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Stability Boundaries Analysis of Electric Power System with DC
Transmission Based on Differential-Algebraic Equation System∗

Yoshihiko SUSUKI†a), Student Member, Takashi HIKIHARA†b), Member,
and Hsiao-Dong CHIANG††c), Nonmember

SUMMARY This paper discusses stability boundaries in an electric
power system with dc transmission based on a differential-algebraic equa-
tion (DAE) system. The DAE system is derived to analyze transient sta-
bility of the ac/dc power system: the differential equation represents the
dynamics of the generator and the dc transmission, and the algebraic equa-
tion the active and reactive power relationship between the ac system and
the dc transmission. In this paper complete characterization of stability
boundaries of stable equilibrium points in the DAE system is derived based
on an energy function for the associated singularly perturbed (SP) system.
The obtained result completely describes global structures of the stability
boundaries in solution space of the DAE system. In addition the character-
ization is confirmed via several numerical results with a stability boundary.
key words: power system, dc transmission, stability boundary, differential-
algebraic equation, energy function

1. Introduction

This paper is concerned with transient stability problem of
electric power systems with dc transmissions. Recently
dc transmissions have been widely applied to conventional
electric power systems [1]–[4]. Transient stability of ac/dc
power systems is mainly analyzed using numerical simula-
tions: readers can refer to [1], [2]. On the other hand, in
[1], [5], [6] analytical studies on the transient stability are
performed based on energy function method and dynamical
system theory. The obtained results in [1], [5], [6], however,
do not sufficiently include the operation of power conversion
apparatuses in dc transmissions and the power relationship
between ac and dc transmissions. In terms of synthesis of
stabilization controllers via dc transmissions [1], [2], [4] it
is inevitable to clarify the transient stability of the ac/dc sys-
tems with taking the operation and the power relation into
account. Unfortunately, the transient stability has not been
completely clarified from analytical points of view.

A differential-algebraic equation (DAE) system is pro-
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posed for transient stability analysis of an electric power
system with dc transmission [7]. The DAE system is de-
scribed by a coupled system of differential and algebraic
equations: the differential equation represents the dynam-
ics of the generator and dc transmission, while the algebraic
equation describes the active and reactive power relation be-
tween the ac system and dc transmission∗∗. The DAE sys-
tem keeps the structural characteristics of the power conver-
sion and control setup in the dc transmission, and explicitly
describes the power relation between the ac system and dc
transmission.

The present paper discusses stability boundaries in the
ac/dc power system based on the DAE system. The stabil-
ity boundaries imply basin boundaries of stable equilibrium
points (EPs) which correspond to post-fault steady states of
the ac/dc system, and essentially govern its transient stabil-
ity. In [7], [9] a stability boundary is numerically analyzed
in the ac/dc system based on the DAE system. This paper
theoretically characterizes stability boundaries of the DAE
system. To do this we strongly rely on some fundamental
results reported in [10], [11]. In particular we analyze the
stability boundaries via an energy function for the associated
singularly perturbed (SP) system. The analysis completely
characterizes global structures of the stability boundaries in
solution space of the DAE system. In addition we exam-
ine the obtained characterization and the existence of en-
ergy function via several numerical results with a stability
boundary which have been partially reported in [7], [9].

This paper is organized as follows. In Sect. 2 we in-
troduce an electric power system with dc transmission and
derives a DAE system. Section 3 summarizes fundamental
concepts of the theory of differential-algebraic equation sys-
tems. Section 4 provides with us characterization of stability
boundaries in the DAE system based on an energy function.
In Sect. 5 we discuss the obtained characterization via some
numerical results with a stability boundary. Section 6 con-
cludes this paper with summary and discussion of our main
results.

2. System Configuration and Derivation of Differential-
Algebraic Equation System

This section introduces a system configuration of an electric

∗∗Similar DAE systems are also derived for voltage and tran-
sient stability analysis of general ac/dc power systems [1], [8].
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Fig. 1 System configuration of electric power system with dc transmis-
sion. The arrows denote the positive direction of active power flow.

power system with dc transmission, which we analyze in
this paper, and derives a DAE system for transient stability
analysis of the ac/dc power system [7]. Figure 1 shows the
system configuration of the ac/dc power system. The ac/dc
system is fixed based on the practical system [3], [4]. In the
following discussion variables and parameters are normal-
ized with the well-known per unit system.

