Synthetic Studies on Nitro Compounds and Aziridines

AUTHOR(S):
Sasaki, Mikio

CITATION:
Sasaki, Mikio. Synthetic Studies on Nitro Compounds and Aziridines. 京都大学, 2007, 博士(工学)

ISSUE DATE:
2007-11-26

URL:
https://doi.org/10.14989/doctor.r12135

RIGHT:
Synthetic Studies on Nitro Compounds and Aziridines

Mikio Sasaki

2007
Preface

The studies presented in this thesis have been carried out under the direction of Professor Andrei K. Yudin at the Department of Chemistry, University of Toronto during 2001-2003 and Professor Masamitsu Tamura at the Faculty of Engineering, The University of Tokyo during 1989-1992. The studies are concerned with synthetic studies on nitro compounds and aziridines.

The author wishes to express his sincerest gratitude to Professor Andrei K. Yudin for his kind guidance and valuable suggestions throughout the work regarding aziridines. The author also wishes to express his sincerest gratitude to Professor Masamitsu Tamura for his kind guidance and valuable suggestions throughout the work regarding aromatic nitration. The author wishes to express his sincere gratitude to Professor Jun-ichi Yoshida at Kyoto University for his kind guidance to complete this thesis. The author is deeply grateful to Professor Yoshiaki Akutsu for his constant advice and valuable discussions during the course of the work regarding aromatic nitration. The author is also indebted to Professor Tadao Yoshida and Professor Mitsuru Arai for their helpful suggestions.

The author wishes to thank to Dr. Yoji Sakito and Sumitomo Chemical Co., Ltd. for their kind supports to give an opportunity to study at University of Toronto.

The author also wishes to thank to Dr. Hidenori Danda, Mr. Kozo Shimago at Sumitomo Chemical Co. Ltd., all members of Professor Yudin's group and all members of Professor Tamura's group for their active collaborations and kindness.

Finally, the author expresses his deepest appreciation to his wife, Ms. Chie Sasaki and his parents, Mr. Sadao Sasaki and Ms. Etsuko Sasaki for their constant assistance and continuous encouragement.

Mikio Sasaki

Technology Research and Development Center
Dainippon Sumitomo Pharma Co., Ltd.
2007
Contents

General Introduction .. 5

Chapter 1 N-Arylation of Aziridines .. 16

Chapter 2 One-pot Reduction-Aldol Reaction of Esters and Synthesis of Aziridine

Building Blocks .. 32

Chapter 3 Oxidative Cycloamination of Olefins with Aziridines .. 43

Chapter 4 Applications with Bicyclic Aziridines: as a Versatile Route to Saturated

Nitrogen-Containing Heterocycles .. 58

Chapter 5 Solvent Effects on Aromatic Nitration with NO₂ ... 70

Chapter 6 Mechanism of Aromatic Nitration with NO₂ .. 77

Reference Chapter Facile Preparation of Allylamines by Hydrazinolysis of 2-Ketoaziridines

.. 86

List of Publications .. 101
Nitrogen-containing organic compounds are among some of the most abundant class of compound in the biological world. Their biological importance has been well appreciated although other aspects of their chemistry are also important for organic chemists. A number of methods for the construction of nitrogen-containing organic compounds have been developed so far, but exploring new methods is still needed to expand the scope of the chemistry. This thesis deals with two approaches to the chemistry of nitrogen-containing organic compounds; the synthesis and reactions of aziridines and nitration of aromatic compounds.

A) Development and Applications of Novel Reactions with Aziridines

The chemistry of aziridines, the nitrogenous analogues of epoxides, continues to attract the attention of the synthetic community. In part, this interest is driven by useful properties of aziridines centered around their ring-opening transformations. The reactivity of aziridines as carbon electrophiles makes them versatile nitrogen-containing building blocks for the synthesis of biologically important compounds. As well, biological properties of aziridine-containing molecules such as azinomycins, mitomycins, FR-900482, and miraziridine are of considerable interest.
The aziridine unit is widely recognized as a valuable building block for elaboration of such molecules. For example, aziridinecarboxylates have been used as intermediates in the synthesis of amino acids and alcohols (Scheme 1).

Scheme 1. Conversion of Aziridine-2-methanols into More Functionalized Amino Alcohols.

Cycloadditions of N-protected aziridines with Pd-trimethylenemethane complexes afford protected piperidines (eq 1).

\[
\text{AcO}_3\text{SiMe}_3 + \text{N} \quad \xrightarrow{10 \text{ mol}\% \text{Pd(OAc)}_2, 60 \text{ mol}\% \text{P(Oi-Pr)}_3, 20 \text{ mol}\% \text{n-BuLi}} \quad \text{THF, 65}^\circ\text{C} \\
\text{Yield: 82%}
\]

Under Lewis-acid activation, tolenesulfonyl-containing aziridines undergo cyclization with \(\pi\)-nucleophiles to form six-membered carbocycles or heterocycles (eq 2, 3).

![Diagram of Scheme 1 and eq 1-3]
2-Methyleneaziridine phenylselenide derivatives undergo tandem radical cyclizations to produce functionalized piperidines or bicyclic octahydroindolizines (eq 4, 5).11

\[
\begin{align*}
\text{Ph} & \text{SePh} \quad \stackrel{\text{Bu}_3\text{SnH}}{\text{AIBN}} \quad \text{Ph} \quad \text{N} \\
\text{N} & \quad \text{SePh} \quad \text{Bu}_3\text{SnH} \quad \text{AIBN} \quad \text{(4)}
\end{align*}
\]

In the synthesis of Sch 39166, a dopamine D\textsubscript{1} antagonist, methylated aziridinium salt was used as a crucial intermediate, which was later opened by Grignard reagents (Scheme 2).12

\textit{Scheme 2}. Synthetic route on Sch 39166.

Despite these important advances, aziridines are still rarely used in complex molecule synthesis.13 If functionalization of an aziridine-containing building block is required during synthesis, nitrogen protection/deprotection sequences are unlikely to be successful due to aziridines' susceptibility to acidic reagents and harsh reaction conditions.
The strategy of the present study to explore the use of aziridines includes a) transition metal catalyzed reactions of aziridines, b) oxidative nitrogen transfer of aziridines, c) making new aziridine-containing building blocks, and d) applications to the synthesis of saturated nitrogen-containing heterocycles such as pyrrolidines and piperidines. The pyrrolidine and piperidine rings are incorporated into the structures of a wide range of natural products and pharmaceuticals which makes them an important class of targets for stereoselective synthesis.14

Chapter 1 describes the utility of metal-bound aziridine species in nitrogen transfer processes. A range of N-arylaziridines were prepared by the palladium or copper catalyzed amination reaction between N-H aziridines and arylbromides or arylboronic acids (eq 6). These results showcase the utility of aziridinyl N-metal complexes in amination reactions (Figure 1).

\begin{equation}
\begin{array}{c}
\text{NH} \\
R_1 \\
R_2
\end{array}
\begin{array}{c}
\text{\textbf{+}} \\
\text{Br or B(OH)$_2$}
\end{array}
\begin{array}{c}
X=\text{CH or N}
\end{array}
\begin{array}{c}
\text{Pd or Cu cat.}
\end{array}
\begin{array}{c}
\text{\textbf{\textit{+}}}
\end{array}
\begin{array}{c}
\text{\textbf{\textit{N}}}
\end{array}
\begin{array}{c}
\text{R}_1 \\
\text{R}_2 \\
\text{R}_3
\end{array}
\begin{array}{c}
\text{X=CH or N}
\end{array}
\end{equation}

\textbf{Figure 1.} Metal-bound aziridine species.

Chapter 2 describes one-pot reduction-aldol reaction of esters and the synthesis of aziridine building blocks from the aldols. A new protocol was developed for making aldol adducts in a one-pot reaction between esters and silyl enol ethers in the presence of DIBAL-H without isolating the intermediate aldehydes (eq 7). Lewis acid activation of the initially formed aluminated hemiacetals produces highly reactive electrophilic aldehyde equivalents \textit{in situ}. Using this protocol, various aldol adducts can be readily obtained in up to 90% yield on a large scale. Particularly exciting is the possibility of applying the highly reactive aluminated intermediates in other types of nucleophilic addition processes.
The obtained aldols can be converted to the corresponding β-ketoaziridines (eq 8). The double bond functionalization of this aziridine (R=H) can be achieved by the Heck reaction or by the cross-metathesis. These aziridines are used as the starting materials of the oxidative cycloamination described in chapter 3.

Chapter 3 describes N-bromosuccinimide mediated oxidative cycloamination of olefins with aziridines. It was reasoned that despite its basic character, aziridine nitrogen should be quite resistant to oxidative degradation so that transformations of aziridine-containing building blocks can be realized. At the outset of the previous investigations, a significant (0.8V) difference had been observed in the oxidation potential of cyclohexene imine compared to the value recorded for a typical secondary amine such as piperidine, known for its low stability towards oxidation. This finding can be explained on the basis of thermodynamically uphill formation of the iminium species in the case of aziridine oxidation which opens a range of opportunities to explore the NH-containing aziridines in oxidative nitrogen transfer under non-acidic conditions. Of particular value are intramolecular versions of such amination protocols (eq 9) as they should allow for straightforward synthesis of a wide range of larger ring heterocycles.

Highly reactive [5,3]- and [6,3]- bicyclic aziridines can be readily prepared from the corresponding NH-aziridines and N-bromosuccinimide by intramolecular oxidative cycloamination of olefins (eq 10). Dehydrobromination of the resulting bicycles gave exo-methylene bicyclic aziridines, which are
surprisingly highly stable enamines with the orthogonal orientation of the nitrogen electron pair in relation to the double bond (Figure 2).

![Diagram](image)

Figure 2. The X-ray structure of bicyclic aziridine.

Chapter 4 describes the applications of bicyclic aziridines described in chapter 3. The nucleophilic ring opening reactions, reductive ring opening reactions, and hydrazine mediated reductive ring opening reactions provided wide range of nitrogen-containing heterocycles with high diastereoselectivities (Scheme 3). This strategy serves as a valuable alternative to existing methods for the construction of substituted pyrrolidines and piperidines, especially since stereocontrol still poses significant challenges with known methods.
Scheme 3. Nitrogen-containing heterocycles from aziridine building blocks.

Reference Chapter describes facile preparation of allylamines by hydrazinolysis of 2-ketoaziridines. A new method for making unprotected allyl amines by simple hydrazinolysis of 2-ketoaziridines has been developed. A variety of aziridines, including N-unprotected, N-substituted, as well as bicyclic enamine and aminal type, can be transformed into diversely substituted allyl amines (eq 11). Notably, the 2-ketoaziridine starting materials can be prepared in enantiomerically pure form by using the Julia-Colonna epoxidation reaction, thus, enantiomerically pure allyl amines can be obtained by this method. Allylamines are often seen in the structures of natural products and pharmaceuticals, which makes them another important class of targets for stereoselective synthesis.

\[
\begin{align*}
\text{R} & \xrightarrow{\text{DIBAL}} \text{NH}_2\text{NH}_2, \text{KOH} \\
\text{R} & \xrightarrow{\text{Pd, } \text{H}_2} \text{NuH} \\
\text{R} & \xrightarrow{\text{NuH, Acid}} \text{NH}_2\text{NH}_2, \text{KOH} \\
\text{R} & \xrightarrow{\text{1) Debromination}} \text{2) NuH, Acid} \\
\end{align*}
\]
B) Mechanistic Studies on Aromatic Nitration with NO$_2$

It was reported that aromatic nitro compounds, identified as cancer-causing or mutagenic, is formed by the reaction between aromatic compounds and NO$_2$ discharged from diesel vehicles and so on in the atmosphere.$^{15-17}$ These compounds exists in particulate matter contained in gas emission from diesel vehicles and might give harmful effects to living bodies by inhalation of such compounds.2 Therefore, it is important to clarify the formation process for aromatic nitro compounds in order to depress their formation.

In 1977 Perrin proposed one electron transfer mechanism for aromatic nitration with NO$_2^+$, in which radical cation plays an important role as an intermediate (Scheme 4).18

Scheme 4. Proposed mechanism for aromatic nitration with NO$_2^+$

\[
\begin{align*}
\text{rate-determining step} & \\
\text{ArH + NO}_2^+ & \rightarrow \left[\text{ArH}^+ \cdot \text{NO}_2 \right] \\
& \rightarrow \text{Ar}^+<\text{H}^<\text{NO}_2 \text{ (σ-complex)}
\end{align*}
\]

Based on this proposal a mechanism involving radical cation formed via rate-determining electron transfer process was proposed for aromatic nitration with NO$_2$ (Scheme 5).19,20

Scheme 5. Proposed Mechanism for aromatic nitration with NO$_2$

\[
\begin{align*}
\text{rate-determining step} & \\
\text{ArH + } & \cdot \text{NO}_2 \rightarrow \left[\text{ArH}^+ \cdot \text{NO}_2^- \right] \\
& \rightarrow \text{Ar}<\text{H}^<\text{NO}_2 \text{ (σ-complex)} \\
& \rightarrow \text{ArNO}_2 + \text{HNO}_2
\end{align*}
\]

However, the detail of aromatic nitration mechanism with NO$_2$ radical has not been clarified yet.
Chapter 5 describes the solvent effects on the nitration of mono-substituted benzenes with NO$_2$ in various solvent. From the comparison of the isomer distributions and the yields of the nitro products among various solvents and from Hammett's ρ values, it was suggested that in solvents with lower polarity aromatic nitration should occur by one electron-transfer process [indicating Hammett's ρ value is -1.7], and that in solvents with higher polarity like acetonitrile aromatic nitration should occur by the mechanism involving NO$^+$ produced from the heterolitic decomposition of N$_2$O$_4$ [indicating Hammett's ρ value is -3.2].

Chapter 6 describes the unusual dinitro-isomer distribution in the nitration of benzene and toluene with NO$_2$ and calculation studies on heats of formation and atomic electron densities of the nitration intermediates. A mechanism involving the addition of NO$_2$ to the initial adduct (the σ-complex intermediate) followed by the elimination of nitrous acid has been suggested for the formation of mononitrobenzene. A mechanism involving further addition of two mole of NO$_2$ to form a tetranitro-intermediate followed by the elimination of two moles of nitrous acid has also been suggested for the formation of dinitrobenzene.
General Introduction

References:

(13) For use of aziridines in complex molecule synthesis, see ref. 2b.

(14) For example, see: (a) Dewick, P. M. In *Medicinal Natural Products*; J. Wiley & Sons: Chichester, 1997; Chapter 6. (b) Hagan, D. O. *Nat. Prod. Rep.* **2000**, *17*, 435.

(17) Chuma, I.; Kondo, S.; Kakebe, K.; *Kankyo to Jintai II*; Todaishuppankai, 1983

Chapter 1

N-Arylation of Aziridines

Abstract

A range of N-arylaziridines were prepared by the palladium or copper catalyzed amination reaction between N-H aziridines and arylbromides or arylboronic acids. These results showcase the synthetic utility of metal-bound aziridine species in nitrogen transfer processes.

Introduction

Palladium-catalyzed carbon-nitrogen bond forming reactions have received considerable attention in recent years.\(^1,2\) A wide range of amines, amides, indoles, and imines participate in this useful process. Great interest in the synthetic applications of functionalized aziridines,\(^3,4\) and more recently in metal-bound aziridine species (Figure 1), led to investigate the possibility of reductive elimination of the arylated aziridines from a variety of transition metal complexes.

\[\text{N-MLn} \]

Figure 1. Metal-bound aziridine species.

