume that the sheet is
infinite and in contact with the fluid on one side only. A point (xs, ys) on the
surface of the extensible sheet is thus represented by

xs =x + a-cos{kx - CO? - ((>)

ys = Z?-sin(fcc - ©0

(5.5a)

(5. 5b)

where a and (j) are the amplitude and a phase shift of the longitudinal motion,
b the amplitude of the transverse motion, X (= 2n/k) the wavelength, and /
(= co/2tc) is the frequency. It should be noted that for fiagellar propulsion
these parameters correspond to those of 'fiagellar waves', while for ciliary
propulsion they correspond to those of 'metachronal waves'.

The velocity field (u, v) at the point (x,, ys) on the sheet is given by

u(xs, ys) = -- =aa>sin(kx - cor - $)

dv
v(xs, ys) = -J-=-6co-cos(*jc - cor)-

At

(5.6a)

(5.6b)
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To find the velocity field and swimming motion of the sheet, we will solve
the two-dimensional version of the Stokes equations:

3m 3v
aT aT 0 (5-7a)

^ -hV2h =0 (5.7b)

ox

^ -̂V2v =0. (5.7c)

dy

To satisfy (5.7a), we introduce a stream function \|/ such that components of
velocity are

3\uu =-£- (5.8a)
dy

v = -^. (5.8b)
dx

By taking the cross-derivatives of (5.7b) and (5.7c) and eliminating the
pressure, we get

V> = 0. (5.9)

Provided that bk (or ak) is small (i.e. the amplitude, b, (or a) is small
compared with the wavelength, A,), the solution is sought as a power series in
bk (or ak) satisfying both equation (5.9) and the following boundary condi-
tions at y -> °°:

3vi/
-^- -»0 (as y -> «) (5.10a)
dx

3\i/
--=--»V (as y -4 oo). (5.10b)
dy

(5.10a) indicates that the sheet moves uniformly along the x-axis. (5. 10b) defines
the velocity of the fluid at infinity, V, so that if V has a finite and positive
value the waving sheet will swim to the left with velocity -V relative to the
fluid at infinity (Fig. 5.2).

Skipping several steps (for details see Taylor, 1951 and Childress, 1981),
we finally have

V 1
-=-k2{b2+ 2ab-cosif - a2) (5.ll)

where V is the second-order velocity of propulsion and U is the wave vel-
ocity (= (o/k). The formula (5.ll) indicates that whether the sheet swims to
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Figure 5.3 Surface shapes (left) and corresponding orbits (right) of swimming sheets
together with wave velocity, propulsion fluid velocity and swimming velocity. (A): The
simple transverse wave (i.e. a - 0) travels along the sheet when the orbit is parallel to
the y-axis. The sheet is propelled in the opposite direction to the wave movement. Note
that for flagellar propulsion with relatively large amplitudes, the orbit is not a straight
line as indicated in the right panel, but is in fact a figure of 8. (B): The longitudinal wave
(i.e. b = 0) occurs when the orbit is parallel to the x-axis. The sheet is propelled in the
same direction as the wave. Modified from Blake and Sleigh (1974). Reprinted with
permission.

the left or the right depends on the orbit defined by (5.5). From a point of
view of ciliary metachronism this formula is worth investigating, as the
metachronism is interpreted in terms of the path of movement of the ciliary
tip. Since details of the formula (5.ll) are given in Section 5.3.6, we will
consider two extremes; one is the transverse wave (i.e. a = 0) and the other
the longitudinal wave (i.e. b = 0).

The simple transverse wave is obtained when a = 0 (i.e. the orbit is a
vertical line); the sinusoidal wave travels in the positive ^-direction with a
wave velocity, U (Fig. 5.3A). This case approximates the flagellar propul-
sion.2 Then, (5.ll) becomes

V 1
-=-k2b2. (5.12)
U 2

This means that the sheet moves at velocity -V as waves travel down the
sheet with velocity +U.

By contrast, the pure longitudinal wave occurs when b = 0 (i.e. the orbit
is a horizontal line); the sheet, remaining in its plane, shows compression and
extension alternately (Fig. 5.3B). In this case the formula (5.ll) becomes
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(A) A ,

Figure 5.4 (A): Streamlines for the flow due to a single point-force, F. A parallel field
and a radial field of the Stokeslet are indicated at points on the circle. (B): As a result
of the direction-dependent velocity field, the induced velocity at point A is U, while that
at point B is 2U, even though both points are equidistant from the origin at which the
external force is applied. (C): The force distribution along an elongated body moving (i)
in the normal direction, or (ii) tangentially. The force distribution, F, needed to satisfy
the no-slip condition on the elongated body moving tangentially at velocity U, is half
that, F/2, for movement in the normal direction at the same velocity.

V 1
-=-k2a\ (5.13)U 2

and the sheet swims in the same direction as the wave.
It is clear from the above considerations that the sheet will swim in a

viscous medium whose swimming direction is closely related to the orbit of
the surface particle.

Stokeslet. Now we seek a singular solution to the Stokes equations, called
a Stokeslet, due to a concentrated external force F at the origin in an infinite
fluid. Technically, we must solve the modified force-balance equation

Vp - ^V2u = F5(r) (5.14)

where 8(r) is the Dirac delta function. The resulting Stokeslet velocity field
is obtained as the sum of a parallel field and a radial field as follows (Lighthill,
1976):

m.Z£ V?L. (5.15)

Both components in the Stokeslet velocity field (5.15) fall off inversely with
the distance from a single point force (i.e. r"'-dependence). The first term
(corresponding to the parallel field) shows a simple /-^'-dependence in every
direction, while the second term (corresponding to the radial field) modifies



Models exhibiting regular behaviour

( B)
(i)

143

(ii) 2U

(C)

(i)

u

(ii) (H -> -^>->-»-*->->)

F/2 u

the first one to indicate the preferred direction of fluid motion (i.e. in the
direction of the force).

Figure 5.4A illustrates the streamlines for the flow caused by a single
point-force, on which a parallel component and a radial component of the
velocity field (5.15) are superimposed at points equidistant from the origin.
Clearly the parallel field at any point on a circle is independent of the angle
between the direction of the force and the radial direction at that point;
however, the radial field is closely related to the angle. As a result, the
induced velocity at point A is U while the velocity at point B is 2U, which
is twice that at A, even though both points are equidistant from the origin
(Fig. 5.4B).

The resulting factor 2 is important when considering the distribution of line
forces along an elongated inert body moving (i) in the normal direction, or
(ii) tangentially (Fig. 5.4C). Known as the no-slip boundary condition, the
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layer of fluid adjacent to the surface of the body follows the movement of the
corresponding part of the body itself: the velocity of the fluid on the surface
must be equal to the velocity of the surface of the body itself. Under the no-
slip condition, the induced velocity at any one point along the body, due to
a force at a different point on the body, is U for the normal motion but 2U
for the tangential motion. Inversely, the force distribution along an elongated
body necessary to maintain the motion in the normal direction is F, but that
for the tangential motion at the same velocity is F/2.

This discussion provides the basis for the theory of Gray and Hancock
(1995) for specifying the force distribution along a flagellum. It should be
noted that the above discussion applies to the force distribution along an
elongated body not the fluid motion around the body. To get some feeling for
the velocity field near the body, one must integrate all the contributions (see
Blake and Sleigh, 1974).

5.2.2 Externally forced motion and self-propulsive motion

In the previous section, we first treated the problem of self-propulsion of a
waving sheet and later dealt with the problem of externally forced motion of
an elongated inert body. To apply the concept of an elongated inert body
to the model of self-propelling micro-organisms, we will make clear the
distinction between them.

We shall begin by comparing a self-propelling body, e.g. a ciliated micro-
organism, with an inert body of a similar shape (Fig. 5.5). By Newton's laws
the total forces on a body must be zero. This constraint is valid for both inert
and self-propelling bodies. For an inert body, an external force must be
balanced to the forces dragging a large bulk of fluid with it. By contrast, no
external force is needed for a self-propelling body: the organism provides
equal but opposite thrusting and dragging forces. That is, the fluid close to
the organism is pulled along with it, whereas the fluid slightly distant from it
moves in the opposite direction.

Next we consider a thin, flexible body such as a flagellum. We assume that
the flagellum consists of a finite number of segments each of which moves in
a similar fashion to a rigid elongated inert body moving with the same
velocity and direction. According to Newton's laws, the sum of all the forces
in the segments and the head must equal zero.3 This approach was achieved
by Gray and Hancock (1955) when they evaluated the force exerted by
flagella. However, since the translational motion of a flagellum through the
fluid is combined with undulatory motions, the problem is rather complicated.

As a good introduction to the Gray and Hancock approach, it is useful to
consider the classical paradox of a transverse undulation passing along a
rope. Supposing that the left end of a rope is shaken rhythmically, transverse
waves pass along the rope (Fig. 5.6). Although at any point no net dis-
placement to the right occurs, we recognize some motion toward the right.
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Figure 5.5 Schematic illustration showing the velocity profile for an inert and a self-
propelling body. Although both the inert and self-propelling bodies must obey Newton's
laws, i.e. the sum of all the forces must be zero, there is an important difference between
them. For an inert body, a large bulk of fluid is dragged with it and the velocity decays
monotonically with the distance from the inert body; whereas for a self-propelling
organism there is a change of sign in the gradient of the velocity profile. From Blake
and Sleigh (1974). Reprinted with permission.

V-

I IFigure 5.6 Transverse waves passing along a rope. When the left end of a rope is
shaken rhythmically, waves are initiated and propagate toward the right end. Although
there appears to be some motion toward the right, no net displacement occurs because
the average normal and tangential motions are cancelled out. Vy is the transverse vel-
ocity; VT and VNare the tangential and normal components of Vy; 9 is the angle between
the horizontal axis and the tangent to the rope.
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This illusion occurs because we are very sensitive to motions of the rope
normal to itself but not to tangential motions and consequently a left-to-right
component in the normal resultant velocity is emphasized. However, since the
average normal resultant pointing from left to right must be equal to the
average tangential resultant pointing in the opposite direction, the net velocity
is zero and no net displacement to the right occurs.

Similarly to the above example, the undulating flagellum generates average
normal motions in the direction of propagation, which are accompanied
by equal, and oppositely directed, average tangential motions. In the next
section, we extend this idea to help us understand the Gray and Hancock
approach.

5.2.3 Resistive-force theory

Gray and Hancock approach. At low Reynolds numbers the force exerted
on a segment of the elongated body is proportional to the local velocity. On
the basis of this characteristic at low Reynolds numbers, Gray and Hancock
(1955) assumed that the local velocity of each element, 6s, of the flagellum
and the force on that local element decomposed into normal and tangential
components, VN, VT , dFN and dFT, respectively. They were represented by

dFN = -CNVNds (5.16a)

dFv = -CwVvds (5.16b)

where CN and Cv are the viscous drag coefficients determined from the
geometry alone. The values for coefficients proposed by Gray and Hancock
are

A 2

CN= 2CT (5.17b)

where A is the cross-sectional radius of the flagellum and X the wavelength.4

Applications of the resistive-force theory. We will consider the application
of the resistive-force theory to a self-propelling flagellum, to understand how
the flagellum generates undulating motions and swims through a viscous
fluid. Suppose that a self-propelling flagellum generates planar waves. We
must consider two motions separately: one is the transverse motion with
velocity Vy and the other is the propulsive motion with velocity Vx(Fig. 5.7).
The formulas (5.16a, b) are rewritten as:

dFN = -CN(Vy-cosd - Vx-siaQ)ds (5.18a)

dFT = -CT(VVsine + Vx-cos0)ds. (5.18b)
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Figure 5.7 Diagrams showing the forces acting on an element, ds, of a fiagellum. (A):
When the flagellum is moving transversely at velocity Vy, the resistive forces acting
normally and tangentially on the element are -CN-Vj-cos9 and -CT-Vy-sinQ, respectively.
6 is the angle of inclination of the element to the horizontal axis. (B): In addition to the
transverse motion, the flagellum is moving along the horizontal axis at velocity, Vx.The
normal and tangential components of the resistive forces are -CN-VVsin6 and - CT-V/Cos9,
respectively. (C): The net propulsive thrust, dF, is the result of these transverse and
forward movements. Modified from Gray and Hancock ( 1955). Reprinted with permission
of the Company of Biologists Ltd.
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The resultant forward thrust (dF) is

dF = dFN sin6 - dFT-cos9 (5.19a)

=[(CN - CT)VysinBcosG - V,(CNsin20 + CTcos26)]d.s (5.19b)

=

[(Cn ~ CT)Vytane - VX(CT+ CNtan29)1 ^
[ 1 + tan26 J

If G « 1 (i.e. tan26 « 1), equation (5.19c) can be reduced to

dF = [(CN - CT) V,tan0 - CrVz]ds. (5.20)

Suppose Vy = dyldt, tan6 = dyldx and dxlds ~ 1, equation (5.20) becomes

^ =(Cn -Ct)^-CtK. (5.21)
dx dtdx

For simplicity, we consider a flagellum generating a sinusoidal wave

y = b-sin(kx - (at) (5.22)

where b is the amplitude, X (= 2n/k) the wavelength and U (= (a/k) is the
wave velocity of the propagating wave. By substituting (5.22) into (5.21) and
using dF/ds « dF/dx, the total thrust, F, exerted by the flagellum over one
wavelength (0 < x < X) is

oir2h2Tnr.. - r_i
F =\ AF= j" -CTXVr.(5.23)1JoJo

When a flagellum without a head is propelling itself through the fluid (i.e. the
zero-thrust swimming condition), the ratio of VJU is obtained by making
F=0,

K _ 2nV(CN -CT)
U~ K CT ' ( }

This equation predicts that (i) the flagellum will swim in the 'opposite'
direction of propagation of the wave when CT < CN, and (ii) the flagelum will
swim in the 'same' direction of propagation of the wave when CT > CN. Of
course, normal flagella move through the fluid in the opposite direction of
wave propagation as in case (i). However, there are some species (Ochromonas)
whose flagella move through the fluid in the same direction of wave
propagation as in case (ii). These flagella have rigid projections known as
mastigonemes (Fig. 5.8). A simple explanation for this phenomenon is that
the hydrodynamic effect of the mastigonemes results in values of CT greater
than CN.

It should be noted that if CN = 2CT, (5.24) can be reduced to
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Figure 5.8 The flagellum with projecting mastigonemes. The cell body is pulled for-
ward by the undulations passing along an anterior flagellumfrom base to tip. That is,
the direction of propulsion is the same as that of the wave propagation. The reader
should notice the essential difference between the flagellum with mastigonemes and a
' smooth' flagellum, such as a trypanosomatid flagellum (see Fig. 4.20). The trypanosomatid
flagellum is not only pulled forward by the undulations passing along the anterior of the
flagellum, from tip to base, but also pushed forward by undulations passing along the
posterior of the flagellum,from base to tip. That is, the direction of propulsion is always
opposite to that of the wave motion. From Brennen and Winet (1977). Reprinted with
permis sion.

U 2
(5.25)

which is identical with equation (5.12) derived from the Taylor model.
If the head of the flagellum is propelled, we use F = 6tz\lBVx (where B is

the radius of the head) instead of F = 0. Then equation (5.24) is slightly
modified, but its essential feature is retained.

Improvement of the resistive-force theory. (1). Lighthill (1976) considered
a simple flagellum without its cell body generating planar bending waves of
small amplitude. The calculated coefficients for this case were:
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CT = -*5L (5.26a)

In-A
CN = * (5.26b)

In-+-A 2

where g = 0.09A (A: the wavelength measured along the centre-line of the
flagellum). For a typical wave, CN/CT = 1.8 and the value of CN denned by
Lighthill is about 40% greater than that of CN, as originally defined by Gray
and Hancock.

(2). The resistive-force theory is concerned with the local hydrodynamic
interactions. However, as pointed out by Lighthill (1976), there are long-
range hydrodynamic interactions in the viscous fluid. According to Johnson
and Brokaw (1979), these interactions are divided into two categories: (i)
flagellum-flagellum interactions, and (ii) cell-body-flagella interactions. To
evaluate these long-range interactions they used the slender-body theory in which
the local force is obtained from integration of all the forces distributed along
the flagellum and the cell body. After a comparison between the resistive-
force theory and the slender-body theory with respect to the distributions of
the forces and moments along the length of the flagellum, they found that the
resistive-force theory was completely satisfactory when the flagellum had no
cell body, the magnitude of the classical drag coefficient was increased up to
about 35%, and the ratio C^,/CT = 1.8 was adopted. To facilitate accurate
analysis when the flagellum has a large cell body, we must use the slender-
body theory instead of the resistive-force theory.

5.3 Theoretical models for flagella and cilia

To simplify the analysis, we restrict our attention to a flagellum generating
planar bending waves. Using Gray and Hancock approximation, we can
specify the external viscous forces acting on a flagellum as it moves through
a viscous medium. The next step in developing a theoretical model is to
identify the configuration of the flagellum. There are two ways to describe
the form of a flagellum. One way is to directly describe the flagellum in
terms of the (x, y) coordinates (see Fig. 5.9A) similar to Taylor (1951) (see
Fig. 5.2 and equations (5.5)) or Gray and Hancock (1955) (see Fig. 5.7 and
equation (5.22)).

The other way concentrates on a 'wave-generating function' defined in the
(s) coordinate, in which the curvature, K (Fig. 5.9B), or the corresponding
shear angle, c (Fig. 5.9C), is defined as a function of length, s, measured along
the flagellum. As illustrated in Figure 5.9D, the bend angle 9 between two
different points is given by (u2 - «,)//j, where h is the distance between the
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Figure 5.9 Descriptions of the fiagellar configuration. (A): The flagellar shape is plotted
against an {x, y) coordinate system with its origin at the anterior end of the flagellum.
Only movements in the (x, y) plane are considered. 6(s) is the angle between the tangent
to the flagellum at a point s and the x-axis, where s is distance measured along the flagellum
from the origin of the (x, y) coordinate system. (B): The curvature, k, as a 'wave-
generating function' is plotted as a function of distance, s. The variables used for cal-
culation are defined on this (s) coordinate. (C): An alternative wave-generating function
is the shear, o, which is plotted as a function of s. (D): When the filaments are inex-
tensible, the bend angle, 8, between two different points is proportional to the net sliding
displacement, Am; that is, 9 = (u2 - u{)lh = Au/h = Ao, where h is the distance between
the two filaments. From this simple relationship, if the filaments are tied together at the
base, Q(s) = a(s) holds (see Section 7.4.1). However this is not the case when the
filaments are allowed to slide at the base. Modified from Brokaw ( 1972a). Copyright ©
the American Association for the Advancement of Science. Reprinted with permission.
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two filaments and u2 and m, are the sliding displacement (or shear dis-
placement) at the points. Note that k = d9/dj = do/ds since the filaments are
inextensible, and that a(s) = Q(s) if the filaments are tied together at the
base.5

Of course, the x and y coordinates of the point are obtained from the
following integrals:

X
= I cos0ds (5.27a)I

Joy =I sinG ds. (5.27b)
Jo

Thus data on flagellar configuration in the (x, y) coordinate can be interpreted
in terms of the (s) coordinate.

5.3.1 The basic equations offlagellar dynamics

The essence of flagellar dynamics is described by a simple version of
equations on the assumption of small amplitude and planar wave forms. We
will derive the basic equations for this simple case.

Consider an arbitrary region of the flagellum with length ds. When this region
is treated as a free body, Newton's laws require that the total force and
moment on the body must be zero. Let /N denote an external viscous force
per unit length, FN the normal component of the external viscous force and
Mvthe external viscous moment. Figure 5.10 illustrates a segment of the
flagellum together with the forces and moments necessary to maintain
equilibrium during planar bending. Conventionally, positive FN on a positive
'face' produces a counter-clockwise rotation about a point proximal to the
point of application of the force. This is appropriate for a positive Mv.
Ignoring rotational inertia, we obtain the moment-balance equation in the
limit of ds -> 0:

^ +FN =0. (5.28)

3s

The force-balance equation in an equilibrium condition is:

-TL =f»- (5-29)
ds

The external viscous moment, Afv, must be equal and opposite to the
internal moment, which is the sum of active moment, Afa, and elastic mo-
ment, Afe:

-Mv=Ma+ Mt. (5.30)
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Figure 5.10 Diagram showing the force and moment equilibrium in a segment of a
flagellum during planar bending. Applying Newton's laws to the segment of the flagellum,
we obtain the force and moment equilibrium of the segment between j and s + ds. The
forces and moments necessary for equilibrium are shown. Conventionally, positive FN
on a positive side produces a counter-clockwise rotation (corresponding to positive
moment, Mw) about a point proximal to the point of application of the force.

Equation (5.30) is equivalent to Brokaw's formalism (see e.g. equation (7) of
Brokaw (1971)).

To complete the description of the flagellar motion, we must specify each
moment. Specification of the external viscous moment is given by the Gray-
Hancock approximation:

/n = -C*VN. (5.31)

The elastic moment is defined by the bending resistance, EB:

Me = Ebk. (5.32)
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From equations (5.28)-(5.32), we get the following basic equation for
fiagellar dynamics :

92M 9\ dy _
_+£B_+CN--0. (5.33)

Here, we use VN= dy/dt, k = d2y/d;t2 and dx/ds ~ 1.
This equation, equivalent to the equation by Machin (1958; 1963), can be

applied to both the local contraction mechanism and the sliding-filament
mechanism (see Section 4.3.1 and also Lubliner, 1973).

In the case of the sliding-filament mechanism, we must define the active
shear force, Sa, arising from cross-bridge dynamics. For small-amplitude
approximations, we can assume that dx/ds = 1 and dy/ds ~ 9. Suppose that
a positive shear force is defined to cause a positive shear; that is, a micro-
tubule on the top side moves distally (Fig. 5.ll). As illustrated in Figure
5.llA, we have

^ =5a. (5.34)

ds

Upon differentiating equation (5.33) with respect to x (~ s), and substituting
(5.34), we have

| f+£á"+C* 0. (5.35,
ds2 ds4 dt

More generally, besides the active shear force generated by the cross-
bridge system, Sa, passive elastic shear force, Sp, arises from other link sys-
tems such as nexin and radial spokes. Internal viscous shear force, Sv, arises
from internal viscous resistance, so that Ma and Sa in equations (5.33), (5.34)
and (5.35) are replaced by the (total) shear moment, Ms, and the (total) shear
force, Ss, respectively.6 For convenience, the general equations for basic
flagellar beating are written as:

32SS 340 30
-f+EB-+CN--0 (5.36a)dr ds * at

Ss = S, + Sp + 5V, (5.36b)

or

VMS d*y dy
-^+E°W +C»^ =0 (5"37a)

^ =5, (5.37b)
ds

The problem in finding the underlying mechanism(s) for flagellar dynamics
is how to specify A/a, 5S, or Ms in equations (5.33), (5.36), or (5.37), respec-
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Figure 5.ll (A): The balance of active moment, Ma, on a segment between s and 5 +
ds of a flagellum. An active shear moment, S/is, is generated in the segment. (B): A
positive shear force is denned as one that produces positive shear displacement, u, as
indicated by the arrows. As a result, a microtubule on the positive side of the flagellum
moves distally relative to that on the opposite side. When the filaments are tied together
at the base (i.e. 0(0) = o(0) = 0), there is a simple relationship between the shear
displacement u, the shear angle a, and the bend angle 0 as indicated in the figure. As
a result of positive shear in the segment, positive curvature (+k) and negative curvature
(-k) occur to the left and to the right of the segment, respectively.
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(A) (B)

Figure 5.12 Forces acting on a flagellum illustrated in an {x, y) plane (see Fig. 5.9A).
(A): The elastic forces, due to the bending resistance, tend to straighten the flagellum.
The resultant bending moment is at its maximum at the point of maximum curvature.
(B): The viscous forces produce a maximum moment at the point of zero curvature.
Therefore there is a (1/4)-cycle phase-difference between the viscous and elastic bend-
ing moments. From Machin (1958). Reprinted with permission of the Company of
Biologists Ltd.

tively. To understand how this problem is difficult to solve, it is useful to
illustrate two different moments: the elastic bending moment and the viscous
bending moment (Fig. 5.12). The elastic moment, Me, is at its maximum at
the point of maximum curvature; while the viscous moment, Mv, is at its
maximum at the middle point of the straight region. This means that the
shear moment, Ms, must have two components corresponding to these mo-
ments. Since each component differs in phase, specification of the shear
moment that satisfies this constraint is not straightforward.

5.3.2 The Machin model

Machin (1958; 1963) assumed that a fiagellum consists of a series of
bilaterally arranged contractile elements (Fig. 5. 1 3) and that each element has
a delayed elasticity in which, after a time delay, a change in the length of the
element causes a change in tension. As a result of this delayed elasticity,
bending waves arise spontaneously along the fiagellum. Although this 'con-
tractile microtubule' model has been replaced by the 'sliding microtubule'
model, the Machin model predicts many important phenomena. Its most
interesting prediction is that the propagation direction of the wave is
determined by the mechanical impedance at the base. This prediction sug-
gests the physiological importance of the presence of the head at one end of
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Figure 5. 13 The Machin model composed of active contractile elements. The flagellar
configuration is illustrated in an (x, y) plane (see Fig. 5.9A). The elements a and b are
separated by distance, h. Their local radius of curvature is given by r. From Machin (1963).
Reprinted with permission.

the flagellum because it might be responsible for mechanical impedance. This
section will detail the Machin model.

Suppose that Ta and Tb are the tensions in elements a and b. The active
bending moment, Ma, can be expressed as

Ma=A(T. - Tb) (5.38)

where h is the distance between the adjacent microtubules. Now it is
necessary to define the form of each element in relation to the flagellar
configuration. Let Lo be the length of an element when the flagellum is
straight, and r the local radius of curvature representing a part of the flagellar
configuration. Then the lengths, La and Lb, of the elements are

(5.39a)La=L0 1+-
z.r

L,=Ln1-- 2r

where

dx2 '

(5.39b)

(5.39c)

The next step is to combine the tension in the element in equation (5.38)
and the length of the element in equations (5.39). For this purpose, Machin
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considered an oscillatory element in which both tension and length change
with time. A typical example is the self-oscillation observed in insect flight
muscle and skeletal muscle (see Part I of this book). This property is
interpreted in terms of stretch activation (i.e. delayed elasticity) or positive
oscillatory work. The term 'stretch activation' is due to the observation that
a sudden change of length is followed by a tension development after a time
delay. A system containing this property is capable of producing positive
work output (i.e. oscillatory work) when the length is forced to oscillate
at some appropriate frequency. In an attempt to express such a dynamic
tension-length relationship, Machin considered two possible cases: (i) a linear
tension-length relationship under small-amplitude conditions, and (ii) a
nonlinear relationship for large amplitudes.

(i) Linear tension-length relationship. First let us consider the case for
small amplitudes, where a linear approximation is used. An operator $ is
introduced to express a tension-length relationship written as

T - To= <j>(L - Lo), (5.40)

where <|> is formally a function of d"/dt", thus $ becomes a function of ico
(i = a/-1) when the length is forced to change sinusoidally at frequency co/2tl

We call <|> a transfer function which represents a complex frequency-depend-
ent quantity (see Machin, 1964). In the linear case, <j> is taken to be constant
so that k is automatically determined once co is given (see Fig. 5.14).

From equations (5.38) to (5.40),

"å - •E(I?) <5'41a)

where

O = h2ty. (5.41b)

Since O is independent of x, we have the following equation by substitut-
ing (5.41a) into (5.33),

94y d4y dy

The solution of this equation is represented by a small-amplitude sinusoidal
bending wave as follows:

y = AeiM'-ife or Acos((Ot - kx). (5.43)

Substituting (5.43) into (5.42), we obtain

* =-i^_ £B. (5.44)
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Figure 5.14 A Nyquist plot. The real and imaginary parts of<D are plotted against each
other with co as the parameter. The vector AB represents ia>CN/k4. Of particular interest
is the case where AB is vertical; that is, co and k4 are real. As shown in Fig. 5.14 and
Fig. 5.15, the effect of nonlinearity allows the system to adjust itself to this condition.
The curve is purely illustrative. From Machin (1963). Reprinted with permission.

Equation (5.44) is represented on a complex plane as shown in Figure 5.14,
in which the real and imaginary components of <& are plotted against each
other, with go as the parameter. Of particular interest is the case where the
vector AB (represented by icoCN/£4) is vertical, i.e. co and k4 are real. In this
case the general solution is given by

y = e"°'(Ae- + fie"** + Celkx + Dekx). (5.45)

Here the first term represents a propagating wave in the direction of
increasing x with wavelength 2%lk, the second term an exponential that
decays with increasing x, and the remaining two terms represent 'reflections'
of them.

Once the frequency of oscillation (i.e. co/2rc) is given, the point on the
curve is fixed and the associated wavelength (2n/k) is determined. Funda-
mentally, any frequency of oscillation is possible, but in a flagellum with
finite length only certain modes of oscillation are possible. Three constraints
placed on the proximal end are possible: (i) free end (i.e. zero force and zero
moment at x = 0); (ii) clamped end (i.e. zero displacement and zero angle
at x = 0); and (iii) pinned end (i.e. zero displacement and zero moment at
x = 0). These conditions can be conveniently expressed in terms of the
mechanical impedance of the constraints. The mechanical impedance is
defined as the ratio of the alternating component of force to the alternating
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Table 5.1 Boundary conditions of the axoneme at the base. Conditions in the middle
column directly represent the fact that the basal end is either free, clamped or pinned.
These conditions are also represented in terms of the transverse mechanical impedance,
Zt, and the angular mechanical impedance, Za, as shown in the right-hand column.

Free

Clamped

Pinned

a MO)
a*3

3 2y(0)

=0

dx2
=0

y(0)= o

3y(0)

dx

y(P) =o

3 2y(0)

=0

3x2
=0

or

or

or

| Z,(0) = 0
U(0) = 0

JZ,(O) = °°

\zm=-

JZ,(O) = co

1za(0) = 0

component of velocity. Two mechanical impedances are denned, one is the
transverse mechanical impedance Zt:

dt

and the other is the angular mechanical impedance Za:

M,

(5.46a)

za=
d_(d£

dt {dx

(5.46b)

Table 5.1 expresses boundary conditions at the proximal end in two different

ways.
For convenience, equation (5.45) is transformed into

y=e'w(acoshkx+bsinhkx+ccoskx+dsinkx) (5.47a)

where

a=D+B,b=D-B,c=C+A,d=i(C-A). (5.47b)

Differentiating equation (5.47a), we obtain the values of dy/dt and d(dy/dx)/dt;
while, integrating equation (5.33), we get Ma and FN (= -3Ma/3x). Note that
due to symmetry the constants of integration are set at zero.
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Finally,

( EBk4 + icoCN) (a sinhkx+ b cosh £x + c sin kx - d cos £jc)
Zt = (5.48a)

uak(a cosh kx+ b sinh£* +c cos kx + d sin £*)

( £B&4 + JwCn)(a cosh £x + b sinh £x - c cos kx - d sin £.x)
Za= , (5.48b)

i(o£2(a sinh kx + b cosh £x - c sin kx+ d cos &X)

At the proximal end (i.e. x = 0),

(£B*< + koCN) p

icoit

ICO/fe3

where

P = ^-^ (5.49c)

a+c

G = p4. (5.49d)
o+a

Suppose that the two ends of the flagellum are both free. Equation (5.44)
provides us with

EBk4 + io)CN * 0. (5.50)

From equation (5.50) and Zt = Za = 0 atx = 0:

b-d=0 (5.51a)

a- c = 0. (5.51b)

From Zt = 0 and Za = 0 atjc = L because of the free distal end, where L is
the length of the flagellum:

asinhkL + bcoshkL + csinkL - dcoskL = 0 (5.52a)

acoshkL + bsinhkL - ccoskL - dsinfcL = 0. (5.52b)

From equations (5.51) and (5.52), we get

c a cos kL - cosh kL sin kL - sinh kL
sinhkL+ sin kL cosh kL - cos kL

(5.53)

If b is real, then a, c and d must also be real from equations (5.51) and
(5.53). Certain values for k are determined from the second half of equation
(5.53). Now the amplitudes A and C of the progressive waves are represented
by
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A=-(c+id), C=-(c-id), (5.54)

sothat

IAI = ICI. (5.55)

This means that the amplitudes of the forward-propagating and backward-
propagating waves are equal; that is, the two equal and opposite waves
generate standing-wave modes with certain wavelengths. For all combinations
of boundary conditions at the two ends (e.g. free, clamped or pinned
conditions), such standing-wave modes can occur.

Since there is no net energy transfer along the flagellum when standing
waves are present, no propulsive motion occurs. In other words, propulsion
requires the presence of an imbalance in the amplitudes of the two opposite
progressive waves. Now suppose that c = id (i.e. C = 0). This particular
condition is retained as long as P = i and Q = -i. From equation (5.49), it is
found that Z, and Za lie in the first quadrant of the complex plane, which
implies that the energy source, in the form of springs of negative stiffness, is
combined with energy absorption (or energy dissipation) due to the viscous-
type mechanism. On the contrary, where P = -i and Q = i lead to c = -id,
Z, and Za lie in the third quadrant. This case implies that energy absorption
in the form of positive springs is combined with energy sources of negative
viscous components. Table 5.2 summarizes the relationship between the
impedances at the base and the direction of the wave propagation.

(ii) Nonlinear tension-length relationship. For large amplitudes (|) is not
constant but instead it changes, which indicates the onset of nonlinear effects.
Conveniently, this situation is expressed by assuming a constant operating on
a power series in (L - Lo):

T- To = <|){(L - Lo) - %L -L0)2 - y(L - Lo)3...}. (5.56)

Since the even terms cancel out because of the symmetry of the contractile
structure, equation (5.56) leads to

*-fSM£j-T
Here we ignore all terms after the cube. Now suppose that a flagellum carries
both distally and proximally propagating waves,

y = Asin(cat - kx) + Csin(cot + kx) (5.58)

where COand k are real and positive. When the origin of t is properly chosen,
A and C become real. Of course, harmonics of these waves must be present
in this nonlinear system, but cross-products between them are ignored on
the assumption that their amplitudes are relatively small. Equation (5.58) is
substituted into equations (5.33) and (5.57), then the terms in (ow - kx) and
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The mechanical impedance Z has the from y + \K, where y and K are real. Ac-
cording to the equations (5.46), y and K correspond to the viscous resistance and the
spring stiffness, respectively. Conventionally, the mechanical impedance Z is plotted
against a (y, -K) plane so that it lies in the first quadrant when y and K are both positive
(cf. Cole, 1968). Therefore mechanical impedance in the first quadrant means the
presence of negative stiffness and positive viscous resistance (upper panel). Inversely
mechanical impedance in the third quadrant means the presence of positive stiffness
and negative viscous resistance (lower panel).

(oaf + kx) are compared separately to obtain the relationship between param-
eters. Finally, for the terms in (cat - kx),

-2a,;,4 å r.V'

A\«DU-^^(A2+2C2)\+ER+^^|=0
4 I K"

(5.59a)

where i comes from the term of cos(cof - kx). Similarly for the terms in (cor
+kx),

i~ ,h4 1 --r^r1

C|o^i-ill-(C*+2A>)f+^+^2-1=0.
K'

(5.59b)

When only the distally propagating wave is present (i.e. C = 0), equation
(5.59b) becomes trivial and equation (5.59a) gives A = Ao where

3y/t 4
£«+

A20=1+å 

i COCN

k4

a>
(5.60)
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In the limit of Ao -» 0, this equation becomes identical with equation (5.44)
for the linear case. Formally we rewrite equations (5.59a) and (5.59b) as
follows

A(A2 + 1C2 -AD = 0 (5.61a)

C(C2 + 2A2 - A20) =0. (5.61b)

There are two stable solutions (A, C) = (0, Ao), (Ao, 0) and one unstable
solution (A, C) = {AJ^3, Aofr[3). Since any small disturbance in the unstable
solution results in either stable solutions, the evoked wave propagating in one
direction suppresses the wave propagating in the opposite direction.

Stability. We have assumed that CO and k are real. Even though co and k are
not real, the corresponding solutions are unstable and will tend toward the
stable condition when co and k are real. This self-adjacent property of the
nonlinear system can be visualized by the change of <1> on the complex plane.

Consider the case where k4 is real but co is not real. We shall show that the
only stable solution occurs when co is real. Suppose that co = co' + ico", then
curves of «I> plotted on the complex plane form an orthogonal net (Fig.
5.15A). For convenience, equation (5.60) is rewritten

O= =-^-•E (5.62)
l--yk*Al

Suppose co"< 0: such a solution is illustrated in Figure 5.15B. Since co"< 0
implies that a corresponding amplitude increases exponentially with time,7 the
value of Ao must increase after a short time (Fig. 5.15C). As a result, the
value of (-co") becomes small, and consequently, the exponential rate of
increase of amplitude also becomes small. This brings about the steady state
as shown in Figure 5.15D. Starting with the assumption of co" > 0, similar
arguments can be applied.

Next consider the case when k is not real (i.e. k = k' + ik"). Suppose
k" < 0: a corresponding wave decreases its amplitude exponentially with
increasing x. At a certain point (say x0), co is real (Fig. 5.16A). Therefore at
a point x > x0, the value of Ao becomes smaller, which in turn implies the
case where co is not real with co" < 0 (Fig. 5.16B). According to the previous
argument, AQ increases to a steady value that is the same as Ao at x0. Con-
sequently, the amplitude of the wave at all points is the same (i.e. k" = 0)
when the steady state is obtained.

Synchronization. Synchronization is observed among spermatozoa. Flagella
that are close together beat with a common frequency and wavelength even
though their original values in the isolated individuals are different (see Fig.
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Figure 5.15 The Nyquist plot generalized to include complex frequencies. (A): When
co is complex (i.e. co = co' + ico"), curves of O form an orthogonal net on the complex
plane. (B): A solution for co" negative. (C): A solution for co" negative after a short
time. The amplitude, Ao, increases exponentially. (D): A steady-state solution when co
is purely real. As a result of the increase in Ao, the value of (-co")) eventually decreases
and a steady-state solution is attained. The effect of the nonlinearity operates through
Ao to make co purely real. From Machin (1963). Reprinted with permission.

4.24). To consider this problem, we will assume a moving flagellum carries
a wave

y = NsinCco^ - kxx).

The force-balance equation (5.29) must be modified

-ii. =/ + SA'cos^^ - Lx)
ds

(5.63)

(5. 64)

where p will be real and positive and will depend on the characteristics of
two flagella such as co,, kx and their distance apart. Thus the basic equation
(5.33) becomes
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Figure 5.16 The Nyquist plot generalized to include complex wave numbers. (A): A
solution for k complex and co real at a pointx0. (B): The solution at a pointx > x0. The
amplitude decreases with an increase in x, which in turn implies co" < 0. From Machin
(1963). Reprinted with permission.

ox2 dx4 dt
(5.65)

Applying a similar technique to that discussed previously, we assume

y = A sin(cof - kx) + B sin(co,? - k,x). (5.66)

After substituting this solution, terms in (cor - kx) are compared to get
T .-V i(,\T..

A\ <t>J1--(*4A2 +2k*B2)j-+En +
<* J K"

and from terms in (co,f - kxx)
^ v un.C.

B \Omi{1-^-ik\B2 +2k4A2)\+EB + |=i^Af. (5.67b)
* J Kl

Note that O is defined as a function of co.
WhenB =0andA =Ao, weget

A[k\Al - A2) - 2k$B2] = G.

The value of A must always be real, so that

A 2=Ag-2 - B2 (if/tMg>2/tfS2)
U;

A=0 (ifk*A20 <2kfB2).

(5.67a)

(5.68)

(5.69a)

(5.69b)

Since the right-hand side of equation (5.67b) is not zero, a real solution for
B can be obtained whatever the value of A. In other wards, the flagellum
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being self-oscillating always involves a wave of frequency C0j. However, the
free oscillation is completely suppressed when the amplitude of this compo-
nent increases to satisfy the inequality (5.69b). This is the phenomenon of
s ynchroni zation.