First the dynamics of the generator is modeled based
on Park’s theory:



T ′d0

Ld − L′d
v̇′q =

V0

Ld − L′d
+
vr
L′d

cos δr

− Ld

L′d(Ld − L′d)
v′q,

δ̇ = ω,

2Hω̇ = −Dω + pm − pg,

(1)

where v̇′q denotes the differentiation of v′q by the normalized
time t, v′q the voltage source behind transient reactance, δ the
rotor position with respect to the synchronously reference
axis and ω the rotor speed difference relative to the system
angular frequency. vr and δr are defined for the bus voltage
of the generator as follows:

ed � vr sin δr, eq � vr cos δr, (2)

where ed and eq represent the d-axis and q-axis terminal
voltages of the generator. In (1) the parameters T ′d0, Ld,
L′d, H and D stand for the characteristics of the generator,
and V0 is related to the input voltage to the exciter. pm rep-
resents the mechanical input power to the generator and pg

the active output power from the generator:

pg �
v′qvr
L′d

sin δr +
v2r
2

L′d − Lq

L′dLq
sin 2δr. (3)

(1) is derived under the assumption that sub-transient behav-
ior in the generator is negligible. The effect of the control
systems, which are AVR, PSS and so on, in the generator is
also excluded to reveal native dynamics and stability of the
ac/dc system.

Second the operation of the ac-dc converters is repre-
sented via the averaged model [1], [2]. It is here supposed
that the ac-dc converters ideally operate under normal condi-
tions and the harmonic components are completely filtered.
The firing angle α of the rectifier is controlled according to

α = Gα(Idc(ref) − Idc), (4)

where Idc denotes the dc current, Idc(ref) the reference current
and Gα the gain coefficient of the rectifier controller. On
the other hand, the inverter is controlled with keeping the
margin angle γ constant [1], [2]. The averaged output dc
voltage of the rectifier Vdc(r) and the averaged input one to
the inverter Vdc(i) can be approximately given as follows:


Vdc(r) ≈ KVvr cosα − 3

π
XcIdc,

Vdc(i) ≈ KV Vi cos γ − 3
π

XcIdc,

(5)

where KV stands for the coupling coefficient between the ac
bus and dc voltage, Vi the ac bus voltage at the inverter side
and Xc the commutating reactance of the rectifier or inverter.
The dynamics of the dc transmission is hence represented by

Ldc İdc = −RdcIdc + Vdc(r) − Vdc(i), (6)

where Ldc and Rdc denote the inductance and resistance in
the dc transmission line, respectively.

Third the coupling relation between the ac system and
dc transmission is modeled based on the active and reactive
power relation. The relationship is given by


0 = pg + pi − KIvrIdc cosϕr,

0 = qg + qi − KIvrIdc sinϕr,

0 = KIvrIdc cosϕr − Vdc(r)Idc,

(7)

where pi denotes the active power which flows from the in-
finite bus, qg the reactive power related to the generator and
qi the one related to the infinite bus. These power terms are
represented by



pi �
vrV∞
L∞

sin(δr − δ),

qg �
v′qvr
L′d

cos δr − v
2
r

2

L′d + Lq

L′dLq

+
v2r
2

L′d − Lq

L′dLq
cos 2δr,

qi �
vrV∞
L∞

cos(δr − δ) − v
2
r

L∞
,

(8)

where V∞ denotes the infinite bus voltage, and L∞ the in-
ductance in the ac transmission line. In (7) the variable ϕr is
defined as the power factor angle of the rectifier, and KI is
equivalent to the coupling coefficient between the ac and dc
current. In (7) the first and second equations represent the
relationship between the active and reactive power in the
ac/dc system based on the variable ϕr. On the other hand,
the third equation represents the active power relationship
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between the ac system and dc transmission. The averaged
current relation is here assumed to derive (7) as follows:

ir ≈ KIIdc, (9)

where ir denotes the amplitude of the ac current at the recti-
fier side.

The following DAE system is hence derived for the
transient stability analysis of the ac/dc power system in
Fig. 1:

Mẋ = f (x, y), 0 = g(x, y), (10)

where M is the positive-definite matrix:

M � diag

(
T ′d0

Ld − L′d
, 1, 2H, Ldc

)
. (11)

In (10) f stands for the right-hand sides of (1) and (6), g
the right-hand side of (7), x the vector (v′q, δ, ω, Idc)T ∈ X

and y the vector (vr, δr, ϕr)T ∈ Y . T denotes the transpose
operation of vectors.