Traditional routes to N-arylated aziridines are based on (a) ring closure of N-aryl-\(\beta\)-amino alcohols,\(^5-8\) and (b) addition of carbenoid species to imines.\(^9-12\) Amination of aryl halides is well-known but, to the best of my knowledge, has not been applied in the amination with aziridines. This is partly due to the difficulties associated with the preparation of N-H aziridines. Hartwig reported an example of the reaction between Ar-Pd-Br complexes and parent ethyleneimine lithium amide to produce N-arylated aziridine but, to the best of my knowledge, no investigation into the scope and potential applications of this process has been documented.\(^13\)

Results and Discussion
The aziridine starting materials was prepared by using one of the following two methods: (a) ring closure of 1-azido-2-hydroxycyclohexane with triphenylphosphine,14 and (b) 1,4-addition of methoxylamine to α,β-unsaturated ketone followed by ring closure.15 It was subsequently found that Pd\textsubscript{2}(dba)\textsubscript{3}/BINAP served as an effective catalyst for amination of N-H aziridines. Using this methodology, several types of N-arylated products have been synthesized. BINAP and DPPP were tried as ligands for the reaction between o-bromopyridine (2a) and cyclohexeneimine (1a), which revealed that BINAP was effective ligand in this process, whereas DPPP did not give the desired product. This contrasts with success of DPPP in the amination of 2a with various arylamines or cyclic amines.16

In the case of pyridine substrates, direct nucleophilic displacement of halide has been ruled out: heating the mixture of 1a and 2a did not give the desired product. To the delight, the insertion of palladium into the nitrogen-carbon bond was not observed in any of these cases, although oxidative addition of Ni to N-tosylaziridines has been reported17 and oxidative addition of transition metals to aziridines has been invoked in catalytic carbonylation of aziridines to give β-lactams.18,19

The scope of N-arylation of 1a using Pd/BINAP was investigated. The results are shown in Table 1. Both electron-withdrawing and electron-donating groups on the aryl halide moiety can be tolerated. Electron-withdrawing groups tend to increase reactivity (Table 1, entry 7), while electron-rich substrates, such as o-bromoanisole (2f), needed more forceful conditions to complete the reaction (Table 1, entry 6). Aryl chlorides did not react under the reaction conditions (Table 1, entry 9). Thus, o-bromochlorobenzene (2d) led to N-(2-chlorophenyl)aziridine (3d) with high chemoselectivity (Table 1, entry 4). Benzoyl-N-H aziridines also gave N-aryl aziridines under these conditions with moderate selectivity. The reaction between 2-benzoyl-3-tert-butylaziridine (1b) and 1-bromo-4-nitrobenzene (2g) gave 1-(4-nitrophenyl)-2-benzoyl-3-tert-butylaziridine (3i) in moderate yield (Scheme 1).
Table 1. The Scope of Aziridine N-Arylation.

![Image of reaction scheme]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>Reaction temperature (°C)</th>
<th>Reaction time (hrs)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2a</td>
<td>3a</td>
<td>50</td>
<td>12</td>
<td>70(^\text{b})</td>
</tr>
<tr>
<td>2</td>
<td>R=H (2b)</td>
<td>3b</td>
<td>70</td>
<td>14</td>
<td>53(^\text{a})</td>
</tr>
<tr>
<td>3</td>
<td>R=o-F (2c)</td>
<td>3c</td>
<td>80</td>
<td>7</td>
<td>58(^\text{a})</td>
</tr>
<tr>
<td>4</td>
<td>R=o-Cl (2d)</td>
<td>3d</td>
<td>80</td>
<td>19</td>
<td>95(^\text{b})</td>
</tr>
<tr>
<td>5</td>
<td>R=o-Me (2e)</td>
<td>3e</td>
<td>70</td>
<td>24</td>
<td>64(^\text{a})</td>
</tr>
<tr>
<td>6</td>
<td>R=o-OMe (2f)</td>
<td>3f</td>
<td>80</td>
<td>22</td>
<td>78(^\text{a})</td>
</tr>
<tr>
<td>7</td>
<td>R=p-NO(_2) (2g)</td>
<td>3g</td>
<td>70</td>
<td>3</td>
<td>96(^\text{a})</td>
</tr>
<tr>
<td>8</td>
<td>R=p-CN (2h)</td>
<td>3h</td>
<td>50</td>
<td>15</td>
<td>79(^\text{a})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>→ 60</td>
<td>→ 2</td>
</tr>
<tr>
<td>9</td>
<td>p-cyanochlorobenzene</td>
<td>3h</td>
<td>80</td>
<td>24</td>
<td>trace</td>
</tr>
</tbody>
</table>

\(^\text{a}\) Yield was determined after ring opening reaction with MeOH/HBF\(_4\) (i.e. as 4b, 4c, and 4e-h).

\(^\text{b}\) Yield was determined after purification on alumina (for 3a) or silica (for 3d) column.
Scheme 1. \(N\)-arylation of 2-benzoyl-3-tert-butylaziridine

\[
\begin{align*}
1b & \quad 1.0eq \\
+ & \quad 2g \quad 2.5eq \\
\xrightarrow[\text{toluene, 80°C}]{Pd_{2}(dba)_{3} \quad 4\text{mol\%} \quad \text{BINAP} \quad 8\text{mol\%} \quad t-\text{BuONa} \quad 3.5eq} \\
& \quad \text{Yield: 60\%} \\
& \quad \text{Conversion: 90\%}
\end{align*}
\]

Copper catalyzed amination system developed by Buchwald for the arylation of anilines, acyclic amines, and piperidines\(^{20}\) was also effective for the synthesis of \(N\)-arylated aziridines. Coupling between 1a or 1b and arylboronic acids (5a-f) catalyzed by copper acetate/myristic acid gave \(N\)-arylated aziridines (3b, 3e, and 3j-m) in good to moderate yields (Table 2, Scheme 2).

Table 2. The Scope of Aziridine \(N\)-Arylation Using Arylboronic Acids

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>Acid</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R=H (5a)</td>
<td>3b</td>
<td>myristic acid</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>5a</td>
<td>3b</td>
<td>camphane acid</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>5a</td>
<td>3b</td>
<td>2-phenylbutyric acid</td>
<td>no reaction</td>
</tr>
<tr>
<td>4</td>
<td>R=o-Me (5b)</td>
<td>3e</td>
<td>myristic acid</td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>R=m-Br (5c)</td>
<td>3j</td>
<td>myristic acid</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>R=m-NO(_2) (5d)</td>
<td>3k</td>
<td>myristic acid</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>R=p-OMe (5e)</td>
<td>3l</td>
<td>myristic acid</td>
<td>65</td>
</tr>
</tbody>
</table>
Scheme 2. *N*-arylation of 2-benzoyl-3-tert-butylaziridine using arylboronic acid

![Reaction Scheme](image)

Conclusion

It has been shown that a range of *N*-arylaziridines were prepared by the palladium or copper catalyzed amination reaction between N-H aziridines and arylbromides or arylboronic acids. These results showcase the utility of aziridinyl N-metal complexes in amination reactions.21

Experimental Section

General: Unless otherwise stated, all reactions were performed under nitrogen or argon atmosphere using flame-dried glassware and standard syringe-pump techniques.

Nuclear magnetic resonance spectra: 1H, 19F, and 13C NMR spectra were recorded on either Mercury 300, Varian Gemini 300, or VRX-S (Unity) 400 spectrometer. 1H NMR spectra were referenced to residual CDCl$_3$ (δ 7.27 ppm), 19F NMR were referenced to CFCl$_3$ (δ 0 ppm), and 13C NMR spectra were referenced to CDCl$_3$ (δ 77.23 ppm). Peak multiplicities are designated by the following abbreviations: s, singlet; bs, broad singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublets; dt, doublet of triplets; br, broad; and J, coupling constant in Hz.

Chromatography: Analytical thin layer chromatography (TLC) was performed on Macherey Nagel pre-coated glass-backed TLC plates (SIL G/UV$_{254}$, 0.25mm) and visualized by UV lamp (254 nm), iodine, ninhydrin, and potassium permanganate stains. Solvent ratios for R$_f$ values are reported as v/v. Column chromatography was carried out using Silicycle 230-400 mesh silica gel.
A mixture of cyclohexene oxide (30.1 g, 306 mmol) and NaN\textsubscript{3} (50.4 g, 775 mmol) in H\textsubscript{2}O/acetone (1:1) was heated to reflux for 17 hrs. Acetone was removed by rotavapor vacuum, and the residue was extracted with \textit{tert}-butyl methyl ether (3 × 160 mL) and dichloromethane (3 × 160 mL). The combined organic phases were washed with water and dried over MgSO\textsubscript{4}. The solvent was removed in vacuo and the azido alcohol was obtained as a yellow oil (40 g, 283 mmol, 93%), which was reacted without further purification. PPh\textsubscript{3} (57.7 g, 220 mmol) was added to a solution of azido-cyclohexanol (31.1 g, 220 mmol) in \textit{tert}-butyl methyl ether (250 mL). N\textsubscript{2} evolved from the mixture, and after heating to reflux for 16 hrs., the solvent was removed through distillation at 760 mmHg. Continued distillation under reduced pressure yielded compound 7-azabicyclo[4.1.0]heptane (1\textit{a}, 16.8 g, 173 mmol, 79%) as a colorless liquid, which solidified at 0°C.

1H NMR (CDCl\textsubscript{3}, 400 MHz): \(\delta 3.21\text{ ppm} \ (d, 1\text{H}, J=2 \text{ Hz}), 2.17\text{ ppm} \ (s, 2\text{H}), 1.80\text{ ppm} \ (s, 4\text{H}), 1.34-1.16\text{ ppm} \ (m, 4\text{H}); 13C NMR (CDCl\textsubscript{3}, 100 MHz): \(\delta 29.5\text{ ppm}, 24.8\text{ ppm}, 20.4\text{ ppm}

1. **Procedure for palladium-catalyzed arylation reaction** (Table 1, entry 1): To Pd\textsubscript{2}(dba)\textsubscript{3} (73 mg, 2 mol%) in 30 mL toluene (dried according to Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. \textit{Organometallics} 1996, 15, 1518) was added rac-BINAP (100 mg, 4 mol%), 2-bromopyridine (2\textit{a}, 640 mg, 4 mmol), NaO\textsubscript{t}Bu (540 mg, 5.6 mmol), and 7-azabicyclo[4.1.0]heptane (1\textit{a}, 470 mg, 4.8 mmol) at room temperature. The reaction mixture was stirred at 50°C for 12 hrs. After completion, the mixture was washed with water (3 × 30 mL) and dried over sodium sulfate. The solvent was subsequently removed under reduced pressure. Hexane was added to the crude product and the precipitated solid was removed by filtration, and the filtrate was evaporated. Pentane and neutral alumina were added to the residue and stirred for a few minutes at room temperature and then filtered. The filtrate was concentrated under reduced pressure, to give 490 mg of 7-(2-pyridinyl)-7-azabicyclo[4.1.0]heptane (3\textit{a}, yield: 70%).

7-(2-pyridinyl)-7-azabicyclo[4.1.0]heptane (3\textit{a}):
Chapter 1

1H NMR (CDCl₃, 400MHz): δ 8.27 ppm (dd, J = 5.2 Hz, 2.0 Hz, 1H), 7.54 ppm (dt, J = 8.0 Hz, 1.6 Hz, 1H), 6.92 ppm (d, J = 8.0 Hz, 1H), 6.88 ppm (dd, J = 7.6 Hz, 5.2 Hz), 2.61-2.65 ppm (m, 2H), 2.08-2.15 ppm (m, 2H), 1.92-1.99 ppm (m, 2H), 1.51-1.60 ppm (m, 2H), 1.30-1.39 ppm (m, 2H); 13C NMR (CDCl₃, 75MHz): δ 166.4 ppm (s), 148.3 ppm (s), 137.5 ppm (s), 117.8 ppm (s), 115.8 ppm (s), 38.9 ppm (s), 25.0 ppm (s), 20.8 ppm (s); HR-MS (EI) m/z: calcd. for C₁₁H₁₄N₂ 174.1157, found 174.1157

7-(2-chlorophenyl)-7-azabicyclo[4.1.0]heptane (3d):

1H NMR (CDCl₃, 300MHz): δ 7.28 ppm (dd, J = 10.8 Hz, 1.5 Hz, 1H), 7.11 ppm (dt, J = 7.8 Hz, 1.5 Hz, 1H), 6.83-6.94 ppm (m, 2H), 2.35-2.40 ppm (m, 2H), 2.13-2.22 ppm (m, 2H), 1.88-1.98 ppm (m, 2H), 1.47-1.58 ppm (m, 2H), 1.26-1.38 ppm (m, 2H); 13C NMR (CDCl₃, 100MHz): δ 151.4 ppm (s), 129.8 ppm (s), 127.1 ppm (s), 122.6 ppm (s), 121.4 ppm (s), 117.5 ppm (s), 39.9 ppm (s), 24.2 ppm (s), 20.4 ppm (s); HR-MS (EI) m/z: calcd. for C₁₂H₁₄ClN 207.0810, found 207.0812

Procedure for palladium-catalyzed arylation reaction (Table 1, entry 8): To Pd₂dba₃ (18 mg, 2 mol%) in 10 mL toluene was added rac-BINAP (25 mg, 4 mol%), p-nitrobromobenzene (2h, 202 mg, 1 mmol), NaO^t^Bu (135 mg, 1.4 mmol), and 7-azabicyclo[4.1.0]heptane (1a, 110 mg, 1.2 mmol) at room temperature. The reaction mixture was stirred at 70°C for 3 hrs and then at 50°C overnight. After completion, the mixture was washed with water (3 × 10 mL) followed by drying over sodium sulfate. The solvent was subsequently removed under reduced pressure, and 20 mL methanol together with 48% aqueous tetrafluoroboric acid (200mg) were added to the crude product. After stirring at room temperature, the solvent was removed under reduced pressure. To the residue, dichloromethane (10 mL) and dilute aqueous potassium carbonate (10 mL) were added. The layers were separated, washed
with water, dried over sodium sulfate, and the solvent was evaporated. The residue was purified on a silica gel column (hexane/ethyl acetate = 6/4), to give 239 mg of *trans*-1-methoxy-2-\(p\)-nitrophenylaminocyclohexane (4h, yield: 96%).

trans-1-methoxy-2-phenylaminocyclohexane (4b)**:

![trans-1-methoxy-2-phenylaminocyclohexane (4b)](image)

\(^1\)H NMR (CDCl\(_3\), 400MHz): \(\delta\) 7.20 ppm (t, \(J = 8.0\) Hz, 2H), 6.71-6.75 ppm (m, 3H), 3.42 (s, 3H), 3.27 ppm (dt, \(J = 8.8\) Hz, 4.0 Hz, 1H), 3.17 ppm (dt, \(J = 8.4\) Hz, 3.6 Hz, 1H), 2.22-2.26 ppm (m, 1H), 2.11-2.16 ppm (m, 1H), 1.79-1.83 ppm (m, 1H), 1.68-1.71 ppm (m, 1H), 1.20-1.46 ppm (m, 4H); \(^{13}\)C NMR (CDCl\(_3\), 100MHz): \(\delta\) 148.0 ppm (s), 129.2 ppm (s), 117.5 ppm (s), 113.9 ppm (s), 82.1 ppm (s), 56.6 ppm (s), 56.2 ppm (s), 31.2 ppm (s), 29.1 ppm (s), 23.8 ppm (s), 23.7 ppm (s)

trans-1-methoxy-2-o-fluorophenylaminocyclohexane (4c):

![trans-1-methoxy-2-o-fluorophenylaminocyclohexane (4c)](image)