The mathematical theory predicts that synchronization will occur even if
the two waves propagate in opposite directions, since only even powers of k
appear in the equations (5.69) though in a natural situation two spermatozoa
travelling in opposite directions are unlikely to come close enough to each
other for synchronization to occur.

5.3.3 The curvature-controlled model

The Brokaw (1972b) model. Although the Machin model has provided
many interesting features, such as the importance of mechanical impedance in
determining the direction of wave propagation and synchronization between
two nearby flagella, the model is not complete as the transfer function 0 is
not specified. Using a sliding-microtubule mechanism, Brokaw (1971) tried
to specify the feedback relationship between the active process and flagellar
shape. For this purpose Brokaw assumed small-amplitude sinusoidal waves
travelling distally on a flagellum of infinite length. Due to the small-
amplitude waves, x and s were considered to be identical, and in assuming
infinite length, the boundary conditions at the two ends of the flagellum were
ignored. To get a simple relationship between the active process and flagellar
shape, Brokaw also assumed that the elastic bending moment, Me, is negli-
gible in comparison with the active bending moment, Ma, and the viscous
bending moment, Mv.Thus the moment-balance equation (5.30) becomes

Ma+ Afv = 0. (5.70)

Consider a flagellum carrying distally propagating waves only. Small-
amplitude sinusoidal bending waves on a flagellum will be described by

y = beia"-ikx or bcos(a>t - kx). (5.71)

From equations (5.28), (5.29) and (5.31), the viscous bending moment, Mv, is
given by

å &5- =Cn * - (5'72a)

Substituting (5.71) into (5.72a), we obtain

-^ =iCN<n&eia>M**. (5.72b)

On the other hand, using equations (5.34) and (5.70), we get

^ =-Sa. (5.73a)

ox
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Integration of equation (5.72b) leads to

Sa = £>^ e^Mt*. (5.73b)

For sinusoidal movement, the curvature of the flagellum, k, is given by

k =?7- (5.74a)

ox2

Substituting (5.71) into (5.74a), we obtain

K = -k2bew-lkx. (5.74b)

A comparison of equations (5.73b) and (5.74b) suggests a relationship
between the active process and flagellar shape written as

5a = -^K. (5.75)

This relationship implies that 5a varies in phase with -K.However this simple
relationship holds only if the elastic bending moment is negligible. As
illustrated in Figure 5.12, there is a (l/4)-cycle phase difference between Mw
and Me.The active moment, Ma, must have a component to cancel the elastic
bending moment. If this occurs, the moment-balance equation (5.30) is
satisfied. For this purpose, Brokaw (1972b) introduced a time delay, t, in the
control process:

Sa = -S0K(t - x) (5.76)

where So is a constant. In the case of the sliding-filament mechanism, internal
shear resistances are taking place during bend initiation and propagation.
Thus Brokaw (1972b) introduced the internal shear moment, Ms, given by

-r--\ -tsa-Cs-- (5.77)ds dt

where a is shear. This equation corresponds to the combination of equations
(5.34) and (5.36b). The first term on the right-hand side of this equation
shows the active shear force. The second and third terms represent elastic
shear resistance and viscous shear resistance, respectively. In the absence of
these internal resistances, equation (5.77) is reduced to equation (5.34).

Since the active shear force is proportional to curvature and does not
saturate, the elastic resistance, say Es, must be nonlinear. For small shear
displacement, the active shear force is stronger than the elastic shear
resistance, thus the shear increases until the shear resistance balances the
active shear force. Brokaw introduced nonlinearity in the form of cubic
elastic resistance, as indicated by Esa « a3. Alternatively, to get stable bend
amplitudes it is necessary to introduce nonlinearity in the form of saturation
in an active shear force, together with linear shear resistance.
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Figure 5. 17 Self-organization of a bending-wave propagation on a flagellar model. The
model is initially given the shape numbered 1 where the basal end of the model is
indicated by a dark circle. As the model produces bending waves propagating toward the
right, it will swim toward the left. Each image is then plotted relative to this circle.
There are eight time-steps, or 1/2 beat cycle, between each successive image. From
Brokaw (1972b). Reprinted with permission of the Biophysical Society.

Brokaw combined the internal shear moment, Ms, with the viscous mo-
ment, Mv,and the elastic bending moment, Me, to demonstrate bending wave
propagation in computer simulations. The moment-balance equation that
Brokaw used is a more general equation than the simple version derived
previously and can analyse the large-amplitude bend propagation. One of his
results is shown in Figure 5.17. A nearly straight flagellum starts beating and
reaches steady-state bending waves after two or three beat cycles. The stable
movement pattern is independent of the initial condition, but in its present
form the model will not beat from a completely straight position.

The Hines-Blum (1978) model. Hines and Blum (1978) replaced the ex-
plicit time delay by a smooth first-order rate process, without changing the
essential features of the Brokaw (1972b) model. This change allows for
greater stability in the numerical simulation. Their expression of 5a is given
by

^ å =-(-SoK-S.)
dt X

(5.78)



170 Nonlinear dynamic phenomena in flagella and cilia

where So is a constant, k is the curvature of the flagellum and t is the re-
laxation time of this active process. Incorporating this active process into the
general form of moment-balance equations (see Hines and Blum, 1978), they
demonstrated stable travelling waves. To get stable amplitudes, they also used
cubic nonlinear elastic resistance.

The essential feature of the curvature-controlled model can be understood
analytically and graphically. By omitting all the nonlinear terms from the
equations, we can use a linear stability analysis (see Section 1.2.3 of this
book; and also e.g. Chapter 9 of the book by Babloyantz (1986)). The
linearized equations (5.35) and (5.78) are described as follows:

!fel=
3^ 5.

CN ds<

1 d2}

CN ds2

X ds

For simplicity, we assume a flagellum of infinite length, and we set

(5.79)

(5.80)

where k is a real number corresponding to the wave number of the flagellum.
The characteristic equation of CO is given by

co2+Aco+B-iC=0 (5.81)

where

1 k4

X <-N

jfc4

r- s1c x °'(_NX

(5. 82a)

(5.82b)

(5.82c)

Let co be complex (i.e. co = co' + ico"), and from real and imaginary parts of
equation (5.81) we get

fco'2 - co"2 + Ag>' + B = 0 (5.83a)

[2co'co" + Aco" - C = 0. (5.83b)

From equation (5.83a),

co"2 = co'2 + Aco' + B > 0. (5.84a)

The solution we are interested in is co' > 0. In this case, a travelling wave can
be initiated. For the critical condition (i.e. co' = 0), co" = + -Jb, or - 4b. Suppose
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Figure 5.18 The unstable region causing bend propagation plotted as a function of
wave number, k. In the figure, /, = afc3 and f2 = p7& are represented by broken curves.
The sum of/, and/2 is indicated by a continuous line. The shadowed regions satisfy the
condition (5.86); that is, So >/, +/2, where a = p*= 10. For some positive values of So,
instability occurs only if k > 0, whereas for some negative values of So instability occurs
only if k < 0. This means that the direction of the bend propagation completely depends
on the sign of So in equation (5.78).

co" = + ^!B > 0: the critical condition becomes co'co" > 0. From equation (5.83b),
this means

c > a^/b.

Substituting A and C, and then dividing by k,

k

where

(5.85)

(5.86)

(5. 87a)

(5.87b)

(If instead co" = - Vfi < 0, equation (5.83b) cannot be satisfied.) Figure 5.18
shows that distally propagating waves (i.e. k > 0) will appear if 50 > 0, and
that proximally propagating waves (i.e. k < 0) appear if 50 < 0.
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If there is no time delay (i.e. % = 0), from equation (5.78) we get Sa =
-SodQ/ds, where dQ/ds = K. Substituting this relation into equation (5.79), we
get co' < 0 for any values of k. Therefore, traveling waves can never occur in
the curvature-controlled mechanism without a time delay.

The importance of the presence of a time delay between the curvature of
a flagellum and the active shear force is illustrated in Figure 5.ll. When
active shear force is produced in the region where the curvature of the
flagellum is negative after appropriate time delay, the bending wave will
propagate toward the distal end.

It is interesting to investigate the 'stretch-activation' mechanism, instead of
the curvature-controlled feedback mechanism, in generating travelling waves.
The stretch-activation feedback (see equation (3.7)) is described by

|^ = -(Soa - Sa). (5.88)

For simplicity a is considered to be equivalent to 6. The characteristic
equation obtained from equations (5.35) and (5.88) is

CO2 +A® +B' = 0 (5.89)

where

1 k*

X t-N

k4 k2
B ' =~cr^EB ~7r^s°'

(5. 90a)

(5.90b)

For /?e(co) > 0, B' must be negative (i.e. B' < 0) from equation (5.89). As
illustrated in Figure 5.19, both distally and proximally propagating waves
would occur when B' < 0. When the time delay is absent (i.e. X = 0), 5a = S0o
=S09. Then the characteristic equation shows CO= -B', so that the condition
of B' < 0 indicates instability leading to travelling wave patterns. In other
words, the presence of a time delay is not essential in the case of a shear-
controlled feedback mechanism. As discussed in Section 7.4.5, there is an
instability leading to bend propagation even in the absence of the time delay.

The Brokaw (1985) model. In the previous model by Brokaw (1972b),
linear active shear force is combined with nonlinear shear resistance to obtain
the stable bend amplitude. When active shear force saturates, linear elastic
shear resistance is sufficient to maintain stable bending waves. For this
purpose, equation (5.78) which describes the feedback relationship is modi-
fied as follows:

^ =-(S0 -SJ (5.91)

dt x
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Figure 5.19 The unstable region causing bend propagation plotted as a function of
wave number, k. We plot B'ofequation (5.90b) (here, B' = 10£4 - 30 k2) against k. For
some values of parameters (e.g. x, EB, So in equation (5.90b)), B' can be negative.
In contrast to Fig. 5.18, instability occurs for k < 0 and k > 0. The model can, there-
fore, produce proximally travelling waves (k < 0) as well as distally propagating waves
(*>0).

where the value of 50 is switched between two constant values, say S$and -
S$f as illustrated in Figure 5.20A. When the curvature falls below -Kq, So
becomes +S$, and when the curvature rises above +K0, So becomes -S$. In
this way, the curvature feedback mechanism is incorporated into the model.

Besides the above nonlinearity in the feedback control mechanism, Brokaw
incorporated two additional characteristics which are essential for the cross-
bridge force-generating system: the force-length relationship and the force-
velocity relationship (see Fig. 5.20B and C). Although the force-length
relationship changes dynamically in response to a quick change in length as
time develops (see Fig. 2.17) , Brokaw incorporated two more characteristics:
(i) In the absence of sliding, the active shear force, Sa, was considered to be
equal to a constant value, SQ (i.e. isometric force), (ii) In response to a quick
change in shear, the force-generating system produced only a simple elastic
shear resistance determined by a simple coefficient, Eo. (Eo was independent
of Sa.) The actual shear resistance was the product of Eo and So. This property
mimics the response of a real cross-bridge system. The stiffness in response
to quick change in shear reflects the stiffness of attached cross-bridges as
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Figure 5.20 Diagrams showing the Brokaw (1985) model. (A): The active force is
switched between two discrete values, S* and - S*, depending on the curvature, k. Note
that hysteresis switching occurs, in which the critical value for switching is dependent
on the direction of the system. (B): The spontaneous force-length relation. This is
analogous to the Tl curve obtained in muscle (see Fig. 2.17A). So corresponds to
'isometric tension' in the force-generating system. This is analogous to the force-
velocity curve in muscle (see Figs. 2.19 and 3.2). (C): The force-velocity relation. Vo
indicates 'maximum sliding velocity' at zero force.

there is no time for cross-bridges to detach and re-attach during the rapid
shear change.

The force-velocity relationship describes the decrease in active force
generated by the muscle as the shortening velocity increases. From the point
of view of the molecular mechanism, this relationship is interpreted as
follows: the faster the velocity of muscle contraction, the smaller the inter-
acting cross-bridges and hence the smaller the active force generated by the
muscle. Of course, detailed models that include the kinetics of cross-bridge
attachment and detachment can mimic such a force-velocity relationship. To
avoid many difficulties in dealing with such detailed models, Brokaw used
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Figure 5.21 Behaviour of a flagellar model. The upper panel shows the configuration
of the model in the (x, y) plane at time intervals separated by 1/4 beat cycle. The basal
end of the model is arbitrarily maintained in a fixed position and orientation. The lower
panel shows successive shear, o, as a function of arc length, s, of the flagellum. From
Brokaw (1985). Reprinted with permission of the Biophysical Society.

a phenomenological equation to describe the properties of a cross-bridge
system as follows:

----t.0\\\--+-\\ -\).dt dt X
(5.92)

For the quick change in shear (i.e. da/dt » 1), equation (5.92) givesl8Sa/
da) = E0\S0). For the steady-state length change (i.e. dSJdt = 0), equation
(5.92) gives the force-velocity relationship:

Srr
Sa =S0\ l-Eox-

at
(5.93)

As we first expected, this simple model, which involves nonlinear active
force-generating processes, produces stable oscillation and bend propagation
with linear elastic shear resistance, Es. In the absence of the shear resistance
or external viscous resistance, this model also produces stable bend propaga-
tion (see Fig. 5.21).

5.3.4 The self-oscillatory model

Although an active force-generating system that involves a feedback control
by the curvature of the flagellum shows oscillation and wave propagation,
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there is no direct experimental evidence supporting the curvature control
mechanism. In the light of the Machin model, which contains self-oscillatory
contractile elements distributed along the length of the flagellum, a search
for the self-oscillatory properties of an active sliding system seems to be
appropriate. It seems, in the absence of the curvature feedback control, that
the distributed shear oscillators coupled throughout the microtubule will
produce metachronous shear oscillations that are responsible for the propa-
gated bending waves. Observation of localized oscillatory bending in short
regions locally activated with ATP has also stimulated this idea. Thus the
problem is to search for the oscillatory mechanism used in the active sliding
system.

One possible explanation is based on the actin-myosin sliding system for
vibration typical of insect flight muscle (see Chapter 2). The oscillatory
properties of such muscle are ascribed to a delayed stretch-activation (i.e. a
delayed development of active force after a quick change in length). This
delayed stretch-activation can be phenomenologically expressed by equation
(5.88).

In opposition to this mechanism, Brokaw (1975) proposed a stretch de-
activation mechanism that enabled the force during stretch to fall below the
isometric force, So, for V = 0. In addition, the force during shortening is set
to be greater than the isometric force. When two such active sliding systems
are combined together to form an antagonistic pair, the net steady-state
force-velocity relationship is characterized by a positive slope in the region
around V = 0, leading to instability, and a negative slope outside this region
is required for stability.

For simplicity, Brokaw used a piecewise-linear force-velocity relationship
given by the following specification (Fig. 5.22A):

sj-i--I (V<-o.2vQ)

5 a =\ 4S0V (-0.2V0 < V<0.2V0) (5.94)

50 1--I (0.2V0<V).

When this active force-generating system is connected to a simple linear
viscoelastic load with the elastic resistance, K, and the viscous resistance, y,
spontaneous oscillation can result (Fig. 5.22B). As shown in the (a, V) plane
(here, V = da/dt), a trajectory appears to be relaxation oscillation. It is found
that a flagellar model containing distributed local shear oscillators produces
bend propagation (Fig. 5.23).

Instead of using the steady-state force-velocity relationship, Hines and
Blum (1979) and Brokaw (1982) have made attempts to investigate molecular
mechanisms producing both steady-state behaviour and transient behaviour.
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Figure 5.22 (A): The force-velocity relationship that corresponds to the antagonistic
force-generating system. The force-balance equation is given by yV = Sa - Kg, where
V =da/dt. Here Sa is represented by solid lines. The dotted line indicates yV. The passive
shear force (-Kg) does not appear in the (5a, V) plane. (B): Displacement-velocity plot
for the model. From the force-balance equation, g = (S^ - yV)/K is plotted against V.
The system will oscillate in the stable limit cycle indicated by the trajectory due to a
viscous load (yV) and an elastic restoring force (-Kg). (See Section 3.3.)
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Figure 5.23 Behaviour of a flagellar model. The configuration is plotted in the {x, y)
plane. As the model produces distally travelling waves toward the right, it moves toward
the left. From Brokaw (1975). Reprinted with permission.

Their results suggest that stable bend propagation occurs either with internal
viscous resistance in the absence of curvature feedback control, or with
curvature-controlled rate constants determining the states of cross-bridges in
the absence of internal viscous resistance. This type of model, however, has
not yet demonstrated a realistic bend propagation in the viscous medium
without curvature control mechanism, and also without internal viscous
resistance.

5.3.5 The ciliary model

Since cilia and flagella possess an identical axonemal structure, the model
that accounts for symmetrical wave propagation typical of flagella should
produce asymmetric effective strokes plus recovery strokes typical of cilia,
after a slight change in the motile system. Solving this problem may result in
a good understanding of the internal mechanism. However, there are many
difficulties, in attacking this problem.

The modified flagellar model. It was found that the form of the beat
changed from the symmetrical to the asymmetrical mode when the severed
end of the flagellum was stuck onto a glass surface (Douglas and Holwill,
1972). This observation suggests that the change of the boundary conditions
at the proximal end to those appropriate for a cilium attached to a cell
surface causes the change of beating patterns characteristic of such cilia.

Blum and Hines (1979) examined the effects of 'clamped' boundary con-
ditions at the proximal end (i.e. V(0, t) = 8(0, 0 = 0). Figure 5.24 shows
results using the curvature-controlled model by Hines and Blum (1978). The
effects of the length of the flagellum, L, appear to be essential in producing
bending wave propagation. Although bend propagation can occur under free-
end boundary conditions, no motion occurs at L = 10 (im even with identical
parameters. Increasing L to 15 |im allows the flagellum to beat and distally
propagating waves appear. Increasing L further to 20 (O.m allows the flagellum
to beat similarly to the flagellar motion with two free ends. These results
suggest that the effect of the constraint at the basal end is felt for up to
10 |J.m from the basal end, and that merely changing boundary conditions
appropriate for a fixed cilium does not help to initiate ciliary motion.
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L=10 |im L=15 |im L=20 |im

Figure 5.24 Effects of clamped-end boundary conditions on curvature-controlled flagellar
models of different lengths. The proximal (left) end of each fiagellum is clamped (i.e.
V(0, t) = 0(0, t) = 0). No bending motion occurs at L = 10 |0.m. Increasing L from 10
to 20 Jim allows the fiagellum to beat and symmetric bending waves appear. From Blum
and Hines (1979). Reprinted with permission.

In contrast to the curvature-controlled model, Blum and Hines also tested
the ability of the self-oscillatory model (Hines and Blum, 1979) to produce
ciliary motion under the clamped boundary conditions (i.e. V(0, t) = 8(0, t) =
0) without curvature control (Fig. 5.25). At L = 10 jj.m, the 'cilium' is short
enough to generate a part of its bend during a cycle. This partly resembles an
effective stroke. Increasing L to 15 ujn allows the system to develop more
waves, but these waves initiate at the tip and propagate to the base. At L =
20 (im, proximally propagating waves are clearly observed. These results are
very interesting in comparison with the analytical prediction by Machin
(1963) in the sense that the direction of bend propagation may be influenced
by the boundary condition at the proximal end (see Table 5.2).

Although experimental studies show that a change of boundary conditions
at the proximal end is sufficient to change motion from a flagellar to a ciliary
type, the simulation results do not reproduce the experimental results. This
means that we may be ignoring some important features responsible for
asymmetric beating patterns typical of cilia, and that changing boundary
conditions also affects some internal operating mechanism.

The catastrophe model. Varela et al. (1977) applied Rene Thorn's cata-
strophe theory to ciliary motion as a tool to facilitate top-down description
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Figure 5.25 Effects of clamped-end boundary conditions on self-oscillatory flagellar
models of different lengths. The same boundary conditions are used. At L = 10 um, the
'cilium' is short enough to generate a part of its bend during a cycle, which partially
resembles an effective stroke. Increasing L to 15 or 20 urn allows the system to develop
more waves. These waves initiate at the tip and propagate to the base. From Blum and
Hines (1979). Reprinted with permission.

of global qualitative behaviour. From a mechanical point of view, they sum-
marized the basic events during the ciliary beat.

(i) There is an initial or resting position.
(ii) A mechanical or biochemical stimulus can trigger an initiation of the

effective stroke,
(iii) Following the effective stroke, the system returns to its initial resting

position by exhibiting the recovery stroke.

These three properties are characterized by the following dynamic behaviour:

I Equilibrium state.
II Threshold for an action.
III Return of equilibrium.
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Figure 5.26 The behaviour of the coupled first-order differential equations (5.95). For
a =-1, the slow manifold (given by dx/dt = 0) is seen in the phase plane (x, b). From
Varela et al. (1977). Reprinted with permission.

As Zeeman (1972) pointed oat, the three properties are commonly observed
in various biological systems such as nerve impulses and heart beats. Let x
be a state variable which monitors the temporal events related to the action,
and a and b the control parameters which change more slowly than x. The
simplest pair of equations is

e-=-(x3+ax+b)dt

db

df =x-xn

(5.95a)

(5.95b)

When a is fixed, say a = -I, andx0 > 0 and e « 1, the behaviour of this
equation is seen in the (x, b) phase plane (Fig. 5.26). Suppose that the system
is initially at the equilibrium position, x = x0. If b changes externally beyond
a threshold value, x will cause a fast action approaching the lower attractor
surface where x will change slowly due to the coupling of b and x. But at
T the system will show a fast return; consequently an equilibrium state is
retained.

This behaviour is shown in the more general scheme where the equilibrium
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Repellor

Figure 5.27 The slow manifold surface (upper panel) and the projection of its fold onto
the (a, b) plane. The cusp-shaped distribution of the catastrophe points is shown. From
Varela et al. (1977). Reprinted with permission.

surface is defined by control space {a, b) (see Fig. 5.27). This surface, called
a manifold, is given by

f{x,a,b)=x3+ax+b=0.

The line of two thresholds is defined by

d/fcr, a, b)
dx

=3x2+a=0.

(5.96)

(5.97)

On the control plane (a, b), the cusp-shaped curve is obtained from equations
(5.96) and (5.97). It is represented by

4a3 + 21b2 = 0. (5.98)

Thus the folds of the surface are referred to as the cusp catastrophe.
Suppose that a is also allowed to vary. Equations (5.95) are modified as

follows:



dx
e -
dr
= - (x3 + ax + b )

da
- 2a - 2 x

A t

Ab
- a - I.

d ;
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(5.99a)

(5.99b)

(5.99c)

Then, a smooth return to the initial equilibrium is possible similar to that of
a nerve impulse (Zeeman, 1972).

Varela et al. assigned x as the average angular displacement, b as the total
displacement and a as the ATP concentration (= constant). These assignments
give some insight about the underlying mechanism for ciliary beating. How-
ever, there is room to improve this model as Varela et al. pointed out. First,
this model cannot account for bend initiation and propagation as it contains
no space variable, s. We must use the partial differential equations such as
(5.36) or (5.37) instead of the ordinary differential equations. Secondly,
instead of angle, angular velocity may be a more adequate variable to de-
scribe ciliary motion, because angle is proportional to sliding displacement
at a point and they are not mutually independent variables.

The internal-clock model. Rikmenspoel and Rudd (1973) found a forcing
function responsible for the realistic ciliary motion (Fig. 5.28). It was found
that simultaneous active sliding is necessary to generate the effective stroke,
while for the recovery stroke the forcing function must involve travelling
properties (Fig. 5.28A). In addition, the elastic bending resistance, EB, is
assumed to vary during the cycle of a beat, which may reflect the change of
the number of attached cross-bridges (Fig. 5.28B). However, this assumption
is not acceptable since attached cross-bridges would contribute to the shear
resistance but not to the bending resistance (Blum and Hines, 1979).

Rikmenspoel (1982) also attempted to demonstrate flagellar beating patterns
by using this technique. He finally succeeded in reproducing the 'spontaneous
transitions' from rest to motion observed in real flagella in Rikmenspoel
(1978).

In the context of ciliary and flagellar bending waves, Rikmenspoel's
approach of using a forcing function, is an interesting attempt to establish an
identical internal force-generating mechanism. However, the models do not
explicitly explain the underlying molecular mechanisms for cross-bridge inter-
actions. The step still remaining to be done is to specify the forcing function
based on the cross-bridge dynamics.

The Sugino-Naitoh model. Sugino and Naitoh (1982) found active sliding
patterns occurring among the nine outer microtubules that reproduce the
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Figure. 5.28 (A): Contour plot of the active moment during a full cycle. Ma is plotted
as a function of time, t, and position, s. (B): Contour plot of the stiffness during a full
cycle. EB is plotted as a function of t and 5. (C): The ciliary shape of the model. The
numbers assigned to each stage correspond to time, t, in ms. From Rikmenspoel and
Rudd (1973). Reprinted with permission of the Biophysical Society.
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three-dimensional beat cycle as seen in Paramecium. The patterns were ob-
tained by trial and error on the assumption that the cilium is fixed at the
base and that elastic bending resistance is ignored.

Figure 5.29 shows 41 successive changes in the sliding pattern (upper part)
and the corresponding successive changes in the shape of a cilium (lower
left, side view; lower right, top view) during a single beat cycle. The active
sliding is localized in each pair of doublets as shown by the dark region. In
a single pair of the doublets, the local activation starts at the basal end,
travels up along the doublets, and finally disappears at the tip. Within the
ring of nine paired doublets, activation is triggered from one pair to the
adjacent pair (n -> n + 1).

There is a long interval between the start of activation at the 4-5 pair (No.37)
and that in the 5-6 pair (No.15). This indicates that the cyclic activation in
the nine pairs of doublets starts at the 5-6 pair and terminates at the 4-5 pair.
Since initiation of activation in the 5-6 pair corresponds to the start of the
recovery stroke, it is suggested that the recovery stroke precedes the effective
stroke.

Although the Sugino-Naitoh model clearly identifies the relationship
between the sliding patterns in the nine pairs of doublets and the three-
dimensional ciliary beating, the fundamental mechanism generating such
spatio-temporal sliding patterns is still a black box.

5.3.6 Ciliary propulsion

The envelope model. The envelope model has its origins in Taylor's swim-
ming-sheet model for flagellar propulsive motion. When waving cilia are
closely packed over the relatively flat cell surface, the motion of ciliary tips
is replaced by a waving envelope (Fig. 5.3OA). Taylor's sheet is not allowed
to stretch and release due to the geometrical constraint of the flagellum.
However, the envelope is free from this constraint as it represents loci of
ciliary tips, in which an individual tip performs a simple harmonic motion
of amplitude, a, tangential to the surface, and a simple harmonic motion of
amplitude, b, normal to the surface (Fig. 5.30B). The model assumes that
the envelope is infinite and the undulations two-dimensional, and that the
envelope is impermeable to fluid (although this is not true).

Recalling equation (5.1 1),

V 1
-=-k2(b2 +2ab cosdp- a2) (5.ll)

we get the expressions for the ratio of swimming speed, -V, and wave vel-
ocity, U. Evaluations of the velocities of propulsion using this formula (5.1 1)
are valid when kb and ka are small; that is, amplitudes b and a are small
compared with the metachronal wavelength, X(k = In/X). For convenience,
equation (5.ll) is rewritten as
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Figure 5.29 Upper part: Spatio-temporal active sliding patterns during a single beat
cycle. The nine doublets are shown schematically in a plane as ten vertical lines numbered
at their bases (1, 5 and 9). Lines 1 and 10 correspond to doublet No.l. Dark regions
between the vertical lines represent the active sliding regions. Lower part: The change
in the shape of a cilium during a single beat cycle. Each shape is simulated according
to each active sliding pattern shown in the upper part. On the left is the side view and
on the right the top view. From Sugino and Naitoh (1982). Copyright © Macmillan
Magazines Ltd. Reprinted with permission.
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Figure 5.30 (A): The envelope model of ciliary propulsion. The ciliary tips are re-
placed by the continuous envelope. From Blake (1975). (B): A typical pattern of a
ciliary tip locus (symplectic). From Brennen and Winet ( 1 977). Reprinted with permission.

-=-k2(a2 + b2)[V(l - G2)cos<|> - g] (5.100a)

where

G=
a2-b2

a2+b2
(5. 100b)

Figure 5.31A shows arbitrary elliptical ciliary tip loci with the parameters
G and 0. Note that G = -1 (i.e. the simple transverse wave with a = 0)
corresponds to the solution (5.12), whereas G = + 1 (i.e. the pure longitudinal
wave with b = 0) corresponds to the solution (5.13). Figure 5.3IB depicts the
contours of the dimensionless propulsive velocity, V/Uk2(a2 + b2), against the
(G, if) parameter plane. The + sign of this velocity indicates that the sheet
swims to the left in an opposite direction to the metachronal wave. In
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Figure 5.31 (A): Variations of arbitrary elliptical ciliary tip loci with parameters G
and <|). (B): Contour plot of the dimensionless propulsive velocity V/Uk2(a2 + b1) on the
(G, <j>) plane. From Brennen and Winet (1977). Reprinted with permission.

contrast, the - sign suggests that the sheet swims to the right in the same
direction as the wave.

The comparison of Figure 5.31A and Figure 5.31B leads to the following
two predictions, (i) When the path of a ciliary tip is circular (i.e. G = 0 or
a =b), the direction of propulsion, relative to the wave, depends on whether
the ciliary tip moves in a clockwise or counter-clockwise direction, (ii) When
the path of a ciliary tip is elliptical, the direction of propulsion depends on
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Figure 5.32 (A): Beat patterns and the symplectic metachronism. The ciliary tip moves
in a clockwise and predominantly transverse direction. (B): Beat patterns and the antiplectic
metachronism. The ciliary tip moves in a counter-clockwise and predominantly longi-
tudinal direction. From Bremen and Winet (1977). Reprinted with permission.

whether the ciliary tip tends toward transverse motion (G -> -1 or a -> 0) or
longitudinal motion (G -> 1 or b -> 0) irrespective of the direction of motion
along the elliptical path.

As a practical example, consider organisms like Opalina whose ciliary tips
move predominantly in a transverse and clockwise direction. They are
propelled to the left in opposition to the metachronal wave (Fig. 5.32A).
Another example is obtained in organisms whose ciliary tips move in a pre-
dominantly longitudinal and counter-clockwise direction. They move in the
same direction as the wave (Fig. 5.32B).8

The cilia sublayer model. The envelope model could mainly explain the
symplectic metachronal wave where most of the cilia move closely together
to form an 'envelope'. However, for antiplectic metachronism (see Fig.
5.32B), the envelope approximation is not valid because the cilia are spread
out during the effective stroke. The cilia sublayer model has been proposed
to explain the interactions between individual cilia when taking into account
the surrounding fluid. But because of a lack of knowledge about the mechan-
ism that causes individual ciliary motion, the observed data or the idealized
ciliary forms are used to calculate velocity profiles within the ciliary array
(see the review by Blake and Sleigh, 1974). A more important and interesting
problem is to understand how the metachronal wave arises from individual
ciliary motions. This problem has not yet been solved.
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Notes

1 The Stokes equations are obtained from the more general Navier-Stokes equations
by omitting the time-dependent and inertial terms.

2 Strictly, the constraint of inextensibility (i.e. a = 0 in equation (5.5a)) requires the
new form of (5.5a) for waves of relatively large amplitude based on the following
geometrical consideration:

b2
xs =x- - sm2(kx-(at). (5.5'a)

o

ys - b-%m{kx - cor). (5.5'b)

The equations (5.5') indicate that a point on the surface moves in the form of a
figure of 8 (see Fig. 3.2 in Childress (1981)). The corresponding velocity of
propulsion calculated up to fourth order is :

-=-k2b4\--k2bA. (5 12')
U 2 I 16 ) p- '

3 Strictly, since a system under zero resultant force may have a net moment
resulting in rotation of the organism, the movement of the flagellum must be
consistently determined by requiring that the net force and net moment on the
body is equal to zero (see Lighthill, 1976).

4 To obtain the values for coefficients in (5.17) we must integrate singular solutions
(e.g. 5.15) along the surface of the flagellum (normally taken to be an envelope of
spheres of radius A and centre on a certain curved flagellar axis) and identify the
coefficients of the normal and tangential forces (see Chapter 6 of the book by
Childress (1981)).

5 If the filaments are free to slide at the base, c(s) = Q(s) is no longer correct; in-
stead we must specify o(0) - 9(0) based on Newton's laws with regard to sliding
movement (see Blum and Hines, 1979).

6 Internal viscous shear force is not necessary to consider for flagellar and ciliary
dynamics (see Hines and Blum, 1978).

7 A sinusoid of frequency <o/2% is represented by |expia)' + (expim')*}/2, where the
asterisk denotes the complex conjugate. If CO is now a complex frequency, such as
co' + ico", the 'sinusoid' becomes exp(-co"f)cosco'f which is growing exponentially
when co" < 0.

8 The swimming direction of ciliated organisms is opposed to the direction of the
effective stroke.



6 Molecular mechanism for excitability
and oscillations

Y -=EB-+Sa+Sp, (6.1)

In this chapter we restrict ourselves to the internal mechanisms underlying
flagellar and ciliary dynamics, as studied by Murase and Shimizu (1985b;
1986). Technically, it is assumed that the external viscosity is replaced by a
non-zero internal viscosity. The condition with only the external viscosity is
different from the condition with only the internal viscosity. Nevertheless we
can simplify the basic equation (5.36) through this assumption, and thereby
construct a theoretical basis for understanding flagellar and ciliary dynamics.

The simplified equation that we will deal with here is the so-called
reaction-diffusion equation: 1

3a 32a
dt "Bds2

where y is the internal viscous resistance, EB the bending resistance, Sa the
dynein active force and Sp the passive restoring force. Thus, the problem is
how to specify Sa and Sp in equation (6.1) based on the molecular structure
and function and still satisfy travelling-wave solutions.

The key requirement for the propagated dynein activity, which leads to
bend propagation along the axoneme, is that dynein molecules be excitable, but
not oscillatory. Of course the real goal of studying flagellar and ciliary
behaviour is to understand how they beat in a viscous medium. To do this,
we must solve the more complicated equation (5.36), as detailed in Chapters
7, 8 and9.

Theoretical and experimental background are briefly described in Sections
6.1 and 6.2, respectively. Section 6.3 proposes a flagellar model based on the
three-state model. Section 6.4 discusses the dynamics of a short flagellar
segment. Symmetric and asymmetric bending waves are demonstrated in
Sections 6.5 and 6.6, respectively.

6.1 Theoretical background

The previous chapter has provided two basic classes of models for flagellar
beating - the curvature-controlled and self-oscillatory models (Table 6.1).
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Table 6.1 Three different types of theoretical models for flagellar movement

( i)  C u r v a t u r e -c o n tr o l le d ( i i )  S e l f - o s c ill a t o r y ( i ii )  E x c it a b l e  d y n e in

m o d e l s m o d e l s m o d e ls

B r o k a w  ( 1 9 7 1 ;  1 9 7 2 b ) M a c h i n  ( 1 9 5 8 ;  1 9 6 3 ) M u r a s e  &  S h im i z u

H in e s  &  B l u m  ( 1 9 7 8 ) B r o k a w  ( 1 9 7 5 ;  1 9 7 6 ) ( 1 9 8 6 )
B r o k a w  ( 1 9 8 5 ;  1 9 8 9 ) B l u m  &  H i n e s  ( 1 9 7 9 ) M u r a s e ,  H in e s  &

B lu m  ( 1 9 8 9 )

M u r a s e  ( 1 9 9 0 )
M u r a s e  ( 1 9 9 1 a )
M u r a s e  ( 1 9 9 1 b )

H i n e s  &  B lu m  ( 1 9 7 9 ) *
B r o k a w  ( 1 9 8 2 ) *

* These models possess both curvature-controlled mechanism and self-oscillatory
mechanism since the two mechanisms are not mutually exclusive.

The curvature-controlled models of flagellar beating assume that the active
sliding process, which causes bending of the flagellum, will in turn be
controlled by the resultant bending, or curvature of the flagellum. Normal
base-to-tip propagating waves result from the presence of a feedback control
between the active process and the curvature (see Fig. 5.17). The recovery
phase of ciliary beating, in which a bend is initiated at the base and
propagates to the tip, is also generated by a similar feedback control.
Unfortunately, such a feedback control mechanism fails to produce the swing
of a nearly straight cilium as occurs during the effective stroke, and hence
cessation of beating (see Fig. 5.24). Since cilia and flagella do not essentially
differ in structure and function - indeed, the same axoneme exhibits both
ciliary-like and flagellar-like beats under different conditions (Bessen et al.,
1980; Hosokawa and Miki-Noumura, 1987) - the failure of the curvature-
controlled models to generate a full cycle of ciliary beating suggests that
there may be another mechanism operating in cilia.

Self-oscillatory models seemed to be an attractive alternative at first
(Brokaw, 1975; 1976). In these models, elementary oscillators distributed
along the axoneme are assumed to cause alternating active sliding. This leads
to bend initiation and propagation in flagella when high - unrealistic -
internal viscosity is present. Where the length of the axoneme is small
enough (or the bending resistance of the axoneme is sufficiently large),
oscillators will synchronize with each other through strong coupling. This
synchronization of all the oscillators allows simultaneous active sliding
within the axoneme to cause a beating form that partially resembles the
effective stroke of a cilium. However, in a more realistic situation, in which
little or no internal viscosity is present, the self-oscillatory models fail to
reproduce the base-to-tip bend propagation that occurs during the recovery
stroke of the ciliary beating or during normal flagellar oscillations (Hines and
Blum, 1979; Blum and Hines, 1979). Rather, bends seemed to be initiated at
the tip and propagate to the base (see Fig. 5.25).
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Neither the curvature-controlled nor the self-oscillatory model can com-
pletely account for a full cycle of ciliary beating. Thus, it is thought that
there is some intermediate (or common) mechanism generating ciliary-like
and flagellar-like beats. A search for an identical, force-generating function
for both flagella and cilia has been made by Rikmenspoel and colleagues (cf.
Rikmenspoel and Rudd, 1973; Rikmenspoel, 1982), though no underlying
mechanism has been proposed for this forcing function.

As a third class of models for wave propagation in cilia and flagella, the
excitable dynein models have been proposed (Table 6.1). These models
assumed that dyneins are normally at 'rest' and 'activation' leading to force
generation is only triggered by sliding past a threshold. Once superthreshold
active sliding is induced by other dyneins, the activity of dyneins is suc-
cessively triggered along the axoneme as long as sliding persists. Thus, a
parameter determining the transition to an 'active' state plays an important
role in generating various triggering patterns of dynein activation, and hence
various waveforms typical of flagella and cilia. These models operate well at
zero external viscosity (this chapter) and also even in the presence of external
viscosity (Chapters 7, 8 and 9).

6.2 Experimental background

As we have already detailed in Chapter 4, cilia and flagella show a great
variety of dynamical behaviours - for example, the reversal of the direction
of wave propagation, intermittent movement, bursting activity and mechano-
sensitivity. Before attempting to understand some of these complicated
behaviours (see Chapter 7), we confine our attention to two main types of
dynamics - oscillations and excitability.

The observation that fragments of Crithidia flagella as short as 500 nm
can beat regularly is of considerable interest (Douglas and Holwill, 1972).
Potentially this observation reflects the minimal size of a system necessary to
exhibit oscillations. Another interesting observation is that short regions of a
flagellum exhibit local oscillations when they are specifically reactivated by
ATP (Brokaw and Gibbons, 1973). Rikmenspoel (1978) happened to observe
spontaneous transitions from rest to motion in live sperm flagella, which can
be interpreted through computer simulations as a result of oscillatory be-
haviour (Rikmenspoel, 1982). All these observations strongly suggest that
pacemakers exist which oscillate spontaneously and lead to bend initiation
and propagation.