3. Summarized Theory of Differential-Algebraic Equa-
tion System

In this section we summarize fundamental concepts of the
theory of the DAE system (10) based on [10]–[12].

The following two sets L and S are defined for the DAE
system (10) by

{
L � {(x, y) ∈ X × Y ; g(x, y) = 0},
S � {(x, y) ∈ L ; det(Dyg)(x, y) = 0}, (12)

where Dyg stands for the Jacobian of g with respect to y.
Any solution in the DAE system (10) exists on L. S is called
a singular surface, and decomposes L into several disjoint
components Γi. If all the points on some Γi are such that Dyg
has eigenvalues with negative real parts, then Γi is called a
stable component; otherwise, it is called an unstable compo-
nent. The existence of Γs is important in order to investigate
the dynamics of the DAE system (10) via singular perturba-
tion techniques.

An EP on L \ S is said to be hyperbolic if and only if
the stable mapping:

M � Dx(M−1 f ) − Dy(M
−1 f )(Dyg)

−1Dxg, (13)

evaluated at the EP has no eigenvalues with zero real parts.
The stability region of a stable EP (xs, ys) in a stable com-
ponent Γs is defined as follows:

A(xs, ys) � {(x, y) ∈ Γs; lim
t→+∞ φt(x, y) = (xs, ys)}, (14)

where φt(·, ·) denotes a flow defined by the vector field on
Γs. The boundary of A(xs, ys) (in Γs) is called a stability
boundary, denoted by ∂A(xs, ys). For a hyperbolic EP (x̂, ŷ)
of the DAE system (10) its stable and unstable manifolds
Ws(x̂, ŷ) and Wu(x̂, ŷ) are defined by


Ws(x̂, ŷ)� {(x, y) ∈ Γs; lim

t→+∞ φt(x, y) = (x̂, ŷ)},
Wu(x̂, ŷ)� {(x, y) ∈ Γs; lim

t→−∞ φt(x, y) = (x̂, ŷ)}. (15)

We say that two m-dimensional differentiable manifold
M and n-dimensional differentiable manifold N intersect
transversally if at every point z ∈ M ∩ N the sum of the
tangent spaces TzM and TzN equals Rm+n.

Lastly let us revisit the definition of energy function for
the associated SP system:

Mẋ = f (x, y), εẏ = g(x, y), (16)

where ε is small positive parameter. An energy function for
the SP system (16) is defined as follows:
Definition: [11] A smooth function W : X × Y → R
is called an energy function for the SP system (16) if the
following three conditions are satisfied:

(i) the derivative ofW along any system trajectory is non-
positive, i.e.

Ẇ = DxWM−1 f +
1
ε

DyWg ≤ 0. (17)

(ii) if (x(t), y(t)) is a non-trivial trajectory (i.e. (x(t), y(t))
is not at any EP), then along the non-trivial trajectory
(x(t), y(t)) the set

{t ∈ R ; Ẇ(x(t), y(t)) = 0} (18)

has measure zero in R.
(iii) if a trajectory (x(t), y(t)) has a bounded value of
W(x(t), y(t)) for t ∈ R+, then the trajectory (x(t), y(t))
is also bounded.

4. Characterization of Stability Boundaries: Theoreti-
cal Result

This section discusses stability boundaries in the electric
power system with dc transmission in Fig. 1. We derive an
energy function for the associated SP system (16) thereby
characterizing the stability boundaries.

4.1 Re-formalization of DAE System via Structure Pre-
serving Power System Model

The DAE system (10) is rewritten via structure preserving
power system model [13]. The following variables transfor-
mations are introduced:

θr � δ − δr, Vr � ln vr, (19)

where we assume that vr > 0 and eVr < K for some
positive number K. We here define a smooth function
W(v′q, δ, ω, Idc, θr,Vr) by

W �
1
2

(2H)ω2 +Uac(v
′
q, δ, ω, θr,Vr) +Udc(Idc), (20)

where
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Uac � −pmδ

− (L′d − Lq) cos 2(δ − θr) − (L′d + Lq)

2L′dLq

e2Vr

2

− v
′
qeVr

L′d
cos(δ − θr) − eVr V∞

L∞
cos θr +

e2Vr

2L∞

− V0

Ld − L′d
v′q +

Ld

L′d(Ld − L′d)

v′2q
2
,

Udc �
1
2

RdcI2
dc.

