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A simple model is introduced to describe the observed coexistence of gelation and phase demixing in
atactic polystyrene solutions. It is shown that the multiple equilibria conditions for molecular clustering
caused by physical cross linking can lead to a characteristic feature of the phase diagram. The condition
is examined for the appearance of new criticai phenomena, such as a tricritical point or a triple point (or
a three-phase equilibrium), as a result of interference between gelation and phase separation.
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Recent experimental studies'? have furnished strong
evidence that the gelation of atactic polystyrene (at-PS)
in the solvent of carbon disulfide is thermally reversible,
and also that the gel melting temperature agrees with the
gel freezing temperature. It was also observed that ap-
parently inactive at-PS can gel in a series of solvents in-
cluding toluene and tetrahydrofuran. The physical gela-
tion of at-PS can therefore be universal. The current un-
derstanding of the experimental observations is based on
the co-occurrence® of sol-gel transition and two-phase
separation on the temperature-concentration plane. The
purpose of the present paper is to derive the observed
phase diagram from a molecular point of view, and to
predict new phenomena caused by the interference be-
tween the two intrinsically different phase transitions:
gelation and phase separation.

Consider a system of identical molecules dissolved in a
solvent, each carrying functional groups. The functional
groups on a molecule are assumed to be identical for
simplicity and capable of forming physical bonds by
pairwise association. The potential barrier of the cross
linking considered here is of the order of thermal energy,
so that bonding-unbonding equilibrium is easily estab-
lished by thermal activation.

In thermal equilibrium, an intermolecular reaction
yields polydisperse molecular aggregates, which we call
“cluster” in the following. The cluster distribution is
thermally controlled and strongly dependent on the total
solute concentration. To derive the size distribution of
such clusters, we consider the thermodynamics of the
system.

The free energy of our system can be constructed by
the sum of the two terms, F =F ., +AF i, each required
in two different steps starting from the reference state
where pure solvent and unreacted molecules are prepared
separately. Here F.., is the free-energy change required
to form the clusters from the reference state by pairwise
connection of the functional groups. It is written as
F=XY,,N.ud in terms of the chemical potential u,?, (or
equivalently the internal free energy) of a single isolated
m cluster. The second term AFx describes the free-

energy change required in the process of mixing thus
constructed clusters with the solvent. According to the
lattice theory developed by Flory and Huggins,* it is
given by

BAF mix=Nolngo+ X, Nplng,+ Qxe(1—9), (1)
m=]

where ¢ is the volume fraction of the solvent, ¢,, is the
volume fraction of the m clusters, B=1/kgT is the in-
verse temperature, Q is the total number of lattice cells
in the system, and y is the solvent-solute interaction pa-
rameter. The total solute concentration is given by ¢
=2 0m.

In thermal equilibrium, each molecule is in chemical
equilibrium through bonding and unbonding processes.
Therefore, since u,,/m is independent of m, this imposes
the following multiple-equilibria condition:>

Umlm =y, , 2)

where p,, =(8F/8N,, )7 n, is the chemical potential of
an m cluster. Substitution of the specific form for u,,
derived from F yields ¢, =K,,¢{" for the volume fraction
of m clusters, where the association constant K, is ex-
pressed as K,, =exp(m—1—A,,) in terms of the reduced
free-energy difference A,, defined by A,, =8l —mu?).
The free-energy gain per single molecule by participating
in an m cluster from isolation is given by 6&,, =A,,/m.
Thus the free energies A, of cluster formation determine
the entire distribution of aggregates. The total concen-
tration is now given by a power series of ¢;, the unimer
concentration, the mth power of which is accompanied
by the association constant K,,. Application of the
Cauchy-Hadamard theorem gives the convergence radius
@ of the power series in the form 1/®=Ilm(K,,)"™
=exp(l — 6), where the least upper bound of the limit
has been indicated by a bar. The quantity S« is the lim-
iting value of &, as m— oo, i.e., the free-energy gain per
molecule for the formation of an infinite (macroscopic)
cluster. Within the radius of convergence, the equation
¢ =220, gives a one-to-one relationship between ¢ and
¢1. By inverting this relation, let us express the unimer
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concentration in terms of the total concentration: ¢
=y(¢), for 0=<¢, <®. The function w(¢) is a mono-
tonically increasing function of ¢ since all the coefficients
K, are positive definite.