In contrast to these observations there are many others that suggest
excitable dynamics. For example, movement of some flagella reactivated with
ATP requires either mechanical initiation by a microneedle (Lindemann and
Rikmenspoel, 1972) or mechanical constraint at one end of the flagellum by
attaching it to a glass surface (cf. Blum and Hines, 1979). In an amputated
flagellum, a microneedle stimulation causes a passive bend that propagates
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Figure 6.1 Lef t par t : The geometr ic ar rangement of cross-br idges (denoted by arms)
and at tachment si tes (denoted by dots ) . Right par t : The dis t r ibut ion of cross-br idges .
(A) : In muscle , M and A denote the thick and thin f i laments . (B) : In f lage l la , A and B
denote the A-subtubule of the Mh double t and the B-subtubule of the (N + l) th double t .
Modif ied f rom Murase and Shimizu (1986) . Repr in ted wi th permiss ion .

with a constant bend angle (Okuno and Hiramoto, 1976). Compound cilia of
the ctenophore Pleurobrachia have low intr insic activi t ies but show a re-
markable sensi t ivi ty to mechanical st imuli (Sleigh and Jarman, 1973).

These two types of dynamical behaviour - oscil lat ions and excitabi l i ty -
should not be considered as mutually exclusive phenomena. They are in fact
closely related to each other .

6.3 Model development

To formulate theoret ical models for flagella and cil ia , let us consider the
molecular structure and function that leads to excitabi l i ty and osci l lat ions.

6.3.1 Geometric considerat ions

Localized cross-bridge distr ibution. Figure 6.1 il lustrates the geometric
arrangement of cross-bridges and attachment sites . In muscle the 42.9 nm
interval of cross-bridges is different f rom the 37.0 nm interval of at tachment
si tes (Huxley and Brown, 1967), which leads to homogeneous cross-bridge
distr ibution. In flagel la , however, the 24 nm interval of cross-bridges is
equivalent to the 24 nm interval of at tachment sites (Takahashi and Tonomura,
1978). This suggests that in a straight region the cross-bridge distr ibution to
the at tachment si tes is not homogeneous, but rather it seems to be local ized
(Murase and Shimizu, 1986). For recent developments in cross-bridge sub-
structure and function see Section 9.1.

Opposing cross-bridge pair system. A real axonemehas nine pairs of doub-
lets . Along each pair two rows of dyneins are distr ibuted corresponding to
the presence of inner and outer arms (see Fig. 4.3) . For simplici ty, only four
pairs of doublets are considered: two of the four are named subsystem I and
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I II

Figure 6.2 A simplified system with four doublets. Cross-bridges in subsystems I and
II form opposite pairs of cross-bridges along the flagellum. Modified from Murase and
Shimizu (1986). Reprinted with permission.

the other two subsystem II. It is also assumed that the two rows of dyneins
are functionally equivalent and that both are represented by a single localized
distribution. Reflecting the opposite direction of cross-bridges located on the
6-9 and the 1-4 doublets (see Fig. 4.13), the two subsystems I and II are
considered to form an opposing cross-bridge pair (Fig. 6.2).

Radial-spoke system. Warner and Satir (1974) suggested that radial spokes
will cause a cycle of attachment and detachment in a similar way to dynein
cross-bridges. Baba (1979) observed that the effective stroke of some
compound cilia involves several angular steps, which may be interpreted as
several sliding units due to the radial-spoke cycle as well as the dynein cross-
bridge cycle (see Section 4.5.4). Dynein cross-bridges perform mechano-
chemical cycles by the use of chemical energy of ATP hydrolysis similarly to
myosin cross-bridges in the muscle system. Dynamics of such dyneins are
described by a three-state model as detailed in the next section. In contrast
to the dynein system, operation of the radial-spoke system does not require
ATP but may be affected by high Ca2+. This system is, therefore, considered
as a control system (but not a force-generating system) which facilitates
the repetitive progressive bends (Satir, 1984), though details have not yet
establi shed.

Usually the radial-spoke system is formulated by a complex function
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Figure 6.3 A schematic diagram showing a radial-spoke system. Radial spokes (denoted
by 'cross-bridges') extend from the A-subtubule (A) to the central sheath surrounding
the central pair (CN). The interaction between radial spokes and central sheath is
represented by a periodic mechanical potential as a function of the shear displacement,
u. The relationship between the shear displacement u and the sliding coordinate x is also
shown.

(Lubliner, 1973; Hines and Blum, 1979). We simply assume that there are
stable positions periodically located along the filament corresponding to the
radial-spoke cycles. Mathematically, a periodic, mechanical potential is defined
as a function of shear displacement, u, as follows (Fig. 6.3):

Here K? is the force coefficient and 24 (nm) represents the stroke distance of
the radial spoke.

6.3.2 A three-state model for the cross-bridge cycle

To describe the dynamical behaviour of a dynein cross-bridge, we will use
the three-state model originally proposed to account for the dynamics of a
myosin cross-bridge (see Chapter 3). Of course we must modify the original
three-state model based on the difference in the geometry of molecules in
flagella, as mentioned in the previous section.

The three-state model assumes that there are three different states available
for a cross-bridge: an inactive (i.e. detached) state, a resting (i.e. preactively
attached) state and an active (i.e. actively attached) state denoted by 0, 1 and
2, respectively (see Fig. 6.4A). Using the chemical energy of ATP hydrolysis,
a cross-bridge can undergo transitions between the three states. The behav-
iour of the cross-bridge distribution depends only on a distance, or a sliding
coordinate, x (in nm), from its nearest-neighbour attachment site, but not on
an actual distance, or a shear displacement, u (in nm), between the two fila-
ments. Considering the periodic arrangement of both cross-bridges and sites,
the relationship between the sliding coordinate and the sliding displacement
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is specified. Mathematically, we take the values of u modulo 24 as follows
(see Fig. 6.3):

x + C = mod(« + C, 24), (6.3)

where 24 (nm) is a periodicity of attachment sites and C is some arbitrary
constant relating to the position of a reference point in measuring the distance
between the cross-bridge and site. Equation (6.3) means that any value of x
satisfying 0 < x + C < 24nm is considered equivalent to x + C + 24n, where
n is an integer. When C = 12nm, then the sliding coordinate is defined for
-12 < x < 12 nm. If we further restrict our attention to a single sliding unit
for -12 < « < 12 nm, equation (6.3) becomes

x = u. {63')

The mechanical potential of all state and transition rate constants among
the three states are defined as a function of x. The analytical form of each
potential is written as:

State0: U0(x) = 0

State1: Ux(x)=K,^~Xl) _j/o

S tate 2: [/2<» = ^

2

(x-x2f
-

m.

(6.4a)

(6.4b)

(6.4c)

where K, = 0.1875pNnrrf1, K2 = 0.25pNrun"1, xY= -10 nm,x2 = 12nm, U\
=5pNnm, and U% = 60pNnm.

Figure 6.4B shows these mechanical potentials. The opposite sign of space
derivative for each mechanical potential shows force generated per cross-
bridge (i.e. F, = -dUj(x)/dx where i = 0, 1 and 2). From this relationship we
understand that (i) no active force is generated by a cross-bridge in state 0,
(ii) only a small amount of force is produced in state 1, and (iii) a large
amount of active force is generated in state 2. The separation in the
mechanical potentials between the two stable positions - at xt in state 1 and
at x2 in state 2 - reflects the single stroke-distance of the active cross-bridge.

The transition of an individual cross-bridge to the active state affects the
sliding motion and the resultant sliding motion in turn influences the be-
haviour of the cross-bridge. There seems to be a dynamic feedback loop
between the cross-bridge behaviour at the molecular level and the macroscopic
sliding motion. To describe the dynamic feedback loop, the rate constants are
given as a function of x. Figure 6.4C depicts the rate constants. One important
assumption is that cross-bridges are allowed to attach to state 1 by km in the
narrow region where -12 < x < 8 nm, but detach everywhere via lcw. This
introduces a situation of local activation and global inactivation, which leads
to excitable dynamics of dyneins with directional sensitivity (see below). Their
analytical forms are given as follows:
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Figure 6.4 (A): A three-state cross-bridge cycle. States 0, 1 and 2 represent an inactive
state (or a detached state), a resting state (or a preactively attached state) and an active
state (or an actively attached state), respectively. ktj represents the rate constant of
transition from state i to / (B): Mechanical potentials for the three states as a function
ofx; Uo, Ui and U2 denote the mechanical potentials of the states 0, 1 and 2, respec-
tively. (C): Rate constants of transitions among the three states as a function of x. Note
that in the case of muscle an increase in x corresponds to shortening. Each rate constant
is plotted on a log scale. From Murase and Shimizu (1986). Reprinted with permission.
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km(x)- I
c 01exp-Kx 2 KT

(-12<x<-8)

^ioW = ci<

ki2(x) =

M*) =o

cn exp[D(x - Xi)]

k20(x) =

C20

(^20 ~~c20)%

ll

(6.5a)
(- 8 < x < 12)

(- 12 < x < 12) (6.5b )

(- 12 < x < xc)

(xc < x < 12)
(6 .5c)

(- 12 < x < 12) (6.5d)

(- 12 < x < 0 )

(0 < jc < 11) (6. 5e)

(11 < x < 12 )

(- 12 < x < 12). (6.5f)kO2(x) = 0

where c01 = 80 s"1, c10 = 5 s"1, c12 = 0.0003 or 0.01 s"1 (see Section 6.4.4), c'u
=4000s'1, c20 = 20s~\ c'2O = 400s"1, D = 1.423nm"1, A", = 0.1875pNnm"1;
KB is the Boltzmann constant; T is the absolute temperature. Note that xc is
calculated from kn(xQ) = c[2, which is introduced to limit the maximum value
of kn to 4000s~l.
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Let us consider how the three-state model accounts for cross-bridge
dynamics. Suppose that an inactive (i .e . a detached) cross-bridge moving into
an attachment region (-12 < x < -8 nm). When a cross-bridge movesinto the
region from the left , at tachment begins to occur at x = -12 nmby km. Then
that at tached cross-bridge in state 1 moves toward x = -10nm due to the
active force generated by the cross-bridge itself . The further the cross-bridge



200 Nonlinear dynamic phenomena in flagella and cilia

in state 1 moves in a positive (i.e. toward the right) direction the greater the
possibility of a transition to state 2, due to the sharply increasing rate
function kn- This mechanism is analogous to an auto-catalytic process since
transition due to kn is catalysed by the sliding movement itself. After the
transition to state 2, detachment occurs by k^ before the cross-bridge exceeds
x = 12 nm. Thus the cross-bridge cycle is completed. When the filaments are
free to slide in the positive direction, the cooperative sliding movement
is accompanied by successive cyclic transition of cross-bridge dynamics
(cf. Fig. 6.6).

Now suppose that a detached cross-bridge moves into the attachment
region from the right. The cross-bridge begins to attach at x - -8 nm.If the
cross-bridge exceeds x = -12 nm, i.e. where the rate constant k01 suddenly
decreases in the region but the rate constant kl0 remains unchanged, then
detachment occurs by kl0. Consequently, the system becomes inactive due
to sliding in the 'wrong' direction. This implies that the cross-bridge system
exhibits directional sensitivity. As a result, the cross-bridge undergoes a
unidirectional mechano-chemical cycle (see Section 4.4. 1).

The situation in which the passive elastic element (e.g. the nexin or radial-
spoke system) combines with the cross-bridge system is of particular interest.
If the passive force is directed to the left (i.e. the opposite direction to the
active force) and the magnitude of c12 is small, a delicate balance appears
between these forces. Active sliding does not occur spontaneously but is
triggered due to a superthreshold displacement. A response of this kind, in
which the behaviour of a system depends on the strength of a stimulus, is
called a threshold phenomenon. Consequently the magnitude of c12 plays an
important role in determining the stability of state 1 under a given mechani-
cal constraint.

6.4 Dynamics of a short flagellar segment

Next we consider how the three-state model proposed in the previous section
can be incorporated into a model for flagellar movement. For this purpose, a
long flagellum is divided into N segments of length As making sure that (i)
the size of each segment is sufficiently long to include a few hundred cross-
bridges, and (ii) it is short enough to be nearly straight.2 Assumption (i) ensures
that the three-state model can be applied to each segment, and assumption (ii)
is necessary to accurately enable us to describe the behaviour of a whole
flagellum. In this section, a model of flagellar segment is developed and its
dynamic properties are examined.

6.4. 1 Kinetic equations for cross-bridge dynamics

The fractions representing the cross-bridges in the three states 0, 1 and 2 at
the sliding coordinate x and time t, are represented by no(x, t), n,(x, t) and
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n2(x, t), respectively. The kinetic equations for these fractions are represented
by the following form:3

-0~T~=klQ(x)nx{x, i) + k20(x)n2(x, f) - km(x)n0(x, i)
at

---=km(x)n0{x, i) - kn{x)nx{x, t) - km{x)nx{x, t)
at

-1-1-=kl2{x)nx{x, t) - klo(x)n2(x, t)
at

where

I I" (x_<x>)2
no(x, t) + n^x, t)+ n2(x, f) = -- exp -

5V27t L 2°

Here <x> is the mean position of cross-bridge distributions on the sliding
coordinate, and 5 is the standard deviation. Since k2l(x) = kO2(x) = 0, the
related terms are omitted from the equations (6.6a, b, c). The right-hand side
of equation (6.6d) is an example of a localized cross-bridge distribution and
represents a Gaussian distribution, which satisfies

J
.12 2£ «,•E(*, 0dx = 1.

-12 ;=o

(6.7)

Nexin links form the closed ring structure around an axoneme. These links
are responsible for shear resistance (see Fig. 4.3). Rather than explicitly
taking into account the shear resistance of nexin links we have implicitly
considered their effect. That is, active cross-bridges in subsystem I cause
sliding movement between the filaments in I, and also at the same time
between the filaments in II via the nexin links, and vice versa (cf. Summers,
1975). Hence we assume that the change in the mean position of the cross-
bridge distribution in I is identical with that in II in accordance with the
sliding movement.4

Since we are considering a system consisting of subsystems I and II, the
fractions for cross-bridges in I and II must be dealt with separately (Fig. 6.5).
Hereafter n] and n}1 will be used to denote the fractions for cross-bridges in
I and II, respectively, nj satisfies the equations (6.6) as they are, while nj1
satisfies modified equations. These modified equations are similar to equa-
tions (6.6) but have rate constants which are reversed with respect to jc = 0
(i.e. kjj (x) = klj(-x)), depending on the opposite projection of cross-bridges in
both subsystems. In the following sections the magnitudes of all parameters
Cij in both subsystems I and II are identical, except for cn. As pointed out
before, the magnitude of cn plays an important role in determining the
stability of state 1 and various situations appear by merely changing this
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12

X (nm)
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Figure 6.5 A model for a flagellar segment. Mechanical potentials of subsystems I and
II are the same, but are opposed to each other in the direction of the sliding coordinate,
which corresponds to the opposing pairs of cross-bridges in Figure 6.2. Due to the radial
spokes the periodic mechanical potential f/p causes the elastic shear resistance. Dark
distributions shown on the mechanical potentials indicate localized cross-bridge distri-
butions in subsystems I and II. From Murase and Shimizu (1986). Reprinted with
permission.

parameter. For convenience, c\2 and cf2 are used to distinguish cn of sub-
system I from that of subsystem II.

6.4.2 Equations for sliding motion of a short flagellum

The sliding motion of a short flagellar segment with a length of As is de-
scribed by the following force-balance equation5

Y ':T = <2iS,(«, n\, n\) + QnSn(u, «", «?) + SP(«) (6.8a)
d?

where y' is an internal viscous shear resistance, g, (or Q,,) is the total number
of cross-bridges in subsystem I (or II) in the segment, 5, (or Sn) is the active
force per cross-bridge in subsystem I (or II), and Sp is the passive elastic
force due to the radial-spoke system. Each of the terms on the right-hand side
of the equation (6.8a) is given by

-12 f12
5,(u,n\,n\)=-KA n\(x-x\)dc-K2\ n\(x-x\)dx (6.8b)

J-12 J-12

.12 f12
Su(u,nll,n*)=-KA n?(x-x?)dx-K2 \ n?(x-x?)dx (6.8c)

J-12 J-12

d UP(u) [2%u
zP(u) = : = ApSinid« 124

(6.8d)
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6.4.3 Free sliding motion

As observed by Summers and Gibbons (1971) (see Section 4.3.3), a flagellum
pretreated with tripsin will immediately disintegrate when active sliding of
the filaments is induced by addition of ATP. This occurs because the passive
elastic elements are sensitive to disruption by trypsin whereas the cross-
bridge force-generating system remains intact. As a result, the system shows
free sliding. It is very important to examine whether the theoretical model
presented here will account for this kind of free sliding motion. For this
simulation, the second and the third terms were omitted from equation (6.8a).
The results of the simulation show a stepwise sliding motion accompanied by
periodic force changes reflecting cyclic transition of cross-bridge dynamics
(Murase and Shimizu, 1985a).

Figure 6.6A shows n\ {x, t) changing with time and position during active
sliding. A population of cross-bridges moves from the left, then attachment to
state 1 and subsequent transition to state 2 occurs, leading to active sliding.
When the population reaches the right side at x = 12nm, all the attached
cross-bridges are turned off, though soon the next population of cross-bridges
moves into the attachment region from the left side. This cyclic change
induces stepwise sliding motion and periodic force oscillations (Fig. 6.6B and
Q.

6.4.4 Excitable-oscillatory phenomena

In this section we study the behaviour of a flagellar-segment model where all
the terms in equation (6.8a) are considered. As pointed out in Section 6.4.1,
parameters c\2 and cf2 play a key role in determining the stability of state 1
in subsystems I and II, respectively. Three distinguishable cases are possible
according to the combination of c\2 and c" values: (i) bi-stable behaviour
for c\2 = c}l2 = 0.0003 s"1; (ii) mono-stable behaviour for c\2 = 0.0003 s"1 and
cl\ = 0.01 s"1; and (iii) oscillatory behaviour for c\2 = cf2 = 0.01 s"1. Cases
(i) and (ii) are regarded as excitable properties because only superthreshold
perturbation can trigger active sliding. Case (iii) is referred to as limit-cycle
oscillations.

Weare interested in the basic behaviour of the flagellar-segment model, so
that hereafter we will restrict ourselves to only a single sliding motion (i.e.
-12 < u < 12nm). Thusx is identical to u (see Fig. 6.3).

Bi-stable behaviour. When c\2 = c^2 = 0.0003 s"1, there is bi-stability in
which state 1 in subsystems I (at u= -10nm) and II (at u = 10nm) are both
stable. Figure 6.7 shows the all-or-none phenomena (or threshold phenomena
or excitable properties) of the cross-bridge dynamics in response to the initial
position. Small subthreshold values of u < - 9.2 nm let the system relax to
the one stable state at u = -10nm, while superthreshold values of u > -9.2



204

(A)

Nonlinear dynamic phenomena in flagella and cilia

A

12 x 12

Sliding Coordinate (nm)

(B)

40 nm

Shear

(C)
Force K K K K 20 pN

0
Time (ms ec)

40

Figure 6.6 (A): The space- and time-dependence of the fraction, n\(x, t). As active
sliding takes place, detached cross-bridges move from the left. They first attach to state
1 and then undergo the transition to state 2 due to the space-dependent rate constants
of km(x) and kn(x). When they reach the right side they begin to detach. Re-attachment
occurs soon after on the left side. The resulting cyclic transition takes place as long as
the sliding motion occurs. (B): The shear displacement, u, plotted as a function of time.
According to the cyclic transition of cross-bridges, stepwise sliding motion is observed.
(C): The total shear force plotted as a function of time. Periodic change of force reflects
the cyclic transition of cross-bridges.

nmcause jump transitions to the other stable state at u = 10 nm. These jump
transitions are ascribed to conformational changes of the cross-bridges.

As shown in Figure 6.8, this jump transition is accompanied by a spike-
like change in the shear force per cross-bridge. The fractions that represent
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Figure 6.7 Variation of shear, u, as a function of time after a perturbation of u. There
is bi-stability in which two stable states are present at u = -10 and 10 nm. One of
the two states is obtained depending on the initial condition. Subthreshold values of
u < -9.2 nmreturn the system to u = -10 nm. Superthreshold values ofu > -9.2 nmcause
the jump transitions to u = 10 nm. The initial conditions for u (nm) are indicated in the
figure. From Murase and Shimizu (1986). Reprinted with permission.
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Figure 6.8 The fractions of cross-bridges in subsystems I (n\, n \) and II (n[', n "), the
shear force per cross-bridge, F, and the shear displacement, u, as functions of time. The
system exhibits bi-stable behaviour. The initial condition is u = -9.0 nm.From Murase
and Shimizu (1986). Reprinted with permission.

the attached cross-bridges in subsystems I and II for the two attached states
are plotted as a function of time (see upper part of Fig. 6.8). As sliding
occurs in the positive direction, n\ immediately increases by k\2, which is
accompanied by a sudden decrease of n\ , and then decreases subsequently by
k\0. The quick increase and subsequent decrease in n\ are interpreted as the
rapid activation and slow inactivation of cross-bridges in subsystem I. After
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jump transitions to the other stable state, nfl increases by degrees because of
the localized rate constant kjfr. However, n|" does not increase because the
magnitude of c\\ is too small.

As the system is symmetric with respect to u = 0, active sliding in the
opposite direction is also observed for u < 9.2nm at t = 0. Whether the
sliding occurs in a positive or negative direction depends on the 'history' of
the system. As a result, the system exhibits a hysteresis in the transition be-
tween the two stable states. Katchalsky and Spangler (1968) pointed out an
important role of hysteresis.

Hysteresis may be interpreted as a manifestation of the existence of an
energy barrier preventing the direct transition from one state to another. If
the transition is imposed upon the system, in circumventing the barrier the
system will follow the hysteresis cycle. The resultant rotations around the
transition barrier appear to the observer as oscillatory phenomena.

To clarify the above statement, we embedded a linear elastic component in
the model flagellum instead of using an externally imposed stimulus. For this
modification, a term of passive elastic force, Se, was added to the right-hand
side of equation (6.8a). Se is given as

5e = -Ke(u - «o) (6.9)

where Kc is the force constant for the passive elasticity and u0 is the equilib-
rium position of the elastic element. Sustained oscillations occurred over
a wide range of Kc values. Figure 6.9 shows the simulation for Ke =
1.8pN nm"1and u0 = 0 nm.

Mono-stable behaviour. When c\2 = 0.0003 s"1 and cf2 - 0.01 s"1, a mono-
stable state corresponding to a stable 'resting state' is realized. In this case,
state 1 in subsystem I is stable and that in II unstable. The all-or-none
response is also observed around this resting state (Fig. 6.10). With initial
conditions u > -9.2 nm, shear shows an action-potential-like change: it ini-
tially increases and then decreases (Fig. 6.1 1). This is essentially different
from the case of bi-stable behaviour. The force time-course shows an upward
and a subsequent downward spike-like change. The fractions for the cross-
bridges in subsystem II change with time as follows. After the sliding in the
positive direction, n\l immediately increases with a time delay, which is
coupled with the sudden decrease of n". Then n" decreases gradually. The
delayed increase and the subsequent decrease of n\ represent the delayed
activation and subsequent inactivation of cross-bridges in subsystem II,
respectively. After these transients, the system returns to its initial resting
state.

Sustained oscillations were also observed when a linear elastic component
was incorporated into the system. Figure 6.12 shows the limit-cycle oscilla-
tion for A"c = 1.26pNnm"1. The time-dependence of u is asymmetric with
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Figure 6.9 The fractions of cross-bridges in subsystems I (nJ, n\) and II (n J1, nJ), the
shear force per cross-bridge, F, and the shear displacement, u, as functions of time. The
system shows oscillatory behaviour. The initial condition is u = -10.0 nm.FromMurase
and Shimizu (1986). Reprinted with permission.
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Figure 6.10 Variation of shear, u, as a function of time after a perturbation of u. There
is mono-stability in which one 'resting state' is present at u = -10 nm. Subthreshold values
of u < -9.2 nmreturn the system to the resting state. Superthreshold values of u > -9.2 run
cause changes similar to action potentials. The initial conditions for u (nm) are indicated
in the figure. From Murase and Shimizu (1986). Reprinted with permission.
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Figure 6.1 1 The fractions of cross-bridges in subsystems I (n j, n\) and II (nf, nj), the
shear force per cross-bridge, F, and the shear displacement, u, as functions of time. The
system shows mono-stable behaviour. The initial condition is u = -9.0 nm. FromMurase
and Shimizu (1986). Reprinted with permission.

respect to u = 0 nm, which corresponds to the asymmetric parameters c\2 and

Limit-cycle oscillation. Instabilities of state 1 in both subsystems I and II
occur when c{2 = cf2 = 0.01 s"1. Figure 6.13 shows relaxation oscillation
where shear alternately increases and decreases while force changes are
represented by upward and downward spikes. Sliding in a positive direction
occurs due to both activation of cross-bridges in I and inactivation of cross-
bridges in II, whereas sliding in a negative direction is due to both activation
of cross-bridges in II and inactivation of cross-bridges in I. Consequently,
during oscillation, we can observe switching mechanisms between the
inactivation of cross-bridges on one side of the system and activation of those
on the other, and also that the 'off and 'on' of the switching control is
separated by a constant time-interval.

Note that there is little difference between Figure 6.9 (or Figure 6.12)
and Figure 6.13. It is difficult to make a clear distinction between oscilla-
tions resulting from bi-stable (or mono-stable) behaviour and 'true' limit-
cycle oscillations. Therefore bi-stable (or mono-stable) behaviour may be one
of the most plausible molecular mechanisms for flagellar movement because



Molecular mechanism for excitability and oscillations 209

r 12

Shear

u (nm)

-12

Tim e (msec) 200

Figure 6.12 The fractions of cross-bridges in subsystems I (n \, n ]) and II (n ", n"), the
shear force per cross-bridge, F, and the shear displacement, u, as functions of time. The
system shows oscillatory behaviour. The initial condition is u = -10.0 nm.From Murase
and Shimizu (1986). Reprinted with permission.

it can demonstrate both oscillations and excitability depending on the
circumstances.

6.4.5 Phase-plane analysis

An analysis of the flagellar-segment model described by equations (6.4) to
(6.8) is carried out by the method of reduced systems similar to that used in
the analysis of the Hodgkin-Huxley nerve equations (see FitzHugh, 1960).
For simplicity we consider the limit 8 -» 0, that is, the Gaussian distribution
of the cross-bridges is replaced by the Dirac delta function. Then equation
(6.6d) becomes

no(x, t) + «,(*> t) + n2(x, t) =
1 forx=<x>

|0 forx*<x>

Substituting equation (6.10) into (6.6b) and (6.6c) at x = <x>, we get

(6.10)

-^01 '*01~*~*12"*"*io)"l ^01^2 (6.1 1a)
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Figure 6.13 The fractions of cross-bridges in subsystems I (n |, «2) and II («f, n ")> trie
shear force per cross-bridge, F, and the shear displacement, u, as functions of time. The
system shows oscillatory behaviour. The initial condition is u = -10.0 nm.From Murase
and Shimizu ( 1986). Reprinted with permission.

dn2 _
--K12«i K2on2-
at

(6.1 1b)

To understand excitable-oscillatory phenomena, we tentatively consider the
simple system composed of force-generating system I, S,, and passive force,
Sp) due to the radial-spoke system. Then equation (6.8a) is reduced to

Y'^ = -K&nKx-x\)-K2Qxn\{x-x\)+KPsm\^f\. (6.12)

at L24J

Here the integral form can be omitted because of the delta function in the
cross-bridge distribution. Note also that x = u in equation (6.8a).

Now we are ready to apply the method of reduced systems. Since the
active force is chiefly produced by the cross-bridge in state 2, its fraction, n\ ,
is important in determining the behaviour of the system. Furthermore, x
changes relatively rapidly. As a first approximation, the behaviour of x and
n\ is studied by setting n\ constant at a steady state (designated («{)* in the
limit t -> +oo). Once the constant value of («})* is specified, the state of this
reduced system is completely defined as a phase point on the (x, n\) phase
plane.
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The equations for the vertical (i = 0) and horizontal {n\ = 0) isoclines (see
FitzHugh, 1960; 1969) are:

             -Kl(n\)*(x - xIl) +
                   kp .r                                 2nx

x =0 nj= (6.13a)
IL2(X - X2)

«2 =0 nl =Q-(n\)*. (6.13b)

*20

Figure 6.14 shows the isoclines and a typical trajectory corresponding to bi-
stable behaviour. The vertical isocline x = 0 gives the steady-state value of x
as a function of n\, and the horizontal isocline h\ = 0 is the graph of the
steady state n| as a function of x.

The intersections of the two isoclines are called the singular points (or steady-
state points) where x = h\ = 0. Figure 6.15 shows singular points P, and P2
as an enlarged detail of Figure 6.14. /*, is a stable node in the sense that
solutions approach P, as ( -) +°°. P2 is a saddle point. A phase path crossing
a saddle point is called a separatrix. A stable separatrix exists along which
solutions approach P2 as t -» +°° and an unstable separatrix along which
solutions approach P2 as t -» -°°. All other nearby solutions follow almost
hyperbolic paths, i.e. they first approach and then turn away from P2. When
paths on opposite sides of the stable separatrix diverge from each other, it is
called a threshold separatrix, as it is responsible for threshold phenomena
(see FitzHugh, 1955).

If the vertical isocline x = 0 is lowered (or the horizontal isocline h\ - 0
is lifted), Pi moves to the right and P2 to the left. As a result, Px and P2
approach each other and finally disappear (Fig. 6.16). Then all solutions go
away from the original resting state. When two such subsystems are
combined together to form a flagellar-segment model, limit-cycle oscillations
are observed (Fig. 6.17). The bifurcation of this kind is often called a saddle-
node bifurcation (or a fold bifurcation) (see Fig. 10.9A). This saddle-node
bifurcation occurs when c\2 is increased, because it eventually increases («} )* å 
Then the vertical isoclinex = 0 is lowered and the horizontal isocline h\ = 0
is raised.

Instead of changing c\2, similar results are found when a passive elastic
component, with sufficient strength, is incorporated into this system. When
equation (6.9) is embedded in equation (6.12), the vertical isocline (6.13a) is
modified as follows:

-WU-xD-l^sinM
x=0 n\= - . (6.13a)

K2(x - x\)
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Figure 6.14 (x, n\) phase plane for the reduced system with n\fixed at its steady-state
value. A typical solution of equations (6.6) and (6.8) follows the path marked with
arrowheads. Starting at point S the system will reach point E which is a stable steady
state of subsystem II. Note that on the n '2-axis there are two linear scales: one between
-0.06 and 0.09 and the other between 0.09 and 1.0. Vertical and horizontal isoclines are
represented by x = 0 and h\= 0, respectively.

By introducing -K^x/Q^ the vertical isocline is lowered, leading to the saddle-
node bifurcation. From this viewpoint, oscillatory behaviour in Figure 6.9 (or
in Figure 6.12) is essentially identical to that in Figure 6.13.

The absolute refractory period is specified as the time interval during
which P2 is absent, because a second excitation never occurs in the absence
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Figure 6.15 Enlarged detail ofFigure 6.14. Two singular points P, and P2 occur at the
intersections of the isoclines. P, is the stable node, P2 the saddle point. This situation
leads to threshold phenomena. Some trajectories are shown by curves with arrowheads.

of the threshold separatrix. After reaching the attachment region it takes time
to approach the initial steady state, because of the gradual increase in n\. This
transition from state 0 to state 1 is a rate-limiting step and is responsible for
the relative refractory period.

It should be noted that the paths moving about in the (x, n\) phase plane
are different from those in the complete (x, n\, n\) phase space projected
onto the (x, n\) phase plane. Nevertheless, the above-mentioned phase-plane
analysis provides us with a feeling of how the system works.

6.5 Dynamics of a long flagellum

6.5.1 The basic assumptions

To develop a flagellar model, the following assumptions are made:
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Figure 6.16 Enlarged phase plane for the reduced system like Figure 6.15 except that
c^ is increased from 0.0003 to 0.01 s"1. The vertical isoclinex = 0 is lowered and the
horizontal isocline h \= 0 is raised. As a result, singular points P, and P2 approach each
other and vanish.

The flagellum moves in a plane (Hiramoto and Baba, 1978; Rikmenspoel,
1978).
The flagellum is approximated by many straight segments.
A linear elastic component similar to equation (6.9) is incorporated at
the base, where Kc is taken as 4.5pNnm"1. This reflects the fact that
the filaments are connected with each other at the base (see Fig. 4.2).
The flagellar length L is taken as 30 (im and the number of segments,
N, as 40, which leads to 180 pairs of antagonistic cross-bridges in a
segment.
Parameters c\2 and c,n2 of each segment are taken as 0.0003 s"1, i.e. each
segment displays bi-stable behavior.
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Figure 6.17 Trajectory projected from the complete phase space into (x, n\) reduced
space. The closed trajectory corresponds to limit-cycle oscillation in Figure 6. 13.

We confine ourselves to considering the case of small amplitude, where
the sliding magnitude of a cross-bridge is ascribed to a single stroke-
distance.
The viscosity of the external medium is neglected to simplify the
analysis (see Lubliner and Blum, 1971; 1977; Goldstein, 1979; Crowley
et al., 1981), though internal viscosity is introduced instead. The basic
force-balance equation is thus rewritten as

at ds2
(6. 14)

where E'B= EB/h. Equation (6.14) is equivalent to (6.1).
(viii) Free-end boundary conditions are used, where all the external moments

vanish at the proximal and distal ends. Hence

3r
m(o,o = -£b-!

OS

=0; M(L,t)=-E^
ds

=0 (6.15)

where M is the external bending moment (see equations (5.30) and
(5.32)).

(ix) A straight flagellum is used as the initial condition, i.e.

u(s)=-10 (0<s<L). (6.16)
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Figure 6.18 Upper part: The total distribution, n, of cross-bridges in subsystems I and
II in each of the 39 segments as it changes with time. 39 segments are arranged along
an s-axis from the proximal to distal end. The sliding coordinate x is taken for the abscissa
with -12 < x < 12 nm. Time interval between each successive distribution pattern is
taken as 20 ms. Lower part: Computer-simulated changes in the shape of a fiagellum
corresponding to each stage during successive changes of cross-bridge distribution shown
in the upper part. The proximal end is situated on the left of the fiagellum. From Murase
and Shimizu (1986). Reprinted with permission.

This initial condition means that cross-bridges in all segments are
situated in stable positions and the initial stretching of the basal elastic
component is -10 nm, since the stable position at the base is at uo= 0 nm
(cf. equation (6.9)).

6.5.2 Self-organization of propagating waves

The lower part of Figure 6.18 shows the development of the flagellar shapes
at 20 ms intervals. The flagellum numbered 1 is obtained after 10 ms from
the initial condition. A single bend begins to form due to the initial stretching
of the elastic component at the base and then propagates. A steady-state
waveform is attained when the first bend reaches the tip. The transient
movements of this type were also observed by Goldstein (1979).

Bend initiation cannot be triggered without the elastic component at the
base because the initial positions of cross-bridge distributions along the
flagellum are all stable. But once such a flagellum is perturbed by an external
stimulus, a bend is generated and propagated. These properties are consistent
with the observations that a bending wave propagates along isolated flagellar
segments when a mechanical stimulus is added by a microneedle (Lindemann
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and Rikmenspoel, 1972; Okuno and Hiramoto, 1976). The next section
provides a concrete demonstration of these observations.

The upper part of Figure 6.18 shows successive changes of cross-bridge
distribution in each segment against the (x, s) plane. Nonlinear waves of
cross-bridge distribution are successively generated, due to the elastic compo-
nent at the proximal end, and propagate toward the distal end. Active sliding
in the positive and negative directions is alternately triggered with a time
delay at the proximal end. This alternate active sliding results from the
mutually delayed activation of opposing pairs of cross-bridges under the
influence of the elastic component. Active sliding, say in a positive direction
initiated at the proximal region, induces the key transition from state 1 to 2
of cross-bridges on its distal side along the filaments on one side of the
flagellum. Shimizu (1979) called such successively triggering events "dynamic
cooperativity\ As a result, the region actively sliding in a positive direction
propagates toward the distal end with a constant velocity.

6.5.3 A single wave-propagation

The possibility that a bend propagates along an isolated flagellum is studied
by using the model described in the preceding section. To reproduce
completely symmetrical beating, bi-stable segments are arranged along the
axoneme. However, it is possible that there may be some asymmetry in real
flagella with respect to the structure and/or function. Here we make one
major change to the rate constant. That is, we use c\2 = 0.0003 sM and cf2 =
0.01 s"1. With rate constants of this magnitude, each segment shows mono-
stable behaviour (see Fig. 6.ll).

Since this model serves as a mono-stable system exhibiting an all-or-none
response to the initial magnitude of the sliding, an instability leading to
active sliding of filaments does not appear without a superthreshold stimulus
in the form of imposed sliding. Bend initiation does not occur as long as the
flagellum is straight and the system is in its resting state. However, once a
local bend is initiated by imposed sliding at the base, the resultant bend
propagates toward the tip.

Figure 6. 19 shows computer-simulated changes in the shape of a flagellum
when EB is taken as 600 pN |i,m2. Flagellar shapes are successively displaced
downward at 20 ms time-intervals. At t = 0, a superthreshold sliding mag-
nitude is imposed at the left end of the flagellum. A local bend is initiated
and then propagates toward the right. The velocity of the propagation is
approximately constant at 450 (im/s.

Figure 6.20 shows corresponding successive changes of fractions for cross-
bridges in subsystems I and II as well as the shear displacement during bend
propagation. At t = 0 the flagellum is straight except for the basal region, and
cross-bridges in subsystem I are attached in state 1. Active sliding occurs in
the basal region at f = 20ms. An impulse-like change appears at t = 60ms.
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Figure 6. 19 Computer-simulated changes in the shape of a flagellum without an elastic
component at the base. Time interval between each successive flagellar shape is 20 ms.

u
3
n
: 3
112 J

n l

ｻ i
¥

IIn l I
I  1.1

u
蝣

o 30
I ] 蝣

¥
l ]f¥
J J

蝣
1

! J
]

I
蝣

a

Figure 6 .20 The frac t ions of cross-br idges in subsys tems I (n J, n \) and II (n á" , n ") , and
the shear displacement , u , as funct ions of space at 20 ms intervals . The number in each
panel corresponds to that in Figure 6 .19 .



Molecular mechanism for excitability and oscillations 219

This impulse can be described as follows: (i) A sharp 'wave front' corresponds
to a rapid increase in the shear displacement, which is caused by the
transition from state 1 to 2 (i.e. 'activation') of cross-bridges in subsystem I.
(ii) An almost 'plateau' phase appears during the transition from state 2 to 0
(i.e. 'inactivation') of cross-bridges in subsystem I and the transition from
state 0 to 1 (i.e. 'attachment') of cross-bridges in subsystem II. (iii) A rapid
decrease in the sliding magnitude is produced by the transition from state
1 to 2 of cross-bridges in subsystem II. (iv) A subsequent 'refractory' phase
occurs due to a lack of attached cross-bridges in state 1 in subsystem I. This
is the recovery process that forces the system to return to its original rest-
ing state. The impulse travels distally with an almost constant waveform at
t = 80 ms. After the impulse passes through, the refractory phase begins to
disappear and the system returns to its initial state at / = 100 ms. It should
be noted that two different time-scales are found during the development
of this impulse. That is, processes (i) and (iii) change rapidly relative to
processes (ii) and (iv) because of the different magnitudes of the transition
rate, constants.

Simulation studies of this kind are consistent with the experimental
observations that a local bend initiated by a stimulus (say, direct contact with
a microneedle or local application of ATP) is propagated along the flagellum
toward the tip (Lindemann and Rikmenspoel, 1972; Shingyoji et al., 1977).
Since this system is homogeneous, bending waves can travel in both
directions. If one applies a stimulus in the form of imposed sliding to the
tip of the flagellum, a bend travels away from the tip toward the base along
the flagellum at a constant propagation velocity. Actually, in some flagella,
bending waves can be propagated either from the base or tip, depending on
the mechanical constraint of the flagellar tip (Hoiwill and McGregor, 1974).
Therefore, it appears that the present model provides a plausible basis for
bend propagation along an isolated flagellum.