(21)

The DAE system (10) is then re-formalized as follows:

T ′d0

Ld − L′d
v̇′q = −

∂W
∂v′q
,

δ̇ =
1

2H
∂W
∂ω
,

2Hω̇ = −Dω − ∂W
∂δ
,

Ldc İdc = −∂W
∂Idc

+ µK̄V (eVr cosα − Vi cos γ),

0 = −∂W
∂θr
− µK̄Ie

Vr Idc cosϕr,

0 = −∂W
∂Vr
− µK̄Ie

Vr Idc sinϕr,

0 = µ
{
K̄Ie

Vr Idc cosϕr

−
(
K̄VeVr cosα − 3

π
X̄cIdc

)
Idc

}
,

(22)

where µ ≥ 0 is the perturbation parameter: µK̄V � KV ,
µK̄I � KI and µX̄c � Xc.

4.2 Characterization via Energy Function

In the section we characterize a stability boundary of a sta-
ble EP in the DAE system (10). Let ∂A and ∂Aε be stability
boundaries of the DAE system (10) and the associated SP
system (16), respectively, of a stable EP (xs, ys) which lies
on a stable component Γs. We now make the following as-
sumptions for the associated SP system (16) pertinent to the
characterization of the stability boundaries ∂Aε and ∂A:

Assumptions:

(A1) All the EPs on ∂Aε are hyperbolic,
(A2) The stable and unstable manifolds of the EPs on ∂Aε

satisfy the transversality condition,
(A3) The SP system possesses an energy function.

Assumptions (A1) and (A2) are generic properties for dy-
namical systems [14]. Assumption (A3) is therefore crucial
for the application of the theorem. It is shown in Theorem
4-2 of [11] that if there exists an energy function for the as-
sociated SP system (16), then every trajectory on the stabil-
ity boundary ∂Aε converges to one of the equilibrium points
on ∂Aε as time increases. This property directly leads to the

characterization of the stability boundaries ∂Aε and ∂A.
This paper focuses on the following theorem which

characterizes the stability boundary ∂A in the DAE system
(10):

Theorem: [10] If Assumption (A3) is satisfied, then

∂A = ∂Aε ∩ Γs. (23)

Suppose that further Assumptions (A1) and (A2) are sat-
isfied. Let (x̂i, ŷi) i = 1, 2, . . . be the EPs on the stability
boundary ∂Aε. Then

∂A =


⋃

(x̂i,ŷi)∈∂A
Ws(x̂i, ŷi)



∪


⋃
(x̂i,ŷi)∈∂Aε\Γs

Ws
ε(x̂i, ŷi) ∩ Γs

 , (24)

where Ws
ε(x̂i, ŷi) stands for the stable manifold of (x̂i, ŷi) in

the associated SP system (16).

The theorem states global structure of the stability
boundary as follows. ∂A consists of two parts: the first part
is the set whose trajectories always converge to an EP, while
the second part contains points whose trajectories reach sin-
gular surface S . In addition this theorem shows that under
Assumptions (A1)–(A3) the stability boundary ∂A can be
examined through the associated SP system (16). The detail
structure of the second part is delineated via singular trans-
formation [12].

4.2.1 AC Power System: µ = 0

This subsection performs the characterization of the stabil-
ity boundaries in the DAE system (10) under the condition
µ = 0. We then can discuss the dynamics of the ac system
independently on that of the dc transmission; Apparently
Idc(t) → 0 as t → +∞. The setting at µ = 0 therefore corre-
sponds to the characterization with the only ac system. First
we confirm that the functionW(x, y) is an energy function
for the associated SP system at µ = 0. ϕr(t) can be here
omitted. By differentiating W along any the trajectory of
the associated SP system (16) we have