\(^1\)H NMR (CDCl\(_3\), 400MHz): \(\delta\) 6.96-7.02 ppm (m, 2H), 6.85 ppm (dt, \(J = 8.4\) Hz, 1.6 Hz, 1H), 6.61-6.66 ppm (m, 1H), 4.1 ppm (br, 1H), 3.42 ppm (s, 3H), 3.27 ppm (dt, \(J = 8.8\) Hz, 4.0 Hz, 1H), 3.17 ppm (dt, \(J = 8.4\) Hz, 3.6 Hz, 1H), 2.13-2.22 ppm (m, 2H), 1.80-1.83 ppm (m, 1H), 1.70-1.75 ppm (m, 1H), 1.27-1.45 ppm (m, 4H); \(^{13}\)C NMR (CDCl\(_3\), 100MHz): \(\delta\) 153.1 ppm (s), 124.4 ppm (d, \(J = 3.0\) Hz), 116.6 ppm (d, \(J = 6.8\) Hz), 114.3 ppm (d, \(J = 19.0\) Hz), 113.2 ppm (s), 82.5 ppm (s), 56.62 ppm (s), 56.57 ppm (s), 31.4 ppm (s), 29.3 ppm (s), 23.9 ppm (s), 23.7 ppm (s); HR-MS (EI) **m/z**: calced. for C\(_{13}\)H\(_{18}\)FNO 223.1372, found 223.1375
trans-1-methoxy-2-o-methylphenaminocyclohexane (4e):

\[
\text{N} \quad \text{Me}\n\]

\(^1\)H NMR (CDCl\(_3\), 300MHz): \(\delta\) 7.03-7.13 ppm (m, 2H), 6.62-6.72 ppm (m, 2H), 3.77 ppm (br, 1H), 3.39 ppm (s, 3H), 3.30 ppm (dt, \(J = 8.7\) Hz, 3.9 Hz, 1H), 3.22 ppm (dt, \(J = 8.1\) Hz, 3.6 Hz, 1H), 2.20-2.29 ppm (m, 1H), 2.18 ppm (m, 3H), 2.08-2.13 ppm (m, 1H), 1.75-1.84 ppm (m, 1H), 1.60-1.72 ppm (m, 1H), 1.29-1.48 ppm (m, 4H); \(^{13}\)C NMR (CDCl\(_3\), 100MHz): \(\delta\) 146.1 ppm (s), 130.1 ppm (s), 127.0 ppm (s), 122.5 ppm (s), 116.9 ppm (s), 110.8 ppm (s), 82.0 ppm (s), 56.4 ppm (s), 56.2 ppm (s), 31.3 ppm (s), 29.0 ppm (s), 23.8 ppm (s), 23.7 ppm (s), 17.6 ppm (s); HR-MS (EI) \textit{m/z}: calcd. for \(\text{C}_{14}\text{H}_{21}\text{NO}\) 219.1623, found 219.1622

trans-1-methoxy-2-o-methoxyphenaminocyclohexane (4f):

\[
\text{N} \quad \text{Me} \quad \text{O}
\]

\(^1\)H NMR (CDCl\(_3\), 400MHz): \(\delta\) 6.88 ppm (dt, \(J = 7.6\) Hz, 1.2 Hz, 1H), 6.76-6.81 ppm (m, 2H), 6.69 (t, \(J = 7.6\) Hz, 1H), 4.4 ppm (br, 1H), 3.89 ppm (s, 3H), 3.42 (s, 3H), 3.29 ppm (dt, \(J = 8.4\) Hz, 3.6 Hz, 1H), 3.23 ppm (dt, \(J = 8.4\) Hz, 4.0 Hz, 1H), 2.10-2.22 ppm (m, 2H), 1.68-1.82 ppm (m, 2H), 1.30-1.48 ppm (m, 4H); \(^{13}\)C NMR (CDCl\(_3\), 100MHz): \(\delta\) 121.2 ppm (s), 116.3 ppm (s), 110.7 ppm (s), 109.5 ppm (s), 82.1 ppm (s), 56.4 ppm (s), 56.1 ppm (s), 55.5 ppm (s), 31.0 ppm (s), 29.1 ppm (s), 23.7 ppm (s), 23.5 ppm (s); HR-MS (EI) \textit{m/z}: calcd. for \(\text{C}_{14}\text{H}_{21}\text{NO}_3\) 235.1572, found 235.1573

trans-1-methoxy-2-p-nitrophenaminocyclohexane (4h):

\[
\text{N} \quad \text{Me} \quad \text{O} \quad \text{NO}_2
\]
Chapter 1

\(^1\)H NMR (CDCl\(_3\), 300MHz): \(\delta\) 8.05 ppm (d, \(J = 9.3\) Hz, 2H), 6.57 ppm (d, \(J = 9.0\) Hz, 2H), 4.54 ppm (br, 1H), 3.29-3.39 ppm (m, 4H), 3.08 ppm (dt, \(J = 9.0\) Hz, 4.2 Hz, 1H), 2.11-2.20 ppm (m, 2H), 1.68-1.85 ppm (m, 2H), 1.17-1.46 ppm (m, 4H); \(^1^3\)C NMR (CDCl\(_3\), 100MHz): \(\delta\) 153.4 ppm (s), 137.7 ppm (s), 126.3 ppm (s), 111.7 ppm (s), 82.8 ppm (s), 56.5 ppm (s), 56.4 ppm (s), 31.4 ppm (s), 29.5 ppm (s), 24.1 ppm (s), 23.7 ppm (s); HR-MS (EI) \(m/z\): calcd. for C\(_{13}\)H\(_{18}\)N\(_2\)O\(_3\) 250.1317, found 250.1318

trans-1-methoxy-2-\(p\)-cyanophenylaminocyclohexane (4i):

\[\text{OMe} \quad \text{N} \quad \text{CN}\]

\(^1\)H NMR (CDCl\(_3\), 300MHz): \(\delta\) 7.38 ppm (d, \(J = 8.7\) Hz, 2H), 6.60 ppm (d, \(J = 9.0\) Hz, 2H), 4.26 ppm (br, 1H), 3.34 ppm (s, 3H), 3.22-3.32 ppm (m, 1H), 3.07 ppm (dt, \(J = 8.7\) Hz, 3.9 Hz, 1H), 2.10-2.19 ppm (m, 2H), 1.76-1.85 ppm (m, 1H), 1.66-1.74 ppm (m, 1H), 1.23-1.43 ppm (m, 4H); \(^1^3\)C NMR (CDCl\(_3\), 100MHz): \(\delta\) 151.3 ppm (s), 133.6 ppm (s), 120.6 ppm (s), 112.8 ppm (s), 98.4 ppm (s), 82.7 ppm (s), 56.3 ppm (s), 56.2 ppm (s), 31.3 ppm (s), 29.4 ppm (s), 24.0 ppm (s), 23.7 ppm (s); HR-MS (EI) \(m/z\): calcd. for C\(_{14}\)H\(_{18}\)N\(_2\)O 230.1419, found 230.1416

\((E)-4,4\)-Dimethyl-1-phenyl-2-penten-1-one\)\(^{24}\): A mixture of pivalaldehyde (2.58 g, 30 mmol), acetophenone (3.60 g, 30 mmol), NaOH (1.20 g, 30 mmol) and water (6 mL) in methanol (60 mL) was heated under reflux for 6 hrs. After removal of methanol, CH\(_2\)Cl\(_2\) and aq. NH\(_4\)Cl were added to the reaction mixture. The product was extracted with CH\(_2\)Cl\(_2\). The combined organic extracts were dried over anhydrous sodium sulfate, and the solvent was evaporated. The residue was purified on a silica gel column (hexane/ethyl acetate = 95/5), to give 2.60 g of \((E)-4,4\)-dimethyl-1-phenyl-2-penten-1-one (yield 46%).

3-Methoxyamino-4,4-dimethyl-1-phenyl-1-pentanone\)\(^{24}\): A mixture of \((E)-4,4\)-dimethyl-1-phenyl-2-penten-1-one (1.88 g, 10 mmol) and NH\(_2\)OMe (719 mg, 15.3 mmol) in ethanol (10 ml) was heated under reflux for 5 hrs. The solvent was evaporated and the residue was purified on a silica gel column.
(hexane/ethyl acetate = 9/1), to give 1.30 g of 3-methoxyamino-4,4-dimethyl-1-phenyl-1-pentanone (yield: 55%).

trans-2-Benzoyl-3-tert-butylaziridine (1b)\(^{24}\): To a stirred solution of NaO\textsubscript{t}Bu (657 mg, 12.2 mmol) in DMF (20 mL), a solution of 3-methoxyamino-4,4-dimethyl-1-phenyl-1-pentanone (1.30 g, 5.5 mmol) in DMF (10 mL) was added dropwise at room temperature. After the solution was stirred for 20 min at the same temperature, water (60 mL) was added and the product was extracted with CH\textsubscript{2}Cl\textsubscript{2} (2 × 30 mL). The combined organic extracts were washed with water (20 mL) and the solvent was evaporated. The residue was purified on silica gel column (hexane/ethyl acetate = 9/1), to give 975 mg of *trans*-2-benzoyl-3-tert-butylaziridine (1b, yield: 87%). \(^1\)H NMR (CDCl\textsubscript{3}, 300 MHz) \(\delta\) 8.00-8.05 ppm (m, 2H), 7.60-7.66 ppm (m, 1H), 7.39-7.54 ppm (m, 2H), 3.35-3.38 ppm (m, 1H), 2.00-2.10 ppm (m, 2H), 1.00 ppm (s, 9H)

trans-1-*p*-Nitrophenyl-2-benzoyl-3-tert-butylaziridine (3j, Scheme 1):

\[
\begin{array}{c}
\text{O} \\
\text{Ph} \\
\text{N} \\
\text{t-Bu} \\
\text{NO}_2
\end{array}
\]

To Pd\(_2\)(dba)\(_3\) (6.5 mg, 2 mol%) in 4mL toluene was added *rac*-BINAP (8.6 mg, 4 mol%), *p*-nitro bromobenzene (2h, 182.5 mg, 0.75 mmol), NaO\textsubscript{t}Bu (122.5 mg, 1.05 mmol), and *trans*-2-benzoyl-3-tert-butylaziridine (1b, 73 mg, 0.3 mmol) at room temperature. The reaction mixture was stirred at 80ºC for 20 hrs. After completion, toluene (10 mL) was added. The mixture was washed with water (3 × 10 mL) and was dried over sodium sulfate. The solvent was subsequently removed under reduced pressure, and the residue was purified on a silica gel column (hexane/ethyl acetate = 9/1), to give 70 mg of *trans-1-*p*-nitrophenyl-2-benzoyl-3-tert-butylaziridine (3j, yield: 60%).

\(^1\)H NMR (CDCl\textsubscript{3}, 400MHz): \(\delta\) 8.13 ppm (d, \(J = 8.4\) Hz, 2H), 8.05 ppm (d, \(J = 7.6\) Hz, 2H), 7.70 ppm (t, \(J = 7.6\) Hz, 1H), 7.59 ppm (t, \(J = 8.0\) Hz, 2H), 6.83 ppm (d, \(J = 8.4\) Hz, 2H), 4.20 ppm (d, \(J = 2.8\) Hz, 1H), 2.82 ppm (d, \(J = 2.8\) Hz, 1H), 1.16 ppm (s, 9H); \(^{13}\)C NMR (CDCl\textsubscript{3}, 100MHz): \(\delta\) 193.2 ppm (s), 156.2 ppm (s), 137.5 ppm (s), 134.0 ppm (s), 129.1 ppm (s), 128.2 ppm (s), 125.0 ppm (s), 120.0 ppm
(s), 57.8 ppm (s), 42.8 ppm (s), 40.8 ppm (s), 26.9 ppm (s); HR-MS (EI) m/z: calcd. for C_{19}H_{20}N_{2}O_{3} 324.1474, found 324.1476

General procedure for copper-catalyzed arylation reaction (Table 2, entry 1): To the mixture of phenylboronic acid (5a, 183 mg, 1.5 mmol), Cu(OAc)$_2$ (18 mg, 0.1 mmol), and myristic acid (46 mg, 0.2 mmol) were successively added toluene (2 mL), 2,6-lutidine (107 mg, 1 mmol), and cyclohexeneimine (1a, 97 mg, 1 mmol). The reaction mixture was stirred at room temperature for 24 hrs, diluted with ethyl acetate (10 mL), filtered through a plug of silica gel, and then purified on a silica gel column (hexanes/ethyl acetate = 9/1), to give 150 mg of 7-phenyl-7-azabicyclo[4.1.0]heptane (3b, yield: 87%).

7-phenyl-7-azabicyclo[4.1.0]heptane (3b)25.

\[
\begin{array}{c}
\text{N}\text{H} \\
\text{C} \\
\end{array}
\]

1H NMR (CDCl$_3$, 400 MHz): δ 7.12 ppm (t, $J = 8$ Hz, 1H), 6.89 ppm (d, $J = 8$ Hz, 2H), 6.83 ppm (t, $J = 7.4$ Hz, 2H), 2.23 ppm (d, $J = 4$ Hz, 2H), 1.98-1.93 ppm (m, 2H), 1.85-1.80 ppm (m, 2H), 1.43-1.39 ppm (m, 2H), 1.24-1.18 ppm (m, 2H); 13C NMR (CDCl$_3$, 100 MHz): δ 155.9 ppm (s), 129.0 ppm (s), 122.0 ppm (s), 120.6 ppm (s), 38.9 ppm (s), 24.9 ppm (s), 20.6 ppm (s)

7-(2-methylphenyl)-7-azabicyclo[4.1.0]heptane (3e)26.

\[
\begin{array}{c}
\text{N} \\
\text{Me} \\
\text{C} \\
\text{C} \\
\text{C} \\
\text{C} \\
\text{C} \\
\text{C} \\
\end{array}
\]

1H NMR (CDCl$_3$, 400 MHz): δ 6.99 ppm (d, $J = 7.6$ Hz, 2H), 6.76 ppm (dd, $J = 7.6$ Hz, 2H), 2.23 ppm (s, 3H), 2.18 ppm (d, $J = 4$ Hz, 2H), 2.03-1.96 ppm (m, 2H), 1.86-1.83 (m, 2H), 1.47-1.42 (m, 2H), 1.28-1.19 (m, 2H); 13C NMR (CDCl$_3$, 125 MHz): δ 131.2 ppm (s), 130.6 ppm (s), 127.0 ppm (s), 126.4 ppm (s).
ppm (s), 126.1 ppm (s), 122.0 ppm (d, J = 9.6 Hz), 119.3 ppm (s), 38.8 ppm (s), 34.6 ppm (s), 24.7 ppm (s), 20.7 ppm (s)

7-(3-bromophenyl)-7-azabicyclo[4.1.0]heptane (3k)\(^26\).

![3-k](image)

\(^1\)H NMR (CDCl\(_3\), 400 MHz): δ 7.10 ppm (s, 1H), 7.04 ppm (t, J = 2 Hz, 2H), 6.89-6.87 ppm (m, 1H), 7.71 ppm (d, J = 1.8 Hz, 2H), 7.05 ppm (m, 2H), 2.04-1.98 ppm (m, 2H), 1.97-1.87 ppm (m, 2H), 1.50-1.44 ppm (m, 2H), 1.33-1.26 ppm (m, 2H); \(^1\)C NMR (CDCl\(_3\), 100 MHz): δ 157.4 ppm (s), 130.3 ppm (s), 125.0 ppm (s), 123.7 ppm (s), 122.5 ppm (s), 119.4 ppm (s), 39.2 ppm (s), 24.7 ppm (s), 20.5 ppm (s)

7-(3-nitrophenyl)-7-azabicyclo[4.1.0]heptane (3l).