6.6 Simulations of asymmetric bending waves

Flagella and cilia have a common structure, so that the same mechanism may
account for both flagellar and ciliary beating patterns. In this section we
examine the ability of the present model, with its excitable properties, to
generate asymmetric motion typical of cilia.

Recalling equation (6.9), we assumed a basal elastic component (with m0 =
0), combined to bi-stable flagellar segments, in order to demonstrate symmet-
ric bending waves. Similarly mono-stable segments produced repetitive
beating when a basal component was incorporated into the system, though
the simulations were not shown. In this section, we make two major changes
to produce asymmetrical beating patterns typical of cilia.

(i) The stable position at the base, u0, is shifted from 0 to 12 nm to amplify
the structural asymmetry of the model.
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(ii) To increase the interaction between flagellar segments, the bending
resistance, EB, is increased to 12 000pN |im2.

Before demonstrating numerical results, let us consider the effects of these
changes. The effects of (i) can be interpreted as follows. Each mono-stable
segment has only one stable position at u = -10 nm, while a stable position
at the base is at u = 12nm which is significantly different from that of the
flagellar tail. This situation causes 'mutual instability'. On one hand a part of
the system (i.e. the elastic component at the base) causes sustained stimuli to
the remainder of the system and triggers active sliding in that region; on the
other hand the remainder (i.e. mono-stable segments) works on the basal
region to cause sliding against the passive force of the elastic component at
the base. Thus the total system behaves as if it were a sustained oscillator
changing with distance as well as time, and a typical cycle of asymmetric
bending patterns is coordinated in time and space.

The effects of (ii) are as follows. From equation (6.14), it turns out that EB
determines the strength of the interaction between adjacent flagellar segments.
For EB = 600pN |im2, this interaction is so weak that the bend does propa-
gate at a low speed, which results in a full development of the bend (see Fig.
6.19). Increasing EB to 12 000 pN |im2 strengthens the interaction, so that
there is little room for a bend to develop along the axoneme with its limited
length by the high velocity of the bend. Then a partial bend similar to ciliary
beating appears (see Fig. 6.21). Thus, increasing EB is in effect equivalent to
decreasing the flagellar length, L.

The left panel of Figure 6.21 shows the spatio-temporal cross-bridge
distribution during a full cycle. One finds that the sliding patterns consist of
both metachronous (1-5) and synchronous sliding (6-9). The right panel of
Figure 6.21 shows the development of the asymmetric bending waves that
correspond to each stage of the left part. This type of movement resembles
ciliary beating patterns: a 'recovery' stroke, in which metachronous sliding of
the microtubules occurs, is followed by an 'effective' stroke which involves
synchronous sliding. To emphasize the striking analogy with ciliary motion,
each shape is drawn as if its basal end were pinned at a point.

Indeed, using a flagellar model containing the two-state cross-bridge cycle
with 'ciliary' (i.e. clamped-end) boundary conditions, Blum and Hines (1979)
showed that decreasing L reduces the number of bending waves, and further-
more when the length is short enough, a bend resembling an effective stroke
of ciliary motion is realized. However, their model failed to simulate a
recovery stroke under 'ciliary' boundary conditions (see Fig. 5.25). This is
because the model has an axoneme with a symmetric structure resulting in
an identical bend-propagation velocity for each half of the cycle. This means
that although decreasing L (or increasing EB) is sufficient to generate an
effective stroke another possibility, besides introducing 'ciliary' boundary
conditions, should be considered to model a full cycle of ciliary beats.
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Figure 6.21 Left part: The total distribution, n, of cross-bridges in subsystems I and
II in each of the 39 segments changing with time. 39 segments are arranged along an
s-axis from the proximal to the distal end. The sliding coordinate x is taken as an
abscissa with -12 < x < 12 nm. Right part: Computer-simulated changes in the shape of
a cilium corresponding to each stage during successive changes of cross-bridge distri-
bution shown in the left part. Successive changes of flagellar shapes (1-5) and (6-9) are
presented at 5 ms intervals. The time interval between stages 5 and 6 is 12.5 ms.

It was for this reason that we incorporated a linear elastic component into
the basal region of the model, with a stable position at u0 = 12nm. Since a
stable position at the base is quite different from that of the flagellar tail,
active sliding of cross-bridges in subsystem I (i.e. active interfilament sliding
on one side) of each flagellar segment is successively triggered by the passive
sliding caused by the elastic component at the base, and, after a time-interval,
active sliding of cross-bridges in subsystem II (i.e. active sliding on the other
side) spontaneously occurs against the passive force at the base. After the
system returns to its original condition another time-interval follows, and thus
a single beat-cycle is completed. Because the propagation velocity of the
former sliding pattern (i.e. 2250 iim/s) is quite different from that of the latter
one (i.e. 3000 um/s), the resulting bends look like recovery and effective
strokes.

The simulation results also suggest that there are two time-intervals that
correspond to the starts of both the recovery and effective strokes. Sugino
and Naitoh (1982) pointed out the presence of these two distinguishable time-
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intervals during the beat cycle of a cilium based on their computer simulations
(see Fig. 5.29). Hence there may be two switching mechanisms for activation
in the ciliary beat-cycle. In our present model, these two time-intervals are
realized only when the elastic component is combined with the mono-stable
system as it is undergoing an all-or-none response to an imposed sliding
magnitude of the filaments. Therefore, to generate ciliary motion, combining
the system with the elastic component is much more important than adopting
'ciliary' boundary conditions. This may provide a plausible explanation for
the two time-intervals observed in the ciliary motion.

Goldstein (1979) observed starting transients of flagella, in which nearly
straight flagella began to beat symmetrically or asymmetrically depending on
the pH of the medium. These starting transients resemble the formation of
new bends during steady-state beating. This means that steady-state wave-
forms are spontaneously realized as the first bend reaches the distal end. As
described in Section 6.5.2, our model was able to simulate steady-state
symmetric beating patterns as well as the starting transients of symmetric
motion.

In the present section, we have shown that asymmetric steady-state
bending patterns were also obtained within the first full cycle. The recovery
stroke precedes the effective stroke and a full cycle is spontaneously realized
when computer simulation starts from the nearly straight form of the
flagellum in its resting state.

Computer simulations of Blum and Hines (1979) involve the initial
transients for a while, and are therefore quite different from the observed
starting transients of steady-state wave forms. This inconsistency results from
the fact that the model of Blum and Hines (1979) is based on the self-
oscillatory properties of the opposed cross-bridge system and that it takes
time to synchronize all the oscillators.

In contrast, in the present model the triggered event that corresponds to
active sliding of cross-bridges occurs successively along the length of the
flagellum; therefore, steady-state beating is directly attained without the initial
transients. In conclusion, the present model can generate various waveforms
for flagella and cilia, both based on similar dynein-tubulin mechanisms at
zero external viscosity.

Notes
1 Setting CN = 0 in equation (5.36a) and integrating twice with respect to s, we get

the following force-balance equation:

5a+Sp+Sv+EB--=0.
ds2

We use the simple relationship 8 = o, because in the absence of the external
viscous force the flagellar configuration is determined only by the internal
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environment of the axoneme and so the flagellar orientation is arbitrarily deter-
mined. When the internal viscous force, 51,, is given by

then equation (6.1) is obtained.
2 It is necessary to consider a few hundred cross-bridges, because cross-bridges are

statistically treated as one distribution. An alternative approach is a 'Monte Carlo'
(or a stochastic) one, in which the behaviour of an individual cross-bridge is
examined in detail and after that a population of cross-bridges is averaged (see
Brokaw, 1982). Of course either approach can lead to the same results.

3 The equations (6.6) are the description that we follow for a distribution of cross-
bridges at the same velocity as the sliding. An alternative but equivalent de-
scription is that we concentrate our attention on a region between x and x + Ax
where cross-bridges move in and out of this region. For this description, the total
derivatives in the equations (6.6) are expanded by the chain rule to become (see
p. 288 of Hill (1974))

^hIl ^Jh^l+^h!l^L for , = 0, l and 2.
At dt dx dt

4 This assumption may not be true when there are two detached states in the cross-
bridge as in the model by Brokaw (1982). Because two different positions are
assigned to the detached cross-bridge, it is difficult to estimate the mean position
of the cross-bridge distribution at a given shear displacement. However, in the
present three-state model, only one detached state is considered (i.e. a unique
position is assigned to the detached cross-bridge), and so the mean position of the
distribution is uniquely specified.

5 In the case of muscle, it is generally assumed that with the load applied the active
force caused by the cross-bridges is balanced, and that internal viscosity is
negligible. Sliding movement is established when the forces are balanced. How-
ever, no significant change appears in the sliding motion even when considering
the resisting force caused by internal viscosity. So, I tentatively proposed that the
internal viscous resistance is balanced with the total shear forces.

Setting EB = 0 in equation (6.1), we have

Note this equation is equivalent to equation (6.8a) since u = ha, y' = y/h and



7 Simplified models for flagellar
dynamics

In the previous chapter we introduced the excitable dynein system based on
a three-state mechano-chemical cycle, as a possible model to account for
bend propagation in the absence of a curvature control mechanism. Flagellar-
like base-to-tip wave forms and ciliary-like repetitive beats have been success-
fully demonstrated by using a model that has excitable properties in the limit
of zero external viscosity.

We are now interested in studying whether this class of models also
operate in the presence of external viscosity. The dynamics of a flagellum
suspended in a viscous fluid are described by the fourth-order partial
differential equation (see Section 5.3.1):

n.E.*°.c$-i (7.o,
ds as dt

where S is the total shear force, a the shear angle (as a function of arc length
s and time t), £B the bending resistance and CN the external viscous-drag
coefficient. The problem in demonstrating various wave phenomena in
flagella, is thus ascribed to the problem of how to specify S such that
equation (7.0) satisfies various types of travelling wave solutions.

In the present chapter we prefer to use a formal dynein model rather than
a more realistic three- or four-state model, so that we do not have to
simultaneously deal with the numerous parameters required to specify a
realistic mechano-chemical cycle. Section 7.1 describes the formal model.
The key concept is that the total shear force S is assumed to be a nonlinear
function of o and a (see below) in such a way that the formal model
displays the excitable and oscillatory behaviours similar to those obtained by
the original three-state model. The similarity in these dynamical behaviours
between the two models is discussed in Section 7.2 (with EB = 0 and CN =
0), and in Section 7.3 (with EB * 0 and CN = 0). In Section 7.4 we show that
the model described by equation (7.0) with EB * 0 and CN * 0 not only
demonstrates normal wave phenomena such as base-to-tip bend propagation,
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but also shows other dynamical behaviours such as tip-to-base bend propaga-
tion, the reversal of the propagation direction, and soliton-like behaviour (i.e.
two waves propagating in opposite directions passing through each other on
collision).

For simplicity, our attention is focused on the small-amplitude oscillations
and bend propagation where maximal shear displacement is generally less
than a single stroke-distance (i.e. 24 nm). Once the essential features of the
force-generating system required for bend propagation without a curvature
control mechanism are understood, it is possible to extend the model to large-
amplitude waves (see Chapter 9).

7.1 The simplified excitable dynein model

The original three-state model (Murase and Shimizu, 1986) has two important
features. First, a dynein cross-bridge undergoes a unidirectional mechano-
chemical cycle of resting state (attachment) -» active state (power stroke) ->
inactive state (detachment). The presence of the inactive state is responsible
for the refractoriness, in which the responsiveness to external stimuli is
reduced or absent depending on the timing with which the stimuli are
delivered (see Section 6.4.5). Second, a resting dynein has an excitable
nature. The transition to an active state (called dynein activation) is only
triggered by sliding in the forward direction past a threshold, but not in the
backward direction (characterized by the directional sensitivity). This tem-
poral responsiveness and directional sensitivity may amount to the mechano-
sensitivity of a dynein.

Suppose that the sliding coordinate, x, is denned as a distance between
a cross-bridge on one microtubule and a reference point on its adjacent
microtubule. Then the unidirectional cycle arises as a result of the x-
dependent transition rate constants among the three states. The force gener-
ated by the attached cross-bridge is given by the space derivative of the
potential-energy function (F, = - dUJdx, F2 = - dU2/dx), as shown in Figure
7.1. Excitability arises in the resting dynein when there is a threshold position
at xc, below which x goes to one stable state at x, (resting) and above which
it goes to the other state at x2 (dynein activation).

The essence of this three-state model is contained within the formal
excitable-dynein model (Murase et ah, 1989) in the following way.
First, let resting and active states be regarded as a single 'on' state, and
the inactive state be an 'off state. A dynein switches between these two
states when the shear (or sliding displacement) passes critical values (called
switching points). When the shear falls below S{ the dynein is turned 'on'
and maintains its state until the shear rises above S2, and turns the dynein
'off. By setting 5, £ S2, either 'on' or 'off can occur depending on the
'history' of the dynein behaviour. This history-dependent characteristic
(called hysteresis) of the dynein refers to the unidirectional dynein cycle.
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Figure 7.1 The three-state model of Murase and Shimizu (1986). (A): The potential-
energy curve of the attached states as a function of the sliding coordinate, x. £/, and
U2 denote the potential-energy of the resting and active states, respectively. (B): F,
and F2 denote the force generated by a dynein attached in the resting and active states,
respectively, where Fj = -dUJAx and F2 = -df/2/dx. The dotted line represents the
transition between the two states, which is determined by the transition rate constants
(not shown). The stable positions of the dynein cross-bridges are at x, = 2 nm and
x2 = 24nm, and the transition occurs at xc = 2.9nm. From Murase et al. (1989).
Reprinted with permission.

The axoneme is treated as consisting of two opposing dynein subsystems,
«i being the fraction of subsystem I attached with force Ft and nn the frac-
tion of subsystem II attached with force Fn. Suppose that nx and nn act as
'on-off switches with hysteresis. This hysteresis switching process can be
described by the following binary function of x (see Fig. 7.2B). For sliding
in the backward direction (jc < 0), if initially n, = 0 for x > Su nx switches
from 0 to 1 atx= Sx as follows:

nt(x) =
0<x<Sl
5,<x<V

(7.1a)

Here we assume that switching occurs instantaneously. Once n, = 1 at x = Su
nx is always 1 even when x becomes larger than Sj. For sliding in the forward
direction (jc > 0), if initially «, = 1 for x < S2, n{ switches from 1 to 0 at x
=S2 as follows:
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Figure 7.2 The cubic force-distance and hysteresis switching functions. (A): The
active force is shown as a function of the (dimensionless) sliding coordinate, x. The solid
line shows the force, F,, for sliding in the forward direction (increasing x), and the dotted
line the force, Fn, for sliding in the backward direction (decreasing x). The force-
distance functions are: F, = QY{x - O.1)(jc - l)(0.3 - x), and Fn = Qn(x - 0.9)(x) (0.7 -
x) with <2i = Qe = 250 pN. (B): The fraction for attachment of a cross-bridge is shown
as a function ofx. The fraction is a two-valued function in the region S, < x < S2, where
5, = 0.2 and S2 = 0.8. The value depends on the direction in which the region is entered.
Note that n, + nE = 1 for each direction of movement. From Murase et al. (1989). Reprinted
with permission.

.. (I 0<x<S2
"lW=0 S?<x<l (7.1b)

Once /I, = 0 at x = S2, «i is always 0 even when x becomes smaller than S,.
It is further required that «, + « = 1, so that only one of the opposed

subsystems is in the 'on' state at any time.1 Thus a dynein in subsystem I is
turned 'on' (and hence a dynein in subsystem II is turned 'off') during the
forward sliding, while the dynein in subsystem I is turned 'off (and hence
the dynein in subsystem II is turned 'on') during the backward sliding.

The key features of dynein excitability are captured by any force-distance
function for the 'on' state which crosses the x-axis three times with a
negative slope (see Fig. 7.2A). (Such zeros are steady states.) We choose a
cubic force-distance function,2

Fi(x) = Qs(x - *,)(* - x2)(xc - x) (7.2a)
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where Ql is the scaling factor corresponding to the number of cross-bridges
in subsystem I, xY and x2 are the two stable positions and xc is a threshold
position analogous to the location of the transition between resting and active
states ofFigure 7.1. For all x < xc, x -» xu while for allx > xc, x -> x2. For
subsystem II, an oppositely directed force-distance function, Fn, is defined:

Fu(x) = &,(* - x[) (x - x'2) (x'c - x) (7.2b)

where Qn is the scaling factor, x\ and x'2 are the two stable positions and
x'c is an unstable position.

7.2 Dynamics of a segment model

It is instructive to look first at a small segment of axoneme in which sliding
movement is generated by the dynein force. This allows us to focus on the
switching properties of the system in the absence of interactions with other
segments. In the multi-segment simulations such interactions affect the
switching dynamics leading to spatio-temporal patterns. The behaviour of a
single segment, consisting of opposed dyneins and passive elastic links, can
be simulated by solving the force-balance equation:3

da
y-=FMn^x) + Fu(x)nu(x) - Ke(a - o0) (7.3a)

at

x = a (7.3b)

where Kc is the force constant for the passive elastic elements (e.g. nexin
links which may exert a restoring force proportional to their shear), a0 is their
location in the unstretched state, and y is an internal viscosity introduced to
allow force balance at a finite sliding velocity. When Kt = 0, there is bi-
stability. Either a stable state at a = xt orx\ can be present, depending on the
initial shear displacement. When o0 is located in the unstable region and Kt
is large enough, oscillatory behaviour occurs (see Fig. 7.3).

The qualitative behaviour of the cubic force-generating system with a
hysteresis switching mechanism is, therefore, similar to the behaviour of
the three-state dynein model of Murase and Shimizu (1986) discussed in
the previous chapter in that it can display both bi-stable and oscillatory
behav iour.

7.3 Bend propagation at zero external viscosity

Before attempting to demonstrate wave phenomena at non-zero external vis-
cosity by solving equation (7.0), it is useful to examine whether the formal
excitable-dynein model gives rise to bend propagation at zero external vis-
cosity as expected in the context of the previous chapter. In such an ideal
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Figure 7.3 Shear in a single segment as a function of time for the cubic force-distance
system. The shear, a, is plotted for two values ofKe (the force constant for the passive
elastic links, in pN/24 nm) and two initial values of o. These values are shown in the
figure. When Ke = 0, the system exhibits bi-stable behaviour since it approaches one of
the two stable states, depending on the initial value of a. As Kc is increased through
some critical value, oscillatory behaviour appears. In these simulations o0 = 0.5 and j
=50 pN ms/24 nm. Modified from Murase et al. (1989). Reprinted with permission.

situation, the flagellar dynamics are described by the so-called reaction-
diffusion equation4 (see Chapter 6).

The complete system of equations and boundary conditions has the form:

da r32o p
y -t-=£Byr+^

3r ds2

x = a

S =Fm+Fn(l - «,) -«-e(o- a0)

^i = Qi(* ~ xx){x - x2)(xc - x)

Fn = Qa(x-x[){x-x'2)(x'c - x)

«T =

71, =

0<x<Si
5,<x<1

0<x<S2
S2<x<1

forx<0

forx>0

(7.4a)

(7.4b)

(7.4c)

(7.4d)

(7.4e)

(7.4f)

(7.4g)
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do(0)
ds

da(L)

ds

= 0 (7.4h)

= 0. (7.4i)

Here, s is the arc length along the axoneme. Boundary conditions (7.4h, i)
mean that both ends are free, i.e. zero curvature at s = 0 and L, where L is
the length of the axoneme.

A 50 (i.m model flagellum is divided into 50 segments of length 1 |im.
In the model, a self-oscillatory basal end is combined with 49 segments
exhibiting bi-stable behaviour. This type of model is easily developed by
adopting Kt = 60pN/24run ats = 1 |im andKe = 1 pN/24nm for 1 < s < 50\im,
because the proximal segment with a large Kt value acts as a pacemaker
which can periodically stimulate the rest of the flagellum. The simulations
were performed starting from a straight flagellum under free-end boundary
conditions.

The left side of Figure 7.4 shows shear o (or sliding x) as a function of arc
length, s, along the axoneme at 5 ms intervals during self-organization of
bending waves, while the right side of Figure 7.4 shows the corresponding
shapes. As this figure shows, the basal pacemaker region repetitively stimu-
lates the excitable region leading to periodic travelling excitation waves of
equal amplitude.

For the convenience of the following discussion, we shall introduce the
space-time diagram in Figure 7.5. This figure depicts the positions of waves
(where the regions a > 0.5 in the left side of Figure 7.4 are plotted by bars)
as a function of time, t, and space, s. There is only a single bar at a given
time for 0 < t < 45 ms corresponding to a single bend. As time proceeds, the
bar moves to the right which is associated with bend propagation. A steady-
state wave form is attained as the first bend reaches the tip. As a result there
are two bars (corresponding to two bends) at any time for t > 45 ms. They
continuously move to the right. The degree of successive shifts of bars in the
space-time diagram indicates the velocity of bend propagation. The regular
spatio-temporal patterns suggest that the system reaches a stable cycle of
steady-state bend initiation and propagation.

7.4 Bend propagation at non-zero external viscosity

In the previous section we showed that the simple axoneme with excitable
behaviour, when connected to a basal self-oscillatory region, displayed bend
propagation initiating from the so-called pacemaker region at the base. These
simulations were performed at zero external viscosity, but only in the
presence of internal viscosity. Now consider what happens when external
viscosity is present. We will focus our attention on the effects of the
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Figure 7.4 Bend propagation under free-end boundary conditions for the cubic force-
distance function similar to that in Figure 7.2. The parameters are: EB = 300 pN |j.m2, y
= 100pNms/24nm,g, = gn =300pN,*, =0.15,x2 = l,xc =0.25, x\=0.85, x'2= 0,
and x'
c = 0.75. The properties of the axoneme vary along its length as follows: Ke = 60 pN/24nm fors = 1 nm andKe = 1 pN/24nm for 1 < j < 50|j.m. This is equivalent to an
oscillatory region in the first segment, an excitable region in segments 2-50. The ini-
tially straight axoneme was allowed to develop its bending waves. The shear is shown
in ms at the indicated times on the left side of the figure, while the corresponding
axonemal shapes are presented on the right side. The flagellar shapes in the (x, y)
coordinates are obtained by:

x(s) -[ cos(a - 0.5)dr, y(s) = | sin(<j - 0.5)ds.-/;
The direction of the bend propagation is indicated by the arrow. The schematic repre-
sentation of this axoneme is shown in the bottom panel.
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1000

50

Figure 7.5 Positions of waves as a function of time, t (in ms), and space,.s (in \im).
The regions o > 0.5 in the left of Figure 7.4 are plotted by bars. As time proceeds, the
groups of bars move toward the right reflecting the fact that bending waves initiated at
the base (at the left end) propagate toward the tip (the right end).
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Table 7.1 Boundary conditions of the axoneme at the base

F ree IFn(0) = °
hree \Mv(0) = 0

VN(0) = 0

Clamped <j 3VN (0)
=0

I ds

iv..fr» =
Pinned

ds

VN(0) = 0

Mv(0) = 0

boundary conditions and axonemal structure on the dynamical behaviour of
the model.

7.4.1 Boundary conditions for cilia and flagella

In obtaining equation (7.0) from its original equation (5.36), we have
assumed that

0(5)=Q(s) for0<s<L (7.5)

where a is the shear angle, 0 the angle the flagellum makes to a fixed
external coordinate system and L the length of the axoneme (see Section
5.3.1). As illustrated in Figure 5.9D, the sliding filament mechanism provides
the following equation:

*&=*& forO<s<L. (7.6)

as as

The integration of equation (7.6) with respect to space, s, leads to

G(s) - Q{s) = a(0) - 0(0). (7.7)

This suggests that the boundary conditions at the basal end play an important
role in determining the relationship between o and 0.

It is possible to consider three types of boundary conditions according as
the basal end is /ree to move, clamped rigidly or pinned at a point (Table 7.1).
In addition to these boundary conditions, a further boundary condition
relating relative motion of the filaments is required for the sliding filament
models. There is the possibility of three different constraints - the filaments
are allowed to slide freely, are tied together, or are individually pinned (Table
7.2).

To get a solution to equation (7.0) or its original equation (5.36), we must
specify one of several combinations of the boundary conditions - one from
Table 7.1 and the other from Table 7.2. We shall discuss all the combinations
in the context of constraint (7.5) as follows.
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Table 7.2 Boundary conditions of the filaments at the base

Free *«°U
ds

Fixed a(0) = 0

Pinned o(0) = 6(0)

First consider the axoneme freely suspended in a viscous fluid like a cut
flagellum. The external viscous force, FN, and moment, Mv,must be zero at
the base (see the top row of Table 7.1). Note that these free-end boundary
conditions are always required at the tip of cilia or flagella, irrespective of
the boundary conditions at the base. Now we must specify one of the three
conditions from Table 7.2 - free, fixed or pinned - relating to sliding
movement of the filaments at the base. On one hand, Hines and Blum (1978;
1979) considered that the filaments were free to slide, i.e. 3a(0)/ds = 0 (see
the top row of Table 7.2). In this case (o(0) - 0(0)) becomes an additional
undetermined quantity (see Blum and Hines, 1979). This must be implicitly
determined by the requirement that the total shear force along the length of
the axoneme be zero:

»L

S ds = 0. (7.8)
/o

Then we get exact solution to equation (5.36).
On the other hand, Brokaw (1972b; 1975; 1985) assumed that the filaments

were tied together, i.e. a(0) = 0 (see Fig. 5.21; and the middle row of Table
7.2). This means that the short region near the base, which effectively
contains a very high shear resistance, absorbs all the shear forces along the
length of the flagellum, and hence equation (7.8) holds. A variable 0(0) re-
maining in equation (7.7) is then specified, and exact solution to equation
(5.36) is obtained.

Contrary to the above two cases, no attempt has been made to assume a
pinned condition for the filaments, i.e. 0(0) = 0(0) (see the bottom row of
Table 7.2). The pinned condition leads to equation (7.5) via equation (7.7)
irrespective of equation (7.8). In a freely suspended flagellum, however,
equation (7.8) must be always satisfied. Thus this condition is not appropriate
to the flagellum. Now we shall consider another constraint described by
equation (7.5) instead of equation (7.8). Generally, equation (7.5) is incom-
patible with equation (7.8). However, if there are two developing bends on
the axoneme that are increasing in angle at equal but opposite rates, the
average bend angle along the axoneme will be approximately zero, and hence
equation (7.8) satisfied. Thus equation (7.5) appears to be a good approx-
imation to constraint (7.8) under these conditions. Equation (7.0) is then a
first-order approximation to the original equation (5.36).

r
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As a second type of boundary conditions, let us consider the clamped-end
conditions at the base, i.e. VN(0) = 0 and dVN(0)/ds = 0 (see the middle row
of Table 7.1). This could be appropriate to a cilium which may be attached
rigidly to the cell surface. Since dF^/ds = -CNVNfrom equations (5.29) and
(5.31), VN(0) = 0 is equivalent to dFK(0)/ds = 0. Since the axoneme is
continuous, one can get 3VN/3s = -30/9; (see Fig. 2 of Lubliner and Blum,
1971). Thus dVJds = 0 is equivalent to 8(0) = 0, so that only the condition
g(0) = 0 (see the middle row of Table 7.2) seems to be consistent with these
clamped conditions. These conditions are usually taken into account for
analyses of ciliary movement such as simulations in Figures 5.24 and 5.25
given by Blum and Hines (1979). Under these conditions, equation (7.5) is
consistent with equation (7.7), so that we get exact solution of equation
(5.36) by solving just equation (7.0).

The third conditions assume that the axoneme is pinned at the base, which
may be equally applicable to a cilium, given our lack of detailed information
of the transitional region at the base (see the bottom row of Table 7.1). This
seems to be somewhere between the above two extremes. If, in addition, the
filaments are individually pinned, i.e. o(0) = 9(0) (see the bottom row of
Table 7.2), equation (7.5) holds automatically from equation (7.7). From
Mv(0) = 0, we have also dQ(O)/ds = da(0)/ds = 0, which is implying that the
filaments slide freely at the basal end since do(0)/ds = 0 (see the top row of
Table 7.2). As a result, the conditions that the filaments are free or pinned at
the base are not mutually exclusive, but are equivalent to each other as long
as the axoneme is pinned, because we can get exact solution to equation
(5.36) by solving equation (7.0) under either of the two conditions. The
condition that the filaments are fixed, i.e. o(0) = 0 (see the bottom row of
Table 7.2), however, seems to be inconsistent with these pinned conditions.

In the present chapter we consider either of the first two conditions at the
base: (i) the axoneme is free to move and the filaments are free to slide; or
(ii) the axoneme is clamped and the filaments are fixed. The third conditions
that (iii) the axoneme and the filaments are both pinned are reserved until
Chapter 8.

7.4.2 Bend propagation with clamped-end boundary conditions

It is of interest to ascertain whether a bending wave would initiate and
propagate if the basal end of the axoneme is held fixed, i.e. the clamped-end
boundary conditions. Under these conditions, and on the assumption a(s) =
Q(s), the original basic equation (5.36) is solved exactly. Numerical simulations
revealed that the model presented here displayed tip-to-base bend propagation
as well as base-to-tip bend propagation, depending on the structural asym-
metry along the length of the axoneme.

The full system of equations and boundary conditions has the form:



236         Nonlinear dynamic phenomena in flagella and cilia

                           X = O

         S=F& +Fn(l -«,)-K,(a-a0)

           ^i = Qi(x - Xi)(x - x2)(xc - x)

          Fu = Qn{x-x[){x-x'2)(x'
c -x)
          (1 0<*<S, , . n
              n, =<._        '  forx<0          1 10 5,<x<1

1 0<x<S-
h ; C < V^ 1

forx>0 (7.9g)

= 0; o(0)=a0 (7.9h)

0 S2<x<1

33o(0)

3*3

^ *) =0; ^=0. (7.9.)
ds2 da

The clamped-basal-end and free-distal-end boundary conditions are repre-
sented by (7.9h) and (7.9i), respectively.

Tip-to-base bend propagation. When sliding is not allowed at the basal end,
the dyneins there will be unable to reach their switching points and will
therefore continuously generate a large shear force in a single direction, thus
preventing the formation of symmetric bends. To eliminate this problem, we
removed the dynein from a short basal region. The resultant region without
dyneins is referred to as a 'passive' region. The minimum size of the passive
region depends on the strength of the dynein force and on the bending
resistance. Of course, a passive proximal region is not necessary if the
filaments are allqwed to slide at the basal end (see Chapter 8). The cubic
force-distance function was used for the excitable dynein system. The
axoneme under consideration had the passive basal region and excitable
dyneins uniformly distributed from the end of the passive region to the distal
end.

After transient behaviours had died away starting from any initial condi-
tions, bends initiated at the tip and propagated towards the base (Fig. 7.6).
This phenomenon provides an interesting problem of how rhythmic bend
propagation is organized even though none of these segments alone has a
self-oscillatory property. At zero external viscosity, as studied in Section
6.5.3, the 'homogeneous' excitable axoneme does not exhibit sustained
movement, rather it becomes 'quiescent' as time proceeds irrespective of
initial conditions (see also Section 7.4.5).
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Figure 7.6 Tip-to-base bend propagation under clamped-end boundary conditions
for the cubic force-distance function shown in Figure 7.2. The parameters are: EB =
400 pN um2, CN=5 pN ms/um2. The properties of the axoneme vary along its length as
follows: g, =Qa=0, Kt= 1pN/24nmfor0<s < 8urn andg, = Qu=270pN,Ke=
1 pN/24 nm for 8 < s < 50 fim. This represents an axoneme with a short passive region
at the basal end and bi-stable segments elsewhere. The schematic representation of this
axoneme is shown in the bottom panel. From Murase et al. (1989). Reprinted with
permi ss ion.

There seems to be an external viscosity-induced instability leading to tip-
to-base bend propagation. To understand such a viscosity-induced instability
two types of simulations were performed, either with only internal viscosity
or only external viscosity. In the following simulations the axoneme had only
passive elastic links along its entire length (i.e. QY = Qn = 0), and a com-
pletely straight form was used as an initial condition. In the first type of
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Figure 7.7 Relative shear, o(i)/o(25), as a function of space, s, after an application of
a point force of 50 pN at s = 25 |im under free-end boundary conditions. An initially
straight axoneme has only passive elastic links, i.e. Kc = 1 pN/24nm, Q, = Qu = 0 and
EB = 400 pN(Xm2. A single point force of 50pN is applied to the middle segment at s
-25 nm. The relative shear is plotted 0.01 ms after the stimulus. (A): There is only
internal viscosity, i.e. y = 50 pN ms/24 nm and CN= 0. Positive shear force always causes
positive shear. (B): There is only external viscosity, i.e. y = 0 and CN = 5 pN ms/|i.m2.
Positive shear force induces negative shear in the nearby region.

simulation, a positive shear force (S = 50pN) was applied to the middle
segment of the axoneme (at s = 25 |xm) under free-end boundary conditions.

Figure 7.7 illustrates the relative shear displacement plotted against the arc
length, s, immediately (0.01 ms) after a step increase in shear force at s =
25 (im. The simulated shear distribution is spiky because a short time-interval
is allowed between the onset of the shear force and the time when the
resultant shear distribution is calculated. By adopting this simulation tech-
nique we can ignore the effects of the elastic bending resistance, and hence
neglect the effects of the terms involving EB in equation (7.4a) or (7.9a). At
zero external viscosity but with internal viscosity, a positive shear force can
only lead to positive shear displacements (Fig. 7.7A). In the presence of
external viscosity only, positive shear force can lead to negative shear in
nearby regions (Fig. 7.7B). This difference is clearly understood by consid-
ering the finite-difference approximation as follows.

Let space, s, and time, t, be made discrete by adopting s = iAs and t =jAt,
where i andj are integers, and As and At are the respective steps of the mesh
along the s- and /-axes. Now a,j is used to denote a(iAs, jAt). Similarly, let
S, denote S(s = iAs). For convenience we assume As = At = 1. The final form
of the finite-difference scheme for equation (7.4a) under a single point force
at the i-th segment (at s = 25 (Am in Fig. 7.7) is:

=ou+S, (7.10)
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Figure 7.8 Shear, o",as a function ofs after an abrupt change of shear at the basal end,
such that a(s = 0) = 0.5 under the clamped-end boundary conditions. An initially straight
axoneme with only passive elastic links Kc = 1 pN/24 nm and EB = 400 pN u,m2 is
subjected to an abrupt change in the shear at the base. The distribution of shear 1 ms
after the proximal end is displaced. Note that a(t = 0) = 0.1 for 0 < s < 50 (im. The dotted
line shows o(i) with only internal viscosity, i.e. y= 50 pN ms/24 nm and CN = 0. The
solid line shows o(s) with only external viscosity, i.e. y= 0 and CN = 5 pN ms/urn2. From
Murase et al. (1989). Reprinted with permission.

and equation (7.9a) is written as follows:

o,,,+1 = ofJ + 25, (7.lla)

o,_1J+1 = a,,u - S, (7.llb)

oj+u+I = a,+1J - S,-. (7.llc)

Equation (7.10) predicts that o, increases when S, > 0. In contrast equations
(7.1 1) predict that o, increases, but at the same time a,_, and a1+1 decrease even
ifSi>0.

In the second type of simulation, an abrupt change in shear (not shear
force) was applied at s = 0 under the clamped-end condition. Figure 7.8
shows shear distribution some time (1 ms) after a step change in shear at s =
0. Since all the segments are passive, the shear force, S, is almost zero. The
terms involving S can be neglected in equations (7.4a) and (7.9a). An abrupt
change in shear at s = 0 is transmitted via an elastic coupling. A long period
(1 ms) was allowed to proceed in order to obtain the shear distribution
affected by the secondary effects of the elastic coupling. If there is only an
internal viscosity, then shear is always in the same direction as the abrupt
change (Fig. 7.8A). If, however, an external viscosity is present (with no
internal viscosity), an external shear force develops in a distal region which
causes shear in the opposite direction, though shear in the segment closer to
the basal end is in the same direction as the abrupt change (Fig. 7.8B).
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This difference is again understood by considering the finite-difference
form for each original partial differential equation. The finite-difference form
of equation (7.4a) is:

o*j+i = ou + £,(OHJ - 2aij + OMJ) (7.12)

and the form of equation (7.9a) is written as

aiJ+i = au - £B[(o,--2.j - 2o,-u + o,J - 2(a,-_1J - 2atJ + a;+1J)

+ (a,,- 2c,+1J + ai+2J)]. (7.13)

Equations (7.12) and (7.13) show the attractive interaction between the
nearest-neighbour segments, because the right-hand side of equation (7. 12) is
decomposed into

£ «*«-!j - 2o,j + a,+u) = -£B(a,j- a1+w) - E^o^- a,.,,,). (7.14)

As a result, positive shear at 5 = 0 always induces positive shear in regions
nearby. On the contrary, the average shear denned by

c,j = o,-,,y - 2o,.y + aMJ (7.15)

shows the repulsive interactions between the average regions nearby, because
the right-hand side of equation (7.13) is decomposed into

-£B(^-i,; - 2au + aMJ) = EB(au- ai+lJ) + EB(aKj- a,_u). (7.16)

Equation (7.13) suggests that positive shear at s = 0 induces positive shear in
the region nearby, yet at the same time negative shear via its average shear.
This situation seems to be somewhat analogous to phenomena with short-range
activation and long-range inhibition in neurophysiology, population dynam-
ics, and morphogenesis (Murray, 1989). For real simulations, three terms in
equations (7.4a) or (7.9a) must be taken into account. Especially, in solving
equation (7.9a), complex dynamical behaviour can appear.

We can now understand how the tip-to-base bend propagation appears.
Under the free-end boundary conditions at the distal end, both the external
viscous force and external viscous moment are zero, thereby the tip can move
and rotate freely relative to the other segments. Once the tip happens to
swing due to active sliding in the positive direction, a viscous shear force is
generated which in turn affects more proximal regions and triggers successive
active sliding in the same direction via an elastic coupling. Since there is
inhibitory viscous interaction between segments (see Fig. 7.8), active sliding
of one segment acts to inhibit active sliding of the other in the same
direction, but induces sliding in the opposite direction. This mutual inhibition
provides a so-called 'flip-flop' switch. As a result, the axoneme as a whole
exhibits a coordinated bending pattern, even though individual segments do
not have oscillatory properties (see Fig. 7.15 for a concrete simulation).
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Figure 7.9 Modified force-distance function and energy diagram for the force-
distance functions. (A): The force-distance function is the sum of the cubic force function
shown in Fig. 7.2 plus the linear functions -kfX for subsystem I in the region 0 < x <
0.2 and -&n-(l - x,) for subsystem II in the region 0.8 < x < 1. hi the figure <2i = 2n
=290pN and k, = ku - 70pN/24nm in equations (7.17). For further details, see the
legend to Fig. 7.2. (B): The ordinate is the integral of the force-distance function. Since
x is dimensionless, the units of energy in this diagram are pN. The solid line is the
energy diagram for the cubic force-distance function, with g, = Qu = 250pN in
equation (7.2). The upper dotted line is the energy diagram for the modified force-
distance function of Fig. 7.9A. The lower dotted line differs from the upper one only
in that a passive link with K,. = 60 pN/24 nm is also present in the first segment, leading
to self-oscillatory behaviour. From Murase et al. (1989). Reprinted with permission.

Base-to-tip bend propagation. Three major modifications are necessary in
demonstrating base-to-tip propagating waves along an axoneme. First, a self-
oscillatory segment is placed immediately distal to the passive region at the
basal end. This self-oscillatory segment acts as a pacemaker. Second, a
passive terminal region is included at the tip without any dyneins. The
passive region prevents bends from initiating at the tip. In fact, sea urchin
sperm flagella of approximately 42 |xm length have terminal regions of 5-8 |^m
(see Rikmenspoel, 1982). Third, the stability of the resting state is increased
in order to reduce viscosity-induced perturbations. This can be achieved by
increasing the force constant in the neighbourhood of the resting position at
xu as shown in Figure 7.9A. The modified force-distance functions are
written as follows:
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The energy diagrams corresponding to the modified force-distance function
and the original cubic force-distance function are shown in Figure 7.9B.
 Figure 7.10 illustrates the result obtained when the above modifications are
incorporated into the model under clamped boundary conditions. The viscos-
ity-induced perturbations are remarkably reduced so that base-to-tip propagat-
ing waves occur successfully in the axoneme. The size of the passive
terminal region at the tip seems to be a key factor in determining the
direction of the bend propagation.
 Since two different boundary conditions are adopted at the base and tip
(i.e. the clamped basal end and free distal end), it is difficult to study the
effects of the structural asymmetry inherent in the axoneme. For this reason,
the next section deals with free-end boundary conditions at both ends.