In the case where §,, is a monotonically decreasing
function, the cluster size m* at which fraction ¢,, takes
maximum for a given ¢, is infinite and a macroscopic
cluster appears as soon as ¢; exceeds the critical value
of =exp(8~—1). Hence we have gelation. The total
concentration ¢* obtained from ¢f gives the concentra-
tion at which sol-to-gel transition occurs. It depends on
the temperature through 8.. For ¢, above ¢}, the sum-
mation of the power series does not reach ¢, since it can-
not accommodate the contribution from the infinite net-
work. The excess amount ¢ — X ¢,, is consumed to form
a macronetwork. We thus have a decomposition of the
total concentration into ¢s =2.¢,, for the sol component
and ¢g =¢ —¢s for the gel component. The chemical
potential u¢ for a single molecule participating in the gel
network can be found by taking the lim(u,,/m). The
global uniformity of the molecular chemical potential
imposes an additional condition pg =pg;. By using the
specific form for u, derived from the free energy F, we
find that the unimer concentration remains fixed at ¢f
above the gelation threshold, while the total concentra-
tion increases. This is a simple picture of gelation® based
on the molecular-field approximation.

To proceed a step further and obtain specific results,
we must introduce a model for the internal structure of a
cluster. Here, we consider the simplest model in which a
cluster is constructed in the form of Kayley (acyclic)
tree of f-functional molecules. Intracluster loop forma-
tion is neglected. This is a crude approximation based
on the classical molecular-field picture of gelation. ®’

The internal partition function Z,, of a single m clus-
ter can be obtained by combinatorial counting as

Zp =W, (N/m!p™~'(1 —p)/m—2m+2,

where p is the probability of bond formation for a pair of
active groups and W,,(f) is the number of combinations
in which m molecules form a tree. This combinatorial
factor depends on the structure of a molecule and is
given by® W, () = (fm —m)\f"/(fm — 2m +2)!, provid-
ed that the f-functional groups on a molecule are indis-
tinguishable. For a long flexible chain carrying a large
number of active side groups, the functionality f is of the
order of n, the degree of polymerization, and the factor
f™ in W,, must be omitted since the side groups can be
sequentially numbered.

The partition function Z, gives the free-energy
change &, of our concern through the relation exp(—m
X8m)=Z,/Z}" by definition. It is in fact a mono-
tonically decreasing function of m and approaches a lim-
iting value

Se=1—(f = DIn(f— 1)+ (f—2)In(f —2) —InA(T) ,
where the parameter A(T) is defined by A(T)=efp/
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(1 —p)?% The statistical weight of a bond formation rel-
ative to the weight of two unreacted functionalities is ex-
pressed as p/(1—p)?=exp(—pBAf,) in terms of the
free-energy change Afy of a single-bond formation by
the law of mass action. Splitting the free energy into the
entropy As and energy A€, we have A(T) =Xpexp(—p
XAe), where Ao=efexp(As/kpg). Since all physical
quantities depend on a combined variable A(7)¢ instead
of the concentration, we call A(T) the temperature shift
factor.

According to the general prescription,® the infinite
series 2.¢,, can be explicitly summed up by introducing a
parameter a defined by A¢;=a(l —a)/ 2 We find r¢
=a(1 — fa/2)/(1 — a)? within the radius of convergence.
The limit of convergence is given by a.=1/ (f—1), or
equivalently

o* =1/2(f—2)M(T). 3)

This relation gives the sol-gel transition curve on the
temperature-concentration plane.

In the following we present theoretical results on the
phase behavior and the solution properties of the sys-
tem.® The following quantities are numerically calculat-
ed.

(1) Coexistence curves (binodals) of the phase equilib-
rium are derived by the coupled equations, wuo(¢')
=uo(¢") and u,(¢') =u,(¢p"), where uo is the solvent
chemical potential and yu; is the chemical potential of an
isolated molecule. Solute volume concentrations ¢’ and
¢" correspond to that of the lower and higher concentra-
tion phases, respectively. When these concentrations are
higher than the threshold ¢*, they are uniquely decom-
posed into the sol component and the gel component ac-
cording to the scheme described above. The chemical
potentials are then expressed as a function of the volume
concentration of the two components.

(2) Spinodal lines are derived by the condition dAuo/
d¢ =0. This leads to

1 k(9)
—+—==2y=0 4
1—¢  n¢ £ @
where k(¢) is defined by xk(¢p)=dIny(¢)/dyp when
¢ <¢* and x(¢)=0 when ¢ > ¢*. This k is a function
of the combined variable y =A¢ for our tree model and

explicitly given by

k() ={fQ+11-2(=2)p1"2) —2(/—2)y}/2Qy +1) .