![3-l](image)

\(^1\)H NMR (CDCl\(_3\), 400 MHz): δ 7.77 ppm (d, J = 3 Hz, 1H), 7.34 ppm (t, J = 8.6 Hz, 2H), 7.28-7.26 ppm (m, 1H), 2.40 ppm (d, J = 1.2 Hz, 2H), 2.10-2.04 ppm (m, 2H), 1.96-1.93 ppm (m, 2H), 1.51-1.46 ppm (m, 2H), 1.36-1.26 ppm (m, 2H); \(^1\)C NMR (CDCl\(_3\), 100 MHz): δ 134.8 ppm (s), 129.6 ppm (s), 127.1 ppm (s), 123.7 ppm (s), 116.9 ppm (s), 115.4 ppm (s), 39.7 ppm (s), 24.6 ppm (s), 20.4 ppm (s); HR-MS (EI) m/z: calcd. for C\(_{12}\)H\(_{14}\)N\(_2\)O\(_2\) 218.1055, found 218.1049

7-(4-methoxyphenyl)-7-azabicyclo[4.1.0]heptane (3g)\(^26\).

![3-g](image)

\(^1\)H NMR (CDCl\(_3\), 400 MHz): δ 6.89 ppm (d, J = 8.8 Hz, 2H), 6.75 ppm (d, J = 8.8 Hz, 2H), 3.74 ppm (s, 3H), 2.23 ppm (d, J = 3.6 Hz, 2H), 2.04-2.19 ppm (m, 2H), 1.91-1.88 ppm (m, 2H), 1.48-1.45 ppm (m, 2H), 1.30-1.26 ppm (m, 2H); \(^1\)C NMR (CDCl\(_3\), 100 MHz): δ 154.9 ppm (s), 149.3 ppm (s), 121.3 ppm (s), 114.3 ppm (s), 55.7 ppm (s), 39.1 ppm (s), 24.9 ppm (s), 20.6 ppm (s)
Chapter 1

trans-1-p-fluorophenyl-2-benzoyl-3-tert-butylaziridine (3m).

![Chemical Structure](image)

1H NMR (CDCl$_3$, 400 MHz): δ 8.01 ppm (d, $J = 7.2$ Hz, 2H), 7.62 ppm (t, $J = 7.2$ Hz, 1H), 7.52 ppm (t, $J = 7.8$ Hz, 2H), 6.86 ppm (t, $J = 8.2$ Hz, 2H), 6.70 ppm (dd, $J = 8.8$ Hz, 2H), 4.00 ppm (d, $J = 2.8$ Hz, 1H), 2.82 ppm (d, $J = 2.8$ Hz, 1H), 1.08 ppm (s, 9H); 13C NMR (CDCl$_3$, 100 MHz): δ 194.1 ppm (s), 145.6 ppm (s), 138.5 ppm (s), 133.7 ppm (s), 129.1 ppm (s), 128.4 ppm (s), 121.38 ppm (d, $J = 8.3$ Hz), 115.75 ppm (s), 115.5 ppm (s), 57.3 ppm (s), 41.3 ppm (s), 31.5 ppm (s), 27.2 ppm (s); 19F NMR (CDCl$_3$, 400 MHz): δ -122.17 ppm; HR-MS (EI) m/z: calcd. for C$_{19}$H$_{20}$FNO 297.1529, found 297.1523
REFERENCES:

(22) Christoffers, J.; Schulze, Y.; Pickardt, J. *Tetrahedron* **2001**, *57*, 1765

Chapter 2

One-pot Reduction-Aldol Reaction of Esters and Synthesis of Aziridine Building Blocks

Abstract

A new protocol was developed for making aldol adducts in a one-pot reaction between esters and silyl enol ethers in the presence of DIBAL-H without isolating the intermediate aldehydes. Lewis acid activation of the initially formed aluminated hemiacetals produces highly reactive electrophilic aldehyde equivalents in situ. Using this protocol, various aldol adducts can be readily obtained in up to 90% yield on a large scale. The obtained aldols can be converted to the corresponding β-ketoaziridines. The double bond functionalization of this aziridine (R=H) can be achieved by the Heck reaction or by the cross-metathesis. These aziridine building blocks are used as the starting materials of the oxidative cycloamination described in chapter 3.

Introduction

Aldol reaction is one of the most important carbon-carbon bond forming processes in contemporary organic chemistry. In addition, the aldol fragments or its derivatives are often present in the structures of natural products and pharmaceuticals. The typical aldol reaction is accomplished by reacting an aldehyde and an enolate in the presence of a Lewis acid. The aldehydes are prepared by either oxidation of alcohols or by reduction of esters. The traditional method of generating aldol products from the ester-containing starting materials is based on reducing the ester to the corresponding aldehyde using DIBAL-H followed by treating the isolated aldehyde with a silyl enol ether in the presence of a suitable Lewis acid. However, aldehyde isolation can be troublesome, especially on a large scale, because of the sensitivity of aldehydes and difficulty commonly encountered during their purification. In this regard, one-pot processes that avoid isolation of aldehyde building blocks are highly desirable, especially in the case of low boiling point aldehydes. Reissig reported an example of one-pot reaction of lactones to aldol derivatives, however, in that case the worse result was obtained than the corresponding stepwise reaction and, to the best of my knowledge, one-pot reactions of esters to aldols have not been documented.
Results and Discussion

At the outset of the investigation, the hope was that the silyl enol ether would attack the aluminated hemiacetal which is formed upon initial reduction of the aldehyde with DIBAL. Using this protocol, ethyl 4-pentenoate was converted to the corresponding aldol in excellent yield by the DIBAL reduction followed by the \textit{in situ} aldol reaction with 1-phenyl-1-(trimethylsilyloxy)ethylene in the presence of boron trifluoride without isolating the corresponding aldehyde (eq 1). Remarkably, \(\alpha,\beta\)-unsaturated ketone was not observed in this reaction at all. The presence of boron trifluoride was found to be mandatory as no reaction took place in its absence. It is noteworthy that this reaction condition is not sensitive as opposed to other aldol reactions such as titanium chloride promoted reaction.

![Chemical Reaction](image)

The scope of this reduction-aldol reaction was investigated and the results are shown in Table 1. Primary esters gave good to excellent yields (Table 1, entry 1, 2, 3 and 6), while secondary esters gave lower yields (Table 1, entry 4). The \(\alpha,\beta\)-unsaturated esters gave reduced alcohols instead of the aldol (Table 1, entry 5). Both aromatic and aliphatic groups \(R_3\) gave comparable yields (Table 1, entry 3 and 6). The 1,1,2-trisubstituted enolates gave lower yields with low diastereoselectivities, while typical Mukaiyama aldol reaction gives high diastereoselectivity (Table 1, entry 7).

The proposed mechanism is shown in Scheme 1. The ester is first reduced by DIBAL-H to give the aluminated hemiacetal, which coordinates to boron trifluoride, producing a highly electrophilic aluminated intermediate. There are two possible routes from this complex: in the first possibility, the silyl enol ether attacks the complex to give the aluminated aldol, which is hydrolyzed to the corresponding aldol. In the other route, the initially produced complex is decomposed to give aluminated aldehyde, which is subsequently attacked by the silyl enol ether to give the aluminated aldol adduct, which is subsequently hydrolyzed to the corresponding aldol. As a result, the aldol adduct is produced in a one-pot reaction from the corresponding ester without isolating the intermediate aldehyde.
Table 1. The Scope of the Reduction-Aldol Reaction.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ᵇ</td>
<td>CH₂=CH(CH₂)₂⁻</td>
<td>Et</td>
<td>Ph</td>
<td>H</td>
<td>90</td>
</tr>
<tr>
<td>2ᵇ</td>
<td>CH₃CH₂=CH(CH₂)₂⁻</td>
<td>Et</td>
<td>Ph</td>
<td>H</td>
<td>89</td>
</tr>
<tr>
<td>3</td>
<td>PhCH₂⁻</td>
<td>Me</td>
<td>Ph</td>
<td>H</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>cyclopropyl</td>
<td>Me</td>
<td>Ph</td>
<td>H</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>PhCH=CH⁻</td>
<td>Me</td>
<td>Ph</td>
<td>H</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>PhCH₂⁻</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>63</td>
</tr>
<tr>
<td>7</td>
<td>CH₂=CH(CH₂)₂⁻</td>
<td>Et</td>
<td>Ph</td>
<td>Me</td>
<td>38ᵃ</td>
</tr>
</tbody>
</table>

ᵃ diastere ratio=1.4:1
ᵇ 1.1eq of TMS ether was used. For the others 1.5eq of TMS ether was used.

Scheme 1. Proposed mechanism of the reduction-aldol reaction.

The obtained aldols can be converted to the corresponding β-ketoaziridines (eq 2). The double bond functionalization of this aziridine (R=H) can be achieved by the Heck reaction or by the cross-metathesis. In the case of metathesis, protection of the NH aziridine was found to be mandatory,
whereas the Heck reaction took place on the parent NH system using \(\text{Pd(OAc)}_2/\text{P(o-tolyl)}_3 \) catalyst (eq 3, Scheme 2). These aziridines are used as the starting materials of the oxidative cycloamination described in chapter 3.

\[
\begin{align*}
\text{R} & \quad \text{O} & \quad \text{H} & \quad \text{Ph} & \quad \text{O} \\
\text{+} & \quad \text{TsOH} & \quad \text{2) NH}_2\text{OMe} & \quad \text{3) NaOMe} & \quad \text{R} & \quad \text{N} & \quad \text{Ph} \\
\text{Overall yield : 63% (R=H) 64% (R=Me)}
\end{align*}
\]

\((2) \)

\[
\begin{align*}
\text{R} & \quad \text{O} & \quad \text{H} & \quad \text{Ph} & \quad \text{O} \\
\text{+} & \quad \text{Pd(OAc)}_2 & \text{P(o-tol)}_3 & \text{NEt}_3 & \text{MeCN} \\
\end{align*}
\]

\((3) \)

\textit{Scheme 2.} Double bond functionalization of aziridines by the cross-metathesis.

Conclusion

A new method was developed to synthesize aldol adducts from esters in a one-pot reaction without isolating the corresponding aldehydes. The obtained aldols can be converted to the corresponding \(\beta \)-ketoaziridines, which are used as the starting materials of the oxidative cycloamination described in chapter 3. This study also shows the particularly exciting possibility of applying the highly reactive aluminated intermediates in other types of nucleophilic addition processes.

Experimental Section
3-Hydroxy-1-phenylhept-6-en-1-one (Table 1, entry 1): To a mixture of ethyl 4-pentenoate (10 g, 78 mmol) and toluene (100 mL), 1.5M DIBAL-H in toluene (57 mL, 86 mmol) was slowly added at -78 °C, and the mixture was stirred for 1 hour at -78 °C. To this reaction mixture, THF (240 mL), boron trifluoride diethyl ether (11 mL, 86 mmol), and 1-phenyl-1-trimethylsilyloxyethylene (16.5 g, 86 mmol) were successively added at -78 °C, and the reaction mixture was allowed to warm up to around 0 °C with stirring. After completion (judged by TLC), 1N HCl (240 g), cooled in an ice bath, was added to the reaction mixture and the organic layer and the aqueous layer were separated and the aqueous layer was extracted with toluene (50 mL). The combined organic layers were washed with water (150 mL) and dried over sodium sulfate. The solvent was removed in vacuo and 3-hydroxy-1-phenylhept-6-en-1-one was obtained as crude yellow oil (16.2 g). The purity was 88 % and containing 12 % of acetophenone (yield: 90%). \(^1\)H NMR (CDCl\(_3\), 300MHz): \(\delta\) 7.97-8.00 ppm (m, 2H), 7.59-7.64 ppm (m, 1H), 7.48-7.53 ppm (m, 2H), 5.83-5.96 ppm (m, 1H), 5.00-5.14 ppm (m, 2H), 4.24-4.32 ppm (m, 1H), 3.05-3.24 ppm (m, 2H), 2.20-2.34 ppm (m, 2H), 1.58-1.82 ppm (m, 2H); \(^{13}\)C NMR (CDCl\(_3\), 75MHz): \(\delta\) 200.8 ppm, 138.3 ppm, 136.8 ppm, 133.6 ppm, 128.7 ppm, 128.1 ppm, 115.0 ppm, 67.2 ppm, 45.0 ppm, 35.6 ppm, 29.8 ppm

3-Hydroxy-1-phenyloct-6-en-1-one (Table 1, entry 2): \(^1\)H NMR (CDCl\(_3\), 300MHz): \(\delta\) 7.97-8.01 ppm (m, 2H), 7.58-7.65 ppm (m, 1H), 7.51-7.53 ppm (m, 2H), 5.43-5.57 ppm (m, 2H), 4.22-4.31 ppm (m, 1H), 3.04-3.26 ppm (m, 3H), 2.11-2.28 ppm (m, 2H), 1.58-1.78 ppm (m, 5H); \(^{13}\)C NMR (CDCl\(_3\), 100MHz): \(\delta\) 200.9 ppm, 136.8 ppm, 133.5 ppm, 130.7 ppm, 128.7 ppm, 128.1 ppm, 125.6 ppm, 67.3 ppm, 45.0 ppm, 36.3 ppm, 28.7 ppm, 17.9 ppm

Phenyl (2-hydroxy-3-phenyl)propyl ketone (Table 1, entry 3): \(^1\)H NMR (CDCl\(_3\), 300MHz): \(\delta\) 7.93-7.97 ppm (m, 2H), 7.58-7.64 ppm (m, 1H), 7.47-7.52 ppm (m, 2H), 7.25-7.39 ppm (m, 5H), 4.48-4.58 ppm (m, 1H), 2.84-3.24 ppm (m, 5H); \(^{13}\)C NMR (CDCl\(_3\), 75MHz): \(\delta\) 200.6 ppm, 138.1 ppm, 136.8 ppm, 133.6 ppm, 129.5 ppm, 128.7 ppm, 128.6 ppm, 128.1 ppm, 126.6 ppm, 69.0 ppm, 44.1 ppm, 43.0 ppm
Phenyl (3-cyclopropyl-2-hydroxy)propyl ketone (Table 1, entry 4): \(^1\text{H} \text{NMR (CDCl}_3, 400\text{MHz}): \delta\) 8.03-8.06 ppm (m, 2H), 7.63-7.68 ppm (m, 1H), 7.51-7.57 ppm (m, 2H), 3.53-3.59 ppm (m, 1H), 3.24-3.43 ppm (m, 3H), 1.06-1.14 ppm (m, 1H), 0.48-0.71 ppm (m, 3H), 0.26-0.33 ppm (m, 1H); \(^{13}\text{C} \text{NMR (CDCl}_3, 75\text{MHz):} \delta\) 200.7 ppm, 136.9 ppm, 133.5 ppm, 128.7 ppm, 128.2 ppm, 72.6 ppm, 45.1 ppm, 16.9 ppm, 3.4 ppm, 2.2 ppm

Methyl (2-hydroxy-3-phenyl)propyl ketone (Table 1, entry 6): \(^1\text{H} \text{NMR (CDCl}_3, 300\text{MHz):} \delta\) 7.23-7.38 ppm (m, 5H), 4.31-4.36 ppm (m, 1H), 2.97 ppm (d, \(J=3.6 \) Hz, 1H), 2.73-2.93 ppm (m, 2H), 2.60-2.63 ppm (m, 2H), 2.19 ppm (s, 3H); \(^{13}\text{C} \text{NMR (CDCl}_3, 75\text{MHz):} \delta\) 209.5 ppm, 137.9 ppm, 129.4 ppm, 128.6 ppm, 126.6 ppm, 68.6 ppm, 49.1 ppm, 42.9 ppm, 30.8 ppm

3-Hydroxy-2-methyl-1-phenylhept-6-en-1-one (E/Z mixture; Table 1, entry 7): \(^1\text{H} \text{NMR (CDCl}_3, 300\text{MHz):} \delta\) 7.96-8.00 ppm (m, 2H), 7.58-7.64 ppm (m, 1H), 7.48-7.54 ppm (m, 2H), 5.79-5.94 ppm (m, 1H), 4.97-5.12 ppm (m, 2H), 4.07-4.10 ppm (m, 1.4/2.4H), 3.90-3.94 ppm (m, 1/2.4H), 3.54-3.64 ppm (m, 1/2.4H), 3.46-3.53 ppm (m, 1.4/2.4H), 3.19 ppm (br, 1.4/2.4H), 3.03 ppm (br, 1/2.4H), 2.15-2.38 ppm (m, 2H), 1.49-1.86 ppm (m, 2H), 1.29 ppm (d, \(J=4.5 \) Hz, 3H); \(^{13}\text{C} \text{NMR (CDCl}_3, 75\text{MHz):} \delta\) 205.8 ppm, 205.7 ppm, 138.4 ppm, 138.3 ppm, 136.6 ppm, 135.9 ppm, 133.5 ppm, 133.4 ppm, 128.8 ppm, 128.8 ppm, 128.5 ppm, 128.4 ppm, 115.0 ppm, 114.9 ppm, 73.5 ppm, 70.8 ppm, 45.8 ppm, 44.7 ppm, 34.1 ppm, 33.6 ppm, 30.3 ppm, 30.1 ppm, 15.5 ppm, 11.3 ppm

(3-But-3-enyl-trans-aziridin-2-yl)-phenylmethanone

![Chemical structure of (3-But-3-enyl-trans-aziridin-2-yl)-phenylmethanone]

1) DIBAL 1.1eq, toluene, -78°C
2) THF, BF\(_3\)/Et\(_2\)O 1.1eq, -78°C → 0°C

Yield 90%

TsOH 1eq
toluene, 40°C
Yield 99%

NH\(_2\)OMe 1.2eq
reflux in EtOH
Yield 80%

MeO\(^-\)NH
NaOMe
DMF, r.t.
Yield 80%

 ![Chemical structure of the product with yield 80%]
A mixture of the aldol (18.0 g) obtained by the method described above, \(p \)-toluenesulfonic acid hydrate (16.7 g, 88 mmol), and toluene (200 mL) was heated to 40 \(^\circ\)C for 4 hours. After completion judged by TLC, sodium sulfate was added to the reaction mixture and filtered, and the solid residue was washed by toluene (40 mL). The solvent was removed from the filtrate in vacuo and \(\alpha,\beta \)-unsaturated ketone was obtained as crude yellow oil (15.5 g).