7.4.3 Bend propagation with free-end boundary conditions

Bend initiation and propagation are studied under conditions where both basal
and distal ends are free (see Table 7.1), and filaments are sliding freely at the
base (see Table 7.2). First, we study the effects of the axonemal structure on
the spatio-temporal patterns of sliding occurring within the axoneme. Then,
the viscosity-induced perturbations are examined deeply, and finally the role
of the curvature-control mechanism adopted in the previous models (see
Table 6.1) is discussed.

Base-to-tip bend propagation. We are interested in the spatio-temporal
sliding patterns, but not the exact shapes of the flagellum, so that the
positions of waves are depicted as a function of time and space in Figure
7.ll. This representation is comparable to that in Fig. 7.5. The model has
three regions along the length of the axoneme: (i) the self-oscillatory region
at s = 1 (im; (ii) the excitable region for 1 < s < 40|xm; and (iii) the passive
region for 40 < s < 50 (im. For self-organization of bending waves, the model
is started from a straight configuration at / = 0 by turning on subsystem I
throughout the axoneme. Once a bend initiates at the basal end, it propagates
towards the tip. The passive region at the tip ensures that bends do not
initiate at the tip.

The patterns in Figure 7.ll are slightly different from those in Figure 7.5
in the following ways. First, the velocity of bend propagation would fluctuate
as the slope of successive bars is not constant. There is some experimental
evidence that the bend propagation velocity in the basal and distal regions is
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Figure 7. 10 Base-to-tip bend propagation under clamped-end boundary conditions for
the modified cubic force-distance function shown in Figure 7.9A. The parameters are:
EB = 350pN (im2, CN = 5 pN ms/|xm2. The properties of the axoneme vary along its
lengthas follows: g, =Qa = 0,Ke=60pN/24nmfor0< s < 8 |i.m; g, = Qa = 350pN,
Kc=60pN/24nmats=8^m;Q^=Qn=290pN,Kt= 1pN/24nmfor8<s<45nm;
and 2, = Qn = 0, Kc = 1 pN/24nm for 45 < s < 50(im. The schematic representation
of this axoneme is shown in the bottom panel.

lower than the velocity in the mid-region of the flagellum. This refers to non-
uniform bend propagation (Brokaw, 1970). Our results may be relevant to
this experimental observation. Second, the wavelength would fluctuate as the
width of the bars along the s-axis is not constant. Third, the beat frequency
would fluctuate as the 'black-white' interval along the t-axis is not constant.

These three characteristics are not obvious as long as we take only a small
number of snapshots of flagellar shape at different instants. Furthermore, the
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Figure 7.1 1 Base-to-tip bend propagation under free-end boundary conditions for
modified cubic force-distance function shown in Figure 7.9A. Positions of waves are
depicted as a function of time, t (in ms), and space, 5 (in urn). The regions 0 > 0.5 are
plotted by bars. The parameters are: EB = 400 pN \im2, CN = 5 pN ms/|0.m2. The prop-
erties of the axoneme vary along its length as follows: Ql = Qu = 290pN, Kc = 60pN/
24nmat5= 1|im;g,=£> =290pN,Ke= 1pN/24nmfor1 <j<40u.m;andg,=
fin = 0pN, Kt = 1 pN/24nm for 40 < s < 50 \xm. As time proceeds, the groups of bars
movetoward the right, which reflects that bending waves initiated at the base (at the left
end) propagate toward the tip (the right end). The schematic representation of this
axoneme is shown in the bottom panel.
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flagellar shapes are obtained by an integral form (see legend to Fig. 7.4), so
that if there are spatial fluctuations on the sliding patterns they smooth away
when they are transformed into the shapes (see Fig. 4 of Murase et al., 1989).
For these reasons the above characteristics have not been discussed deeply.

Although experimental data corresponding to Figure 7. 1 1 shows irregular-
ity, it is ascribed to the nature of random noise (Brokaw, 1970). However,
the present study suggests that these fluctuations arise in a deterministic
mathematical model. It seems that they are not caused by random noise nor
numerical errors, but are inherent in the system under the influence of exter-
nal viscosity (cf. Sivashinsky and Michelson, 1980). Indeed, the curvature-
controlled models also displayed non-uniform bend propagation (see Fig. 6 of
Brokaw, 1972). There is the possibility that the model displays 'chaotic
behaviour' (see Section 7.4.5).

Reversal of the direction of propagating waves. It is of interest to know
what happens in the absence of the passive region at the tip. With the same
parameters as those in Figure 7.ll, except for the exclusion of the passive
region, the model is started from a straight configuration at t = 0. Figure 7.12
shows that bend propagation occurs first from base to tip and then the
direction is reversed at the first arrow (about t = 300 ms). These tip-to-base
propagating waves are further replaced by the base-to-tip propagating waves
at the second arrow (about t = 600ms). This kind of reversal of bend
propagation occurs at ~300-400 ms intervals as long as the computer simu-
lation persists.

The frequency of this reversal depends on two factors: (i) the size of the
passive region; and (ii) the stiffness of the elastic component at the base. On
one hand, the passive region acts as 'buffer' which absorbs viscosity-induced
perturbations. For example, the model with a passive region 5 \im long shows
shorter duration of the reversal than the model without the passive region. As
the length of the passive region is increased, the possibility for the reversal
of bend propagation decreases markedly. A 10 |J.m passive region is sufficient
to ensure unidirectional bend propagation (see Fig. 7.1 1). On the other hand,
the stiffness of the basal elastic component determines the characteristic
frequency of the self-oscillation, so that the basal region affects the duration
of the reversal.

Suppose we have a 'homogeneous' axoneme without the passive or the
self-oscillatory region, but with excitability throughout the length of the
axoneme. This model is obtained when the stiffness at the basal segment is
reduced from Ke = 60 to 1 pN/24 nm. Of course this 'homogeneous' excitable
axoneme cannot develop bending waves without superthreshold perturbations
if the axoneme is initially straight. Once the axoneme was slightly deformed,
however, bending waves were developed (cf. Fig. 7.15B). Under these con-
ditions the model showed the reversal of propagating waves at about 1200 ms
intervals.
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Figure 7.12 Reversal of the direction of propagating waves under free-end boundary
conditions for modified cubic force-distance function shown in Figure 7.9A. Positions
of waves are depicted as a function of time, t(in ms), and space, s(in |im). The regions
0 > 0.5 are plotted by bars. The parameters are the same as those in Figure 7.1 1 except
for the exclusion of the passive region. As time proceeds, first base-to-tip bend propa-
gation occurs and then tip-to-base bend propagation appears at about t = 300 ms. At about
/ = 600 ms base-to-tip bend propagation occurs. The schematic representation of this
axoneme is shown in the bottom panel.
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These simulations suggest that the axonemal structure is highly responsible
for the dynamical behaviour. Boundary conditions seem to be of secondary
importance. Indeed there was an interesting observation by Brokaw (1965), in
which removal of the normal distal end of the flagellum interfered with its
ability to generate base-to-tip propagating waves. Omoto and Brokaw (1982)
also observed a clear 'end effect', which involves a rapid unbending of bends
that have reached the distal end of the flagellum lacking a 'terminal' region.

As described in Section 4.5.5, flagella of trypanosomatids show an unusual
ability to propagate bending waves from either the base or the tip. Sea-urchin
sperm flagella of Tripneustes gratilla show intermittent swimming that in-
volves stopping and starting transients. From the above simulations it is
possible to interpret these observations in terms of the structural asymmetry
along the axoneme, such as the size of the passive region at the tip. A
detailed comparison between model behaviours and experimental observa-
tions will provide insights into the role of a passive region at the tip of the
axoneme.

7.4.4 Interaction of two waves propagating in opposite directions

As discussed in Section 4.5.5, there are interesting observations that record
two waves travelling in opposite directions along the flagellum under
abnormal conditions where the viscosity of the medium is increased (Holwill,
1965) or when some chemical agent is added (Alexander and Burns, 1983).
When two such waves meet they appear to be frozen, but do not annihilate
each other. These observations raise a problem concerning the interaction
between the two waves. From a theoretical modelling point of view,
however, no attempts have been made to solve this problem. It is, therefore,
important to know whether or not two waves moving in opposite directions
annihilate each other.

Simulations were carried out under two different situations: (i) with only
internal viscosity; and (ii) with only external viscosity. The model was
allowed to develop two bends propagating in opposite directions by applying
stimuli at both ends. If there is only internal viscosity, two oppositely
directed bends annihilate each other upon collision (Fig. 7.13). Each bend has
a leading edge and a trailing edge. In the leading edge of each bend,
subsystem I is turned 'on' and subsystem II is turned 'off, while in the
trailing edge the reverse holds. The waves move in accordance with the
operation of these 'on-off switches. This switching operation continuously
propagates, so that the system is completely reset after the bend passes
through. As a result, the two waves seem to annihilate, leaving the system at
rest. This phenomenon is analogous to the annihilation of action potentials in
nerve systems (Tasaki, 1949; Matsumoto, et al., 1982) and chemical waves
such as the Belousov-Zhabotinsky reaction (Kuramoto and Yamada, 1976;
see also books by Winfree, 1980, 1987; Zykov, 1987; and Glass and Mackey,
1988).



248

(A)

Nonlinear dynamic phenomena in flagella and cilia

ir

100

(B)

Figure 7.13 Annihilation of two waves propagating in opposite directions at zero external
viscosity under free-end boundary conditions. The cubic force-distance function in Fig.
7.2 is used with the same parameters, except for Q, = Qu = 290 pN. Other parameters
are: EB = 300pN ixm2,L = 100 nm, CN=0, y= 100pNms/24nm, and Kc= 1 pN/24 nm.
(A): a is plotted as a function of space, s, at 1 ms intervals. Time proceeds from front
to back. (B): Successive changes in the shape of the flagellum at 4 ms intervals.
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If there is external viscosity, instead of internal viscosity, the waves appear
to pass through one another (Fig. 7.14). The waves move slowly because
only a small region at the trailing edge of each bend contributes to active
sliding. The active region is small because viscous forces oppose the force
required to reach the switching point. Thus both peak height and width in the
G-scurves become smaller as the waves approach one another, as indicated
by less smoothness in Figure 7.14A. As the waves approach sufficiently
close, the bends appear to merge, and switching occurs in many segments
in the region of the collision. Since the resting state is not stable enough in
these segments, sliding in the opposite direction, caused by subsystem II,
occurs. After the collision, the number of segments contributing to active
sliding is four times larger than before the collision, so wave speed is about
fourfold faster.

Non-annihilating waves appear because the operation of 'on-off switches
is not continuously propagated but sometimes skips several segments due to
viscosity-induced perturbations. As a result, the system never returns to the
resting state, but instead some segments are spontaneously activating. By
using the two-component reaction-diffusion model, Tuckwell (1980) found
solitary wave solutions with soliton-like properties when 'on-off switches were
introduced into the model. Because the system 'sees' the new source
functions during the collision of two solitary waves due to a number of 'on-
off switches, it is possible that solitary waves emerge from the collision (see
Fig. 1.17).

Tuckwell (1980) also found that with slightly asymmetric initial data, when
two waves collided, one wave more or less destroyed the other and continued
to propagate after the collision. Similar phenomena appeared in the present
model behaviour when the direction of bend propagation was reversed. As
already shown in Figure 7.12, the axoneme happened to initiate the tip-to-
base propagating wave. This destroyed the base-to-tip propagating wave since
the two waves are slightly different in shape.

In the simulation shown in Figure 7.14, the cubic force-distance function
was used. When the same simulation was performed but using the modified
force-distance function of Figure 7.9, the two waves merged to form one
bend similar to that shown at t = 64 ms in Figure 7.9B. However, because the
resting state is more stable for this system, the waves do not continue on
but instead the merged region slowly increases in width until the flagellum
becomes straight. If external viscosity is high enough as examined by Holwill
(1965), the merged region appears to be frozen.

7.4.5 External viscosity-induced perturbations

To understand the dynamical aspects of external viscosity-induced perturbations,
the model is started from the same initial conditions with only internal
viscosity (Fig. 7.15A) or only external viscosity (Fig. 7.15B). If there is only
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Figure 7. 1 4 Soliton-like behaviour at non-zero external viscosity under free-end boundary
conditions. The cubic force-distance function in Fig. 7.2 is used with the same param-
eters, except for 0i = Qn = 400 pN. Other parameters are: EB = 400 pN urn2, L = 100 |0.m,
CN= 5 pN ms/u.m2, y= 0, andK^ = \ pN/24nm. (A): a is plotted as afunction of space,
s, at 2 ms intervals. Time proceeds from front to back. (B): Successive changes in the
shape of the flagellum at 4 ms intervals.
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Figure 7. 15 Dynamical behaviour of a 'homogeneous' excitable axoneme under free-
end boundary conditions. O is plotted as a function of space, 5, at 5 ms intervals. The
axoneme has only excitable segments, i.e. Ke = 1 pN/24 nm, gi = 2n = 250pN and EB
=400 pN |im2 for 0 < i < 50 (im. The cubic force-distance function in Fig. 7.2 is used
with the same parameter values. The model is started from the same initial conditions.
(A): There is only internal viscosity, i.e. y= 100 pN ms/24 nm and CN= 0. The flagellum
becomes 'quiescent' when the bend propagates to the tip. (B): There is only external
viscosity, i.e. y = 0 and CN= 5 pN ms/|J.m2. Due to external viscosity-induced perturbations
the basal end beats up and down, which leads to continuous bend initiation.
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internal viscosity, the axoneme becomes quiescent when the bend reaches the
tip. On the contrary, if there is only external viscosity, viscosity-induced
perturbations strongly influence the basal end to move up and down. Since
this rhythmic motion continues for ever, the axoneme never returns to the
resting state.

For the purpose of the following discussion, we shall consider more
general equations instead of equation (7.9a):

The ratio between y and CN plays an important role in determining the
dynamical behaviour of the model described by equation (7.18). If y » CN
the term -yd stabilizes the solution, and hence the dynamical behaviour is
similar to that obtained by equation (7.4a). If y « CN the behaviour is
analogous to that generated by equation (7.9a).

The fourth-order partial differential equations of this kind appear in various
ways (see Section 1.2.3). The general form of these equations is:

3 d) 92d) 34<bi' A^-B^+m (7-"»

where <|) is a state variable defined at space, s, and time, t; A and B are
constants, and F(§) is some nonlinear function. This type of equation is
sometimes called the generalized reaction-diffusion equation (Cohen and
Murray, 1981; Lara Ochoa, 1984; Murray, 1989), but also named the
Kuramoto-Sivashinsky equation (Sivashinsky, 1977, 1979; 1980; Michelson
and Sivashinsky, 1977; Sivashinsky and Michelson, 1980; Kuramoto, 1984;
Hyman and Nicolaenko, 1986). Similar equations are also proposed in quite
different contexts (Pumir et ah, 1983; Hooper and grimshaw, 1985; Chang,
1986; Chen and Chang, 1986; Thompson and Virgin, 1988). The second order
term in equation (7.19) corresponds to the diffusion process. When A > 0 spatial
perturbations are stabilized (normal diffusion), though when A < 0 they are
destabilized (negative diffusion).

It is instructive to consider that the internal shear force, S, is proportional
to the shear, a, as a linearized form of the cubic force-distance function in
equation (7.2), or as a limit of zero time-delay in equation (5.88). Then,
equation (7.18) is analogous to equation (7.19) when y = 0. This situation
corresponds to negative diffusion, leading to instability. Indeed, Brokaw
(1972b, 1975) pointed out that the presence of internal viscosity (i.e. y > 0)
can stabilize the wavelength. The stable wavelength arises because the
situation y > 0 amounts to the normal diffusion, and hence stabilization.

Now consider the effects of curvature control on solutions to equation
(7.9a). There are only even powers of the space derivatives, so that symmetry
holds with respect to space, 5. (Both the equation and boundary conditions
are invariant under the spatial inversion s -> -s.) As a result, base-to-tip
and tip-to-base waves are potentially equivalent (see Fig. 5.19). One way
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Figure 7.16 Dynamical behaviour of the self-oscillatory axoneme under free-end
boundary conditions, a is plotted as a function of space, s, at 20 ms intervals. The axonerne
has only self-oscillatory segments, i.e. Kt = 60 pN/24 nm, Qt = Qu = 250 pN and EB =
400pN (im2 for 0 < 5 < 50 (i.m. The cubic force-distance function in Fig. 7.2 is used
with the same parameter values. The model is started from the same straight configura-
tion. (A): The 'homogeneous' self-oscillatory axoneme is allowed to develop bending
waves. (B): The self-oscillatory axoneme with a 10 ujn-long passive region at the tip.
Unidirectional bend propagation results from this asymmetric structure. (C): The 'homo-
geneous' self-oscillatory axoneme under the influence of the curvature-control mech-
anism, in which gi = 0 for K > 0 and Qu = 0 for K < 0. Unidirectional bend propagation
is caused by the feedback function which is asymmetric about K = 0.

by which unidirectional propagated waves are obtained is to introduce the
curvature feedback control. The curvature of the axoneme can only be de-
fined when two separate positions are specified (or mathematically, the
curvature, K, is denned as a space derivative of shear: k = da/ds). This au-
tomatically induces the spatial coordination in violation of the s -» -s
symmetry because of the first space derivative, 3a/ds, which is necessary in
maintaining bend propagation in one direction (see Fig. 5.18). An alternative
way of demonstrating unidirectional bend propagation is to take into account
the structural asymmetry such as the basal elastic component and the passive
terminal piece.
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As a concrete example, let us consider an axoneme with self-oscillatory
behaviour. By adopting Ke = 60pN/24 nm and the cubic force-distance
function for 0 < 5 < 50 (im, we can obtain a model with 'homogeneously'
distributed self-oscillatory segments. Simulations were carried out from
straight-line initial conditions in the following three cases. When the
axoneme is 'homogeneous' two waves initiate at both ends and propagate in
opposite directions (Fig. 7.16A). If the distal 10|im of the axoneme was
replaced by the passive region without active force-generating systems, then
unidirectional bend propagation can occur (Fig. 7.16B). If the curvature-
control mechanisms are introduced such that subsystem I is turned 'off when
K> 0 and turned 'on' when K < 0, unidirectional bend propagation can also
occur (Fig. 7.16C).

By incorporating the curvature feedback control into theoretical models,
unidirectional bend propagation has been demonstrated. Although these
models successfully generate bend propagation from base to tip, important
and interesting aspects have been missed. In the absence of the curvature-
control mechanism, models lose their ability to propagate bending waves in
one direction. The failure of unidirectional bend propagation is not a 'defect'
of the models, but a 'merit' inherent in the system suspended in the viscous
medium (cf. Sivashinsky and Michelson, 1980). There is the possibility that
such a system shows a wide variety of spatio-temporal behaviours. Complex
dynamical behaviour of this kind is one of the most interesting topics in
modern physics, biology and chemistry, (see books by Manneville et ai, 1989;
Jen, 1990; Serra and Zanarini, 1990; Weisbuch, 1991; see also Murase and
Matsuo, 1991).

Notes

It is possible to introduce a time delay between the turning 'off of subsystem I
and the turning 'on' of subsystem II. In this case, «, + nu # 1, so that the time
delay explicitly defines the refractory period.
The 24 nm interval of attachment sites (corresponding to a stroke distance of a
dynein) is taken as unity for convenience. The sliding coordinate x is then defined
as a distance between a dynein and an attachment site within the unity (i.e. 0 < x
<1).

In Chapters 7 and 8 only a single unit of sliding is allowed (0 < o < 1). Although
this limits the model to simulation of the small-amplitude oscillations, equation
(7.3b) holds and hence the model is easy to analyse. Chapter 9 deals with an
extension of the present model for the large-amplitude oscillations. In this case,
equation (7.3b) must be replaced by x = mod(o, 1).
Provided that only a single unit of sliding is allowed (i.e. 0 < x < 1), the
dimensionless sliding coordinate, x, and the shear angle, o, are related by the
proportionality constant h/24 nm, where h is the interval between adjacent
microtubules in the plane of bending and 24 nm is the interval between adjacent
attachment sites (Hines and Blum, 1979). For convenience, h = 24 nm is assumed
and then c =x.



8 Simplified models for ciliary
dynamics

In this chapter the excitable dynein model developed for flagellar movement
is modified to display ciliary-like beating patterns. To generate asymmetric
beating patterns typical of cilia, two types of asymmetries are introduced to
the dynein force-generating system: (i) a circumference asymmetry between
the two opposed dyneins; and (ii) a longitudinal asymmetry along the axoneme.
Besides the above asymmetries concerning dyneins, a structural asymmetry is
further incorporated into the model reflecting the basal structure and passive
region at the tip.

In Section 8.1 we summarize the theoretical and experimental studies.
In Section 8.2 we develop an isolated-segment model which involves two
opposed dyneins with circumference asymmetry. This segment model serves
as a functional unit of an intact ciliary system. In response to externally
imposed stimuli the unit exhibits three types of dynamical behaviours: (i) an
oscillatory type with rhythmic activity; (ii) a quiescent type, i.e. cessation of
rhythmic activity; and (iii) an excitable type, in which superthreshold stimuli
trigger a single active response. The responsiveness of this unit to a stimulus
depends not only on its direction {directional sensitivity), but also on its
timing {refractoriness). The term mechano-sensitivity is used to describe this
kind of responsiveness.

Keeping the longitudinal and structural asymmetry along a cilium in mind,
many such units are arranged one-dimensionally to form a ciliary system in
Section 8.3. Like bend propagation in the flagellar system, the activity of
dyneins is coordinated via functional interactions so that a bending wave
propagates along the cilium. Of particular interest is the functional hierarchy
in ciliary dynamics, which is discussed in Section 8.4. Depending on para-
meter values, the ciliary system also displays three types of behaviours: (i) an
oscillatory type, which refers to an intrinsic repetitive activity with alternate
effective and recovery strokes; (ii) a quiescent type, which refers to a resting
state at the end of the effective or recovery stroke; and (iii) an excitable type,
which refers to the mechano-sensitivity of a quiescent cilium to external
stimuli leading to a single beat-cycle.
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In order to emphasize the functional hierarchy mentioned above, let us
consider a 'field' over which many cilia are arranged (Fig. 8.1). The activity
of cilia will be coordinated via hydrodynamic interactions so that a wave of
ciliary activity (known as the metachronal wave) passes over the 'field'. We
now know that there are two waves at different levels: (i) a bending wave
that propagates along a cilium; and (ii) a metachronal wave that propagates
over a ciliated 'field'. Both wave phenomena seem to be based on similar
excitable/oscillatory units with mechano-sensitivity (i.e. units as excitable
dyneins for bending waves and as individual cilia for metachronal waves).
This suggests that a universal principle can be applied to different wave
phenomena.

8.1 Introduction

For a ciliary cycle to have an alternate effective and recovery stroke, there
must be some asymmetry between the two opposite sides of the axoneme.
Rikmenspoel and Rudd (1973) assumed two different types of active mo-
ments - standing and travelling moments. Sugino and Naitoh (1982) esti-
mated two different sliding patterns (see Section 5.3.5). Their estimated
patterns suggest that dynein activity is initiated at the base of a doublet and
propagates toward the tip (see Fig. 5.29). Averaging this active region in
doublets on each half of the axoneme, one finds that the active region on one
half is distributed almost over the whole length of the axoneme during most
of the effective stroke, whereas the active region on the other half propagates
gradually to the tip during the recovery stroke. The two different sliding
patterns have been termed synchronous and metachronous sliding (Sleigh and
Barlow, 1982; Brokaw, 1989).

Although different cilia and flagella show different types of dynamical
behaviour (see Chapter 4), it is possible that the same axoneme also exhibits
a wide variety of beating patterns under different conditions. It is now
accepted that intraciliary Ca2+ ions play an important role in controlling
physiological parameters such as the beat pattern (Naitoh and Kaneko, 1972;
1973), activity (Satir, 1975; Gibbons and Gibbons, 1980a; Stommel, 1986)
and direction of the bend propagation (Holwill and McGregor, 1975; 1976).

Naitoh and Kaneko (1972; 1973) observed that detergent-treated Paramecium
are able to swim forward at low Ca2+ concentrations (< 10~6 M Ca2+) and
backward at high Ca2+ concentrations (> 10"6 M Ca2+) because of ciliary re-
versal (Fig. 8.2A). Lateral cilia of mussel gill (Fig. 8.2B) are quiescent (Satir,
1975; Stommel, 1986) as Ca2+ concentration increases above 10~6 M, although
they beat continuously below this concentration. The resultant quiescent cilia
show strong mechano-sensitivity, in which mechanical displacement of quies-
cent cilia with a microneedle induces one or more normal beat-cycles
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Excitable / oscillatory cilia

Metachronal Wave

Figure 8.1 Two waves at different levels. The upper panel: Dynein cross-bridges are
arranged along each doublet in the axoneme. Dark and white circles indicate active and
preactive dynein cross-bridges. The coordination in time and space of the activity of
'excitable' dyneins gives rise to bending-wave propagation at the level of a cilium. The
lower panel: Cilia are arranged in rows across and along the 'field'. In one direction,
cilia beat synchronously; while in another direction they beat metachronously. Thus the
coordination in time and space of the activity of individual 'excitable/oscillatory' cilia
leads to metachronal wave propagation over a dense mat of cilia. M.D. and E.D. rep-
resent the directions of the metachronal wave and the effective stroke, respectively. A
full cycle is conveniently divided into 6 stages to which the numbers 1, 2,..., and 6 are
assigned. From Murase (1990). Reprinted with permission.
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Figure 8.2 Ca2+-induced behavioural changes in cilia and flagella. For each panel, the
situation at low Ca2+ concentrations is on the left; the high case is on the right, with
several different stages of a beat cycle numbered. (A): Paramecium. (B): Mytilus gill.
(C): Chlamydomonas. (D): Sea-urchin sperm. (E) Crithidia.
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(Stommel, 1986). Isolated axonemes of Chlamydomonas flagella (Fig. 8.2C)
beat asymmetrically at low Ca2+ concentrations (< 10"7 M Ca2+), whereas they
beat symmetrically at high Ca2+ concentrations (> 10"6 M Ca2+). Between the
two dynamical states, there is a range of Ca2+ concentrations where the iso-
lated axonemes are quiescent (Bessen et al., 1980). Sea-urchin sperm flagella,
normally beating, becomes quiescent at high Ca2+ concentrations (Fig. 8.2D;
Gibbons and Gibbons, 1980a). In demembranated cells of Crithidia, two
distinct modes of tip-to-base or base-to-tip bend propagation occur depending
on Ca2+ concentrations (Fig. 8.2E; Holwill and McGregor, 1975; 1976).

The studies on Chlamydomonas flagella suggest that the Ca2+ responses are
inherent in the axoneme itself, and cannot be assigned to the basal body
components. The central tubules in these Chlamydomonas axonemes seem to
regulate beating patterns, because axonemes lacking central tubules beat
symmetrically, quite independent of Ca2+ concentrations (Hosokawa and Miki-
Noumura, 1987), and there is a structural asymmetry inherent in the central
tubules-central sheath complex (Witman et al., 1978).

Although continuous rotation of central tubules was observed in Paramecium
(Omoto and Kung, 1979) and Chlamydomonas (Kamiya, 1982), this was not
the case for the compound cilia in the ctenophore Pleurobrachia (Tamm and
Tamm, 1981). Nevertheless the compound cilia did exhibit similar - or
usually more complex - Ca2+-induced changes in waveform (Sleigh and Barlow,
1982). Thus, the effect of the continuous rotation of central tubules on the
waveform is not clear.

Change in waveform must involve some change in the pattern of interdoublet
sliding. Ca2+ ions are, therefore, considered to act on either the dynein force-
generating system (Mohri and Yano, 1982) or the radial-spoke control system
(Warner and Satir, 1974; Witman et al., 1978), or perhaps even both systems
at once (Summers and Gibbons, 1971). At present, it is not known where the
Ca2+-binding component is located within the axoneme.

In this chapter, we do not attempt to explain how Ca2+ affects flagellar and
ciliary behaviours. Instead, the model for flagellar beating is modified in such
a way that it describes various types of ciliary-like beatings. Once a close
correlation is specified between changes in parameter values and behavioural
changes in the model, it will then be possible to make a comparison between
the response of the model to changes in parameters and the response of real
flagella to changes in Ca2+ ions.

8.2 Dynamic properties of the opposed dyneins

As the first step in developing a model for ciliary beats, let us consider an
isolated ciliary segment which involves the asymmetrically opposed dynein
subsystems I and II. This allows us to focus on functional properties
necessary for asymmetric ciliary beating.
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8.2.1 A segment model

Suppose that internal shear force, S, is balanced to internal viscous shear
force, yda/dt, and an external shear force, Z. The full system of equations has
the form:

y-=S+Z (8.1a)
at

x =a
S =Fjnj + F,,(l - «,) -Ke(a- ct0)

^i = QiOc - xx)(x - x2)(xc - x)

Fm = Qn(x- x[)(x- x'2)(x'c - x)

[1 0<x<5, , . .
n>=\0 S,<x<1 f0TX<°

[ 1 0<x<S2 . . .
«i=In c <r^1 forx>0.

10 S,<x<1

 Equation (8.1a) describes the force balance within the segment. Like in
Chapter 7, the analysis in the present chapter is limited to the range of small-
amplitude movement 0 < a < 1, so that equation (8.1b) holds. Equation
(8. 1c) defines the internal shear force. Cubic force-distance functions are used
as defined by equations (8.Id) and (8.1e). Hysteresis switching functions are
described by equations (8.If) and (8.1g). Note that n, + na = 1, where n, and
nn are fractions in the 'on' state for subsystems I and II, respectively. The
parameters used are: xt = 0.1,x2 =0.3,x2 - 1.0, x\ = x'2 = 1.1, x'
z = 0; Q: -300pN, Qa = 100pN; S, = 0.2, S2 = 0.8; £, = kn= 0;Ke = 1pN/24nm,
a0 = 0.7; y = 50pNms/24nm. Initial conditions are: a = 0.3 and n, = 1 at
t=0.
 Only the internal viscosity is considered in this section. The external shear
force, Z, is just introduced to examine the behaviour of this system. The
external force, Z, may be interpreted as an active shear force produced by a
dynein in the axoneme proximal to the segment under consideration. Al-
though such an external force must be cancelled out in the normally beating
cilium because of the continuity of the sliding microtubules (cf. Newton's
third law), the study of this 'artificial' isolated system would help us to
understand not only how excitable-oscillatory behaviour appears but also
how mechano-sensitivity occurs at the level of dynein system.
 Experimentally the external force, Z, may arise when bending movements
are constrained (cf. Kamimura and Takahashi, 1981; Kamimura and Kamiya,
1989) so that only sliding movements are allowed to occur against the
stiffness of the microneedle. Here the resistive force of the microneedle may
contribute to the external shear force.
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For the purpose of the following discussion, let us introduce potential-
energy functions Ut for subsystem I and Un for subsystem II. They are ob-
tained by integrating the force-distance functions Ft and Fn (see equation (7.2))
with respect to x, respectively:

U ,(x)=-| F,(x)dx i=I,II. (8.2)I=-F,

The total potential-energy functions U[ and U'n are also denned as a sum
of the original potential-energy functions given by equation (8.2) and the
potential function obtained by integrating the elastic shear resistance:

Ul(x)=-fMix)-Ke(a- o0)}dx i = I,II. (8.2')

Jo
When Ke is taken to be a small value (say 1pN/24nm) there is little
difference between the potential-energy functions for the dynein system only
as defined by equation (8.2), and the total potential-energy functions as
defined by equation (8.2').'

8.2.2 Excitable behaviour of the segment model

Figure 8.3 depicts how an excitable behaviour arises in the opposed-dynein
system. To understand the behaviour of this system, potential-energy func-
tions and corresponding 'on-off switch dynamics are shown in the upper
part. Potential-energy functions [/, and Un are denoted by solid and broken
curves, respectively. Panels a, b, c and d correspond to stages denoted by a,
b, c and d in the time-course of x (= a). A hysteresis switching function for
a dynein in subsystem I, « is shown in the inset. Note that « = 1 - n,.

Initially, the dynein in subsystem I is shifted above the threshold (= 0.3) as
denoted by panel a. Active sliding takes place until the dynein reaches the
switching point S2 (= 0.8) at which the dynein in subsystem I is turned 'off
(denoted by a white ball), and instead, a dynein in subsystem II is turned 'on'
(denoted by a black ball) (panel b). Since the state at x = S2 in subsystem II
is less stable, the backward sliding spontaneously occurs until the dynein
reaches the other switching point S, (= 0.2) and the dynein in subsystem II is
turned 'off and the dynein in subsystem I is turned 'on' again (panel c).
Since the location of the switching point 5, (= 0.2) is less than the threshold
value (= 0.3) on the sliding coordinate, x, the dynein in subsystem I moves
to the left as indicated by a leftward arrow in panel c. Finally the system
returns to its resting state, and becomes quiescent (panel d).

The resulting time-course of x looks like an 'impulse' or an 'action poten-
tial' of the nervous system. A single action of this kind arises only when a
momentary shift in shear is applied in a certain direction, though not in the
opposite direction. This amounts to directional sensitivity. In addition, there
is a time-interval (i.e. a refractory period) during which the responsiveness
of the system to a second stimulus is reduced or absent (cf. Section 6.4.5).
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Figure 8.3 Behaviour of the ciliary segment model. The time-course ofx (= o) is shown
in the lower panel where typical stages are marked by a, b, c and d. The upper part
shows potential-energy functions {/, for subsystem I (plotted by solid curves) and Uu for
subsystem II (plotted by broken curves) given as a function of sliding coordinate x. On
these potential functions black and white balls are drawn. Black balls indicate dyneins
in the 'on' state and white balls indicate dyneins which have just turned 'off. These
switching dynamics are described by a hysteresis function as shown in the inset. Note
that nl + nn = 1, where nx and nB are fractions in the 'on' state for subsystems I and II,
respectively. Each panel corresponds to each stage in the lower panel (see text for
HfitailsY
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8.2.3 Mechano-sensitivity of the segment model to external stimuli

It is interesting to investigate how oscillations appear in this 'quiescent'
system. Also of interest is to understand how this system is characterized by
directional sensitivity. To study these dynamic properties of the system, a
step change of an external force, Z, is applied to the system.

Figure 8.4 shows the responsiveness of the system to different values of
external force steps beginning at f = 30ms (panel B). In each case, the
external force is initially set at zero (i.e. Z = 0 at t = 0) and calculations are
started with the same parameter values and initial conditions as those in the
previous subsection. At t = 30 ms, a sudden change occurs in the external
force from zero to a new level at which it is held constant. The magnitude of
the force applied to this system is shown in each panel.

When Z = 2.0pN (or less than this critical value), active sliding is not
triggered. Of course a negative value of Z (say Z = -2.0pN) causes no
significant effects on this 'quiescent' system. However, when Z = 2. 1 pN, this
'quiescent' system shows 'impulse trains' or 'oscillations' with low fre-
quency. At Z = 3.0pN, the frequency is increased without change in the
shape of each 'impulse'. At Z = 6.0pN, the time-course of x seems to be
reversed with respect to x = 0.5 (i.e. the sharp peaks appear at x = 5, instead
of 52 as in the case of Z = 3.0pN), but the frequency remains almost con-
stant. At Z = 8.0pN, the system is forced to move into another stable state
and becomes quiescent.

The functional properties mentioned above can be interpreted in terms of
the modified form of a potential-energy curve in the presence of external
shear force, Z. Figure 8.5 and panels A and C of Figure 8.4 show the
'effective' potential-energy functions under the influence of various values of
the constant external force, Z. Integration of constant force Z with respect to
x leads to -Zx. Thus the 'effective' potential function is obtained when -Z x
is superimposed upon UYor Un.

The positive value of Z decreases the potential barrier of the 'effective'
potential-energy function for subsystem I, which causes instability of a
metastable state leading to oscillations similar to the case of Z = 2.1 pN in
Figure 8.4B. The forms of potential-energy curves for subsystems I and II are
exchanged as Z is increasing (see also Fig. 8.4A.C), so that the time-variation
ofx is exchanged as seen in the cases ofZ = 3.0 and 6.0pN in Figure 8.4B.
A further increase in Z causes a new stable state at x = 1.0 in subsystem II
(since shear is restricted to the range 0-1). Once the dynein is trapped in this
stable position, it cannot overcome the 'effective' potential-energy barrier.
As a result, oscillations are no longer sustained and the system becomes
quiescent for Z = 8.0pN in Figure 8.4B.

In contrast, the negative value of Z increases the potential-energy barrier in
subsystem I and increases the slope of the potential-energy curve in subsystem
II (see the panel denoted by Z = -2.0pN in Fig. 8.5), so that no qualitative
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Figure 8.4 Panels A and C illustrate 'effective' potential-energy functions for subsys-
tems I and II at different values of Z (see also Fig. 8.5). Panel B shows time variation
of x (= o) for various step changes in the external shear force, Z. All simulations start
with the same initial conditions and Z = 0. The system exhibits a single action, and
becomes quiescent. At t = 30 ms, a sudden step change in Z is applied to the quiescent
system whose value is shown in each panel. No response occurs when Z < 2.0 pN, but
the system exhibits oscillations with low frequency at Z = 2.1 pN. With increasing Z up
to 3.0 pN the frequency is increased. When Z is further increased the slowly increasing
phase in x gives way to the rapidly increasing phase, so that at Z = 6.0 pN, the shape
of the time variation of x is reversed with respect to x = 0.5. That is, the slowly de-
creasing phase is followed by the rapidly decreasing phase. At Z = 8.0 pN, the system
no longer exhibits oscillations, and becomes quiescent.

change appears in the asymmetric form of the potential-energy functions,
even though the strong negative value of Z is imposed. Thus, directional
sensitivity is ascribed to the asymmetric form of potential-energy functions.

8.3 Ciliary dynamics

8.3.1 A ciliary model

A 10 Jim long ciliary axoneme is assumed to be 'inhomogeneous' reflecting
the longitudinal and structural asymmetry (Fig. 8.6). A typical set of
parameter values for each region is given as follows. EB = 300 pN urn2.For
the basal active region (0 < * < 0.2^m): g, = 300pN, Kt = 300pN/24nm;
*,=0.1,*2=0.3,x3= 1.0, x[ =x'2=0.85, x'3=0;5t=0.2,S2=0.8;kx=

ka = 30 pN/24 nm; a0 = 0.7. Potential-energy functions denned by equation
(8.2'), U[ and [/ , are shown in the left panel of Figure 8.6B. Note that
curves 1 and 2 correspond to the cases of Qn = 1000 and HOOpN, respec-
tively. For the rest of the active region (0.2 < s < 8 ^m): Qx = Qn = 300pN;
Ke - 1 pN/24nm; and the other parameters are the same as for the basal
region. Potential-energy functions denned by equation (8.2), Ul and Ua, are
shown in the right panel of Figure 8.6B. For the passive terminal region
(8<i< 10um): &=Qn=0;Ke= 1pN/24nm;o0=0.7.
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Figure 8.5 'Effective' potential-energy functions for subsystems I and II under the
influence of the external force, Z, are plotted as a function of the sliding coordinate x
at different Z values. 'Effective ' potential-energy functions are obtained by superimpos-
ing -Zx upon U, or Uu. The left and right figures depict these effective potential func-
tions for subsystem I and II, respectively. As Z is increased from -2.0 to 8.0 pN, the
shape of the potential energy for subsystem I is exchanged for that of subsystem II.