Ẇ = −Ld − L′d
T ′d0

(
∂Uac

∂v′q

)2

− Dω2 − 1
Ldc

(
∂Udc

∂Idc

)2

−1
ε

(
∂Uac

∂θr

)2

− 1
ε

(
∂Uac

∂Vr

)2

≤ 0, (25)

where (Ld − L′d)/T ′d0 and Ldc are positive in practical sys-
tem, and D is assumed to be positive. The condition (i) of
the energy function is therefore satisfied. Suppose that there
is an interval t ∈ [t1, t2] such that Ẇ(x(t), y(t)) = 0. It fol-
lows from the SP system (16) and the inequality (25) that
ω(t) = 0, Idc(t) = 0 and v̇′q(t) = δ̇(t) = θ̇r(t) = V̇r(t) = 0
for t ∈ [t1, t2]. It then follows that the associated SP system
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at µ = 0 is at an EP. Thus the condition (ii) of the energy
function also holds. In addition we can confirm by the same
way as [15] that if v′q(t), θr(t) and Vr(t) are bounded for ev-
ery nontrivial trajectory (x(t), y(t)) with bounded function
W(·, ·), thenW(x(t), y(t)) satisfies the condition (iii). The
functionW(x, y) is thus an energy function for the associ-
ated SP system (16) at µ = 0. The above discussion can be
stated in the following proposition:

Proposition 1: If v′q(t), θr(t) and Vr(t) are bounded for ev-
ery nontrivial trajectory (x(t), y(t)) with bounded function
W(·, ·), then the functionW(x, y) becomes an energy func-
tion for the associated SP system (16) at µ = 0.

The following proposition is obtained for the charac-
terization of the stability boundary:

Proposition 2: Suppose that the functionW(x, y) is an en-
ergy function for the associated SP system (16) at µ = 0. If
Assumptions (A1) and (A2) are satisfied for the associated
SP system (16) at µ = 0, then a stability boundary ∂A0 of a
stable EP (xs, ys) in some stable component Γs in the DAE
system (10) is characterized by the same formula as (24).

4.2.2 AC/DC Power System: Sufficiently Small Perturba-
tion µ

On the other hand, we can also characterize the stability
boundaries in the DAE system (10) under sufficiently small
perturbation µ. Suppose that the associated SP system (16)
at µ = 0 satisfies Assumptions (A1)–(A3). From the last
equation of (10) (or (22)) we have


cosϕr =

K̄V

K̄I
cosα − 3X̄c

πK̄IeVr
Idc,

sinϕr =

√
1 − cos2 ϕr,

(26)

where we assume that Idc > 0 and qg + qi(=
µK̄IeVr Idc sinϕr) > 0; This is relevant during transient pe-
riod in the ac/dc power system in Fig. 1. Substituting (26) to
(10) makes the variable ϕr vanished from the DAE system
(10). The associated SP system (16) at µ � 0 is then re-
garded as well-known perturbed dynamical system. Hence,
for the robustness of hyperbolic EPs on stability boundaries
[16], under sufficiently small µ, we can characterize a sta-
bility boundary ∂Aµ of a stable EP (xµs , y

µ
s ) in some stable

component Γµs for the DAE system (10) by the same for-
mula as (24), that is,

∂Aµ =


⋃

(x̂µi ,ŷ
µ

i )∈∂Aµ
Ws(x̂µi , ŷ

µ
i )



∪


⋃
(x̂µi ,ŷ

µ

i )∈∂Aµε\Γµs
Ws
ε(x̂µi , ŷ

µ
i ) ∩ Γµs

, (27)

where (x̂µi , ŷ
µ
i ) i = 1, 2, . . . stand for the EPs on the stability

boundary ∂Aµε .
The above result describes concrete global structure of

the stability boundary in the electric power system with dc
transmission. The obtained characterization makes it pos-
sible to apply the controlling u.e.p. method [10], [11], [17],
which is an effective and practical method for estimating
transient stability of ac power systems, to the ac/dc power
system in Fig. 1.

5. Concrete Structure of Stability Boundary: Numeri-
cal Results

This section discusses numerical results with a stability
boundary in the ac/dc power system. In [7], [9] we nu-
merically analyze a stability boundary under the parameters
D = 0, µK̄V = µK̄I = 1.19 and µX̄c = 0.12; Other parame-
ters setting is shown in Table 1†. In this section we attempt
to confirm the obtained characterization (27) via our numer-
ical results with the stability boundary. Several numerical
results in this section have been reported in [7], [9].