A mixture of the \(\alpha,\beta \)-unsaturated ketone (15.5 g), 12\% NH\(_2\)OMe in ethanol (33 g, 84 mmol), and ethanol (100 mL) was heated to gentle reflux for 4 hours. After completion judged by TLC, the solvent was removed in vacuo. The residue was added to DMF (100 mL), and this solution was added to the mixture of sodium methoxide (9.3g, 172 mmol) and DMF (250 mL) at room temperature and the reaction mixture was stirred for 1 hour. Dichloromethane (1000 mL) and water (670 mL) was added to the reaction mixture. The organic layer and the aqueous layer were separated, and the aqueous layer was extracted with dichloromethane (670 mL). The combined organic layers were washed with water (330 mL) and dried over sodium sulfate. The solvent was removed in vacuo and the residue was purified on a silica gel column (hexane/ethyl acetate = 7/3), to give 9.2 g of (3-but-3-enyl-\(trans \)-aziridin-2-yl)-phenylmethanone (1a, total yield: 53\% vs. ethyl 4-pentenoate).

\(^1\)H NMR (CDCl\(_3\), 300MHz): \(\delta \) 8.00-8.03 ppm (m, 2H), 7.58-7.64 ppm (m, 1H), 7.48-7.53 ppm (m, 2H), 5.76-5.90 ppm (m, 1H), 4.95-5.06 ppm (m, 2H), 3.27 ppm (br, 1H), 2.11-2.29 ppm (m, 4H), 1.65-1.72 ppm (m, 2H); \(^{13}\)C NMR (CDCl\(_3\), 75MHz): \(\delta \) 197.3 ppm, 137.7 ppm, 136.3 ppm, 133.9 ppm, 129.0 ppm, 128.4 ppm, 115.6 ppm, 42.9 ppm, 40.0 ppm, 32.8 ppm, 31.5 ppm

\((trans-3\text{-Pent-3-enyl}\text{-}\trans-aziridin-2-yl)\text{-phenylmethanone} \)

\[
\text{Starting from } trans\text{-ethyl 4-hexenoate in the same way above (total yield: 57\%).}
\]

\(trans \)-Ethyl 4-hexenoate was synthesized as follows: a mixture of 3-buten-2-ol (720 mg, 10 mmol) and triethyl orthoacetate (4.86 g, 30 mmol) was heated to 135 \(^\circ\)C and stirred overnight. Pentane (20 mL) and water (20 mL) were added to the reaction mixture and the mixture was stirred at room
temperature for 3 days. After separation, the water layer was extracted with pentane (10 mL). The combined organic layers were washed with water (10 mL) and dried over sodium sulfate. The solvent was removed in vacuo and the residue was purified by distillation, to give 700 mg of trans-ethyl 4-hexenoate (yield: 49%).

\[{^1}H \text{ NMR (CDCl}_3, 300 MHz): \delta \ 8.03-8.06 \text{ ppm (m, 2H), 7.54-7.67 ppm (m, 1H), 7.52-7.56 ppm (m, 2H), 5.43-5.52 ppm (m, 2H), 3.30 ppm (br, 1H), 2.13-2.26 ppm (m, 4H), 1.59-1.75 ppm (m, 5H); } \]

\[{^{13}}C \text{ NMR (CDCl}_3, 75 MHz): \delta \ 197.3 \text{ ppm, 136.2 ppm, 133.6 ppm, 130.0 ppm, 128.8 ppm, 128.2 ppm, 126.0 ppm, 42.9 ppm, 39.9 ppm, 33.3 ppm, 30.2 ppm, 17.9 ppm} \]

[3-(trans-5-Hydroxy-pent-3-enyl)-trans-aziridin-2-yl]-phenylmethanone

\[
\begin{align*}
\text{1a} & \quad \text{ClCH}_2\text{COCl} & \quad \text{NEt}_3 & \quad \text{CH}_2\text{Cl}_2 \\
\text{1c} & \quad \text{OAc} & \quad 5\text{eq} & \quad \text{Grubbs’ cat} \ 5\text{mol\%} & \quad \text{CH}_2\text{Cl}_2 \\
\text{AcO} & \quad \text{N} & \quad \text{COCH}_2\text{Cl} & \quad \text{0.1N NaOH} & \quad \text{MeOH} \\
\end{align*}
\]

To a mixture of (3-but-3-enyl-trans-aziridin-2-yl)-phenylmethanone (1a, 500 mg, 2.5 mmol), dichloromethane (10 mL), and triethylamine (377 mg, 3.7 mmol) was added chloroacetyl chloride (421 mg, 3.7 mmol) at the temperature of ice bath. The reaction mixture was stirred for 2 hours in ice bath. After completion judged by TLC, the reaction mixture was washed with water (5 mL), and was dried over sodium sulfate. The solvent was removed in vacuo and the residue was purified on a silica gel column (hexane/ethyl acetate = 7/3), to give 670 mg of N-protected aziridine (yield: 97%).

A mixture of this N-protected aziridine (139 mg, 0.5 mmol), allyl acetate (270 mg, 2.7 mmol), 2nd generation Grubbs’ catalyst\(^9\) (23 mg, 0.027 mmol) and dichloromethane (7 mL) was heated to 40 °C for 1.5 hours. After the reaction, the solvent was removed in vacuo and the residue was purified on a silica
Chapter 2

gel column (hexane/ethyl acetate = 7/3), to give 82 mg of the cross-metathesis product and 50 mg of the starting material (yield: 47%, conversion: 64%, selectivity: 73%).

A mixture of this product (201 mg, 0.57 mmol), methanol (20 mL), and 0.1N aq. NaOH (20 mL) was stirred at room temperature. Methanol was removed in vacuo and dichloromethane (20 mL) and water (10 mL) was added to the residue. The water layer was extracted with dichloromethane (10 mL) and the combined organic layers were washed with water (10 mL), and were dried over sodium sulfate. The solvent was removed in vacuo, to give 128 mg of [3-(trans-5-hydroxy-pent-3-enyl)-trans-aziridin-2-yl]-phenylmethanone (1c, yield: 96%, containing 16% of cis-olefin product).

1H NMR (CDCl$_3$, 300MHz): δ 8.05-8.10 ppm (m, 2H), 7.67-7.71 ppm (m, 1H), 7.55-7.60 ppm (m, 2H), 5.62-5.82 ppm (m, 2H), 4.10 ppm (br, 2H), 3.32 ppm (br, 1H), 2.15-2.38 ppm (m, 4H), 2.03 ppm (br, 1H), 1.70-1.77 ppm (m, 2H); 13C NMR (CDCl$_3$, 75MHz): δ 197.0 ppm, 136.1 ppm, 133.8 ppm, 131.2 ppm, 130.2 ppm, 128.9 ppm, 128.2 ppm, 63.4 ppm, 42.7 ppm, 39.7 ppm, 32.8 ppm, 29.9 ppm

[3-(trans-4-Phenyl-but-3-enyl)-trans-aziridin-2-yl]-phenylmethanone

A mixture of acetonitrile (25 mL), triethylamine (500 mg, 5 mmol), tri-o-tolylphosphine (17 mg, 0.056 mmol), palladium (II) acetate (6 mg, 0.027 mmol), (3-but-3-enyl-trans-aziridin-2-yl)-phenylmethanone (1a, 500 mg, 2.5 mmol), and iodobenzene (1 g, 5 mmol) was heated to 50 °C for overnight. After the reaction, the solvent was removed in vacuo and the residue was purified on a silica gel column (hexane/ethyl acetate = 7/3), to give 402 mg of [3-(trans-4-phenyl-but-3-enyl)-trans-aziridin-2-yl]-phenylmethanone (1d). (yield: 58%)

1H NMR (CDCl$_3$, 400MHz): δ 8.04-8.02 ppm (m, 2H), 7.60-7.64 ppm (m, 1H), 7.45-7.48 ppm (m, 2H), 7.30-7.35 ppm (m, 4H), 7.22-7.27 ppm (m, 1H), 6.45 ppm (d, $J=16$ Hz, 1H), 6.28 ppm (dt, $J=16$ Hz, 1H).
Hz, 6.8 Hz, 1H), 3.35 ppm (br, 1H), 2.41-2.53 ppm (m, 2H), 2.23-2.30 ppm (m, 1H), 2.15-2.21 ppm (m, 1H), 1.74-1.92 ppm (m, 2H); 13C NMR (CDCl$_3$, 100MHz): δ 197.1 ppm, 137.5 ppm, 136.1 ppm, 133.7 ppm, 130.9 ppm, 129.3 ppm, 128.8 ppm, 128.5 ppm, 128.2 ppm, 127.1 ppm, 126.0 ppm, 42.7 ppm, 39.9 ppm, 33.1 ppm, 30.6 ppm
REFERENCES:

(4) For recent development of the aldol reaction, for example, see: (a) Yanagisawa, A.; Sekkiguchi, T. Tetrahedron Lett. 2003, 44, 7163; (b) Nagasawa, T.; Fujiwara, H.; Mukaiyama, T. Chem. Lett. 2003, 44, 6187; (c) Calter, M. A.; Orr, R. K. Tetrahedron Lett. 2003, 44, 5699

Chapter 3

Oxidative Cycloamination of Olefins with Aziridines

Abstract
Highly reactive [5,3]- and [6,3]-bicyclic aziridines can be readily prepared from the corresponding NH-aziridines and N-bromosuccinimide by intramolecular oxidative cycloamination of olefins. These compounds, including surprisingly stable exo-methylene bicyclic aziridines, provide versatile synthetic entries into a wide range of pyrrolidine- and piperidine-containing heterocycles.

Introduction
Selective transfer of nitrogen-containing fragments to readily available olefins is one of the fundamental ways of incorporating nitrogen atoms into the frameworks of organic molecules. The interest in synthetic applications of functionalized aziridines has led to the investigation of their utility in the synthesis of larger nitrogen-containing heterocycles. Known for the difficulties in controlling their reactivity, aziridines are rarely used in complex molecule synthesis. If functionalization of an aziridine-containing building block is required during synthesis, nitrogen protection/deprotection sequences are unlikely to be successful due to aziridines' susceptibility to acidic reagents and harsh reaction conditions.

It was reasoned that despite its basic character, aziridine nitrogen should be quite resistant to oxidative degradation so that transformations of aziridine-containing building blocks can be realized. At the outset of the previous investigations, a significant (0.8V) difference had been observed in the oxidation potential of cyclohexene imine compared to the value recorded for a typical secondary amine such as piperidine, known for its low stability towards oxidation. This finding can be explained on the basis of thermodynamically uphill formation of the iminium species in the case of aziridine oxidation which opens a range of opportunities to explore the NH-containing aziridines in oxidative nitrogen transfer under non-acidic conditions. Of particular value are intramolecular versions of such amination protocols (eq 1) as they should allow for straightforward synthesis of a wide range of larger ring heterocycles. The resulting enamine–containing compounds have not received attention in synthesis.
Toward this goal, aziridine-containing building blocks (1a-e, Figure 1) were synthesized from commercially available starting materials as described in Chapter 2. The NH portion of 1a is separated from the olefin by the (CH$_2$)$_2$ linker, positioned towards cyclization to give pyrrolidine- and piperidine-containing heterocycles. The pyrrolidine and piperidine rings are incorporated into the structures of a wide range of natural products and pharmaceuticals which makes them an important class of targets for stereoselective synthesis. If relative stereochemistry of the products can be controlled during cyclization and subsequent ring-opening steps, the oxidative aziridine cycloamination methodology should be a valuable addition to the established methods.

Results and Discussion

It was revealed that aziridines 1a are converted into 1-azabicyclo[3.1.0]hexane derivatives 2a in good yields upon treatment with N-bromosuccinimide (NBS) in DME/water. The TLC analysis indicated complete conversion of the NH aziridine to the corresponding N-Br species within the first 2 minutes of the reaction. The bromoamine 1f (Figure 1) thus formed attacked the double bond of the molecule to give the cycloamination product. Table 1 shows the scope of the reaction. The products are [5,3] bicyclic rings in the case of the terminal double bond-containing substrates, whereas aryl-substituted double bonds preferentially give six-membered ring products.
Table 1. Intramolecular cycloamination of olefins.

\[
\begin{array}{cccc}
\text{Entry} & R_1 & R_2 & \text{Product} & \text{Yield}^a \\
1 & H & \text{PhCO} & 2a & 76 \\
2 & \text{Me} & \text{PhCO} & 2b & 51 \\
3 & \text{CH}_2\text{OH} & \text{PhCO} & 2c & 54 \\
4 & \text{Ph} & \text{PhCO} & 3^c & 67 \\
5 & H & \text{PhCH(OH)} & 2e & 55 \\
\end{array}
\]

*

The diastereomeric ratios were as follows: for 2a, 41:59; for 2b, 33:67; for 2c, 33:67; for 3, 19:81; \(b\) Structures were determined by NMR analysis (NOE, HMBC and COSY); \(c\) 23% of 2d was also isolated.

The resulting bicycles 2a-b were converted into exo-methylene bicyclic aziridines 4 in quantitative yields by dehydrobromination (eq 2). Surprisingly high stability of the resulting enamines is attributed to the orthogonal orientation of the nitrogen electron pair in relation to the double bond, evident from the single crystal X-ray analysis (Figure 2). The X-ray data shows that the bond length between C(6A) and C(7A) is 1.32Å, which is typical of an olefin system. Worthy of note, this interesting and uncommon structural motif is present in azinomycin family of antibiotics.
The proposed mechanism is shown in Scheme 1. The bromoamine formed at first is attacked by double bond to form three-membered ring containing bromo cation. This intermediate has two conformations and each conformation gives corresponding diastereomer after the attack of nitrogen on aziridine ring. Both diastereomers give same product after trans-dehydrobromination. In case of R=Ar, the nitrogen on aziridine ring preferably attacks more electrophilic benzylic position, to give six-membered ring.