Only a single unit of sliding (i.e. 0 < a < 1) is allowed; thus the model is
limited to simulation of small-amplitude oscillations. Sliding coordinate, x, and
shear angle, a, are related by the proportionality constant h/24 nm, where h
is the separation between adjacent doublets in the plane of bending and
24 nm is the interval between adjacent attachment sites (Hines and Blum,
1979). For convenience, h = 24nm is assumed and then o = x is obtained.

For all simulations, a 10 ^.m-long cilium was divided into 50 segments of
length 0.2 |im. As the initial conditions, the cilium was straight (da/ds - 0 at
t = 0 for 0 < s < 10p,m), dyneins in subsystem I were in the 'on' state for
all the active region of the axoneme («, = 1 at t = 0 for 0 < s < 8|Jm), and
all the segments were in the same sliding coordinate (x = 0.1 at / = 0 for
0<5 < 10|a.m).

Boundary conditions at the distal (free) end of a cilium require that
external forces and moments vanish. A vanishing moment at the free end
implies that the curvature vanishes (cf. Table 7.1). Thus
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Figure 8.6 Ciliary model showing the structural, longitudinal and circumference
asymmetry. (A): A hysteresis switching function for a dynein in subsystem I. (B): The
left panel shows potential-energy functions U[ and U^ which are the sum of each
original potential-energy function and the potential-energy function due to a basal elas-
tic component. Curves 1 and 2 correspond to the cases of Qn = 1000 and HOOpN,
respectively. The right panel shows potential-energy functions Ul and Un. The potential-
energy barriers are indicated by the arrows. Since the potential-energy function for
a passive elastic component in the rest of the active basal region is small, U[ and {/
are almost equivalent to U, and £/,,. (C): A schematic representation of a ciliary axoneme.
The basal active region (0 < s < 0.2 |j.m), the active region (0.2 < s < 8 |J.m) and
passive region without dyneins (8 < 5 < 10 |im). From Murase (1990). Reprinted with
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FN(s = L)=O, ^fJ^=0. (8.3)

The boundary conditions at the proximal (pinned) end require that the
velocity and moments vanish. Since -CNVN= dFJds from equations (5.29)
and (5.31), the pinned conditions are

^ =o)=o> ae^=o)=o (g4a)
as ds

If the filaments are individually pinned at the base, then

a(0) = 0(0). (8.4b)

An alternative set of boundary conditions are that the axoneme is clamped
at the base:

^ ^=0, 9(,=0)=0. (8.5a)
ds

If the filaments are tied together at the base, then

a(0) = 0. (8.5b)

In both sets of boundary conditions one can assume a(s) = Q(s) at any point,
s, along the axoneme from equation (7.7), and similar results can be obtained.
Of course, in the clamped-end case one must introduce a short passive region
at the basal region to allow sufficient sliding over a full dynein cycle, as
discussed in Chapter 7. In the present chapter we will consider the pinned
boundary conditions at the proximal end.

The complete system of equations and boundary conditions have the form:

d 2S. 34a da
d s2

+ £r 1 -i 4
d s dt

T T+£b-+CN-=0 (8.6a)

                        x = a

       S =F,/i, + Fn(l -«,) -Ks(a-c0)

F =[Qi(x-x,)(x-x2Xxc-x)-k{(x-x,) 0<x<5,
 1 [Qi(x-xtXx-x2)(xQ-x)      S, <x<1

p = lQu(x-x[){x- x'
2Xx'
c -x)    0<x<S2 " [Qn(x-*,)(*-x2)(xc-x)-kn(x-x,) S2 <x<1

   "1={o s1<x<i forx<0

       fl 0<jc<52  . . n
      "i=in c ^.^i   forx>0

0 S,<x<1
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^ ) =0; ^>=0 (8.6h)
ds ds

^ P =0; 3ffi=0. (8.6i)
ds as

Equation (8.6a) describes the moment-balance equation. Modified cubic
force-balance functions are used for subsystems I and II, as defined by
equations (8.6d) and (8.6e), respectively. The pinned-basal-end and free-
distal-end conditions are represented by (8.6h) and (8.6i), respectively.

In this chapter in order to obtain larger angles as a result of a single unit
of sliding, the total angle shown in the figures was amplified twofold.

8.3.2 Repetitive beat-cycle

Figure 8.7 shows a full cycle of the model behaviour when the parameter
values listed in the previous section, and Qa = 1100 pN (0 < s < 0.2 |xm) were
used (see Fig. 8.6). Figure 8.7A shows a recovery stroke of a cilium (right)
and sliding patterns plotted against space, s, and time, t (left). Each contour
plot of the sliding patterns corresponds to each stage during successive
changes in the shape of a cilium. Time, t, develops backward (from 0 to
35 ms) as indicated by the arrow. Sliding is initiated at the base and triggered
successively to the distal part in accordance with the propagation of a bend.
This sliding pattern may account for the metachronous sliding. The model
cilium pauses at the end of the recovery stroke and commences the beat-cycle
with a full effective stroke.

Figure 8.7B shows an effective stroke (right) and sliding patterns (left).
Unlike the upper left panel, time, t, develops forward (from 35 to 55 ms) as
indicated by the arrow. Sliding is initiated in the basal region and spread out
rapidly along the length of the axoneme. This sliding pattern may account for
the synchronous sliding.

These simulation results are interpreted in terms of 'on-off switches and
triggering events in the following way. Since initially all the dyneins in
subsystem I are in the 'on' state (n, = 1), the dynein in the basal region
would prefer to stay at about x = 0.75, whereas the dynein in the rest of the
active region would prefer to stay at about x = 0.1. (Note that, as shown in
Fig. 8.6, a stable position in subsystem I for the basal active region (0 < s <
0.2 (im) is at about x = 0.75, whereas that in subsystem I for the rest of the
active region (0.2 < s < %|xm) is at about x = 0.1.) Thus there seems to be
'mutual instability' between the basal region and the rest of the cilium with
respect to the stable position of dyneins (see Section 6.6). As a result of a
strong inclination toward the stable position at about x = 0.75, sliding in the
forward direction (i.e. the direction of increasing x) is initiated. Since there is
a relatively high potential barrier in each dynein, active sliding is triggered
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Figure 8.7 Repetitive beating solution of a ciliary model. (A): A 'recovery' stroke
(right) and sliding patterns plotted as a function of space, s, along a length of the cilium
and time, t (left). (B): An 'effective' stoke (right) and sliding patterns (left). (C): The
time-course of x at 5 = 5 (im. This model oscillated with a frequency of 18 Hz. Para-
meters are as in Section 8.3.1. Note that Qu = 1 100 pN for the basal active region (0 <
.y < 0.2 (xm), which corresponds to curve 2 in Fig. 8.6. From Murase (1990). Reprinted
with permission.
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successively along the axoneme. These metachronous or 'slow' triggering
events account for a 'recovery' stroke.

After the recovery stroke, dyneins in subsystem I are turned 'off and
dyneins in subsystem II are turned 'on'. As shown in Figure 8.6B, most of
the active region is in a stable position at about x = 0.9, whereas the basal
region is in a stable position at about x = 0.3. There appears to be 'mutual
instability' again between the basal region and the rest of this system. As a
result of this 'mutual instability', active sliding in the backward direction (i.e.
the direction of decreasing x) is initiated. Since the potential barrier in
subsystem II is relatively smaller than that in subsystem I (see right panel of
Fig. 8.6B), active sliding is rapidly triggered along the length of the
axoneme. These synchronous or 'fast' triggering events account for an
'effective' stroke. This effective stroke leaves the cilium in a position to
begin the next recovery stroke.

The arrow in the left panel of Figure 8.7B indicates the switching point atx =
5,. At t = 55 ms, it is found that the sliding displacements in all the segments are
below this switching point, so that all the dyneins in subsystem II are turned
'off (and those in subsystem I are turned 'on') and the initial conditions are
regained. Since the system is completely reset after a full cycle, it exhibits
repetitive beat-cycles. Figure 8.7C shows the time-course of x at position s =
5 |xm to show that the system exhibits repetitive beat-cycles.

The basic mechanism underlying the repetitive ciliary beating mentioned
above is similar to that discussed in Section 6.6, though the previous model
was studied at the limit of zero external viscosity.

8.3.3 Discontinuous beat-cycle

Quiescence due to 'on-off switch failure. The 'switch-point hypothesis'
by Satir (1984; 1985) suggests that failure of the operation of one of the
switches will produce a quiescence of ciliary beat in a specific stroke
position. To ascertain whether the ciliary model stops beating due to the
failure of one of the switches, the same parameters as in Figure 8.7 are used
except for Qu = 1000pN in the basal region such that the slope of curve 1
of U'n in Figure 8.6 is set to be high enough to prevent dyneins in subsystem
I from switching 'on' in the basal region after the effective stroke.

Figure 8.8 shows the case in which after a single beat-cycle the cilium is
quiescent at the end of the effective stroke. Only the value of Qn is decreased
from the previous case, which affects the behaviour of the basal region in
subsystem II, so that the recovery stroke is the same as that in Figure 8.7.
However, the effective stroke is somewhat different. Especially after the
effective stroke when one switch at the base fails as indicated by the arrow
in the left panel in Figure 8.8B. The basal region is slightly above this
switching point, so that subsystem I is not completely turned 'on' though
the other parts of subsystem I are turned 'on'. As illustrated in Figure 8.6,
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Figure 8.8 Discontinuous beat-cycle of a ciliary model. Each panel corresponds to that
in Fig. 8.7. As shown in the lower panel, the model cilium is quiescent after a single
beat-cycle. Parameters are as in Section 8.3.1. Note that Qa = 1000 pN for the basal
active region (0 < s < 0.2 |im), which corresponds to curve 1 in Fig. 8.6. From Murase
(1990). Reprinted with permission.
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the basal region is in a stable position at about x = 0.3 in subsystem II and
the rest of the cilium is in a stable position at about x = 0.1 in subsystem I.
As a result, there is weak 'mutual instability' between the basal region and
the rest of the cilium. Thus the model cilium cannot initiate its next stroke.

Quiescence due to the failure of dynein activation. A slight change in a
single parameter at the basal region appeared to cause a quiescent mode
in the ciliary model. It is, therefore, interesting to know whether another
quiescent mode arises if a parameter in the other part, say the rest of the
active region, changes. For this purpose, we study what happens as the
potential-energy barrier for subsystem I, £,, is increased.

Figure 8.9A shows the effects of changing &, on the shape of potential-
energy functions. The left and right panels indicate the potential-energy
functions of the basal region and of the rest of the active region, respectively.
The parameter kY in equation (8.6d) is kept at 30pN/24nm in the basal
segment but the rest of the axoneme varies from 0 to 80 to 120 pN/24 nm in
panels B, C, and D, respectively.

As the potential-energy barrier for subsystem I increases everywhere except
for the basal segment, it becomes progressively more difficult to overcome
that barrier, and hence the duration of the pause at the beginning of the
recovery stroke increases markedly. For £, = 120 pN/24 nm, the cilium be-
comes quiescent early in the recovery stroke. Unlike in the quiescent cilia in
Figure 8.8, it is the failure of dyneins to activate in subsystem I that causes
a quiescence of ciliary beat.

Another quiescent mode occurs when we change the potential-energy
barrier for subsystem II, kn, throughout most of the length of the axoneme
(Fig. 8.10). When increasing the potential barrier for subsystem II the cilium
becomes increasingly stable at the end of the recovery stroke. When ku =
120 pN/24 nm the cilium stops beating at the end of the recovery stroke as
shown in Figure 8.10D. The cilium becomes quiescent because dynein
activation in subsystem II fails.

8.4 Ciliary dynamics under the influence of fluid flow

As noted above, at least three different sets of parameters can be found for
which a cilium becomes quiescent at the end of either the recovery or the
effective stroke. The question naturally arises as to whether fluid flow past
such a cilium, such as occurs during a metachronal wave over closely packed
cilia, might act to trigger repetitive beating. To solve this question we must
modify the ciliary model.

8.4.1 A modified ciliary model

Figure 8.1 1 depicts a schematic representation of a cilium under the influence
of fluid flow. When fluid flow at velocity, V, is externally imposed on a
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Figure 8.9 Beat patterns for an axoneme showing the effect of differences in the
potential-energy function for subsystem I, UIt throughout most of the length of the axoneme.
Parameters are as in Fig. 8.6 except that £, = 0, 80 and 120pN/24nm for curves 1, 2
and 3, respectively. The simulations corresponding to curves 1, 2 and 3 are shown in
panels B, C and D, respectively. From Murase (1990). Reprinted with permission.
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Figure 8.10 Beat patterns for an axoneme showing the effect of differences in the
potential-energy function for subsystem II, Ua, throughout most of the length of the
axoneme. Parameters are as in Fig. 8.7 except thatEB = 200 pN |0.m2 and kn = 0, 80 or
120 pN/24 nm for curves 1, 2 and 3, respectively. The simulations corresponding to
curves 1, 2 and 3 are shown in panels B, C and D, respectively. From Murase (1990).
Reprinted with permission.
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Fluid flow V

O V V V V

VN-Vf

Figure 8.1 1 Diagram showing fluid flow at velocity V being applied to a beating cil-
ium. Suppose that a segment with bend angle 8 moves at velocity, VN, in the normal
direction. The normal component of the velocity of the fluid at the segment is: Vs = V-cos0.
Thus the external viscous force per unit length, /N, is proportional to the net velocity,
VN- Vfaccording to the Gray and Hancock (1955) approximation.
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cilium the net velocity of the cilium through the fluid is the difference
between the normal component of the velocity of the cilium, VN, in a fixed
coordinate system, minus the normal component of the velocity of the fluid,
Vf = V-cos0. Thus the external viscous force per unit length, /N, is given by
the following equation

/N = -CN(VN - V(). (8.7)

From equations (5.28), (5.29), (5.30) and (5.32), the basic equation becomes

(38 dvf) d2s a4e
c-lf-£]æf£æf*£-* (8.8)

The initial conditions and the boundary conditions at the tip are the same
as those in Section 8.3.1. But it is necessary to change one of the boundary
conditions at the base as follows:

m^ -^V,. (8.9)
ds

8.4.2 Responsiveness of a quiescent cilium to fluid flow

In the simulations shown in Figure 8.12, the parameters for the cilium were
the same as in Section 8.3.1, except that Qn = 1000pN for the basal region.
The cilium executed only a single beat, and stopped at the end of its effective
stroke. The position of this resting cilium is shown at the top of Figure 8.12.
A constant flow of water in the direction of the effective stroke and over
a particular location (6 < s < 8|0,m) shown was then assumed to begin at
t = 200ms.

When the fluid velocity was 23 u,m/s, the cilium remained stationary.
When V was increased to 24 \im/s, repetitive beating was initiated. Beat
frequency was decreased with an increase in V to 100 Jim/s. Thus, fluid flow
above a certain threshold value can initiate a repetitive beating pattern in a
cilium which would otherwise be quiescent. If fluid flow increases further,
the beat frequency is decreased (e.g. V = 120 u.m/s) and finally the cilium
cannot overcome the fluid force and hence beating ceases (e.g. V = 150 \iml
s). Fluid flow with proper magnitude and direction can accommodate the 'on-
off switches at the basal region and thus facilitate repetitive beat-cycles.

8.4.3 Fluid flow induced beating patterns of quiescent cilia

The same quiescent cilium examined in Section 8.4.2 shows similar respon-
siveness to fluid flow even if the fluid flow is applied to a different location.
For example, if the fluid is applied to location (2 < s < 4 |J,m) the essential
features are not altered but the threshold value for the fluid velocity to induce
repetitive beating is increased to 33 um/s. Figure 8.13A shows the shape of
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Figure 8.12 Effect of fluid flow on a cilium that did not have a repetitive beat-cycle.
x (at s - 5 (im) is plotted as a function of time in order to illustrate ciliary motility. The
cilium in Fig. 8.8 showed only a single beat and stopped at the end of the effective
stroke. The inset shows the position of this resting cilium, the direction of flow of a fluid
with the viscosity of water and its location (6 < i < 8 (im). Fluid begins flowing at
t = 200 ms. Repetitive beating did not occur for V = 23 jim/s. Repetitive beating
occurred for V = 24 (im/s. An increase in V to 100 (im/s caused a slight decrease in
frequency. A further increase in V to 120 (im/s caused a further decrease in frequency
and finally no beating was obtained for V = 150 (im/s. From Murase (1990). Reprinted
with permission.
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30.

Figure 8. 13 Beat patterns for axonemes induced by fluid flow to beat repetitively. The
direction of fluid flow (V = 100 |im/s, location 2 < s < 4 |xm) and the resting position
of the cilium are shown at the top of each of the three panels. Panel A shows the beat
pattern for the cilium described in Fig. 8.8, which had stopped at the end of its effective
stroke. Panel B shows the beat pattern induced by the fluid flow for the cilium shown
in Fig. 8.9, which had stopped at the beginning of its recovery stroke. Panel C shows
the beat pattern for the cilium shown in Fig. 8.10, which had stopped at the end of its
recovery stroke. From Murase (1990). Reprinted with permission.

this cilium throughout its beat when fluid flow is applied to location (2 < s
< 4 |im) at V = 100 |Xm/s. This beating pattern should be compared with the
following two cases (Figs. 8.13B and C) where fluid flow is applied to the
same location (2 < s < 4urn) at the same velocity (V = 100|J.m/s) but in
the 'preferred' direction.

The simulation in Figure 8.9D stopped at the beginning of its recovery
stroke, for reasons discussed above. Figure 8.13B shows that fluid flow with
a velocity 100 ujn/s in the direction of the recovery stroke initiated repetitive
beating.
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Figure 8.13C shows the effect of fluid flow on the cilium in Figure 8.10D
where the cilium had failed to beat repetitively because the parameters were
such that bend initiation did not occur either at the tip or the base. When
fluid flowed (V = 100 p.m/s) past this cilium in the direction of the effective
stroke, repetitive beating occurred.

For each of the simulations shown in Figure 8.13, if the direction of flow
of fluid was opposite to that shown, the cilium remained quiescent. Thus
initiation of repetitive beating by fluid flow requires both that the speed of
flow be above a threshold value and that it be in the appropriate direction.

The quiescent cilia illustrated in the upper part of Figure 8.13A and B
indicate similar resting positions at the end of the effective or at the onset of
the recovery stroke. But they exhibit quite different directional mechano-
sensitivity as indicated by the arrows. This difference can be clearly
explained in terms of 'on-off switches between the opposed subsystems and
dynein activation in subsystem I. On one hand, the cilium (Fig. 8.8 and the
upper panel of Fig. 8.13A) is held in its resting position because a single
switch fails at the base. Thus fluid flow is effective in initiating a recovery
stroke only if it is applied to the cilium in the direction to facilitate the
switch that failed. On the other hand, the cilium (Fig. 8.9 and the upper panel
of Fig. 8.13B) is at rest at the onset of the recovery stroke because dynein
activation in subsystem I cannot be triggered even though dyneins are already
turned 'on' due to a high potential-energy barrier. Thus fluid flow in the
direction that facilitates the activation is very effective.

Similarly to the dynamical behaviour of an isolated segment as examined
in Section 8.2, the present ciliary model also displays refractoriness in which
its responsiveness to the momentary shift in the bend angle is reduced or
absent depending on the time when the stimulus is applied. There seems to
be a hierarchy in the nature of the ciliary dynamics. At a component system
level, an isolated segment shows mechano-sensitivity. At a ciliary system
level, the cilium also possesses mechano-sensitivity.

Since the ciliary model is developed when similar components are con-
nected to each other in a one-dimensional array, it is reasonable to consider
that dynamical properties inherent in the unit are amplified into macroscopic
behaviour of the cilium. The resultant multi-segment system, however,
displayed more variety in the behaviour than does the single-segment system.
An example was that quiescent cilia resting almost in the same position
showed two different types of mechano-sensitivity (Fig. 8.13A and B).

8.4.4 A bridge between experimental observations and simulation results

When considering the effects of Ca2+ on the function of an axoneme, the
simulation results in the present chapter offer some predictions. To obtain the
ciliary-like asymmetric beatings, it is necessary to assume that (i) the length
of the axoneme is short enough; (ii) the dynein force-generating system has
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both circumference and longitudinal asymmetries; and (iii) the axoneme has
structural asymmetry.

Assumption (i) is equivalent to the increase in bending resistance, EB, in its
effect on the wavelength as discussed in Section 6.6. We can therefore expect
that the stiffness of an axoneme may change, or probably increase with the
increase in Ca2+ concentrations. Assumption (ii) may be possible when
regulatory sites, say Ca2+-binding sites are distributed inhomogeneously along
and around the axoneme. Assumption (iii) for the structural asymmetry can
be ascribed to assumption (ii) for the functional asymmetry, so that the
present model can be also applicable to an isolated axoneme without basal
structure.

It is well known that the direction of bend propagation is controlled by
Ca2+ concentrations: at low Ca2+ concentrations only tip-to-base bend propa-
gation occurs, while at high Ca2+ concentrations only base-to-tip bend propa-
gation appears (see Section 4.5.5). As we have discussed in Chapter 7, the
direction of bend propagation depends on the structural asymmetry along the
axoneme. It is, however, possible to ascribe this structural asymmetry to the
functional asymmetry in dyneins via Ca2+ ions.

Interestingly a slight change in a single parameter causes qualitative
changes in the ciliary dynamics such as the transition from oscillatory mode
to quiescent mode. From a point of view of the control theory, the model
behaviours of this kind are worth discussing because it is very efficient to
change dynamics of 'distributed systems' like cilia via a slight change in a
single parameter. The present model analysis would give us a bridge between
experimental observations under different Ca2+ concentrations and simulation
results with different parameter values.

Note

1 This is not always the case for the ciliary model, which will be examined in the
next section, because there is a basal region involving a strong shear resistance in
the model.



9 Large-amplitude oscillations and
bend propagation

Having developed simplified models for small-amplitude flagellar- and ciliary-
like beating patterns in a viscous medium (Chapters 7 and 8), we now turn
to a more realistic model to account for large-amplitude oscillations and bend
propagation. Key assumptions in developing the model are that (i) each
dynein arm has multiple active sites or 'heads', which are distributed along
most of the 24 nm distance between adjacent B-subtubule attachment sites;
and (ii) any given dynein molecule tends to produce force continuously
during interdoublet sliding in one direction and to produce little force during
sliding in the opposite direction. Assumption (i) ensures that sliding move-
ment occurs smoothly, because a single dynein is capable of producing active
force continuously via multiple heads. Assumption (ii) describes directional
sensitivity of the dynein system, which is necessary for regulation of flagellar
oscillations and bend propagation.

Section 9.1 outlines the recent experimental data concerning dynein
mechano-chemistry. Indeed, it is necessary to have virtually complete infor-
mation about dynein mechano-chemistry. However, there has been contro-
versy concerning dynein substructure and function as reviewed by Goodenough
and Heuser (1985a), by Johnson et al. (1986), and by Brokaw and Johnson
(1989). Thus I believe that any theory directed at elucidating the essence of
mechano-chemistry is valuable and necessary at the present time. Section 9.2
summarizes the experimental study of periodically forced flagellar oscillators.
Since this study has a short history, little is understood about the underlying
mechanisms. Section 9.3 outlines the previous excitable-dynein model. As a
model for a short segment, two opposed dyneins are combined with a passive
elastic component in Section 9.4. Likewise in Chapters 6 and 7 the segment
model displays bi-stable and oscillatory behaviours depending on the mag-
nitude- of the elastic components, but differs at large amplitudes. This is
discussed in Section 9.5. Many such segment models are arranged one-
dimensionally in order to develop a model for a whole flagellum. In Section
9.6 the model flagellum is tested for its ability to describe bend propagation.
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When forced oscillations are applied to the basal end of the flagellum by
the sliding displacement, successive bend propagation can occur even in the
absence of a curvature-control mechanism. In Section 9.7 we emphasize the
characteristics of the present model in comparison with the other model.

9.1 Dynein substructure and function

Two distinct interpretations of experimental studies have been proposed for
the two rows of dyneins referred to as outer and inner arms along the A-
subtubule of each outer doublet (see Fig. 4.3). The classical interpretation is
that the inner and outer arms contribute equally to the beating as well as the
sliding movement. This is based on the observations that removal of the outer
dyneins from sea-urchin sperm flagella results in a 50% reduction in beat
frequency without a significant change in beat pattern (Gibbons and Gibbons,
1973), and also results in a 50% reduction of sliding velocity (Yano and
Miki-Noumura, 1981). Recent technical developments in biochemistry and
electron microscopy, however, have provided a new interpretation that the
two types of arms are significantly different in structure and function, and
this has caused a good deal of controversy.

9.1.1 Outer dyneins

The study of outer dyneins has a rich history, and it is a subject of
controversy. Here we begin with different types of models for outer dyneins.

A traditional model of outer dyneins is illustrated in Figure 9.1A.
Goodenough and Heuser (1982), however, proposed another model from the
studies of quick-frozen deep-etched replicas of Tetrahymena and Chlamy-
domonas axonemes, which is depicted in Figure 9.1B, C, D. The Goodenough
and Heuser model assumed that (i) each dynein arm has five morphologically
discrete components; (ii) a single point of the components interacts with the
adjacent B-subtubule; and (iii) the conformational changes of a dynein from
a rigor (Fig. 9.IB) to a relaxed state (Fig. 9.1C) are responsible for the power
stroke (Fig. 9.ID).

On the contrary, another model was provided from studies on the dyneins
of Tetrahymena by scanning-transmission electron microscopy (Johnson and
Wall, 1983a; 1983b) and by kinetic analysis (Shimizu and Johnson, 1983). The
model assumed that (i) each dynein has three active sites called 'heads'; (ii)
there is one ATPase site on each dynein head; and (iii) all the three heads
interact functionally with the B-subtubule in an ATP-sensitive manner.
Besides the above models, there are many others to account for outer dynein
substructure as shown in Figure 9.IE.

The spate of controversy described above probably results from a diversity
in dynein substructure from one species to the next: there are three heads
in the outer dynein arms of Chlamydomonas (Witman et al., 1982) and
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Figure 9.1 Schematic representations of various models of the dynein arm. A and B
are the A- and B-subtubules. (A): Traditional representation of outer and inner arms (see
Figs. 4.3 and 4.4). Diagrams (B)-(D) show the model by Goodenough and Heuser (1982).
(B): Outer arm in the rigor state. (C): Outer arm in the relaxed state. (D): Power stroke
of outer arm. The transition from relaxed (left) to rigor state (middle) is associated with
the power stroke (right). The observer is facing the side of an A-subtubule, seeing the
arms from the perspective of the neighbouring B-subtubule. (E): Other models of dynein.
Left to right: Three-headed bouquet model by Johnson and Wall ( 1983b); three-subunit
mouse model by Heuser and Goodenough (198 1); club model by Witman and Minervini
(1982); Three-subunit rod model by Warner et al. (1977); and hook model by Allen
(1968). From: (A)-(D) Goodenough and Heuser (1982). Reprinted with permission of
the Rockefeller University Press. (E) Johnson and Wall (1983a). Reprinted with permis-
sion.
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Tetrahymena (Johnson and Wall, 1983a; 1983b), and two heads in the outer
dynein arms of sea-urchin sperm flagella (Sale et al., 1985). What is even
more complicated, there do not appear to be any significant kinetic differences
between the three dynein heads of Chlamydomonas and Tetrahymena (Johnson
et al., 1986), though there are functional differences between two-dynein
heads of sea-urchin sperm flagella (Penningroth and Peterson, 1986).

Despite the spate of controversy over structure and function of outer
dyneins, the role of outer dyneins in the control of bend propagation is
considered to be of less importance. One reason is that sea-urchin sperm
flagella (Gibbons and Gibbons, 1973) and some Chlamydomonas mutants
(Kamiya and Okamoto, 1985; Mitchell and Rosenbaum, 1985), which are
lacking the entire outer arm, are still capable of swimming. Another reason is
that other Chlamydomonas mutants with large defects in inner dyneins lack
beating motility (Kamiya et al., 1989). It is therefore concluded that (i) the
inner arms alone are necessary for motility, probably in concert with the
radial-spoke system, and that (ii) the outer arms just amplify this activity.

9.1.2 Inner dyneins

Goodenough and Heuser (1985b) analysed the inner dynein arms of several
different organisms such as sea-urchin, Chlamydomonas and Tetrahymena by
using a quick-freeze, deep-etch technique. Whereas sea urchin 'outer' arms
have two heads and Chlamydomonas and Tetrahymena 'outer' arms have three
heads (see Section 9.1.1), all three organisms have common 'inner'-dynein
substructure. As shown in Figure 9.2, the commonfeatures are that (i) there
are two distinct species of inner arm, one with two heads and the other with
three; (ii) these heads fan out into the interdoublet space; and (iii) they bind
to the A-subtubule with a 24-32-40 nm sequence of intervals rather than the
regular 24 nm interval of outer arms.

Through electron-microscopic analyses of Chlamydomonas flagella, how-
ever, Piperno et al. (1990) provided the new aspects of the molecular
composition of inner dyneins as follows, (i) The inner arms are distinguished
as three distinct structures, (ii) Each inner arm has two 'heads', each having
an ATPase site, (iii) Three distinct inner arms are located in precise positions
relative to the radial spokes, which leads to the 24-32-40nm sequence
of intervals. Though observations (i) and (ii) are inconsistent with those
obtained by Goodenough and Heuser (1985b), observation (iii) is in agreement
with the model shown in Figure 9.2. Since binding sites on the B-subtubule
are available at 24nm intervals (Takahashi and Tonomura, 1978), the
irregular intervals of inner dyneins ensure that sliding movement occurs
smoothly. If, in addition, multiple heads of inner dyneins are functionally
equivalent, they may be causing continuous force generation.

An important observation is that some Chlamydomonas flagellar mutants
with large defects in inner dynein arms that lack beating motility, still
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Figure 9.2 (A): Cross-sectional diagram of a set of A- and B-subtubule, outer and
inner arms, and a radial spoke. (B): Longitudinal configuration of the same set as in (A)
as viewed from right to left. Outer arms are spaced at 24nm (upper part). The two-
headed inner arms are in register with the outer arms, whereas the three-headed inner
arms span the distance between the two outer arms (lower part). The mismatch between
the heads of outer arms and heads of the inner arms would contribute to a smooth sliding
movement. Y-shaped rods represent radial spokes. From Goodenough and Heuser (1 985b).
Reprinted with permission of the Rockefeller University Press.

undergo sliding motility upon perfusion with Mg-ATP and protease (Kamiya
et al., 1989). This observation suggests that (i) non-motile axonemes result
from the loss of a control mechanism, but not from the lack of sliding
motility, and (ii) the locus of control mechanism is in the inner arm. Much
work must be done against external viscosity when axonemes beat in a
viscous medium (cf. Brokaw and Benedict, 1968) as compared with sliding
motion alone (cf. Kamimura et al., 1985). It is, therefore, possible to consider
that (i) the mechanism that controls sliding is quite different from that of
beating, (ii) the functional difference between the sliding and beating motility
is ascribed to the structural and/or functional difference between the inner
and outer arms, and (iii) the irregular intervals of inner arms affect the
control mechanism which converts sliding into bending motion.

9.2 Regulation of flagellar oscillations

It is clear that the minimal requirement for bend propagation is the inner
dyneins in concert with resistive components such as nexin links and radial
spokes. However, little is known about the regulation of sliding among the
nine doublets of the cylindrical axoneme as they are converted into planar
bending waves. Gibbons et al. (1987) investigated these regulatory mechan-
isms by using a new technique in which the sperm head is held in the tip of
a vibrating micropipette (Fig. 9.3A). The micropipette is capable of vibrating
along any axis at frequencies up to 150 Hz. In the following experiments, the
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Figure 9.3 (A): Forced-oscillation apparatus. The tip of the sperm head is held in the
tip of a micropipette by gentle suction (left). The micropipette can be oscillated along
any axis. The planar flagellar beat is approximately in the focal plane of the microscope
when the pipette vibration is set to be in the lateral direction (right). From Takahashi
and Shingyoji (1989). (B): Experiments of abrupt change in the direction of pipette
vibration. The direction of pipette vibration is abruptly changed from lateral (L) to
vertical (V) and back, with a brief stationary period (P) of -20 ms between the two
directions of vibration. Upper panel: The three successive images are schematically
shown for each direction of pipette vibration. Modified from Takahashi and Shingyoji
(1989). Lower panel: Videotaped flagellar images are traced. Broken lines represent
regions of the flagellum that are out of focus. From Gibbons et al. (1987). Reprinted
with permission. Copyright © Macmillan Magazines Ltd.

vibration frequency was kept almost equal to the natural beat frequency of
the flagellum. The direction of pipette vibration was then changed either
abruptly or gradually.

Gibbons et al. first examined the effects of an abrupt change in the
direction of pipette vibration (Fig. 9.3B). The pipette was initially vibrated in
the lateral direction. The imposed movement of the head was within the plane
of flagellar beat. Changing the direction of pipette vibration abruptly from
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Figure 9.4 Experiments of gradual change in the direction of pipette vibration. The
direction of pipette vibration is gradually rotated clockwise (lower panel). The numbers
indicate the rotational sequence (upper panel). Broken lines represent regions of the
flagellum that are out of focus. (A): Four complete cycles of rotation of the direction of
pipette vibration are performed. The flagellar beat plane is wound up by four rotational
cycles. (B): Cessation of the pipette vibration leads to the spontaneous unwinding of the
flagellar beat plane. From Takahashi and Shingyoji (1989). Reprinted with permission.

lateral to vertical, the beating flagellum responds by forming the new beating
plane as the imposed plane of the pipette vibration. This occurs within 50 ms
(~2 beat-cycles). After resetting the vibration direction to lateral, the flagellar
beat plane returned equally as quickly.

The second type of experiments were performed by changing the vibration
direction gradually in a clockwise direction for several cycles (Fig. 9.4A).
The vibration direction was initially set to be lateral and then rotated



Large-amplitude oscillations and bend propagation         289

gradually and continuously. The beat plane of the flagellum followed the
vibration plane of the pipette for at least four complete cycles. Fig. 9.4A
shows selected tracings of a beating flagellum over four cycles. The number
assigned indicates the sequence of rotation. When the vibration was stopped
after the completion of four rotations, the flagellum rotated back anti-
clockwise for the same number of cycles (Fig. 9.4B). An interpretation of
these results is that the pattern of active sliding among nine outer microtubules
can rotate relative to the sperm head. Gibbons et al. (1987) considered that
this active sliding was partially regulated by the central tubule complex,
though the underlying mechanisms are still unknown.

9.3 Brief outline of the previous model

The behaviour of the previous model proposed in Chapter 7 is summarized
by the movement of a 'ball' on the double-minimum-potential as a function
of x (Fig. 9.5). Assuming that attachment sites are in register with dynein
arms, a population of dyneins in a small segment of the flagellum is
approximated by a localized distribution within a single sliding unit (see Fig.
9.7A). Let x (0 < x < 1) be a dimensionless distance between the dynein arm
and its corresponding attachment site such that x = 1 corresponds to 24 nm.
Xj, x2 and xc are positions at which the original cubic force function of one
dynein (say, subsystem I) crosses the x-axis (i.e. xlf x2 and xc are boundaries
of force function changes), x^ corresponds to the position where the attach-
ment site is located within a single sliding unit for subsystem I. Similarly, x[,
x'2 and xj are defined for the opposed dynein (say, subsystem II). These x (or
x') values give either stable or unstable positions on the potential-energy
curve obtained from the integration of the cubic force function of subsystem
I (or subsystem II). To produce symmetric beating patterns typical of flagella,
two opposed subsystems are assumed to be the mirror image of each other
(i.e.x, = 1 - x'where/= 1, 2and3).
 The upper and lower hysteresis functions in Figure 9.5 show the switching
'on' and 'off of dynein activity in subsystems I and II, respectively. nY and
% are probabilities of attachment. Sy and S2 are sites of attachment and de-
tachment in subsystem I, while the reverse is true in subsystem II because
one subsystem is the mirror image of the other. This hysteresis switching
function reflects the transition of dyneins, in which, for example, dyneins in
subsystem I are in the 'on' state near attachment site at x = xx and are turned
'off after power stroke for x > S2. Consequently, 'on' and 'off in opposed
dyneins depend on the direction of sliding.
 Suppose that the sliding displacement of xx is given such that dyneins in
subsystem I are in the 'on' state (denoted by a black ball) and those in
subsystem II are in the 'off state (denoted by a white ball) (Fig. 9.5(1)).
Perturbations with superthreshold x values (> xc) cause 'active' sliding in the
forward direction (increasing x) to amplify the initially applied displacement
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Figure 9.5 Diagrams showing hysteresis switching functions and potential-energy
functions for opposed dyneins. The upper and lower panels show hysteresis switching
curves «, (for subsystem I) and nu (for subsystem II), respectively, as a function of the
sliding displacement *. The switching 'on' and 'off of dynein activity is represented by
discrete 1 and 0 values. The solid and dotted lines represent the states of dyneins in the
forward (indicated by right-ward arrows) and backward (indicated by left-ward arrows)
directions, respectively. The middle panel shows movements of a 'ball' on the potential-
energy function, in which the upper part denoted by I indicates the dynamics in subsys-
tem I and the lower part denoted by II shows dynamics of dyneins in subsystem II. For
x =xt dyneins in subsystem I are initially in the 'on' state as indicated by the black ball
and those in subsystem II are in the 'off state as indicated by the white ball (in panel
(1)). The superthreshold perturbation applied (x > xQ) causes active sliding in the forward
direction (in panel (2)). When the sliding displacement exceeds x = s2, dyneins in
subsystem I are turned 'off and those in subsystem II are turned 'on' (in panel (3)).
From Murase (1991a). Reprinted with permission.
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in this direction (Fig. 9.5(2)). The transition of a dynein to the force-
generating state is referred to as dynein excitation or dynein activation. Note
that dynein excitation occurs within the 'on' state (see Section 7.1). When
sliding occurs further to exceed x = S2 (where 0 < xx < 5, < xc < S2 < x2 <
1), dyneins in subsystem I are turned 'off and at the same time dyneins in
subsystem II are turned 'on' following the solid lines in the direction shown
in the n, and nn hysteresis functions, respectively. The occurrence of the
switching 'on' and 'off of dynein activity is indicated by a black ball and
a white ball, respectively (Fig. 9.5(3)). The resultant sliding from xx to x2
corresponds to a 'single' power stroke of the dynein and no further sliding
occurs in the forward direction because of a lack of 'active' force enhancing
the sliding in this direction (cf. low-amplitude assumption).
 Because of the symmetric structure of the two opposed dyneins with
respect to x - 0.5, both xx (or x'2) and x2 (or x[) are metastable positions so
that backward sliding (decreasing jc) does not occur without superthreshold
perturbations in the form of the sliding in this direction. As a result, this
model shows bi-stable behaviour in the absence of any other constraint (cf.
Murase and Shimizu, 1986). However, once the passive elastic component is
introduced with proper magnitude and with the proper equilibrium position,
metastable positions are no longer 'stable' due to the disappearance of the
potential barrier located near xc (or x'
c). Then forward and backward sliding
occur alternately, resulting in oscillations with small amplitude. Note that
sliding direction is associated with the switching 'on' and 'off of dynein
activity, which is characterized by directional sensitivity (see Section 7.1).