(3) The osmotic pressure z is proportional to the sol-

vent chemical potential, 7f8a?= —BAuo, and the num-
ber-average mean cluster size is given by (m)=¢gs/
Sx(9)dy.

For the numerical calculation we take the temperature
and the volume concentration as independent variables.
The temperature is measured by a dimensionless devia-
tion t=1—06/T from the unperturbed theta temperature
© which satisfies an equation ¥(©)= 5. In terms of ,
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FIG. 1. Temperature-concentration phase diagram of low-molecular-weight thermoreversible gels.

the y parameter and the shift factor can be expressed
as y=% —yir and A(T)=xpexplr(1 —7)], where r
= —Ae/kp©. We have three material parameters v, Ao,
and r. In addition to these three, we must specify the
functionality f and the number n of the statistical units
on a chain.

Figure 1 shows the calculated results for low-molec-
ular-weight molecules. We have fixed f=3, n=1, and
r=1 for a typical example. The entropy parameter 1 is
changed from Fig. 1(a) to 1(c). Note that the scale of
the temperature axis is magnified. We have one-phase
sol, one-phase gel, and unstable region. The binodals
and the spinodals are drawn. The shaded area between
them is a metastable region. The point CP shows the
critical solution point. As we show in Fig. 2, our molec-
ular-field theory predicts that the reversible gelation is a
second-order phase transition. Therefore the point
where a gelation line meets a binodal at the top of the
unstable region must be a tricritical point (TCP) [Figs.
1(b) and 1(c)1.*'° This new point appears as the result
of the interference between the two intrinsically different
phase transitions: gelation and phase separation.

As the entropy parameter Ao increases, we find in Fig.
1(b) another new phenomenon: a three-phase equilibri-

mnBa¥/c <m>
f=3
n=1 4
1 0 //;
0.5 31.5
0.5F . 0
A > -1
( Sy
< = S~ o—]
=3 15 ~3l2
0 L A PR " 1
0 0.8
CONCENTRATION

FIG. 2. Osmotic pressure and mean average cluster size are
shown. Temperature is varied from curve to curve.

um (or a triple point). Since the TCP moves upwards,
two different sol phases S and S; and a gel phase G can
simultaneously coexist. As A increases still further, the
critical point disappears as shown in Fig. 1(c). We have
a TCP only in the phase diagram. This phase diagram
resembles that of the isotope mixture'' of liquid *He and
liquid “He.

Figure 2 shows the osmotic pressure and the number-
average mean cluster size for Ao =0.1. The temperature
t is varied from curve to curve. At the temperature
where =0, the second virial coefficient is actually nega-
tive as seen from the initial slope. The osmotic pressure
has a kink at the gelation concentration shown by filled
circles. The compressibility therefore jumps at the gela-
tion point. Our approximation thus indicates that the
gelation is a second-order phase transition. The open
circles show the spinodal points. Between the two open
circles on a line the system is unstable. The number-
average cluster size (m) is a small number even at gela-
tion.

Figure 3 shows the comparison of the theoretical cal-
culation with the observed phase diagram? for mono-
disperse at-PS in the solvent of CS,. The molecular
weight of the at-PS is 3x10% Rheologically found gela-
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FIG. 3. Comparison of the calculated phase diagram with
the experimental data for at-PS/CS;.
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tion points are indicated by filled circles. The thick line
shows the calculated spinodal and the open circles show
experimentally observed cloud points. The entropy pa-
rameter A¢ is varied to fit the experimental data, while
the energy parameter 7 is fixed to be r=4 by using ex-
perimental values.”? The so-called “critical gel concen-
tration? (CGC),” below which no gelation is observed, is
not predicted in this theory. We cannot specify the func-
tionality f without ambiguity, since the molecular mech-
anism of the segment association has not been clarified.
Here we present one speculation on the possible mecha-
nism. In order for the polymer segment to be tightly
bound, the large side groups must be on the same side of
the backbone chain. Local isotacticity is required for
this. Under such an assumption, the functionality f
must be proportional to the number of, for example, diad
or triad on a chain. For a completely random chain, it is
roughly given by the number which is 1 order of magni-
tude smaller than n.

In conclusion, we have shown that a simple molec-
ular-field theory presented here can properly describe the
global characteristics of the phase behavior of the ther-
moreversible gelation.
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