Scheme 1. Plausible mechanism of halo amidation–dehydrobromination.
Conclusion

It has been shown that highly reactive [5,3]- and [6,3]- bicyclic aziridines can be readily prepared from the corresponding NH-aziridines and N-bromosuccinimide by intramolecular oxidative cycloamination of olefins. The resulting bicyclic aziridines were converted into surprisingly stable exomethylene bicyclic aziridines by dehydrobromination. The usabilities of these reactive bicyclic aziridines will be described in Chapter 4.

Experimental Section

General: The chemicals were purchased from Aldrich Chemical Co., Strem Chemical Co., Fischer Scientific Ltd., and Lancaster and were used without further purification. In experiments requiring anhydrous solvents: ether, toluene, hexanes, acetonitrile, and dichloromethane were purified using the method described by Grubbs (Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518). Tetrahydofuran (THF) was distilled over sodium-benzophenone ketyl under argon. Unless otherwise stated, all reactions were performed under nitrogen or argon atmosphere using flame-dried glassware.

Nuclear magnetic resonance spectra: 1H and 13C NMR spectra were recorded on either Mercury 300, Varian Gemini 300, or VRX-S (Unity) 400 spectrometer. 1H NMR spectra were referenced to residual CDCl$_3$ (δ 7.27 ppm) and 13C NMR spectra were referenced to CDCl$_3$ (δ 77.23 ppm). Peak multiplicities are designated by the following abbreviations: s, singlet; bs, broad singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublets; dt, doublet of triplets; br, broad; and J, coupling constant in Hz.

Chromatography: Analytical thin layer chromatography (TLC) was performed on Macherey Nagel pre-coated glass-backed TLC plates (SIL G/UV$_{254}$, 0.25mm) purchased from Rose Scientific Limited and visualized by UV lamp (254 nm) or iodine. Solvent ratios for R$_f$ values are reported as v/v. Column chromatography was carried out using Silicycle 230-400 mesh silica gel.
Procedure for intramolecular cycloamination (Table 1, Entry 1):

![Chemical structure](image)

To a mixture of (3-but-3-enyl-trans-aziridin-2-yl)-phenylmethanone (1a, 2.5 g, 12.4 mmol), dimethoxyethane (100 mL), and water (25 mL) was added N-bromosuccinimide (2.65 g, 1.49 mmol) at the temperature of ice bath and the mixture was stirred for 2 hours in ice bath. After completion judged by TLC, 10% aq. Na$_2$SO$_3$ (50mL) and diethyl ether (100 mL) were added. The organic layer and the aqueous layer were separated, and the aqueous layer was extracted with diethyl ether (50 mL). The combined organic layers were dried over sodium sulfate and the solvent was removed in vacuo at lower than room temperature. The residue was purified on a silica gel column (hexane/ethyl acetate = 6/4), to give 1.08g of (2R*,5R*,6S*)-(2-bromomethyl-1-aza-bicyclo[3.1.0]hex-6-yl)-phenylmethanone and 1.56g of (2S*,5R*,6S*)-(2-bromomethyl-1-aza-bicyclo[3.1.0]hex-6-yl)-phenylmethanone, respectively (2a, combined yield: 76%, the ratio between two diastereomers: 41:59).

(2R*,5R*,6S*)-(2-Bromomethyl-1-azabicyclo[3.1.0]hex-6-yl)-phenylmethanone (2a)

![Chemical structure](image)

1H NMR (CDCl$_3$, 500MHz): δ 8.00-8.02 ppm (m, 2H), 7.61-7.64 ppm (m, 1H), 7.50-7.53 ppm (m, 2H), 3.68-3.73 ppm (m, 2H), 3.25-3.30 ppm (m, 1H), 3.03 ppm (d, J = 2.5 Hz, 1H), 2.97 ppm (dd, J = 4.5 Hz, 2.5 Hz, 1H), 2.19-2.35 ppm (m, 2H), 2.01-2.06 ppm (m, 1H), 1.78-1.85 ppm (m, 1H); 13C NMR (CDCl$_3$, 100MHz): δ 195.9 ppm, 136.9 ppm, 133.3 ppm, 128.7 ppm, 128.2 ppm, 66.3 ppm, 49.9 ppm, 41.5 ppm, 35.7 ppm, 25.2 ppm, 24.4 ppm
Chapter 3

(2S*,5R*,6S*)- (2-Bromomethyl-1-azabicyclo[3.1.0]hex-6-yl)-phenylmethanone (2a)

1H NMR (CDCl₃, 500MHz): δ 7.99-8.02 ppm (m, 2H), 7.57-7.61 ppm (m, 1H), 7.46-7.50 ppm (m, 2H), 3.68-3.75 ppm (m, 2H), 3.48-3.52 ppm (m, 1H), 3.27 ppm (d, J = 2.5 Hz, 1H), 2.93 ppm (dd, J = 4.5 Hz, 2.5 Hz, 1H), 2.35 ppm (dd, J= 14.0, 8.0, 1H), 2.12-2.19 ppm (m, 1H), 1.95-2.01 ppm (m, 1H), 1.37-1.44 ppm (m, 1H); 13C NMR (CDCl₃, 100MHz): δ 195.0 ppm, 137.0 ppm, 133.3 ppm, 128.7 ppm, 128.2 ppm, 65.0 ppm, 49.1 ppm, 35.9 ppm, 33.1 ppm, 27.0 ppm, 25.1 ppm

(1'S*,2R*,5R*,6S*)-[2-(1'-Bromoethyl)-1-azabicyclo[3.1.0]hex-6-yl]- phenylmethanone (2b)

1H NMR (CDCl₃, 500MHz): δ 8.01-8.03 ppm (m, 2H), 7.58-7.62 ppm (m, 1H), 7.48-7.51 ppm (m, 2H), 4.28-4.33 ppm (m, 1H), 3.43-3.46 ppm (m, 1H), 2.99 ppm (t, J = 3.0 Hz, 1H), 2.92 ppm (d, J = 3.0 Hz, 1H), 2.24-2.35 ppm (m, 2H), 2.08-2.12 ppm (m, 1H), 1.76-1.85 ppm (m, 1H), 1.82 ppm (d, J = 6.5, 3H); 13C NMR (CDCl₃, 100MHz): δ 196.0 ppm, 137.0 ppm, 133.2 ppm, 128.6 ppm, 128.3 ppm, 72.2 ppm, 54.2 ppm, 50.5 ppm, 42.5 ppm, 26.6 ppm, 24.5 ppm, 24.0 ppm
(1'R^*,2S^*,5R^*,6S^*)-[2-(1'-Bromoethyl)-1-azabicyclo[3.1.0]hex-6-yl]-phenylmethanone (2b)

\[
\begin{align*}
\text{H NMR (CDCl}_3\text{, 500MHz): } & \delta 8.03-8.05 \text{ ppm (m, 2H), 7.62-7.65 \text{ ppm (m, 1H), 7.51-7.55 \text{ ppm (m, 2H), 4.14-4.20 \text{ ppm (m, 1H), 3.56-3.61 \text{ ppm (m, 1H), 3.33 \text{ ppm (d, } } J = 2.5 \text{ Hz, 1H), 3.01 ppm (dd, } J = 4.5 \text{ Hz, 2.5 Hz, 1H), 2.36 ppm (dd, } J = 13.5, 8.0, 1H), 2.08-2.21 \text{ ppm (m, 2H), 1.92 ppm (d, } J = 7.0, 3H), 1.43-1.52 \text{ ppm (m, 1H); } \\
\text{13C NMR (CDCl}_3\text{, 100MHz): } & \delta 195.7 \text{ ppm, 137.0 ppm, 133.3 ppm, 128.7 ppm, 128.2 ppm, 71.1 ppm, 51.2 ppm, 49.8 ppm, 35.6 ppm, 26.7 ppm, 25.6 ppm (2C) }
\end{align*}
\]

(1'R^*,2R^*,5R^*,6S^*)-[2-(1'-Bromo-2'-hydroxyethyl)-1-azabicyclo[3.1.0]hex-6-yl]-phenylmethanone (2c)

\[
\begin{align*}
\text{H NMR (CDCl}_3\text{, 300MHz): } & \delta 7.96-8.00 \text{ ppm (m, 2H), 7.61-7.67 \text{ ppm (m, 1H), 7.50-7.55 \text{ ppm (m, 2H), 5.04 ppm (d, } J = 7.8, 1H), 4.01-4.18 \text{ ppm (m, 2H), 3.87 ppm (dt, } J = 9.3 \text{ Hz, 3.9 Hz, 1H), 3.70-3.76 \text{ ppm (m, 1H), 3.11 ppm (d, } J = 2.7 \text{ Hz, 1H), 3.01 ppm (t, } J = 3.6 \text{ Hz, 1H), 2.12-2.37 \text{ ppm (m, 3H), 1.73-1.96 \text{ ppm (m, 1H); } } \\
\text{13C NMR (CDCl}_3\text{, 75MHz): } & \delta 194.5 \text{ ppm, 136.6 ppm, 133.5 ppm, 128.8 ppm, 128.2 ppm, 72.0 ppm, 68.1 ppm, 54.4 ppm, 49.1 ppm, 41.5 ppm, 26.0 ppm, 24.9 ppm}
\end{align*}
\]
(1'S,2'S,5'R,6'S)- [2-(1'-Bromo-2'-hydroxyethyl)-1-azabicyclo[3.1.0]hex-6-yl]-phenylmethanone (2c)

\[\text{H NMR (CDCl}_3, 300MHz): \delta 7.96-8.00 \text{ ppm (m, 2H), 7.59-7.64 ppm (m, 1H), 7.47-7.53 ppm (m, 2H), 4.00-4.10 ppm (m, 2H), 3.91-3.98 ppm (m, 2H), 3.67-3.74 ppm (m, 1H), 3.29 ppm (d, } J = 2.1 \text{ Hz, 1H), 3.03 ppm (dd, } J = 4.5 \text{ Hz, 2.4 Hz, 1H), 2.31-2.38 ppm (m, 1H), 2.06-2.23 ppm (m, 2H), 1.44-1.55 ppm (m, 1H); }^{13}\text{C NMR (CDCl}_3, 75MHz): \delta 195.1 \text{ ppm, 136.4 ppm, 133.6 ppm, 128.8 ppm, 128.2 ppm, 68.6 ppm, 67.4 ppm, 54.5 ppm, 50.6 ppm, 36.7 ppm, 26.6 ppm, 25.8 ppm}\]

(1'S,2'S,5'R,6'S)-(2-Bromomethyl-1-aza-bicyclo[3.1.0]hex-6-yl]-phenylmethanol (2e)

\[\text{H NMR (CDCl}_3, 400MHz): \delta 7.31-7.44 \text{ ppm (m, 5H), 4.73 ppm (d, } J = 4.4 \text{ Hz, 1H), 3.53-3.61 ppm (m, 1H), 3.42 ppm (dd, } J = 10.0 \text{ Hz, 6.8 Hz, 1H), 3.30 ppm (dd, } J = 10.0 \text{ Hz, 6.8 Hz, 1H), 3.15 ppm (br s, 1H), 2.70 ppm (dd, } J = 5.2 \text{ Hz, 3.2 Hz, 1H), 2.11-2.17 ppm (m, 1H), 1.98-2.08 \text{ ppm (m, 2H), 1.82-1.89 ppm (m, 1H), 1.11-1.22 ppm (m, 1H); }^{13}\text{C NMR (CDCl}_3, 100MHz): \delta 141.9 \text{ ppm, 128.5 ppm, 127.8 ppm, 126.2 ppm, 71.6 ppm, 64.0 ppm, 42.9 ppm, 39.1 ppm, 33.1 ppm, 26.4 ppm, 26.1 ppm; HR-MS (El) m/z: calcd. for C}_{14}\text{H}_{16}\text{BrNO}_2 281.0415, \text{ found 281.0419}\]

(2R*,3S*,6R*,7S*)-(3-Bromo-2-phenyl-1-azabicyclo[4.1.0]hept-7-yl)- phenylmethanone (3d)
1H NMR (CDCl$_3$, 500MHz): δ 7.53-7.55 ppm (m, 2H), 7.46-7.50 ppm (m, 3H), 7.25-7.35 ppm (m, 5H), 4.66 ppm (d, J = 10.5 Hz, 1H), 4.27-4.32 ppm (m, 1H), 3.10 ppm (d, J = 2.5 Hz, 1H), 2.99 ppm (dt, J = 7.5 Hz, 3.0 Hz, 1H), 2.35-2.43 ppm (m, 2H), 2.14-2.20 ppm (m, 2H); 13C NMR (CDCl$_3$, 125MHz): δ 196.6 ppm, 139.6 ppm, 137.1 ppm, 133.1 ppm, 128.8 ppm, 128.6 ppm, 128.3 ppm, 128.2 ppm, 128.0 ppm, 66.4 ppm, 46.7 ppm, 42.6 ppm, 42.2 ppm, 31.7 ppm, 23.8 ppm; HR-MS (EI) m/z: calcd. for C$_{19}$H$_{18}$BrNO 355.0572, found 355.0582

(2S,3R,6R,7S)-(3-Bromo-2-phenyl-1-azabicyclo[4.1.0]hept-7-yl)- phenylmethanone (3d)

1H NMR (CDCl$_3$, 500MHz): δ 8.01-8.03 ppm (m, 2H), 7.58-7.61 ppm (m, 1H), 7.46-7.51 ppm (m, 4H), 7.36-7.40 ppm (m, 2H), 7.30-7.33 ppm (m, 1H), 4.10-4.15 ppm (m, 2H), 3.62 ppm (d, J = 3.0 Hz, 1H), 2.99 ppm (dt, J = 5.5 Hz, 2.5 Hz, 1H), 2.33-2.47 ppm (m, 3H), 2.08-2.15 ppm (m, 1H); 13C NMR (CDCl$_3$, 125MHz): δ 196.2 ppm, 142.5 ppm, 136.8 ppm, 133.3 ppm, 128.7 ppm, 128.5 ppm, 128.4 ppm, 128.0 ppm, 127.7 ppm, 70.7 ppm, 52.8 ppm, 47.1 ppm, 41.6 ppm, 29.3 ppm, 22.6 ppm; HR-MS (EI) m/z: calcd. for C$_{19}$H$_{18}$BrNO 355.0572, found 355.0568
(3-But-3-enyl-1-chloroaziridin-2-yl)-phenylmethanone

To a mixture of (3-but-3-enyl-trans-aziridin-2-yl)-phenylmethanone (40 mg, 0.2 mmol), dimethoxyethane (2 mL) and water (0.5 mL) was added N-chlorosuccinimide (29 mg, 0.22 mmol) at room temperature and the mixture was stirred for 2 hours. The solvent was removed in vacuo, to give crude (3-but-3-enyl-1-chloroaziridin-2-yl)-phenylmethanone.