9.4 A segment model for large-amplitude motion

For convenience, the cubic function is replaced by a piece-wise linear
function without changing any other essential features of the previous model
as follows:

           (QA-0-lx)   (0 < x < 5,)
        F,{x) = &•E*,(*~ a,)  (S, < x < a2)      (9.1)
        [a-(-0.1(*- l)) ifh < x < \)

where x is a dimensionless distance between a dynein arm and its corre-
sponding attachment site, £, = 0.1(1 - a2 + Sy)/(a2 - Sy), ax = 5,/(l - a2 + $x)
and (2i is the factor corresponding to the number of dyneins. The magnitude
of parameters is in the order: 0 < S, < a, < a2 < S2 < 1. We define x by x
= mod(a, 1), where a is the shear angle between the two adjacent doublets
along which FY functions are periodically arranged (the middle panel of Fig.
9.6). This means that the attachment sites are periodically arranged along the
microtubule as indicated by o = -1, 0, 1 and 2 (which correspond to -24, 0,
24 and 48 nm, respectively). The potential-energy curve for each F1 function
is schematically drawn (the upper panel of Fig. 9.6).
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Figure 9.6 Diagrams showing potential-energy functions (upper panel), force functions
(middle panel) and hysteresis switching functions (lower panel) for the modified excit-
able model. The sliding displacement x is defined by x = mod(o, 1), where o is the 'net'
sliding displacement. Reflecting the periodic structure of microtubules, each function
has the periodic form with respect to the net sliding displacement. Functions n, and na
represent the 'on-off switches in subsystems I and II, respectively. Solid and dotted
lines in nt and % indicate states of dyneins during the forward and backward sliding,
respectively, a = -1, 0, 1 and 2 correspond to -24, 0, 24 and 48 run, respectively, a,
defines the threshold value for sliding in the forward direction. From Murase (1991a).
Reprinted with permission.
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Successive attachment of dyneins is allowed to occur by modifying the
hysteresis switching mechanism (the lower panel of Fig. 9.6). After this
modification, the model possesses the ability to generate large sliding
displacement. Note that the nY (or « ) function represents the switching
dynamics for subsystem I (or subsystem II), and that each solid (or dotted)
line shows dynamics of dyneins in each subsystem during the forward (or
backward) sliding motion. Similarly to the previous model for flagellar
dynamics, both dynein subsystems are assumed to be the mirror image of
each other so that they generate symmetric beating patterns.

Let us consider imposed sliding starting from a = 0 (i.e. x = 0) in the
forward direction. In the previous model, dyneins in subsystem I initially in
the 'on' state are turned 'off when they exceed the switching point at x = S2,
and at the same time the opposed dyneins in subsystem II are turned 'on'
following each solid line in the direction indicated by the arrow (see Fig.
9.5(3)). In the present model, however, dyneins in subsystem I initially in the
'on' state are assumed to be in the 'on' state as long as sliding occurs in the
forward direction. This is based on the assumption that detachment and re-
attachement processes occur very rapidly at x = S2 in comparison with the
velocity of sliding. On the contrary, dyneins in subsystem II initially in the
'on' state are turned 'off at x = St and 'on' at x = S2 during forward sliding.
As a result, the time-dependent 'on-off patterns of dynein activity in sub-
system I are quite different from those in subsystem II. Asymmetric 'on-off
patterns of this kind can be ascribed to directional sensitivity of dyneins. For
each dynein subsystem, the combination of force-distance function and hys-
teresis mechanism results in threshold phenomena.

If there were multiple active sites within a single dynein, they would
contribute to producing continuous sliding in one direction over a single
sliding unit. In the present model, two or three active sites are introduced
instead of a single active site within a single dynein arm (Fig. 9.7), so that
the number of 'balls' on the potential-energy curve shown in the upper panel
of Figure 9.6 should be changed to two or three. Note that two or three
active sites are turned 'on' only when they pass through attachment sites
reflecting the ATP-driven mechano-chemical cycle. This dynamic property
results from the hysteresis switching mechanism of dynein activity. As a
result, the multiple-active-site system shows directional sensitivity.

If all the 'heads' of the outer dyneins were not functionally equivalent, the
inner dynein 'arms' could compensate for the lack of multiple interac-
tions between the 'heads' of the outer dyneins and the B-subtubule. Suppose
the situation is as illustrated in Figure 9.8A. Now consider a small segment
of length As (say, As = 1 |im). There are a lot of inner dynein arms within
this segment. Many such inner arms generate forces which contribute to
sliding movement via the continuity of filaments. The most important
variable is the distance between each dynein arm and its nearest-neighbour
attachment site. If the distribution of the inner dynein active arms within the
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Figure 9.7 Schematic diagrams showing the arrangements of outer dynein arms. Outer
dyneins, denoted by filled ellipses, are located on the A-subtubule at 24 nm intervals.
The attachment sites, denoted by open circles, are located on the neighbouring B-subtubule
at 24 nm intervals. (A): If only a single active site (or 'head') is available on a single
dynein (left), a single distribution can be a good approximation of the population of
dyneins within a small segment (right). (B): Outer arms of sea-urchin sperm flagella
have two heads (left). If two such heads are functionally equivalent, the distribution
splits into two subsets (right). (C): Outer arms of Chlamydomonas and Tetrahymena
flagella have three heads (left). If three such heads are functionally equivalent, the
distribution splits into three subsets (right). From Murase (1991a). Reprinted with
permis sion.

segment is plotted against the distance between the nearest-neighbour sites,
the distribution is not localized like Figure 9.7A, but it splits into two subsets
(see right panel of Fig. 9.8A) because the inner arms are partially staggered
by 8 nm. This corresponds to the situation where each outer dynein has two
functionally equivalent active sites as illustrated in Figure 9.7B. Therefore,
the fundamental formulation of the present model would remain unchanged,
except for the distance between the two split distributions. If each inner arm
has two or three heads (Fig. 9.8B,C), the number of the distribution of inner
dynein active sites is increased but the essential features do not change.
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Figure 9.8 Schematic diagrams showing the arrangements of inner dynein arms. The
inner arms, denoted by filled ellipses, are spaced at repeating intervals of 24, 32 and
40 nm on the A-subtubule, the same period as the radial spokes. The attachment sites,
denoted by open circles, are located on the neighbouring B-subtubule at 24 nm intervals.
(A): Even though a single active site (or 'head') is available on a single dynein (left),
the population of dyneins within a small segment is approximated by two distinct dis-
tributions because the inner dynein arms are staggered by 8 nm relative to the attach-
ment sites (right). (B): If each inner arm has two heads as reported by Pipemo et al. (1990)
(left), the distribution splits into three subsets (right). (C): If inner arms have two or
three heads as reported by Goodenough and Heuser (1985b) (left), the distribution splits
into four subsets (right). From Murase (1991a). Reprinted with permission.

Consequently, it does not matter whether multiple heads of outer dyneins
are functionally equivalent. The significant requirement for the present model
is that active sites, either 'heads' or 'arms', are distributed over the adjacent
sites on the B-subtubule.

9.5 Large-amplitude sliding motion

The behaviour of a single segment is simulated by solving the following
complete system of equations:
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nu(x)=1 for x<0 (9.2g)

[ 1 0<x<5,orS2<x<1 , . . ,_..,^W={o s,<^<s2 fOTX>0 (9-2h)

Equation (9.2a) describes the balance of all the shear forces. The contribution
of multiple active sites must be summed up (see the first term of right-hand
side of equation (9.2a)). y is internal viscosity for sliding motion (taken as
30 pN ms/24 nm). Ke is the force constant of the passive elastic components.
For large-amplitude sliding motion the sliding coordinate, x, is determined
by the shear angle, a, via equation (9.2b). Equation (9.2d) reflects the mirror
image of the two subsystems I and II. Hysteresis switching mechanisms are
represented by equations (9.2e-h).

9.5.1 Free sliding motion

The model proposed here was first tested for its ability to describe free
sliding motion similar to that of the experiment by Summers and Gibbons
(1971). For this purpose, Ke = 0.

As shown in Figure 9.9, this model exhibits steady-state sliding motion
during which dyneins in subsystem I are successively turned 'on' while those
in subsystem II are essentially turned 'off to facilitate active sliding motion
in one direction. It should be noted that this model would amplify the
initially applied displacement in the same direction.

9.5.2 Excitability and oscillations with large amplitude

It is interesting to investigate the dynamic behaviours of this model when
internal shear resistance is imposed corresponding to radial link systems like
the nexin links and radial spokes. In practice, Ks is set to be non-zero.

When the value of Ke is relatively small (say 6pN/24 nm), the system
reaches a stable state after sliding occurs in several units (Fig. 9.10). The
reverse is obtained when the initial sliding displacement is imposed in the
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Figure 9.9 Free sliding movement of opposed dyneins. The net sliding displacement
o (upper), the total number of activated sites within a dynein in subsystem I (middle)
and in subsystem II (lower) are plotted as a function of time t, where o = 0, 2,
4,... correspond to 0, 48, 96,... (run), respectively. Steady-state sliding movement takes
place when three sites are active within a dynein in subsystem I. During active sliding,
one of the three sites within a dynein in subsystem II is alternately turned 'on' and 'off.
This effect can be seen as the wavy line of the net sliding displacement a. The para-
meters are: y= 30pNms/24nm, g, = 250pN, a2 = 0.3, s, = 0.1 and s2 = 0.9. From
Murase (1991a). Reprinted with permission.

opposite direction. Of course, no sliding occurs without initial perturbation.
This behaviour is thus ascribed to 'excitability'.

When the value of Kc is relatively large (say 8 pN/24 nm), the state achieved
after active sliding is no longer 'stable' and oscillations with large amplitude
appear (Fig. 9.ll). Therefore, this system resembles the previous model
(Chapter 7) with respect to the excitability and oscillations, but differs in the
sliding magnitude.

9.6 Bend propagation without curvature control

The most interesting thing to investigate was whether bend propagation can
occur without a curvature-control mechanism. For this purpose, forced
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Figure 9. 10 Sliding movement coupled with the passive elastic component. Parameters
are the same as those in Figure 9.9 except forKc = 6 pN/24 nm. See the legend to Figure
9.9. From Murase (1991a). Reprinted with permission.

oscillations were applied to the basal end by sliding displacement to initiate
successive bends.

The complete system of equations and boundary conditions has the form:

as as dt
x = m o d (a , 1) (9 . 3 b )

S = Z tF .ii, + F n /in] - K e(c - a o) (9 .3c )

3 a 3(0 ) = 0 ; 3 a (0 ) = 0

8 s3  3 s
(9 .3 d )

d a 2(L ) = 0 ; d a (L ) = 0

d s2  d s
(9 .3 e )

O (s = 0 ) = A -sin - t ¥, (9 .3 f)
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Figure 9.ll Large-amplitude oscillations. Parameters are the same as those in Figure
9.9 except for Kc = 8 pN/24 nm. Depending on the direction of active sliding, the 'on-
off patterns of subsystem I are quite different from those of subsystem II. See the
legend to Figure 9.9. From Murase (1991a). Reprinted with permission.

where CN and EB are the external viscous coefficient (taken as 5 pN ms/(J,m2)
and the elastic bending resistance (taken as 1000 pN Jim2). L is the length of
the flagellum (taken as 50 \xm). F,, Fn, nY and na are given by equations (9.2c-
h). The axoneme is assumed to be pinned at the base and free at the tip as
represented by equations (9.3d) and (9.3e), respectively. Equation (9.3f) de-
scribes the periodic driving stimulation at the base. Here A and T are the
amplitude and the period of forced oscillation (taken as 0.5 and 40ms,
respectively).

Figure 9.12B shows the simulated flagellar shape at 5 ms intervals during
bend propagation without a curvature-control mechanism. The simulated
waves were constructed of circular arcs and straight lines as observed in real
flagella (Brokaw, 1965). Figure 9.12A shows the shear angle, a, as a function
of the arc length, s, at 5 ms intervals. Although the peak-to-peak amplitude of
the forced oscillations is equal to a single sliding unit (i.e. 2/1 = 1 corre-
sponds to 24 nm), the peak-to-peak amplitude of propagated waves is larger
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Figure 9. 12 Large-amplitude bend propagation in response to a periodic forced oscil-
lation at the basal end. (A): The net sliding displacement, c, as a function of the arc
distance, s, along the flagellum from the head. Successive o-s distributions are displaced
at 5 ms intervals. (B): The simulated waveforms of the flagellum. The left end corre-
sponds to the basal end to which the forced oscillation is applied. Successive snapshots,
taken at 5 ms intervals, are displaced downward. In equations (9.3), parameters are: CN
=5pNms/nm2, EB = 1000pN^m2, k= 5pN/24nm, 0, = 250pN, a2 =0.3,5, = 0.1,
S2 = 0.9. The period of the applied oscillation is 40 ms. From Murase (1991a). Reprinted
with permission.
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Figure 9.13 Starting transients of a sea-urchin sperm from rest to motion. The tracings,
at intervals of 5 ms, of an observed sperm. From Rikmenspoel (1978). Reprinted with
permission.

than this sliding unit. As shown in Figure 9.12A, sliding occurs in almost
three units (which corresponds to 72 nm) in the axoneme except for the basal
region.

Starting from a completely straight configuration, the model showed a
short duration of starting transients (from t = 0 to 20 ms). The simulated
starting transients partially resembled the observed transients, in which the
motion was started by an increase of the bend near the proximal region as
shown in Figure 9.13. After the transients, steady-state waveforms (from t =
20 to 55 ms) with large amplitude were obtained. There are one or two bends
on the axoneme. The period of the steady-state waveforms was 40 ms, which
was equal to the period of forced oscillation applied at the base. Unlike the
previous model (Chapter 7), it was not necessary to introduce structural
asymmetry such as a long passive terminal region at the tip. This is because
multiple active sites stabilize the bending waves to get rid of perturbations
induced by external viscosity, and also because forced oscillations are applied
to the basal end.

9.7 Essence of the model behaviour

9.7.1 Dynamical behaviours of dyneins with multiple active sites

The formal dynein model with multiple active sites accounts for large-
amplitude oscillations and bend propagation. Even though the two opposed
dyneins initially possess symmetric 'on-off patterns, the applied displace-
ment causes symmetry breaking when the applied displacement is above a
threshold value. The present model does not require that a population of
dyneins be treated as a single distribution as in previous studies (Chapters 6,
7 and 8). Instead, the individual active site of a dynein is assumed to possess
both the directional sensitivity (or hysteresis mechanism) and the displacement
sensitivity.

Figure 9.14 illustrates how symmetry breaking occurs in response to
superthreshold perturbations in the form of the sliding displacement. Let us
consider the case of three active sites within a single dynein. Similarly to
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Figure 9. 14 Diagrams showing hysteresis switching functions and potential-energy
functions for modified dynein model. The upper and lower panels show hysteresis switching
curves «, for subsystem I and nB for subsystem II, respectively as a function of the
sliding displacement x. The 'on' and 'off states are represented by 1 and 0 values, re-
spectively. Solid and dotted lines show states of dyneins during forward and backward
sliding, respectively. The middle panel shows movements of balls on the potential-
energy functions, in which the upper part, denoted by I, indicates the dynamics of three
active sites within a dynein in subsystem I and the lower part, denoted by II, shows the
dynamics of three active sites within a dynein in subsystem II. As sliding movement
takes place, the 'on-off patterns of opposed subsystems become asymmetrical; that is,
for subsystem I three sites are in the 'on' state, while for subsystem II only one of the
three is in the 'on' state as indicated by panel (3). See text for details. From Murase
(1991a). Reprinted with permission.
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Figure 9.5, 'on' and 'off states are represented by black and white balls on
the potential-energy functions. Initially, the 'on-off ' patterns of opposed dyneins
are taken to be symmetric because one of the sites (say site P for subsystem
I and site P' for subsystem II) close to the attachment site can only be in the
'on' state (in panel (1)). Suppose that a superthreshold perturbation, say, x =
1/3 (> a2) is introduced; each site shifts its position by this displacement; that
is, in subsystem I sites P atx = 0, Q atx = 1/3 andR atx = 2/3 (inpanel
(1)) change their positions at x = 1/3, 2/3 and 0, respectively like the 'circular
relation' due to the periodic structure (in panel (2)). The reverse is obtained
for the dynamics of dyneins in subsystem II. As a result of this superthreshold
sliding displacement, the 'on-off patterns become slightly asymmetric (in
panel (2)). Then active sliding takes place automatically in this direction
since the active force in subsystem I is larger than that in subsystem II. When
the sliding displacement is 2/3, the 'on-off patterns become quite asym-
metrical; that is, three sites are in the 'on' state for subsystem I while a
single site is in the 'on' state for subsystem II (in panel (3)).

A similar discussion is available even when three active sites are replaced
by two sites. One can understand that qualitative behaviour is retained when
the balls R and /?' are omitted from each panel in Figure 9.14.

The active sliding once initiated would persist until the sliding in this
direction is interrupted by, for example, the passive elastic component.
Depending on the magnitude of this passive elasticity, oscillations with large
amplitude occur. The present model, therefore, seems to mimic the model
behaviours studied in Chapters 6 and 7 with respect to excitability and
oscillations.

9.7.2 Controversy over structure and function of dynein arms

Recent structural analyses of the outer dynein arms have revealed the
presence of two or three heads which are associated with ATPase sites
(Johnson et ah, 1986; Brokaw and Johnson, 1989). There has been contro-
versy over the role of these multiple heads (see Johnson et al., 1986). One
group considered that there are functional differences between two dynein
ATPases of sea-urchin sperm flagella (Penningroth and Peterson, 1986), and
that all heads did not attach to the B-subtubule (Goodenough and Heuser,
1982; Sale et al., 1985). Another group suggested that there do not appear to

be any significant kinetic differences between the three heads of outer dynein
arms from Chlamydomonas flagella (Shimizu and Johnson, 1983), and that all
three heads interacted functionally with the B-subtubule in the ATP-sensitive
way (Johnson et al., 1986).

If the present study were based on the former consideration, the presence
of inner dynein arms would compensate for the loss of outer dynein arms
(Gibbons and Gibbons, 1973; Yano and Miki-Noumura, 1981). This is
probably true because the inner dyneins are partially staggered, as occurs in
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Chlamydomonas flagella (see Goodenough and Heuser, 1985b; Pipemo et al.,
1990). As a result, dynein arms may be distributed along the distance
between adjacent B-subtubule attachment sites. The distribution of dynein
arms between the adjacent attachment sites is roughly equivalent to the
situation where each dynein has multiple heads (or active sites) which are
distributed between the attachment sites (compare Figs. 9.7 and 9.8).

Consequently, it does not matter whether multiple heads of the outer
dyneins are functionally equivalent or not. Of importance is the assumption
that more than one site (head or arm) can interact with the B-subtubule. This
assumption is consistent with the previous assumption that two rows of
dyneins are staggered at 4nm relative to the rows of attachment sites
(Brokaw, 1982), and that there is a continuous distribution of dyneins
between adjacent attachment sites (Hines and Blum, 1978).

9.7.3 Difference between Satir's model and the present model

Satir (1984; 1985) has detailed a switching-point hypothesis in which he
associates sliding direction with 'on' and 'off of dynein activity. The present
excitable-dynein mechanism is similar to Satir's switching dynein cycle with
respect to the 'on' and 'off of dynein activity. However, there is a significant
difference between them. In Satir's dynein cycle, a dynein in the 'on' state
produces an active force that leads to sliding; while in the present excitable-
dynein cycle, a dynein in the 'on' state does not produce active sliding force
unless it passes a threshold. This occurs because the 'on' state contains both
'preactive' and 'active' states in the original three-state cross-bridge cycle
(Murase and Shimizu, 1986; Murase et al., 1989). In other words, the present
model assumes that a 'switching point' at x = 5, is slightly different from a
'threshold point' at x = al (see Fig. 9.6). Satir's dynein cycle, however,
assumes that the turning 'on' of dynein activity and the onset of active
sliding occur at the same point, which implies that a 'switching point' is
equal to a 'threshold point'; that is, 5[ = a, in Figure 9.6.

9.7.4 Some future work

Simulated waveforms shown in Figure 9.12B mimic actual flagellar waves.
However, several problems remain. First, the present system is driven back
and forth by the periodic changes of sliding displacement on the assumption
that the bend angle, 0, is equal to the sliding displacement, c. As long as the
forced oscillations are applied at the basal end, it is not necessary to consider
the constraint concerning the relation of 0 and a (cf. Blum and Hines, 1979).
The assumption that 0 = a is thus reasonably acceptable. Nevertheless an
interesting extension of this study is to include pacemaker sites or autono-
mous oscillators at the basal region of the axoneme with excitable properties.
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The study of such systems is necessary to understand the nature of free-
swimming flagella.

Secondly, equation (9.3a) describing the balance of moments omits the
higher order of nonlinearity (see Hines and Blum, 1979). To study large-
amplitude wave propagation, we cannot neglect these nonlinear terms com-
pletely.

Finally, bends are allowed to occur only in a predetermined plane, since
the present model has just two opposed dynein subsystems. To demonstrate
the effects of change in the direction of pipette vibration as examined by
Gibbons et al. (1987), we need to modify the model in such a way that it has
nine doublets and accounts for three-dimensional bends.

In spite of the problems mentioned above, the present model is potentially
extensible to get rid of the problems. It is possible that the excitable
mechanism of the dynein force-generating system will be established by
future studies.



10 From simple to complex dynamical
behaviours in mechano-chemical
cycles: hyperoscillations, bursting
and chaos

We have studied the overall behaviours of flagella and cilia based on the
simplified model of an elementary dynein-tubulin, mechano-chemical cycle
(Chapters 7, 8 and 9). One of the most remarkable results of this approach is
that a flagellum or a cilium described as an ensemble of these very simple
elements can display surprisingly complex dynamical behaviours. The un-
solved problem, however, is what sort of complexity arises in a single
mechano-chemical system.

This chapter describes experimental and theoretical results in order to solve
the above problem. Section 10.1 summarizes recent experimental data con-
cerning hyperoscillations characterized by their high frequencies (-300 Hz)
and low amplitudes (~4 nm) at the level of the dynein-tubulin dynamics. In
Section 10.2 we develop the model of dynein-tubulin interactions, which is
more realistic than the formal excitable-dynein model developed previously,
but still simple enough to deal with. Section 10.3 discusses the overall
dynamical behaviours of the model in the context of nonlinear dynamics. In
Section 10.4 we explain how hyperoscillations appear and disappear in terms
of the model behaviour. Section 10.5 discusses the more complex dynamical
behaviours, such as bursting and chaos, arising in the model in response to
periodic stimuli.

10.1 Mechano-chemical hyperoscillations

Kamimura and Kamiya (1989) developed a highly sensitive measurement
technique in order to look more closely at the mechano-chemical conversion
mechanism. Flagellar axonemes of demembranated sea-urchin sperm were
fragmented and placed between a glass slide and a coverslip. Beads of sub-
micrometre diameter were attached to the microtubules to act as indicators of
microtubule sliding. These fragmented axonemes did not beat, instead they
displayed high-frequency (~300 Hz), low-amplitude (~4 nm) oscillations -
namely, hyperoscillations (Brokaw, 1990) - when reactivated.
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Figure 10.1 Movements of a microbead attached to an axoneme fragment under dif-
ferent chemical conditions. (A): Output from the optical detector showing hyperoscillations
in the presence of 1 mM ATP. Vertical bar, 9 nm; horizontal bar, 10 ms. (B): Output
from the same bead as in (A) in the presence of 1 mM ATP and 0.5 p.M vanadate. (C):
Output from the same bead as in (A) in the absence of ATP. (D), (E) and (F) show FFT
patterns obtained from the outputs shown in (A), (B) and (C), respectively. From Kamimura
and Kamiya ( 1 989). Reprinted with permission. Copyright © Macmillan Magazines Ltd.

Figure 10.1 shows the movements of a microbead attached to an axoneme
fragment (in panels A-C) and the frequency spectra of these movements
(in panels D-F) under different conditions. In the presence of 1 urn ATP
hyperoscillations appeared (Fig. 10.1A) as revealed by a sharp peak in the
fast Fourier transform (FFT) spectra (Fig. 10.ID).

As biochemical conditions were changed, these hyperoscillations dis-
appeared, and were replaced by an erratic movement attributed to noise (i.e.
random thermal fluctuations). There were two ways by which hyperoscillations
disappeared. In one, 0.5 |xm vanadate (a potent inhibitor of dynein ATPase)
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was added (Fig.10.IB). This caused the remarkable decrease in the amplitude
of the sharp peak shown in Figure 10.ID resulting in the FFT patterns in
Figure 10.IE. The disappearance of hyperoscillations probably occurred as a
result of the decrease in the fraction of the dynein attached in the force-
generating state causing the decrease in the active force.

The second way by which hyperoscillations disappeared was through the
reduction of the Mg-ATP concentration. As the Mg-ATP concentration was
decreased, the vibration frequency decreased as can be seen in the shift of the
peak in Figure 10.ID toward the left (i.e. low-frequency region) though with-
out a remarkable change in its peak amplitude. In the absence of ATP
the oscillatory movement disappeared (Fig. 10.1C and F). This ATP-
dependence suggests that the bead movements reflect ATP-driven dynein-
tubulin interactions.

The question that arises is how the dynein-tubulin system displays
hyperoscillations. In the rest of this chapter I try to answer this question
based on a simple model for the dynein-tubulin interactions, and then try to
predict more complex dynamical phenomena.

10.2 The model

10.2.1 Mathematical description

The essential features of the original three-state model (Chapter 6) were
approximated by the formal excitable-dynein model (Chapters 7 and 8) on the
assumption that (i) a dynein undergoes 'spontaneous' transition between the
son' and 'off states, depending on the history of the dynein behaviour
(characterized by hysteresis); and (ii) the dynein in the 'on' state obeys a
cubic (or modified cubic) force-distance relationship (characterized by excit-
ability). If, in addition to these two assumptions, multiple active sites within
a single dynein head and/or the irregular intervals of inner dyneins were
taken into account, shear oscillations of large amplitudes occurred (Chapter
9).

The present model assumes that (i) the fraction of the dynein attached
changes 'gradually' rather than 'spontaneously'; (ii) the dynein attached
shows a cubic force-distance function; and (iii) there are passive elastic and
external shear forces. Let x, n and Z be the dimensionless sliding displace-
ment (x = 1 corresponds to 24 nm), the fraction of dyneins attached (varying
continuously between 0 and 1), and the external shear force, respectively.
Then, the model can be expressed as:

y- =nf(x) - Ktx + Z (10.1a)

dn = \b{\- n) (x<x.) (10lb)
df \-cn (x>*a)
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where

f{x) = Ax\\ - x). (10.1c)

A, b, c, Ke, xa and y are the force constant of the active dynein, the attachment
rate constant, the detachment rate constant, the force constant of the passive
elastic component, the attachment region and the internal viscous shear
resistance, respectively. Here b and c are in ms"1; A, Kt and Z in pN per
cross-bridge; and y in pN- ms per cross-bridge. Equation (10.1a) describes the
balance of all the shear forces. Equation (10.1b) shows that n is allowed to
change continuously between 0 (completely lacking in excitability) and 1
(maximal excitability), depending on x. The ^-dependence of the dynein be-
haviour reflects the ^-dependent transition rate constants in the original three-
state model.1

There are several ways by which dynamical properties of the model can be
represented. One way to predict the model behaviour is by numerical
integration of equations (10.1). This numerical technique is useful in describ-
ing quantitatively the time evolution of state variables x and n. In addition to
using numerical techniques, it is also useful to deduce important qualitative
properties of the solutions to equations (10. 1) without explicitly solving them.
Examples of such qualitative visualizations are the force-distance represen-
tation, the potential-surface representation, and the phase-plane representa-
tion. The next three subsections describe these three qualitative analytical
methods.

10.2.2 Force-distance relationship

By setting dx/dt = 0 in equation (10.1a), we have the following steady-state
force-distance relationship for the model:

Z = -nf(x) + Kex. (10.2)

Figure 10.2 illustrates such force-distance relationships in the (x, Z) plane. When
n = 1, there is a cubic force-distance relationship which has three intersec-
tions, Pu P2 and P3, with the x-axis. These three points are the actual steady-
state points when Z = 0. Intersection Px corresponds to a stable resting state,
P2 to an unstable threshold state, and P3 to a stable excited state. Superthreshold
x values lead to the excited state, P3, while subthreshold x values lead to the
resting state, P{. This model, thus, accounts for a threshold phenomenon.

Instead of applying the superthreshold x values, an excited state is also
achieved by increasing Z. As Z is increased (say, Z = 0.004), the intersections
/>, and P2 approach each other. A sufficiently large value of Z makes Pl and
P2 disappear. As a result, the phase point moves toward P2.

It is clear that the excited state is obtained by the shift of either x or Z.
However, this excited state is not definitely stable because n begins to
decrease according to equation (10.1b). We set x, = 0.2, so that the excited
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Figure 10.2 Force-distance characteristics. The area denoted by a broken square in
panel (A) is enlarged in panel (B). When Z = 0 and n = 1, there are three steady states
with two stable states, F, and P3, and one unstable state, P2. As n decreases from 1 to
0, the cubic function is replaced by a monotonic function. Interestingly, these force-
distance characteristics are analogous to the well-known current-voltage characteristics
of excitable membranes (see Fig. 3.19).
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state exists in the region where detachment takes place (i.e. the decrease
in n toward 0). The force-distance relationship changes dynamically from
Z = -/0c) + K^x to Z = K^x.The resultant force-distance relationship has only
a single steady state at the origin, and so the system returns to this state.
There is a refractory period during which the cubic force-distance relation-
ship disappears, and hence there is no threshold phenomenon.

If Z is set at a value that causes the two intersections Pt and P2 to vanish,
the system no longer stays in a stable steady state, but instead displays
oscillatory behaviours. Depending on the constant values of Z, a number of
different rhythms arise in which low- and high-amplitude oscillations can be
observed (see Fig. 10.7).

Now it should be noted that, if the external force, Z, the sliding displace-
ment, x, and the fraction of dynein attached, n, are viewed as the external
current, I, the transmembrane voltage, V, and the generalized excitability
parameter, Y (where Y can be considered as summing up the whole behaviour
of the sodium activation m, sodium inactivation h, and potassium activation
n, of the Hodgkin-Huxley model), then Z = -f(x) + Kex and Z = Kex are
analogous to the current-voltage relationship for a maximally excitable
membrane and that for a completely inexcitable membrane. In this analogy,
the model described by equations (10.1) also accounts for the electrical
excitability phenomena (see Section 3.6 and Fig. 3.19). Indeed this model
resembles the simple version of the Hodgkin-Huxley model for an excitable
membrane presented by van Capelle and Durrer (1980) and extended by
Landau et al. (1987).

10.2.3 Potential-energy surface

The qualitative behaviour of the model described by equations (10.1) is
predicted by the movement of a 'ball' on the potential-energy surface, U(x, n).
The energy surface is:

fJo
U(x, n) = - | (f{x)- Kex) dx

Jo
.I*4 *31 ,*2 (10-3)

Figure 10.3A illustrates the energy surface. When n = 1, there are two
valleys separated by a peak, and the 'ball' will move to one or the other
depending on its initial position. If it is placed to the left of the peak, it will
move to the left minimum. If it is placed to the right of the peak (labelled 1),
it will move to the right minimum (labelled 2). This corresponds to the
monotonic increase in x (upper panel in Fig. 10.3B). Since the 'ball' leaves
the activation region (x > xa), n decreases monotonically (lower panel in Fig.
10.3B). As a result, the potential-energy function has a single valley and so
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Figure 10.3 (A): Potential-energy surface, U(x, n). There are three 'balls'. Numbers
correspond to stages of the model behaviour, similarly marked in Figures 10.3B and
10.4. When n = 1, the potential has two valleys. As n decreases, however, the deeper
valley disappears, leaving a single valley. The remaining valley corresponds to the
resting state. (B): The time-course of x and n: x shows an 'action-potential'-like be-
haviour in nerve membrane. The circled numbers correspond to those in panel (A).
Parameters are: A = 6pN, b = 1.3 ms"1, c=0.3 ms~\ Ke= 0.4pN,xa =0.2, y=0.1 pNms,
and Z = 0. Initial conditions are: n = 1 and x - 0.1.
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the 'ball' moves to the minimum (labelled 3). Thus, the energy surface nicely
summarizes the qualitative dynamics of x (see Section 8.2 and Figs. 8.3 to
8.5).

10.2.4 Phase-plane representation

The model behaviour is completely described by the state variables x and n.
Solutions to equations (10.1) can be represented as trajectories in the (x, ri) phase
plane. A typical trajectory is given in Figure 10.4, which corresponds to the
solution in Figure 10.3B. This figure also represents the vertical isocline or
the.x-nullcline (i.e. x = 0) and the horizontal isocline or the n-nullcline (n = 0).
These nullclines are written as follows:

x=0 n= Kf"Z (10.4a)
Ax\l - x)

»=° "={o %lXx*l «°A»

The intersections of the two nullclines give the steady-state points, P,, P2
and Pu, where P, is a stable node (i.e. resting point), P2 a saddle point (i.e.
threshold point), and Pu an unstable point. Starting from the point (circled
number 1), the phase point moves rapidly along a horizontal path. This part
of the trajectory corresponds to the dynein power stroke - or the upstroke of
the 'action-potential'-like behaviour - in Figure 10.3B. This dynein power
stroke is followed by its detachment (or inactivation), leading to a decrease in
n. As a result, the trajectory turns downward. When the phase point enters
the local attachment (or activation) region, it ascends vertically toward the
resting point, P,, resulting in the completion of the loop.

The last part of this trajectory determines the key features of the model
behaviour. The next section discusses how this part of the trajectory in the
phase plane is influenced by the vector field and/or the shape of isoclines (see
Section 6.4.5 and Figs 6.14 to 6.17).

10.3 Excitability and oscillations in the dynein-tubulin system

10.3.1 Homoclinic orbit

Let us first consider the effect of a change in the vector field. For this
purpose we shall change the value of attachment rate b. For small values of
b (say b = 1.3 as in Fig. 10.4), the phase point moves toward the resting
point, Pj. As b increases from 1.3, the trajectory in the region for x < xa
moves slightly upward (Fig. 10.5A for b = 1.320), and at the critical value of
b it touches the saddle point. This is known as a homoclinic orbit. The
homoclinic connection may be considered as a limit cycle of infinite period.
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Figure 10.4 Phase plane of the model described by equations (10.1). One solution
to these equations is represented by a trajectory marked with arrowheads. The circled
numbers correspond to those in Figure 10.3. Three singular points, Px, P2 and Pa, occur
at these intersections of x- and n-nullclines. P, is a stable node, P2 a saddle point, and
Pa an unstable point. The two intersections Px and P2 correspond to those in Fig. 10.2.
A threshold phenomenon appears at the saddle point. Parameters and initial conditions
are as in Fig. 10.3.

As ft continues to increase to ft = 1.322, the phase point no longer moves
toward the resting point, leaving a stable limit-cycle oscillation with an
amplitude of about 0.4 and a frequency of 133 Hz.

Although the vector field given by equations (10.1) varies continuously
with b, there is a sudden appearance of a stable limit cycle across a threshold
value of b. Figure 10.6 illustrates how a limit cycle appears as the parameter,
b, is increased. When ft = 1.3, a stable node, Px, a saddle point, P2, and an
unstable fixed point, Pu coexist (left panel). The saddle point has a stable and
an unstable separatrix as indicated by the arrowheads. As ft is increased to
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Figure 10.5 Influence of the parameter b. (A): For small parameter values (b = 1.320),
the trajectory starts from the superthreshold initial conditions and returns to the stable
point, Px. This excitable behaviour is similar to the previous case shown in Fig. 10.4.
When b is slightly larger (b = 1.322), there appears a closed trajectory on which a phase
point circulates clockwise around the unstable point, Pu. This corresponds to a stable
limit-cycle oscillation with an amplitude of about 0.4 and a frequency of 133 Hz. (B):
Enlarged detail of panel (A) to show two separating trajectories.
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Homoclinlc orbit

Figure 10.6 Sudden appearance of a limit cycle through a homociinic connection.
There is a stable node, /",, a saddle point, P2, and an unstable fixed point, Pu (left panel).
As the parameter, b, is increased, the unstable separatrix of the saddle point meets with
the stable separatrix, resulting in a homociinic orbit (middle panel). The homociinic
orbit exists only for a single value of b. By increasing b, the limit-cycle oscillation suddenly
appears (right panel). Inversely, decreasing b makes the limit-cycle disappear upon collision
with the saddle point. This is the typical mechanism by which a limit cycle can abruptly
vanish from a phase plane. The upper solid curve, middle broken line, and lower solid
line represent the paths of the particular phase point of the limit cycle, of the saddle
point and of the stable node, respectively. If b is replaced by Z, this figure represents
the emergence of the homociinic orbit as observed in Fig. 10.8.

the critical value (b = 1.321), the stable separatrix just touches the limit
cycle, resulting in a homoclinic connection (middle panel). With further
increases in b, the limit-cycle oscillation spontaneously appears. As a result,
there is a stable limit cycle, a stable node, and a saddle point in the phase
plane (right panel). By reversing the parameter and decreasing b, the limit
cycle suddenly disappears upon collision with the saddle point. After the
annihilation of the limit-cycle oscillation, there remains a saddle point and a
stable node in the phase plane.
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10.3.2 Dynamic hysteresis loop

It is also important to study the effect of changing the constant parameter, Z,
on the x-nullcline. Figure 10.7 shows how the change in Z affects the shape
of the x-nullcline, and hence the trajectories in the (x, n) phase plane.
According to equation (10.4a), n is decreased by a positive change of Z for
any x values. This change lowers the x-nullcline (Fig. 10.7A). Inversely, the
;t-nullcline is raised by a negative change of Z. The M-nullcline, however, is
not modified by any of these changes.

Because of the short distance between the two intersections, P, and P2, the
locations of these intersections are very sensitive to small changes in the
x-nullcline. As Z is increased from zero, the jc-nullcline is lowered, so that Py
moves to the right and P2 to the left. As a result, P{ and P2 meet with each
other, and then vanish (e.g. Z = 0.007). The resulting jc-nullcline is charac-
terized by an S-shaped sigmoid. As long as the S-shaped characteristic exists,
oscillations of any amplitude and frequency appear. Figure 10.7B shows one
example of such oscillations when Z = 0.02. The amplitude and frequency are
about 0.3 (corresponding to about 7 nm) and 280Hz, respectively. As Z
continues to increase to Z = 0.04, the S-shaped characteristic is replaced by
a rather monotonic curve. Oscillatory behaviour ceased after oscillatory
transients damped (Fig. 10.7C). If Z is further increased to Z = 0.08, non-
oscillatory decay of the motion appears (Fig. 10.7D).

It is also interesting to note that the S-shaped *-nullcline in this model
highly resembles nullclines of the biochemical models for excitability and
oscillations (see e.g. Goldbeter, 1980), and those of the models for excitable
membranes (see e.g. van Capelle and Durrer, 1980). There appear to be
commonfeatures for excitability and oscillations among quite diverse bio-
chemical, electrophysiological, and mechano-chemical systems.

Figure 10.8 depicts the bifurcation diagram as a function of Z. There are
two types of dynamic hysteresis loops labelled as A and B. First consider the
diagram labelled A. Starting in the oscillatory state (the upper solid curve)
and decreasing Z, the limit cycle disappears through a homoclinic connection
(see Fig. 10.6) and the system jumps to a stable node (the lower solid curve).
If Z is now increased, the stable node will persist until it vanishes upon
collision with a saddle (the middle broken curve). This is known as a saddle-
node bifurcation or fold bifurcation as discussed in Section 6.4.5. Figure
10.9A illustrates how a saddle-node bifurcation occurs. Through this saddle-
node bifurcation, the limit cycle reappears.