We note that the damping coefficient D is fixed at 0.0
in Table 1. As seen in Sect. 4 the positiveness of D is nec-
essary to consider the existence of energy functions for the
associated SP system. Although our numerical simulations
are performed under D = 0.0 in this section, the authors
confirm that our numerical results are qualitatively identical
to those at D = 0.05.

5.1 Equilibrium Points

Table 2 shows the locations and eigenvalues of EPs in the
DAE system (10). The eigenvalues at the EPs are calcu-
lated based on the stable mapping M . In the table, a sta-
ble EP, which is called EP#1, corresponds to a post-fault
steady state of the ac/dc system. A saddle EP, which is called
EP#2, also exists in the DAE system (10). EP#2 annihilates
with EP#1 by the fold bifurcation as the parameter Idc(ref)

decreases: related bifurcation diagram is shown in [7].

5.2 Basin Portraits around Equilibrium Points: Hyperbolic
Saddle Point on Stability Boundary ∂Aµ

This section discusses a stability boundary ∂Aµ of EP#1 by
basin portraits around EP#1 and EP#2. Figure 2 shows the

Table 1 Parameters setting.

Ld 1.79 Lq 1.77 L′d 0.34

T ′d0 ( 6.3 s) × (120π s−1) V0 1.7 pm 0.5

H (0.89 s) × (120π s−1) D 0.0 L∞ 0.883

V∞ 1.0 Ldc 4.2 Rdc 0.014

Vi 1.0 µK̄V 1.19 µK̄I 1.19

µX̄c 0.12 Gα 30.0 Idc(ref) 1.0

†These parameters were obtained for the practical system [3],
[4].
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Table 2 Locations and stability of equilibrium points.

EP#1 EP#2

v′q 9.753214 × 10−1 9.800746 × 10−1

δ 4.749342 × 10−1 4.884706 × 10−1

ω 0.000000 0.000000

Idc 5.899123 × 10−1 5.716954 × 10−1

vr 9.606723 × 10−1 9.655860 × 10−1

δr 5.765143 × 10−1 5.731841 × 10−1

ϕr 4.365590 × 10−1 4.436353 × 10−1

α −1.511112 × 10◦ 1.620139 × 10◦

pg 5.000000 × 10−1 5.000000 × 10−1

pi 1.103255 × 10−1 9.252590 × 10−2

qg 2.475875 × 10−1 2.478743 × 10−1

qi 3.718883 × 10−2 3.371123 × 10−2

det(Dyg) −2.121468 −2.123402

Eigenvalues

−7.244736 × 10−4 −7.003787 × 10−4

−1.580096 × 10−4 −1.275666 × 10−4

±j2.991998 × 10−2 ±j2.980325 × 10−2

−3.284533 3.371143

(a) ∆Idc = (value at EP#2)–(value
at EP#1)

(b) ∆Idc = 0.0

Fig. 2 Basin portraits around EP#1. The symbol © in Fig. 2(b) denotes
EP#1.

basin portraits around EP#1. In the figures, initial condi-
tions are set as follows: First v′q is fixed at the EP’s value.
Second Idc is determined as follows: Idc = (value at EP) +
∆Idc, where the deviation ∆Idc is arbitrary changed to clarify
the global structure of ∂Aµ. Finally (vr, δr, φr) are set at the
values which satisfy the algebraic constraint g(x, y) = 0 for
every initial condition (δ, ω). The numerical integration of
the DAE system (10) is performed with the 3rd-stage Radau-
IIA implicit Runge-Kutta method of 5th-order and 5th-stage
backward differential formula [18], [19]. In Fig. 2 we adopt
101 × 101 cells as the initial conditions for the numerical
integration. We here note that each initial condition exists
in certain stable component Γs defined in Sect. 3. The ini-
tial conditions are classified in Fig. 2 as follows: the white
region represents the basin of EP#1, and the gray region the
one in which trajectories converge to the singular surface S .
Figure 3 shows the basin portraits around EP#2. The basins
are colored by the same way as in Fig. 2. This figure shows
that the stable manifold of EP#2 coincides with a part of the

(a) ∆Idc = 0.0 (b) ∆Idc = (value at EP#1)–(value
at EP#2)

Fig. 3 Basin portraits around EP#2. The symbol © in Fig. 3(a) stands
for EP#2.