\(^{1}\)H NMR (CDCl\(_3\), 300MHz): \(\delta\) 8.02-8.06 ppm (m, 2H), 7.63-7.69 ppm (m, 1H), 7.52-7.57 ppm (m, 2H), 5.82-5.96 ppm (m, 1H), 5.01-5.16 ppm (m, 2H), 3.51 ppm (d, \(J=5.4\) Hz, 1H), 2.83 ppm (q, \(J=6.0\) Hz, 1H), 2.04-2.50 ppm (m, 4H)

Procedure for the dehydrobromination (eq 2, R=H):

To a mixture of (2S\(^*\),5R\(^*\),6S\(^*\))- (2-bromomethyl-1-aza-bicyclo[3.1.0]hex-6-yl)-phenylmethanone (2a, 1.0 g, 3.6 mmol), (2R\(^*\),5R\(^*\),6S\(^*\))- (2-bromomethyl-1-aza-bicyclo[3.1.0]hex-6-yl)-phenylmethanone (2a, 1.4 g, 5.0 mmol), THF (200 mL) and ethanol (2 mL) was added crushed potassium hydroxide (1.4 g, 25
mmol) at room temperature and the resulting mixture was stirred for 4 hours. After completion judged by TLC, dichloromethane (500 mL) and water (300 mL) were added. The organic layer and aqueous layer were separated, and the aqueous layer was extracted with dichloromethane (150 mL). The combined organic layers were washed with water (200 mL) followed by drying over sodium sulfate and the solvent was removed in vacuo, to give 1.70 g of \(\text{(5}^R\text{,6}^S\text{)}-\text{(2-methylene-1-azabicyclo[3.1.0]hex-6-yl)-phenylmethanone (4a, yield: quant.). Further purification was achieved on a silica gel column (hexane/ethyl acetate = 6/4).}

\(\text{(5}^R\text{,6}^S\text{)}-\text{(2-Methylene-1-azabicyclo[3.1.0]hex-6-yl)-phenylmethanone (4a)}\)

\(\text{H NMR (CDCl} \text{3, 400MHz): } \delta \ 8.02\text{-}8.05 \text{ ppm (m, 2H), 7.61\text{-}7.65 ppm (m, 1H), 7.50\text{-}7.54 ppm (m, 2H), 5.31 ppm (d, } J = 1.6 \text{ Hz, 1H), 4.74 ppm (d, } J = 1.6 \text{ Hz, 1H), 3.22\text{-}3.25 ppm (m, 2H), 2.24\text{-}2.60 ppm (m, 4H); } \text{13C NMR (CDCl} \text{3, 100MHz): } \delta \ 196.2 \text{ ppm, 158.6 ppm, 136.8 ppm, 133.3 ppm, 128.7 ppm, 128.4 ppm, 101.9 ppm, 50.6 ppm, 45.4 ppm, 26.2 ppm, 25.3 ppm; HR-MS (EI) } m/z \text{: calcd. for C}_{13}\text{H}_{13}\text{NO 199.0997, found 199.0998}}\)

X-ray structure:
(5R⁺,6S⁻)-(E-2-Ethylidene-1-azabicyclo[3.1.0]hex-6-yl)-phenylmethanone (4b)

\[\text{H NMR (CDCl}_3\text{, 300MHz): } \delta \text{ 7.99-8.03 ppm (m, 2H), 7.57-7.63 ppm (m, 1H), 7.46-7.52 ppm (m, 2H), 5.74-5.80 ppm (m, 1H), 3.17 ppm (dd, } J = 4.5 \text{ Hz, 3.0 Hz, 1H), 3.10 ppm (d, } J = 3.0 \text{ Hz, 1H), 2.14-2.64 ppm (m, 4H), 1.61-1.64 ppm (m, 3H); } \text{¹³C NMR (CDCl}_3\text{, 75MHz): } \delta \text{ 195.1 ppm, 151.0 ppm, 137.0 ppm, 133.2 ppm, 128.6 ppm, 128.3 ppm, 111.9 ppm, 49.8 ppm, 45.3 ppm, 25.2 ppm, 22.6 ppm, 14.0 ppm}\]
REFERENCES:

(4) For a one-electron process, the 0.8V anodic shift corresponds to the 18 kcal/mol increase in oxidative stability.

(6) For example, see: (a) Dewick, P. M. In *Medicinal Natural Products*; J. Wiley & Sons: Chichester, 1997; Chapter 6. (b) Hagan, D. O. *Nat. Prod. Rep.* **2000**, *17*, 435.

(9) We were able to isolate and characterize the N-Cl containing intermediate.

(11) The other three diastereomers were obtained as a mixture.
Chapter 4

Applications with Bicyclic Aziridines: as a Versatile Route to Saturated Nitrogen-Containing Heterocycles

Abstract
Highly reactive [5,3]- and [6,3]- bicyclic aziridines described in Chapter 3, including surprisingly stable exo-methylene bicyclic aziridines, provide versatile synthetic entries into a wide range of pyrrolidine- and piperidine-containing heterocycles. This strategy serves as a valuable alternative to existing methods for the construction of substituted pyrrolidines and piperidines.

Introduction
The pyrrolidine and piperidine rings are incorporated into the structures of a wide range of natural products and pharmaceuticals which makes them an important class of targets for stereoselective synthesis. As described in Chapter 3, it has been found that the stereoselective synthesis of bicyclic aziridines is achieved by intramolecular oxidative cycloamination of NH-aziridines (Scheme 1).

Scheme 1. Synthesis of bicyclic aziridines.

\[
\begin{align*}
1a & : R_1=H, R_2=\text{PhCO} \\
1b & : R_1=\text{Me}, R_2=\text{PhCO} \\
1c & : R_1=\text{CH}_2\text{OH}, R_2=\text{PhCO} \\
1d & : R_1=\text{Ph}, R_2=\text{PhCO} \\
1e & : R_1=H, R_2=\text{PhCH(OH)}
\end{align*}
\]
If relative stereochemistry of the products can be controlled during ring-opening steps of these bicyclic aziridines, the oxidative aziridine cycloamination methodology should be a valuable alternative to the established methods.\(^3\) In this chapter, the application of these bicyclic aziridines is described.

Results and Discussion

The bicyclic aziridine 4 possesses considerable synthetic potential because of the enamine-like aziridine ring that can be transformed into an imine/enamine upon ring-opening. The ring-opening reactions proceed with high yields and excellent diastereoselectivities. The reactions are regioselective and afford the corresponding pyrrolidine derivatives. The resulting enamines are *in situ* tautomerized into cyclic imines. The reductive ring opening of aziridine 4a by hydrogen on Pd/C gives 5-membered cyclic imine in excellent yield (Table 1, entry 5).

Table 1. Ring opening reactions of bicyclic aziridines 4.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R(_1)</th>
<th>Condition</th>
<th>R(_2)</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>TMSN(_3) 2eq, H(_2)O 10eq, in DCM, r.t.</td>
<td>N(_3)</td>
<td>99</td>
</tr>
<tr>
<td>2</td>
<td>Me</td>
<td>TMSN(_3) 2eq, H(_2)O 10eq, in DCM, r.t.</td>
<td>N(_3)</td>
<td>95</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>HBF(_4) 1.5eq, in MeOH, r.t.</td>
<td>OMe</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>AcOH 5eq, in DCM, r.t.</td>
<td>OAc</td>
<td>73</td>
</tr>
</tbody>
</table>
Aziridine ring opening was also triggered under the reductive conditions. Upon treatment with hydrazine, valuable 2-allylamine derivatives were obtained in good yields (Scheme 2). The resulting cyclic imines can be readily reduced to pyrrolidines using DIBAL. For example, 5f was reduced to cis-2,5-disubstituted pyrrolidine 5g with excellent yield and diastereoselectivity (Scheme 2). The 2,5-disubstituted fragments similar to 5g are often seen in natural products, for example, in pinidine.3

Scheme 2. Hydrazine reduction of bicyclic aziridine 4a.

The reactions of [6,3] bicyclic aziridine 3 were also investigated under hydrazinolysis conditions. The presence of endocyclic bromine substituent in compound 3 suggested further relay of the aziridine functionality within the bicyclic ring system. Under the hydrazinolysis conditions, compound 3d can be converted into bicyclic aziridine 5h, another valuable precursor to functionalized pyrrolidines, via ring-opening reaction followed by a ring-closing step (eq 1).

Conclusion

It has been shown that versatile chemistry of functionalized bicyclic aziridines enables rapid construction of a variety of heterocyclic products with high levels of stereocontrol (Scheme 3). Notably,
the starting materials can be prepared in enantiomerically pure form using the Julia-Colonna epoxidation reaction followed by epoxide conversion into aziridine. This strategy serves as a valuable alternative to existing methods for the construction of substituted pyrrolidines and piperidines, especially since stereocontrol still poses significant challenges with known methods.

Scheme 3. Versatile chemistry of functionalized bicyclic aziridines.

Experimental Section

General: The chemicals were purchased from Aldrich Chemical Co., Strem Chemical Co., Fischer Scientific Ltd., and Lancaster and were used without further purification. In experiments requiring anhydrous solvents: ether, toluene, hexanes, acetonitrile, and dichloromethane were purified using the method described by Grubbs (Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* **1996**, *15*, 1518). Tetrahydofuran (THF) was distilled over sodium-
benzophenone ketyl under argon. Unless otherwise stated, all reactions were performed under nitrogen or argon atmosphere using flame-dried glassware.

Nuclear magnetic resonance spectra: 1H and 13C NMR spectra were recorded on either Mercury 300, Varian Gemini 300, or VRX-S (Unity) 400 spectrometer. 1H NMR spectra were referenced to residual CDCl$_3$ (δ 7.27 ppm) and 13C NMR spectra were referenced to CDCl$_3$ (δ 77.23 ppm). Peak multiplicities are designated by the following abbreviations: s, singlet; bs, broad singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublets; dt, doublet of triplets; br, broad; and J, coupling constant in Hz.

Chromatography: Analytical thin layer chromatography (TLC) was performed on Macherey Nagel pre-coated glass-backed TLC plates (SIL G/UV$_{254}$, 0.25mm) purchased from Rose Scientific Limited and visualized by UV lamp (254 nm) or iodine. Solvent ratios for R$_f$ values are reported as v/v. Column chromatography was carried out using Silicycle 230-400 mesh silica gel.

Procedure for the ring opening with TMSN$_3$ (Table 1, Entry 1):

To a mixture of ($5R^*,6S^*$)-(2-methylene-1-azabicyclo[3.1.0]hex-6-yl)- phenylmethanone (4a, 380 mg, 1.9 mmol), dichloromethane (10 mL) and water (343 mg, 19 mmol) was added azido trimethylsilane (440 mg, 3.8 mmol) at room temperature and stirred overnight. After completion judged by TLC, the solvent and other volatile derivatives were removed in vacuo, to give 460 mg of (2S^*,2$'$S*)-2-azido-2-(5$'$-methyl-3',4'-dihydro-2H-pyrrol-2'-yl)-1-phenylethanone (5a, yield: quant.).
(2S',2'S')-2-Azido-2-(5'-methyl-3',4'-dihydro-2H-pyrrol-2'-yl)-1-phenylethanone (5a)

\[
\text{H} \quad \text{O} \\
\text{N}_3 \\
\text{N} \\
\text{H} \\
\text{O} \\
\text{N}_3
\]

1H NMR (CDCl$_3$, 300MHz): δ 8.04-8.07 ppm (m, 2H), 7.65-7.71 ppm (m, 1H), 7.53-7.59 ppm (m, 2H), 5.44 ppm (d, J=3.6 Hz, 1H), 4.63-4.68 ppm (m, 1H), 2.67-2.79 ppm (m, 1H), 2.49-2.61 ppm (m, 1H), 2.13 ppm (d, J=1.5 Hz, 3H), 1.81-2.02 ppm (m, 2H); 13C NMR (CDCl$_3$, 100MHz): δ 194.8 ppm, 178.1 ppm, 134.9 ppm, 134.0 ppm, 129.0 ppm, 128.8 ppm, 73.8 ppm, 67.5 ppm, 39.6 ppm, 23.2 ppm, 19.7 ppm

(2S',2'S')-2-Azido-2-(5'-ethyl-3',4'-dihydro-2H-pyrrol-2'-yl)-1-phenylethanone (5b)

\[
\text{H} \quad \text{O} \\
\text{N}_3 \\
\text{N} \\
\text{H} \\
\text{O} \\
\text{N}_3
\]

1H NMR (CDCl$_3$, 400MHz): δ 8.03-8.05 ppm (m, 2H), 7.62-7.67 ppm (m, 1H), 7.51-7.55 ppm (m, 2H), 5.50 ppm (d, J = 4.0 Hz, 1H), 4.64-4.68 ppm (m, 1H), 2.66-2.74 ppm (m, 1H), 2.48-2.57 ppm (m, 1H), 2.43 ppm (q, J = 7.6 Hz, 2H), 1.80-1.95 ppm (m, 2H), 1.20 ppm (t, J =7.6 Hz, 3H); 13C NMR (CDCl$_3$, 100MHz): δ 194.8 ppm, 182.8 ppm, 134.9 ppm, 133.9 ppm, 128.9 ppm, 128.7 ppm, 73.7 ppm, 67.7 ppm, 38.0 ppm, 26.9 ppm, 22.7 ppm, 10.6 ppm

(2S',2'S')-2-Acetoxy-2-(5'-methyl-3',4'-dihydro-2H-pyrrol-2'-yl)-1-phenylethanone (5d)

\[
\text{H} \quad \text{O} \\
\text{N}_3 \\
\text{N} \\
\text{H} \\
\text{O} \\
\text{N}_3
\]

Glacial acetic acid (5 eq) was used instead of azido trimethylsilane and water was not added. After removing the solvent, the residue was purified on a silica gel column (ethyl acetate).
1H NMR (CDCl₃, 300MHz): δ 8.05-8.09 ppm (m, 2H), 7.60-7.66 ppm (m, 1H), 7.49-7.54 ppm (m, 2H), 6.33 ppm (d, J = 2.7 Hz, 1H), 4.50-4.60 ppm (m, 1H), 2.61-2.73 ppm (m, 1H), 2.44-2.55 ppm (m, 1H), 2.15 ppm (s, 3H), 1.97-2.09 ppm (m, 1H), 2.09 ppm (d, J = 1.5 Hz, 3H), 1.73-1.85 ppm (m, 1H);

13C NMR (CDCl₃, 75MHz): δ 195.1 ppm, 177.5 ppm, 170.3 ppm, 134.8 ppm, 133.7 ppm, 128.8 ppm, 128.6 ppm, 76.9 ppm, 72.2 ppm, 39.7 ppm, 22.6 ppm, 20.7 ppm, 19.7 ppm

Procedure for the ring opening with methanol (Table 1, Entry 3):

To (5R*,6S*)-(2-methylene-1-azabicyclo[3.1.0]hex-6-yl)-phenylmethanone (4a, 50 mg, 0.25 mmol) in methanol (5 mL) was added 54% tetrafluoroboric acid in diethyl ether (60 mg, 0.37 mmol) at the temperature of ice bath and the mixture was stirred for 1 hour. After completion judged by TLC, sodium bicarbonate (100 mg) and water (4 mL) were added and methanol was evaporated. Dichloromethane (8 mL) and water (3 mL) were added to the residue, and the aqueous layer was extracted with dichloromethane (3 mL). The combined organic layers were washed with water (5 mL) and were dried over sodium sulfate and the solvent was removed in vacuo. The residue was purified on a silica gel column (hexane/ethyl acetate = from 5/5 to 0/10), to give 38 mg of (2S*,2’S*)-2-methoxy-2-(5’-methyl-3’,4’-dihydro-2H-pyrrol-2’-yl)-1-phenylethanone (5c, yield: 65%).