Next consider the diagram labelled B. For small values of Z (< 0.03), there
is a stable limit cycle (the lower solid curve). When Z is increased to Z > 0.03,
there is also a stable steady state at jc = 0.2 (the upper solid line), but the
dynamics will be stuck at the stable limit cycle. However, as Z is further
increased, the limit cycle disappears suddenly. If Z is now decreased, a stable
steady state persists until Z < 0.03, and then a stable limit-cycle oscillation
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Figure 10.7 Influence of the parameter, Z. The parameters and initial conditions are as
in Figures 10.3B and 10.4, except for the value ofZ. (A): When Z = 0, there are three
intersections, P{, P2 and Pu, of the x- and «-nullclines. Pl is a stable node, P2 a saddle
point, and Pa an unstable point. As Z is increased from 0, the x-nullcline is lowered without
changing the «-nullcline. For Z = 0.007, the two intersections /*, and P2 vanish upon
collision, though there still remains an unstable point, Pu. However, if Z is further in-
creased to Z = 0.03, the unstable point, Pu, disappears, and instead there appears a stable
point, Ps. For Z > 0.03, there is always the stable point, Ps, as a single intersection of
the two nullclines. (B): Limit-cycle oscillation with an amplitude of about 0.3 and a
frequency of 280 Hz for Z = 0.02. Starting from the initial conditions (i.e. n = 1 and x
=0.1), the trajectory converges on the stable limit cycle as shown by a solid curve with
arrowheads. (C): Damped oscillation leading to a stable point, Ps, for Z = 0.04. The
trajectory starts with the same initial conditions. (D): Non-oscillatory decay of the model
behaviour for Z = 0.08.

of finite amplitude and frequency suddenly appears. This is known as a
subcritical Hopf bifurcation or hard excitation as illustrated in Figure 10.9B.
Unlike the general Hopf bifurcation, the dotted curve of the unstable limit
cycle does not rise vertically from an unstable steady state when increasing
Z. This occurs because the system lacks differentiability at x = 0.2 (see
equation (10.1b)).

The important characteristic common to both bifurcation diagrams (labelled
A and B) is that for some ranges of parameter values there is bi-stability
(i.e. a stable steady state coexists with a stable limit cycle). For a system
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possessing these types of characteristics, two interesting experiments are
possible. In one, the system is subjected to an alternately increasing and
decreasing control parameter. Either a stable steady state or a stable limit
cycle might appear, depending on the history of the control parameter. Thus,
the system dynamically switches oscillations 'on' and 'off. If the control
parameter is increased and decreased slowly, compared with the frequency of
the limit-cycle oscillation, then the system can exhibit distinct burst-like
activity. This situation is discussed in more detail in Section 10.5.

In the second type of experiment, a brief stimulus of a certain strength is
delivered at a critical phase of the ongoing limit cycle. It is possible that the
system jumps to the stable state because of this stimulus, resulting in an
abrupt loss of oscillation. Similarly, another stimulus can trigger oscillations
when it is delivered to the quiescent system. The annihilation of oscillations
induced by a single pulse-like perturbation has been discovered in cardiac
pacemaker cells (Jalife and Antzelevitch, 1979) and in nerve cells (Guttman
et ah, 1980), but it has not yet been observed in dynein-tubulin systems.

10.4 Onset and cessation of hyperoscillations

Analysis in the previous section reveals that (i) oscillations of any amplitude
and frequency can be present by modifying the vector field and/or nullclines;
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Figure 10.8 Bifurcation diagram for the model described by equations (10.1) as a
function of the control parameter, Z. The parameters are as in Figures 10.3B, 10.4 and
10.7 except for the Z values. The upper broken line refers to an unstable fixed point. The
lower broken curve refers to a saddle point. Besides them, there is a limit cycle, a stable
node and a stable fixed point as indicated in the figure. The homoclinic connection in
the broken rectangle labelled A resembles that in Figure 10.6. If b is viewed as Z, the
same is true. The saddle-node bifurcation shown in the broken rectangle labelled A is
detailed in Figure 10.9A. The Hopf bifurcation appears in the broken rectangle labelled
B. This is detailed in Figure 10.9B.

and (ii) the initiation and termination of limit-cycle oscillations can be
controlled by stimuli. Based on these considerations, we try to understand
how hyperoscillations appear and disappear in the dynein-tubulin system.

As we have discussed, there are two ways by which hyperoscillations are
annihilated: one is by the decrease in the frequency asymptotically toward 0,
which is associated with a decrease in the ATP concentration; and the other
is by the decrease in the fraction of the dynein in the force-generating state
when vanadate is added.

Consider, for example, the stable limit-cycle oscillation shown in Figure
10.7B. Figure 10. 10 re-draws the same limit-cycle trajectory (solid curve) as
that in Figure 10.7B for b = 1.3 and Z = 0.02. We first consider the effects
of lowering ATP concentration on hyperoscillations. For this purpose, we
assume that the detachment rate constant, c, is roughly proportional to the



(A)

Saddle-no de

(B)

Figure 10.9 (A): Saddle-node bifurcation. The bifurcation diagram shown in the bro-
ken rectangle A of Figure 10.8 is detailed. The upper broken and the lower solid curves
correspond to the paths of the saddle point, P2, and the stable node, />,, respectively. As
Z is increased, the two steady-state points approach each other (left panel), and then
vanish (middle panel). As a result, every trajectory goes away to infinity (right panel).
(B): Subcritical Hopf bifurcation (or hard excitation). The bifurcation diagram shown in
the broken rectangle B of Figure 10.8 is detailed. Initially, there is a stable limit-cycle
oscillation (solid trajectory) and an unstable fixed point, Pa, for a relatively small value
of Z (left panel). As Z is increased, the unstable point, Pu, is converted to an unstable
limit cycle (broken circle), leaving a stable fixed point, Ps (middle panel). For a suffi-
ciently large value of Z, the stable and unstable oscillations disappear and a single stable
point remains (right panel). There is bi-stability (i.e. the stable point and stable limit-
cycle coexist) in the middle panel, so that hysteresis appears when the control param-
eter, Z, is increased and decreased.
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Figure 10.10 Annihilation of oscillations accompanied by the decrease in their fre-
quencies. The parameters are as in Figure 10.7B except for the values of c. When c =
0.3, there is the same trajectory as in Fig. 10.7B. Ifc is decreased, the phase point moves
slowly in the region ofx > xa (see equation (10. 1b)). As a result, the frequency of oscillation
decreases. When c = 0, a trajectory approaches a stable point on the x-nullcline de-
pending on the initial conditions. This means that oscillation is annihilated. This dy-
namical behaviour probably accounts for the effects of the change in ATP concentration
in the experiments by Kamimura and Kamiya (1989).

ATP concentration. As c decreases, the trajectory along which a phase point
is moving is changed (dotted line) and the phase point stays longer on the x-
nullcline. This means that the detachment process becomes a rate-limiting
step, and hence the limit-cycle oscillation slows down with the decrease of
the frequency. When c = 0, the oscillation is completely annihilated. This
model behaviour corresponds to the experimental observation that hyper-
oscillations are annihilated through the decrease in the frequency when ATP
concentration is lowered.

How can we interpret the effects of vanadate in terms of the model
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behaviour? In order to account for these effects, equation (10.1b) should be
rewritten as follows:

A y, (hty, _ «\
(10.5)

where n0 is the maximal fraction of dyneins in the force-generating state.
Previously, we have assumed that n0 = 1. However, it is reasonable to
consider that n0 is inversely proportional to the concentration of vanadate. As
n0 is decreased from 1, the n-nullcline in the attachment region (x < xj is
lowered as illustrated in Figure 10.ll. There is no significant effect on the
speed of motion of a phase point there, and so the frequency is not changed
dramatically. At the critical value of n0, a homoclinic connection appears.
With a slight decrease in n0, a limit-cycle oscillation completely disappears in
the phase plane. This model behaviour, therefore, accounts for the cessation
of hyperoscillations through the decrease in the fraction of dyneins in the
active state when vanadate is added.

10.5 Complex dynamical behaviours

We have studied how the simple model displays the oscillatory and non-
oscillatory modes, and how it undergoes the transition between the two
modes. Our next interest is to know whether this model can exhibit more
complex dynamical behaviours than these simple oscillatory and non-
oscillatory modes. For this purpose, we first set b = 1.35 while leaving other
parameters the same as in Figure 10.4, such that the model displays
oscillations with a frequency of 150 Hz. Then, the parameter Z is periodically
changed with extremely low (10 Hz) or high (1264 Hz) frequencies, compared
with the 'intrinsic' frequency of 150 Hz.

10.5.1 Bursting

Weassume the periodic change of Z as follows:

Z = AM-sin(27t/0 (10.6)

where AM and/ are the amplitude and frequency, respectively. We chose AM
=0.01 and/= 10Hz for the following reasons. Because AM = 0.01, the
homoclinic connection and the saddle-node bifurcation appear as the transi-
tion between the oscillatory mode and non-oscillatory mode (see Fig. 10.8).
If, in addition to this change of size in Z, Z is forced to oscillate with a
relatively low frequency (say, 10 Hz), two time-scales are introduced: one is
the time-scale that comes from an intrinsic fast oscillation with a frequency
of 150 Hz; and the other results from the extrinsic slow oscillation with a
frequency of 10 Hz. In this situation, the slowly changing parameter, Z,
influences the dynamics given by the fast variables, n and x. Through the
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Figure 10.ll Annihilation of oscillations due to the decrease in the fraction of the
dynein in the force-generating state. The parameters are as in Figure 10.7B except for
n0. As n0 is decreased from 1, the «-nullcline in the region for x < xa is lowered. When
n0 = 0.5, there is little difference in the trajectory, so that the frequency is not changed
significantly. As n0 is decreased, the homoclinic connection appears. For n0 = 0.25, the
phase point moves toward the stable fixed point. Thus, the oscillation is annihilated
without changing its frequency. This behaviour may account for the effects of vanadate
in the experiments by Kamimura and Kamiya (1989).

saddle-node bifurcation, the fast oscillations are turned 'on'; while through
the homoclinic connection, the fast oscillations are turned 'off'. Conse-
quently, clusters of bursting activity are separated by relatively quiescent
phases as illustrated in Figure 10.12.

10.5.2 Chaos

Now consider what happens when the parameter Z is forced to oscillate with
a high frequency (/ = 1264 Hz) and a large-amplitude (AM = 0.08). The large-
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Figure 10. 12 Bursting behaviour in the model of the dynein-tubulin cycle. The param-
eters are: b = 1.35, AM = 0.01, and/= 10 Hz. Other parameters are as in Figures 10.3B
and 10.4. There are two time-scales: one corresponds to a relatively high frequency
(150 Hz for Z = 0) of variables x and n; and the other is a relatively slow forced oscil-
lation (10 Hz). (A): The time-courses of x, n and Z. Complex periodic behaviour occurs
in the form of bursting in which clusters of spikes are separated by quiescent phases.
(B): Phase-space representation of bursting in the three-variable coordinate. (C): Projec-
tion of the trajectory in panel B onto the (x, n) phase plane. (D): Projection of the
trajectory in panel B onto the (Z, x) phase plane. It is clear that the saddle-node bifur-
cation determines the rising phase of Z leading to bursting, and the homoclinic connec-
tion determines the loss of bursting activity.



(C)

oh

(D)

-0.01 0.01



(A) 1

0.08
80 100

time (msec)

(B)

1 I-

oh

Figure 10. 13 Chaotic behaviour in the model of the dynein-tubulin cycle. The param-
eters are: b = 1.35, AM = 0.08, and/= 1264 Hz. Other parameters are as in Figures
10.3B and 10.4. There are two time-scales: one corresponds to a relatively slow frequency
(150 Hz for Z = 0) ofvariables x and n, and the other is an extremely high forced oscilla-
tion (1264 Hz). (A): The time-courses ofx, n and Z. Chaotic dynamical behaviour appears.
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amplitude perturbation covers the whole bifurcation diagram shown in Figure
10.8, so that complex behaviour can be expected. Furthermore, extremely
high frequencies would strongly perturb the system, which would play an
important role in generating complexity.

Figure 10.13 shows one typical example of chaotic behaviours computed in
the present model. It is possible to investigate the detailed 'map' for chaos
and bursting as well as synchronization in the (AM, /) plane. However, I am
interested in predicting complex dynamical behaviours as an important first
step to gaining insight into the underlying mechanism of the dynein-tubulin
cycle, but not in studying this specific model too deeply. So this problem
seems to be of secondary importance at this stage.

10.5.3 Discussion

The theoretical model proposed in this chapter accounts not only for simple
modes of excitability and oscillations, but also more complex dynamical
behaviours such as bursting and chaos. Unfortunately, flagellar and ciliary
dynamics have not been studied along this line, although some cilia actually
show bursts of repeated cycles of beating (see Sleigh and Barlow, 1982). One
reason for this is that many cell biologists have been interested in the regular
behaviours, such as the symmetric steady-state bend propagation typical of
flagella and the asymmetric beat-cycle with an effective and a recovery stroke
typical of cilia, but not in the potential irregular behaviours. Although
periodic-perturbation methods have been applied to the flagellum (Okuno and
Hiramoto, 1976, Gibbons et al., 1987), no one has ever investigated its
aperiodic responsiveness. Another reason is that theoretical biologists have
not tried to develop simple mathematical models in this field, but instead
have aimed to develop complicated models. They have been interested in
quantitatively explaining specific modes of cilia and flagella. It is, therefore,
very difficult to understand the essential features of the model.

I think it is much better to have any 'qualitative' agreement with
experimental data than to make efforts to do 'quantitative' curve fitting. So
the point in this chapter is that (i) a very simple model can explain
qualitative behaviours observed in experiments, and (ii) this model can
potentially exhibit complex dynamics which may be observed in experiments
in future.2

Before ending this chapter, I would like to reiterate the common features
among the diverse living systems. The force-distance characteristics shown in
Figure 10.2 resemble the well-known current-voltage characteristics. Further-
more, the nullclines in this model strikingly resemble those in the models for
biochemical excitability and oscillations (see Goldbeter, 1980) and in the
models for excitable membranes (see van Capelle and Durrer, 1980). As they
are similar, it is not surprising that the present model gives rise to bursting
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and chaos as many models predict such behaviour (Decroly and Goldbeter,
1987; Rinzel and Lee, 1987). Many attractive problems are open to you!

Notes

In the formal excitable-dynein model (Chapters 7, 8 and 9), this ^-dependence refers
to the hysteresis 'on-off switching function.
Kamimura and Kamiya further investigated hyperoscillations under various condi-
tions. For details see S. Kamimura and R. Kamiya. High-frequency vibration in
flagellar axonemes with amplitudes reflecting the size of tubulin, J. Cell Biol.
( subm itted).
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action potentials, 1, 85, 131, 261, 6.10
activation, 57, 219
activator, 19-21
active

contractile microtubule mechanism,
96, 98-9

shear force, 154
sliding microtubule mechanism, 96, 99

afibrillar muscle, 53n
aggregative behaviour, 24
all-or-none response(s), 1, 206, 217, 222
allosteric enzyme, 13, 15, 1.9
amplitude, 7, 139, 148
anal cirri, 1 12
angular

frequency, 2, 44
mechanical impedance, 160
velocity, 7

annihilating waves, 88
annihilation, 1 30-1
antagonistic

muscles, 41
pair of cross-bridges, 65
pairs of direct flight muscles, 29

antilaeoplectic, 1 34
antiplectic, 126, 130, 189, 4.25, 4.28
aperiodic, 8, 330
arc length, 224
asynchronous, 29, 53n, 2.2-2.3
ATP, 68, 99, 101, 111,4.77

-AMP, 99
-induced force generation, 102
hydrolysis, 27, 33, 196, 2.6-2.7

ATPase
activity, 72, 3.14
site, 283

attractive
interaction, 240
type of interaction, 2

auto-catalytic
activation, 19
enzyme reaction, 1.9
isozyme reactions, 7.77
process, 200

autonomous motility, 97
average shear, 240
axoneme(s), 89, 91-3, 103, 4.3

B-subtubule, 283-5, 4.4, 4.10, 9.7-9.8
bacteria, 136
bacterial flagella, 89
basal

body, 91, 96
plate, 96

base-to-tip bend propagation, 241-5,
7.10-7.ll
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basic equations of flagellar dynamics,
152-6

Belouzov-Zhabotinsky reaction(s), 8, 10,
1.7

bend
angle, 5.77
initiation and bend propagation, 97,

168, 192
propagation, 230-47, 5.18, 7.4, 7.6,

7.10
bending

resistance, 183, 191, 224
waves, 1, 89

Bernoulli trials, 1 1, 25n
Beroe, 112, 114, 4.77
bi-stability, 228, 319, 6.7, 10.9
bi-stable, 203-6, 211, 217, 219, 282,

291, 6.8, 7.3
bifurcation parameter, 10
binary function, 226
biochemical systems, 1
birhythmicity, 1 3
black box, 185
Boltzmann constant, 71
Bonhoeffer-van der Pol model, 8; see

also BVP model
boundary

conditions, 138, 178, 233-5, 266, 45
layer, 135

Brokaw (1972) model, 167-9
Brokaw (1985) model, 172-5
Brokaw model, 68, 3.8-3.10
burst-like activity, 321
bursting, 2, 17-18, 307, 325-6
bursts, 1 12
butterflies, 29
BVP model, 8, 84-5, 1.6; see also

Bonhoeffer-van der Pol model

C-filament, 33, 2.5
C-subtubule, 96
Ca2+, 36-7, 47-8, 122, 256, 280,

2.20-2.21, 8.2
binding, 57, 259, 281
concentration, 73

catastrophe model, 179-83
cell membrane, 91
cell-body-flagella interactions, 1 50
central pair, 91, 6.3
centre-to-centre distance, 120, 4.79
centrioles, 96
chain rule, 55, 223n

chance fluctuations, 1 1
chaos, 2, 88, 307, 326-30
chaotic behaviour(s), 18, 23
characteristic

equation, 172
frequency, 43, 73-4, 3.13
function, 4

chemical
energy, 196
waves, 1

Chlamydomonas, 259, 283, 8.2
cilia sublayer model, 189
ciliary

metachronism, 141
model, 178-85, 264-9
necklace, 4.2
pads, 112
propulsion, 185-9

ciliated micro-organisms, 136
circular relation, 304
circumference asymmetry, 255
clamped

end, 159
-end boundary conditions, 235-42,

7.6, 7.8, 7.10

classical paradox, 144
clefts, 134
cleavage divisions, 96
comb plates, 112, 128
complete system, 83
c omplex

conjugate, 6, 190n
dynamical behaviour(s), 2, 254, 307,

325-3 1
plane, 162
temporal patterns, 2

compound cilia, 112, 117, 259
concerted transition model, 13, 25n
conformation change, 25n
continuity condition, 138
contractile elements, 156, 4.6, 5.13
control

mechanisms, 103
system, 195

cooperative, 200
interactions, 25n

coupled
limit-cycle oscillator(s), 1.18, 10.7
-oscillator system, 23

Crithidia, 120, 256, 4.21
ctenophores, 112, 114-15, 4.77
cubic
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elastic resistance, 168
force-distance function(s), 227, 254,

260, 309-10, 7.6, 7.9, 7.13-7.16
current

-clamp, 85
-voltage relationship, 85, 3 12

curvature, 150, 156, 168, 170
-controlled model(s), 1 67-75, 192
feedback control, 178

cusp catastrophe, 182
cylinder, 136
cytoplasm, 91

damping parameter, 4
dark-field micrographs, 101
defence system, 134
delay, 43, 58
delayed

activation, 206
elasticity, 156, 158
stretch-activation, 176; see also stretch

ac tivation
tension change, 5 1
tension development, 54, 57; see also

stretch activation
tension fall, 41; see also de-activation
tension rise, 41; see also delayed

tension development, stretch
activ ation

dense mat, 129
destabilization, 2, 24
deterministic system, 8
dexioplectic, 126, 4.25
diffusion, 1, 18

constants, 19
-coupled limit-cycle oscillators, 23
instability, 19
process, 252

dimer, 94
Dirac delta function, 142, 209
direct

action, 3
cell-cell interactions, 2 1

directional
mechano-sensitivity, 1 14, 131
sensitivity, 197, 200, 225, 255, 261,

293, 302
discontinuous beat-cycle, 27 1
discriminant, 6
dispersion relation, 24
displacement, 3, 61

sensitivity, 302

-velocity plot, 3.10, 5.22
-velocity relationship, 67

double
length-step experiment, 50-3, 2.22
-minimum-potential, 289

doublet, 91
subsets, 108

dragonflies, 2.2
driven-oscillation experiment, 38-4 1
driving force, 3
dynamic cooperativity, 217
dynein

activation, 225, 291
active force, 191
cross-bridge cycle, 195
cross-bridges, 95-6
excitation, 291

eels, 99
effective stroke, 91, 180, 185, 256, 269
egg, 96
elas tic

and viscous moduli, 40
bending moment, 156
coupling, 1, 239
resistance, 176
spring, 3, 1.2

elasticity, 38, 2.8
electron microscopy, 102
electrotonic coupling. 1
elementary cycles, 72-3, 3.14
elongated inert body, 144
end effect, 247
energy

absorption, 162
-accumulating process, 8
barrier, 206
dissipation, 162
source, 162
-supplying process, 8

envelope model, 138, 185-9
equilibrium, 19, 136, 152

position, 3
state, 180

eukaryotic cells, 89
Euplotes, 1 12
excitability, 1, 8, 13, 111-12, 296-7,

310, 314-21
excitable, 191, 225

cilia, 112
dynein models, 193
dynein system, 236
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-oscillatory phenomena, 203 -9
properties, 203
type, 255

excitation, 24n
external

force, 144
load, 34
stimuli, 1
viscous force, 138, 152
viscous moment, 152
viscous-drag coefficient, 224

extra ATPase activity, 47, 2.20-2.21

F-actin, 33, 2.4
fast

action, 181, 5.26-5.27
equation, 7.5
oscillation, 325

feedback
loop, 18, 197
relationship, 167, 172

fertilization, 96
fibrillar muscle, 53n
finite-difference approximation, 238
first

-order delay, 61
-order equations, 6
-order kinetic equation, 55
-order rate process(es), 43-4, 81, 169
-order reaction, 1.9
quadrant, 162

flagellar configuration, 152, 5.9
flagellum-flagellum interactions, 1 50
flip-flop, 240
fluid

dynamics, 135, 138-50
flow, 273-80
motion, 144

flying
birds, 136
insects, 27, 136

focus, 6, 1.4
fold bifurcation, 21 1, 318
force

-balance equation, 67, 81, 142, 152,
165

distribution, 144, 5.4
equilibrium, 138
-generating mechanisms, 102-3
-length relationship, 173; see also

tension-length relationship
-velocity behaviour, 3.10

-velocity curve, 54, 64-5, 85n, 2.19
-velocity relationship, 47, 55-7,

173-4, 176, 3.2, 3.6, 5.22; see also
force-velocity curve, force-velocity
behav iour

forced oscillation, 3, 4.5
forcing function, 1 83
Fourier transform, 2, 73, 308
fractions, 55, 3.1
free

end, 159
oscillation, 2.8-2.9
sliding motion, 203, 296
-end boundary conditions, 215, 230,

7.4, 7.7, 7.ll-7.16
-oscillation experiment, 36-8

friction-force function, 3, 1.2
functional

hierarchy, 255
unit, 2

G-actin, 33, 2.4
Gaussian distribution, 201, 209
generalized reaction-diffusion equations,

24
global inactivation, 197
glycerinated

insect muscles, 2.9
vertebrate muscle, 2.13

glycerol-extraction, 36
glycolitic systems, 8
goblet cells, 4.29
Gray and Hancock approach, 144, 146-9

half-sarcomere, 55
hard excitation, 3 19; see also subcritical

Hopf bifurc ation
harmonic

motion, 185
oscillator, 6,

heads, 282-3
heart beats, 27, 181
helical structure, 94
heterodimers, 94
hierarchy, 89, 280
Hill's force-velocity relationship, 47; see

also force-velocity relationship
Hines-Blum (1978) model, 169-72
histogram, 1 17, 4.18
Hodgkin-Huxley

model, 312
nerve equations, 209
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Hoffmann-Berling, 99
homoclinic orbit, 314-17, 70.6
homogeneous system, 19
Huxley model, 54-8, 63, 3.2-3.3, 3.6
hydrodynamic

forces, 131
instability, 23
interactions, 87, 255

hyperoscillations, 307
hysteresis, 206, 225, 309

functions, 291 ; see also hysteresis
switching functions

loop, 318-21
switching function(s), 260-1, 9.5, 9.14
switching mechanism, 228

I-filament, 33; see also thin filament
immediate elastic responses, 50
impulse(s), 131, 219, 261
in phase, 126
in-phase and quadrature component, 40
inactivation, 2 1 9
inactive, 196
indirect

action, 3
flight muscles, 29

inert body, 144
inertial

effects, 135
forces, 3, 137
load, 31, 37

inhibition, 19, 24n
inhibitor, 1 9-2 1
inhomogeneous structures, 1 9
initial

condition, 215
transients, 46, 222

inner
and outer arms, 95, 194; see also

inner dyneins, outer dyneins
dynein arms, 9.8
dyneins, 285-6; see also inner and

outer arms
insect flight muscle, 29, 33-4
insensitivity, 1 12; see also refractoriness
instability, 1, 217, 1.2
intermittent

beating, 88
flagellar beating, 120-3
oscillations, 123
swimming, 123, 4.22

internal

-clock model, 183
shear resistances, 168
viscosity, 228
viscous resistance, 178, 191
viscous shear force, 154, 190n
viscous shear resistance, 202

intrinsic rhythm, 1 14
inverse pendulum, 3, 1.1
irregular duration of pauses, 123
irregularity, 88
isocline, 8, 211, 314; see also nullcline
isometric

conditions, 56, 58, 80, 85
force, 173, 176; see also isometric

tension
steady state tension, 63
tension, 43, 46-7, 81; see also

isometric force
isozyme, 1.10

Julian model, 58, 3.4

Karman vortices, 136, 5.1
kinematic viscosity, 136
kinetic equation(s), 13, 72, 75, 77, 200
Kuramoto-Sivashinsky equation, 23

laeoplectic, 126, 4.25
laminar flame, 23
laser irradiation, 121 , 4.21
Leishmania, 120
length

-step analysis, 43; see also length-step
experiment

-step experiment, 41-6
-tension loop(s), 40, 2.ll
-tension relationship, 72-3, 3.12

Lienard' s transformation, 7
ligand molecule, 25n
limit cycle(s), 68, 314, 7.72, 5.22
limit-cycle oscillation(s), 208-9, 21 1,

1.4

linear
-response theory, 43
stability analysis, 23, 170
tension-length relationship, 1 58 - 62

local
activation, 197
hydrodynamic interactions, 150

long-range
hydrodynamic interactions, 1 50
inhibition, 19, 24, 240, 1.16
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longitudinal
asymmetry, 255
motion, 139
wave, 141, 187

lung function, 134

Machin model, 156-67
macrocilia, 1 12
manifold, 182, 5.26-5.27
mass, 3, 38, 2.8
mastigonemes, 148, 5.8
Mathieu equation, 3
maximal sliding velocity, 34
mean position, 201
mechanical

constraint, 1 1 1
impedance, 156, 159-60
potential, 69, 197; see also

potential -energy function
properties, 36-47
stimulus, 1 12

mechano-chemical
cycle(s), 29, 34-6, 87, 111, 112, 307,

4.ll
system, 1, 307

mechano-sensitivity, 1 12-17, 225,
255-6, 263-4, 280

membrane
current, 85
potential, 85

metabolic pathways, 1
metachronal wave(s), 87, 126, 138, 255,

273
metachronism, 123-9, 4.24
metachronous sliding, 108, 1 1 1, 220,

269
metastable positions, 291
Mg-ATP, 36
Mg2+, 91, 99, 101
micro-reversibility, 2 1
microneedle, 111, 113, 114, 260
microtubules, 89, 93-4
mitochondria, 31, 91
mitotic spindle, 96
model system, 36, 99
modified

cubic force-distance function(s), 269 ,
7.10-7.12

Huxley model, 3.6-3.7
two-state model, 3.5

moment-balance equation(s), 152, 170,
269

mono-stability , 6.10
mono-stable behaviour, 206-8, 217, 219,

6.ll
monomer, 94
Monte Carlo, 223
morphogenes, 19
morphogenesis, 18, 24, 240
mosquitos, 29, 2.2
muco-ciliary

clearance, 134
system, 4.29
transport system, 134

mucus, 134, 4.29
layer, 134
-propelling cilia, 112, 131-4
-transporting epithelia, 1 3 1

multicellular system, 24
multiple

active sites, 282
stable states, 120
steady-state transitions, 1
time-scales, 18

muscle
fibres, 31, 2.4
structure, 3 1-4

mutual instability, 220, 269, 271, 273
myofibrils, 31, 53n, 2.4
myofilament array, 33
myosin helices, 33
Mytilus gill, 112, 117, 126, 130, 4.75,

4.27, 8.2

N-shaped current-voltage curve, 85
Navier-Stokes equations, 190n
nearest-neighbour segments, 240
negative

diffusion, 24, 252
friction, 3
stiffness, 162

nerve
excitation, 84-5
impulse(s), 29, 181, 183
membrane, 131, 10.3

nervous system, 1, 8, 84, 261, 3.19
neurophysiology, 240
Newton's third laws, 260
Newton's laws, 135, 144, 152, 190n, 5.5
nexin links, 91, 101, 210, 228, 296
no-slip boundary condition, 143
node, 7, 211, 314, 10.4
noise, ll, 308

-induced order, 8-13
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non-annihilating wave(s), 88, 249
non-equilibrium open systems, 1
non-uniform bend propagation, 243
nonlinear

oscillators, 123
tension-length relationship, 1 62-7

normal diffusion, 252
nuclei, 31
nullcline(s), 8, 314, 318, 1.10, 10.4; see

also isocline
Nyquist plot, 40, 69, 73, 2.ll, 2.16,

3.13, 5.14

Ochromonas, 148
'off state, 225
oligomer, 25n
'on' and 'off' switch(es), 21, 108
'on' state, 225
'on-off switch(es), 249, 269, 280

dynamics, 261
failure, 27 1

one-dimensional array, 23, 1.18
Opalina, 91, 112, 189
opposing cross-bridge pair system, 194;

see also antagonistic pair of
cros s-bridges

orbit, 141
oscillating lever system, 40
oscillation-induced ATPase, 29, 47-50
oscillation, 1, 8, 111-12, 296, 314-21
oscill atory

behaviour, 68, 81, 6.13, 7.3
contraction, 27, 54
element, 158
phenomena, 206
power, 47, 2.20-2.21
Reynolds number, 137
type, 255
work, 40, 158
cilia, 112

out of phase, 126, 128
outer

and inner arms, 4.3
dynein arms, 9.7
dyneins, 283-5; see also inner and

outer arms

pacemaker(s), 193, 230, 305, 321
Paramecium, 91, 112, 185, 256, 8.2
parametrically excited system, 2
passive

elastic elements, 228

elastic shear force, 154
microtubule mechanism, 96-8
terminal piece, 253

pattern formation, 18
peak-to-peak; amplitude, 2.13
pendulum, 2, 1.1

clocks, 123
periodic

behaviour, 2
stimuli, 307

permanent bridge, 95-6
phase, 7, 38

advance(s), 39, 73-4, 77-80
angle, 40, 2.ll
delay, 73, 77
instability, 23
plane, 6, 8, 210, 1.5, 10.4
-plane analysis, 209-13
-plane representation, 3 14
point(s), 8, 210, 314, 324, 7.5
shift, 39-40, 139, 2.ll

phenomenological equation, 61, 8 1
piece-wise linear function, 291
pinned end, 159
planar waves, 146
Pleurobrachia, 112, 115, 128, 194, 259,

4.17
Poincare section, 10.13
polar coordinates, 6
polarity, 33, 102
population dynamics, 24, 240
potassium activation, 3 12
potential

barrier, 269, 291; see also
potenial-energy barrier

-energy barrier, 263, 280
-energy curve, 289
-energy function(s), 7, 55, 261,

263, 3.1, 3.ll, 8.3-8.5, 9.5-9.6,
9.14; see also mechanical
potential

-energy surface, 3 12-14
field, 6
function, 8

power
output, 72-3, 3.14
series, 140
spectrum, 1 1
stroke, 34, 283, 289, 314

pressure, 136
field, 138

principal and reverse bend, 1 17
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product, 13, 1.9
-activated allosteric enzyme, 13

propulsive motion, 162
protofilaments, 94
protomers, 25n
protozoa, 120
pulsed-laser microbeam, 1 1 1

quantal steps, 1 17-20
quick-release and quick-stretch

experiment, see length-step
experiment

quiescence, 27 1-3
quiescent, 123, 252, 255, 261, 263, 321

radial
link systems, 296
spokes, 91, 101, 117, 296
-spoke cycle, 195
-spoke system, 195, 200, 285

random fluctuation, 8
rapid-freezing electron-microscope, 35
rate

constant(s), 56, 61, 69, 77, 3.1
function, 13, 15
-limiting process, 75, 77, 80
-limiting step, 324

reaction -diffus ion
equation, 229
model, 249
system, 19-22, 191

reactivation, 99
recovery stroke, 91, 180, 185, 256, 269
reduced system(s), 83, 209
refractoriness, 85, 131, 255; see also

insensitivity
refractory period, 261, 312
relative

dry friction, 3
refractory period, 21 3
velocity, 3

relax, 34
relaxation

oscillation(s), 7, 176, 1.3, 1.5
time, 61, 170

release de-activation, 41, 51; see also
stretch activation; stretch
de-activ ation

repetitive
beat-cycle, 269-71
firing, 85

repulsive

interactions, 240
type of interaction, 2

resistive-force theory, 146-50
resonant

frequency, 37
lever system, 2.8

responsiveness, 277
resting, 196

phase, 134
position, 280
state, 206

reversal of the direction
of propagating waves, 245-7
of wave propagation, 88

reverse rate constants, 64
Reynolds numbers, 135-7, 146
rhythms, 2, 312
rigor state, 9.1
rotational

inertia, 152
potential function, 1.4

S-shaped sigmoid, 318, 1.10
saddle

point, 211, 314, 10.4, 10.6
-node bifurcation, 21 1, 318, 10.9; see

also fold bifurcation
sarcomeres, 33, 2.4
scaling factor, 228
sea-urchin sperm, 101, 111, 123, 241,

256, 302, 4.22
second-order velocity, 140
self-organization, 1, 242, 5.17
self-oscillation(s), 65, 158
self-osc illatory

model(s), 175-8, 192
properties, 222

sel f-propelling
body, 144
micro-organisms, 1 44

self-turbulization phenomena, 2, 24
separatrix, 21 1, 315, 10.6
sequential transition model, 25n
serous layer, 134
shear

angle,150, 224, 5.77
-controlled feedback mechanism, 1 72
displacement, 152, 196, 5.ll, 6.3
resistance, 101, 173, 183

sheath, 91, 4.3, 4.19, 6.3
short-range activation, 19, 24, 240, 1.16
single point-force, 143, 5.4
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singular
point(s), 6-7, 211, 1.4
solutions, 138

sinusoidal analysis, 38, 43-4, 72, 2.ll
slender-body theory, 150
sliding

coordinate, 55, 196
displacement, 152
filament mechanism, 27
filament models, 233
microtubule model, 156

slit camera, 112
slow

equation, 7.5
oscillation(s), 18, 325

small- and large-amplitude oscillations
15

snakes, 99
sodium

activation, 312
inactivation, 3 1 2

solitons, 21-2, 88, 131
space

clamp, 1
-dependent patterns, 1
-time diagram, 230

spatial
control mechanism, 108-1 1
order, 18-24
structure, 21

spatio-temporal
chaos, 2
distributions, 74-80, 3.15-3.17
structures, 2

spermatozoa, 120, 136
Spirochaeta balbianii, 4.24
spring constant, 3, 55, 1.2
stability, 164
stabilization, 21 , 24
stable point, 8, 1.10
standard deviation, 20 1
standing

and travelling moments, 256
-wavemodes, 162

starting transients, 222
stationary state, 1
steady state wave-forms, 222
steady- state

attached cross-bridge distribution, 5 6,
58

beating, 222
conditions, 55, 61

muscle contraction, 56
points, 211
shortening, 46-7

step analysis, 44
step-length change, 81, 3.3-3.4, 3.9,

3.18
stiffness, 33, 260

measurements, 50, 2.22
stimulus intensity, 8
Stokes equations, 138-40, 142, 190n
Stokeslet, 142-4

velocity field, 142
stopping and starting transients, 88, 123
strain, 61
strange behaviour, 129-34
stream function, 140
streamlines, 143, 5.4
stretch

activation, 51, 54, 57, 80-1, 158, 172,
3.4-3.5; see also delayed tension
development; release de-activation

de-activation, 65; see also release
de-activ ation

stroke distance, 196
structural asymmetry, 91, 219, 235, 242,

253, 255, 281
structurally stable, 8
subcritical Hopf bifurcation, 3 19, 10.9;

see also hard excitation
substrate, 13, 1.9
subsystem, 1
subthreshold, 6.7, 6.10
subunits, 13, 15, 25n
Sugino-Naitoh model, 1 83-5
superthreshold, 217, 289, 6.7

perturbations, 1 12
surface forces, 136
suspension, 2-3
sustained

oscillations, 27
oscillator, 220

swimming-sheet model, 138-42, 185,
5.2

swing, 2
switch-point hypothesis, 27 1
switching

mechanisms, 222
point(s), 225, 249, 305

symmetry breaking, 302
symplectic, 126, 130, 189, 4.25, 4.28
synchronism, 123-9, 4.24
synchronization, 50, 123, 125, 164-7
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synchronous, 29, 53n, 2.1, 2.3
and metachronous sliding, 256
sliding, 108, 111, 220, 269

T, and T2 curves, 44, 47
temporal

control mechanism, 107-8
order(s), 1-1 8
responsiveness, 225

tension
transients, 2.14-2.16
-length relationship, 85; see also

force-length relationship
-step experiment, 46-7

Tetrahymena, 96, 283
thermal noise, 8; see also noise
thick filament(s), 33, 2.4; see also

A-filament
thin filament(s), 33, 2.4; see also

I- filament
third quadrant, 162
thorax, 29

-wing system, 37
three-dimensional trajectory, 1 8
three- state

cross-bridge cycle, 198
model, 68-80, 195-200, 225, 3.ll

threshold,, 180-1, 193, 225, 5.26-5.27
phenomena, 203, 293, 310
point, 305
separatrix, 21 1, 213
value, 280

thrusting and dragging forces, 144
time

constant, 61
delay, 112, 156, 172, 206, 254n
-intervals, 221
-scales, 7.5

tip-to-base bend propagation, 236-40,
7.6

total shear force, 224
tracheal epithelium, 1 12, 131
trajectory, 68, 211, 314, 7.5, 10.4-10.5
transfer function, 158
transients, 3.3-3.4, 3.18
transition zone, 91
translational motion, 144
transverse

mechanical impedance, 160
motion, 139
wave, 141, 187

triggering events, 269, 271

triplet, 91, 96
Tripneustes gratilla, 123, 4.22
Triton X-100, 99
trypsin, 101, 4.9
tubulin, 94, 4.4
turbulent flow, 136
Turing instability, 19; see also diffusion

instability
two-component system, 18
two-dimensional

sheet, 138
wave, 23

two-factor model, 24n
two-filament system, 107-8
two-state model, 54-68

undulatory motion, 144
unidirectional

active sliding, 102-3
bend propagation, 245
mechano-chemical cycle, 103, 200

unstable oscillation, 15

van der Pol equation, 4, 24n, 1.3
vanadate, 308, 322
vector

field, 314
modulus plot, 40

vertebrate
muscle, 29, 31-3
skeletal muscle, 27

vibration, 2
viscoelastic, 134, 176
v iscosity- induced

instability, 237; see also
viscosity-induced perturbations

perturbations, 241-2, 249; see also
viscosity-induced instability

viscous
bending moment, 156
coupling, 128, 4.26
drag coefficients, 146
forces, 137
resistance, 101, 176
stress, 136

voltage-clamp, 85
volume forces, 135

water-propelling cilia, 130-1
waterbugs, 37
wave
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front, 219
-generating function, 150, 5.9
number, 24, 5.18
velocity, 140, 148

wavelength, 24, 148
waving sheet, 144
weak coupling, 127
wing

beats, 27
-beat frequencies, 29

Y-Vcurve, 68; see also
displacement-velocity plot

Z-lines, 33
zero-thrust swimming condition, 1 48
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The Dynamics of Cellular Motility
MASATOSHI MURASE

The processes that underlie cellular motility-the contraction oi muscle
and the beating ofcilia and flagella-not only share a common mechanism,
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