(a)

(b)

Fig. 4 Transient behavior of the DAE system (10) and associated SP sys-
tem (16). All solutions in the figure start from the same initial conditions:
the value of ω is 1.4 × 10−2 and other values equal those at EP#1.

stability boundary ∂Aµ; EP#2 is one of basic sets of the sta-
bility boundary ∂Aµ. This structure of ∂Aµ coincides with
the first term of the obtained characterization (27). This
structure and associated basic set are also clarified in [20]
via straddle orbit method [21].

5.3 Straddle Orbits in Associated Singularly Perturbed
System: Periodic Orbit on Stability Boundary ∂Aµε

Next let us consider another part of the stability boundary
∂Aµ shown in Figs. 2(b) and 3(a) based on the associated SP
system (16). The dynamics of the SP system (16) has the
similarity to that of the DAE system (10) in a stable compo-
nent Γµs ; This property is well-known as Tikhonov’s theorem
[22]. Figure 4 shows the transient behavior of the DAE sys-
tem (10) and associated SP system (16). All solutions in the
figure start from the same initial conditions. In Fig. 4 the
solution of the DAE system converges to the singular sur-
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(a) Fig. 2(b) (b) Fig. 3(a)

Fig. 5 Initial conditions of straddle orbit method for the associated SP
system (16).

(a) From the points (a)

(b) From the points (b)

(c) Periodic orbit

Fig. 6 Projected straddle orbits and periodic orbit in the associated SP
system (16) at ε = 0.5.

face S . On the other hand, all solutions of the associated
SP system converge to another stable EP, called by EP#3.
Fig. 4 implies that all solutions of the SP system show the
same behavior as that of the DAE system before its solution
reaches S . Thus the stability boundary ∂Aµ can be examined
through the associated SP system (16).

We now examine basic sets related to the part of sta-
bility boundary in Figs. 2(b) and 3(a) by the straddle orbit

method for the associated SP system (16). In principle any
straddle orbit goes to one of basic sets whose stable man-
ifold consists of a part of the stability boundary. Figure 5
shows the initial conditions which we fix to calculate the
straddle orbits. In each condition one point exists in the
basin of EP#1, another point in the basin of EP#3 for the
SP system (16). Figure 6 shows the obtained straddle orbits
at ε = 0.5 for the SP system (16). Each straddle orbit is
described by being projected onto δ-ω and ω-Idc planes. In
Fig. 6 all straddle orbits converge to a periodic orbit, shown
in Fig. 6(c), which is contained in the stable component Γs;
The periodic orbit is one of the basic sets of the stability
boundary ∂Aµε in the associated SP system (16). The exis-
tence shows that the obtained characterization (27) cannot
be applied to the DAE system (10) under the practical pa-
rameters as discussed in the last section.

6. Summary and Discussion

This paper addressed stability boundaries analysis of the
electric power system with dc transmission. The analysis
was theoretically and numerically performed based on the
DAE system. In Sect. 4 we completely characterized stabil-
ity boundaries of the DAE system. The obtained result sheds
a new insight on the stability boundaries of the ac/dc power
system. In addition the characterization makes it possible
to apply the controlling u.e.p. method [10], [11], [17] to the
ac/dc power system in Fig. 1.

On the other hand, Sect. 5 confirmed the obtained
characterization via our numerical results with the stabil-
ity boundary ∂Aµ. It is shown that a periodic orbit exists
on the stability boundary ∂Aµε . This implies that the phase
structure of the SP system at µ = 0 does not persist under
the existence of the perturbation terms which represent the
interaction between the ac system and dc transmission. We
therefore conclude that the obtained result in Sect. 4 is inad-
equate to clarify the stability boundary in the DAE system
under the parameters setting in Table 1.

An important question we now address is how to con-
firm our numerical results with the stability boundary theo-
retically. It is inevitable to clarify stability boundaries in the
ac/dc power system shown in Fig. 1 in terms of operation
and control techniques in future power supply networks. It
is here stated that if a trajectory on ∂Aµε of the associated SP
system converges to an periodic solution as time increases,
then there exists no energy function for the SP system; This
fact is the contraposition of Theorem 4-2 in [11] (or see
Sect. 4). Our numerical results in Sect. 5 therefore show one
of the application limits of the characterization based on the
present energy function. To confirm our numerical results in
this paper we need to explore comprehensive energy func-
tion theory of stability boundaries in the DAE system.
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