(2S*,2’S*)-2-Methoxy-2-(5’-methyl-3’,4’-dihydro-2H-pyrrol-2’-yl)-1-phenylethanone (5c)

1H NMR (CDCl₃, 300MHz): δ 8.07-8.10 ppm (m, 2H), 7.57-7.61 ppm (m, 1H), 7.47-7.51 ppm (m, 2H), 5.12 ppm (d, J = 3.0 Hz, 1H), 4.46-4.50 ppm (m, 1H), 3.40 ppm (s, 3H), 2.60-2.70 ppm (m, 1H), 2.61-2.73 ppm (m, 1H), 2.44-2.55 ppm (m, 1H), 2.15 ppm (s, 3H), 1.97-2.09 ppm (m, 1H), 2.09 ppm (d, J = 1.5 Hz, 3H), 1.73-1.85 ppm (m, 1H).
2.40-2.47 ppm (m, 1H), 2.09 ppm (d, \(J=1.5\) Hz, 3H), 1.98-2.06 ppm (m, 1H), 1.68-1.76 ppm (m, 1H);
\(^{13}\)C NMR (CDCl\(_3\), 100MHz): \(\delta\) 198.7 ppm, 177.0 ppm, 135.5 ppm, 133.5 ppm, 128.8 ppm, 128.5 ppm, 85.4 ppm, 74.2 ppm, 58.5 ppm, 39.7 ppm, 22.6 ppm, 19.7 ppm; HR-MS (EI) \(m/z\): calcd. for C\(_{14}\)H\(_{17}\)NO\(_2\) 231.1260, found 232.1328 (as proton adduct)

Procedure for the reductive ring opening with hydrogen (Table 1, Entry 5):

\[\text{N} \quad \text{Ph} \quad \text{O} \quad \text{H} \quad 4a \quad \text{N} \quad \text{Ph} \quad \text{O} \quad \text{H}_2, \text{Pd/C} \quad 5e\]

A mixture of \((5R^*, 6S^*)\)-(2-methylene-1-azabicyclo[3.1.0]hex-6-yl)- phenylmethanone (4a, 20 mg, 0.1 mmol), 10% palladium on carbon (2 mg) and methanol (1 mL) was stirred under hydrogen (1 atmosphere) at room temperature for 1 hour. The solid was removed by filtration and the solvent was removed from the filtrate in vacuo, to give 20 mg of 2-(5’-methyl-3’,4’-dihydro-2H-pyrrol-2’-yl)-1-phenylethanone (5e, yield: quant.).

2-(5’-Methyl-3’,4’-dihydro-2H-pyrrol-2’-yl)-1-phenylethanone (5e)

\[\text{N} \quad \text{O} \quad 2-(5'\text{-Methyl-3',4'-dihydro-2H-pyrrol-2'-yl})-1\text{-phenylethanone} \quad (5e)\]

\(^1\)H NMR (CDCl\(_3\), 300MHz): \(\delta\) 7.99-8.02 ppm (m, 2H), 7.56-7.61 ppm (m, 1H), 7.46-7.51 ppm (m, 2H), 4.53-4.58 ppm (m, 1H), 3.64 ppm (dd, \(J = 16.8\) Hz, 4.5 Hz, 1H), 2.98 ppm (dd, \(J = 16.8\) Hz, 9.0 Hz, 1H), 2.53-2.61 ppm (m, 2H), 2.26-2.37 ppm (m, 1H), 2.07 ppm (d, \(J = 1.5\) Hz, 3H), 1.47-1.60 ppm (m, 1H); \(^{13}\)C NMR (CDCl\(_3\), 100MHz): \(\delta\) 198.6 ppm, 175.1 ppm, 137.1 ppm, 133.1 ppm, 128.6 ppm, 128.2 ppm, 68.8 ppm, 45.5 ppm, 39.1 ppm, 29.6 ppm, 19.8 ppm
Procedure for hydrazine reduction (Scheme 2):

![Scheme 2](image)

A mixture of $(5R^*,6S^*)$-(methylene-1-azabicyclo[3.1.0]hex-6-yl)-phenylmethanone (4a, 50 mg, 0.25 mmol), hydrazine monohydrate (125 mg, 2.5 mmol), potassium hydroxide (42 mg, 0.75 mmol) and ethylene glycol (1 mL) was stirred at 100 °C for 1 hour. After completion judged by TLC, dichloromethane (5 mL) and water (5 mL) were added. The organic layer and the aqueous phase were separated, and the aqueous layer was extracted with dichloromethane (3 mL). The combined organic layers were washed with water (5 mL) and were dried over sodium sulfate and the solvent was removed in vacuo. The residue was purified on a silica gel column (hexane/ethyl acetate = 6/4), to give 30 mg of 5-methyl-2-styryl-3,4-dihydro-2H-pyrrole (5f, yield: 65%).

5-Methyl-2-styryl-3,4-dihydro-2H-pyrrole (5f)

![Structure of 5f](image)

1H NMR (CDCl$_3$, 300MHz): δ 7.34-7.45 ppm (m, 4H), 7.24-7.30 ppm (m, 1H), 6.59 ppm (d, $J = 11.4$ Hz, 1H), 5.59 ppm (dd, $J = 11.4$Hz, 9.6 Hz, 1H), 4.92-5.01 ppm (m, 1H), 2.46-2.70 ppm (m, 2H), 2.17-2.28 ppm (m, 1H), 2.11 ppm (d, $J = 1.8$ Hz, 3H), 1.62-1.75 ppm (m, 1H); 13C NMR (CDCl$_3$, 100MHz): δ 175.5 ppm, 137.1 ppm, 134.4 ppm, 129.9 ppm, 129.0 ppm, 128.1 ppm, 126.9 ppm, 69.9 ppm, 39.4 ppm, 30.9 ppm, 19.9 ppm; HR-MS (EI) m/z: calcd. for C$_{13}$H$_{15}$N 185.1205, found 185.1202

(2R$^*,5S^*,6S^*)$-6-Phenyl-2-styryl-1-azabicyclo[3.1.0]hexane (5h)

![Structure of 5h](image)
The reaction temperature and time for 5h were as follows: the reaction mixture was stirred at 60 °C for 30 minutes, then heated up to 100 °C and stirred for 10 minutes.

\[^1H \text{ NMR (CDCl}_3, 400MHz): \delta \text{ 7.44-7.45 ppm (m, 2H), 7.36-7.40 ppm (m, 2H), 7.22-7.33 ppm (m, 6H), 6.62 ppm (d, } J = 11.6 \text{ Hz, 1H), 5.75 ppm (dd, } J = 11.6 \text{Hz, 9.2 Hz, 1H), 4.32-4.39 ppm (m, 1H), 2.73 ppm (d, } J = 2.8 \text{ Hz, 1H), 2.52 ppm (d, } J = 4.4 \text{ Hz, 2.8 ppm, 1H), 2.37 ppm (dd, } J = 9.6 \text{ Hz, 8.4 Hz, 1H), 2.07-2.16 ppm (m, 1H), 1.89-1.96 ppm (m, 1H), 1.43-1.54 ppm (m, 1H);} \]

\[^13C \text{ NMR (CDCl}_3, 100MHz): \delta 131.7 \text{ ppm, 131.6 ppm, 128.8 ppm, 128.2 ppm, 128.2 ppm, 127.0 ppm, 126.7 ppm, 126.4 ppm, 61.1 ppm, 50.4 ppm, 36.0 ppm, 28.0 ppm, 27.7 ppm;} \]

HR-MS (EI) m/z: calcd. for C_{19}H_{19}N 261.1518, found 261.1512

Procedure for the reduction of cyclic imines (Scheme 2):

![Scheme 2: Reduction of Cyclic Imines](image)

To 5-methyl-2-styryl-3,4-dihydro-2H-pyrrole (5f, 32 mg, 0.17 mmol) in toluene (1 mL) was added 1.5M DIBAL in toluene (0.33 mL, 0.5 mmol) at −78 °C and stirred for 1 hour. After the reaction, sat. aq. NH₄Cl (0.5 mL) was added and the mixture was warmed up to room temperature. Dichloromethane (20 mL) and sodium sulfate were added and the solid residue was removed by filtration. The solvent was removed in vacuo, to give 35 mg of cis-2-methyl-5-styrylpyrrolidine (5g, yield: quant.).

cis-2-Methyl-5-styryl-pyrrolidine (5g)

![cis-2-Methyl-5-styryl-pyrrolidine](image)

\[^1H \text{ NMR (CDCl}_3, 400MHz): \delta \text{ 7.25-7.39 ppm (m, 5H), 6.52 ppm (d, } J = 11.6 \text{ Hz, 1H), 5.73 ppm (dd, } J = 11.6 \text{ Hz, 9.2 Hz, 1H), 4.04-4.10 ppm (m, 1H), 3.18-3.24 ppm (m, 1H), 2.81 ppm (br, 1H), 1.91-2.08 ppm (m, 2H), 1.63-1.72 ppm (m, 1H), 1.39-1.49 ppm (m, 1H), 1.25 ppm (d, } J = 6.0 \text{ ppm, 3H);} \]

\[^13C \text{ NMR (CDCl}_3, 100MHz): \delta \]

67
NMR (CDCl$_3$, 100MHz): δ 137.1 ppm, 135.2 ppm, 130.0 ppm, 128.7 ppm, 128.2 ppm, 126.9 ppm, 56.3 ppm, 54.8 ppm, 33.4 ppm, 32.9 ppm, 21.4 ppm; HR-MS (El) m/z: calcd. for C$_{13}$H$_{17}$N 187.1361, found 187.1356
REFERENCES:

(1) For example, see: (a) Dewick, P. M. In Medicinal Natural Products; J. Wiley & Sons: Chichester, 1997; Chapter 6. (b) Hagan, D. O. Nat. Prod. Rep. 2000, 17, 435.

Solvent Effects on Aromatic Nitration with NO$_2$

Abstract
In order to get an insight into the mechanism of nitration of aromatic compounds with NO$_2$, the nitration of mono-substituted benzenes in various solvents was investigated. On the basis of the solvent effect on the yield of the products and the isomer distributions, it was suggested that in solvents with lower polarity aromatic nitration proceeds by one electron-transfer mechanism [Hammett's ρ value is -1.7], and that in solvents with higher polarity like acetonitrile aromatic nitration proceeds by the mechanism involving NO$^+$, which is produced by the heterolytic decomposition of N$_2$O$_4$ [Hammett's ρ value is -3.2].

Introduction
Aromatic nitro compounds are important intermediates in organic synthesis and nitration of aromatic compounds serves as a straightforward access to aromatic nitro compounds. Because aromatic nitro compounds are identified as cancer-causing or mutagenic and might give harmful effects to living bodies by inhalation, their formation by the reaction of aromatic compounds with NO$_2$ discharged from diesel vehicles and so on in the atmosphere has also received significant research interests.$^{1-3}$ Therefore, it is important to get a deep insight into the mechanism of nitration of aromatic compounds.

In 1977 Perrin proposed an one electron-transfer mechanism for aromatic nitration with NO$_2^+$, in which radical cation plays an important role as an intermediate (Scheme 1).4

\textbf{Scheme 1.} Proposed mechanism for aromatic nitration with NO$_2^+$

\[
\begin{align*}
\text{rate-determining step} & & \text{[ArH}^+ \cdot \text{NO}_2 \text{]} \\
\text{ArH}^- + \text{NO}_2^+ & \rightarrow & \text{[ArH}^+ \cdot \text{NO}_2 \text{]} \\
& \rightarrow & \text{Ar}^+ < \text{H}_\text{NO}_2 \\
\end{align*}
\]
Based on this proposal Pryor investigated the nitration with NO\textsubscript{2} in dichloromethane at 25°C, and proposed a mechanism involving radical cation, which is formed via rate-determining electron transfer process for aromatic nitration with NO\textsubscript{2} (Scheme 2).5

Scheme 2. Proposed mechanism for aromatic nitration with NO\textsubscript{2}

\[
\begin{array}{c}
\text{ArH} + \cdot \text{NO}_2 \\
\text{rate-determining step}
\end{array}
\xrightarrow{}
\begin{array}{c}
\text{[ArH}^+ : \text{NO}_2^-] \\
\text{Ar}^+ <^\text{H}_{\text{NO}_2^-} \quad (\sigma\text{-complex})
\end{array}
\]

They also suggested a possibility of a mechanism involving rate-determining \(\sigma\)-complex formation process via the reaction with NO\textsubscript{2} radical (Scheme 3).

Scheme 3. Another proposed mechanism for aromatic nitration with NO\textsubscript{2}

\[
\begin{array}{c}
\text{ArH} + \cdot \text{NO}_2 \\
\text{rate-determining step}
\end{array}
\xrightarrow{}
\text{Ar} <^\text{H}_{\text{NO}_2} \quad (\sigma\text{-complex})
\]

The previous work suggested that the nitration with NO\textsubscript{2} proceeds by one electron-transfer process via radical cation, because the nitration of mono-substituted benzenes with NO\textsubscript{2} in carbon tetrachloride at 15°C showed lower Hammett's \(\rho\) value [indicating -1.7] than that with NO\textsubscript{2}+ [indicating Hammett's \(\rho\) value is -6], which indicates that NO\textsubscript{2} would be a weaker electrophile.6

However, the detail of the mechanism of aromatic nitration with NO\textsubscript{2} radical has not been clarified yet. In this chapter the mechanism of aromatic nitration with NO\textsubscript{2} was investigated on the basis of the solvent effects on the nitration of mono-substituted benzenes with NO\textsubscript{2}.

71
Results and Discussion

The rate constants of the nitration of mono-substituted benzenes with NO$_2$ in acetonitrile were determined according to eq 1 (a: initial concentration of substrate, x: yield of product, t: reaction time, k: reaction rate constant) based on the assumption that the reaction would be pseudo-first-order reaction. With this data, relative rates of the reactions with several substrates were determined. The results are shown in Table 1, which also includes the relative rate observed in carbon tetrachloride solvent.6

\[
\ln \frac{a}{a-x} = kt \tag{1}
\]

Table 1. Relative rates in the nitration of mono-substituted benzenes with NO$_2$

<table>
<thead>
<tr>
<th>substrate</th>
<th>relative rate</th>
<th>relative rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in CH$_3$CN</td>
<td>in CCl$_4$</td>
</tr>
<tr>
<td>C$_6$H$_5$OCH$_3$</td>
<td>4.8 x 102</td>
<td>3.4</td>
</tr>
<tr>
<td>C$_6$H$_5$CH$_3$</td>
<td>2.8</td>
<td>1.7</td>
</tr>
<tr>
<td>C$_6$H$_6$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C$_6$H$_5$Br</td>
<td>0.38</td>
<td>0.49</td>
</tr>
<tr>
<td>C$_6$H$_5$Cl</td>
<td>0.38</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Isomer distributions observed for the nitration of several mono-substituted benzenes with NO$_2$ in dichloromethane, dibromomethane and acetonitrile are shown in Table 2, with the isomer distributions observed for the nitration with NO$_2$ in carbon tetrachloride and that observed for the nitration with a mixture of sulfuric acid and nitric acid.7 In carbon tetrachloride, dibromomethane and dichloromethane aromatic nitration with NO$_2$ exhibited similar isomer distribution. The distribution is also similar to the mixed acid case in which the active species is known to be NO$_2^+$. However, in acetonitrile solvent, the
nitration with NO₂ exhibited different product distribution. The content of m-product was much higher than those for other cases.

Table 2. Isomer distribution in the nitration of mono-substituted benzenes with NO₂

<table>
<thead>
<tr>
<th>substrate</th>
<th>isomer distribution</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in CH₃CN (mol%)</td>
<td>in CH₂Cl₂ (mol%)</td>
<td>in CH₂Br₂ (mol%)</td>
<td>in CCl₄ (mol%)</td>
<td>ref 7 (mol%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o- m- p-</td>
<td>o- m- p-</td>
<td>o- m- p-</td>
<td>o- m- p-</td>
<td></td>
</tr>
<tr>
<td>C₆H₅OCH₃</td>
<td>41 0 59</td>
<td>30 0 70</td>
<td>23 0 77</td>
<td>23 0 77</td>
<td>40 0 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₆H₅CH₃</td>
<td>64 10 26</td>
<td>56 6 39</td>
<td>55 3 42</td>
<td>54 6 41</td>
<td>57 3 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₆H₅Br</td>
<td>30 10 41</td>
<td>41 2 57</td>
<td>39 2 59</td>
<td>31 0 69</td>
<td>43 1 56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₆H₅Cl</td>
<td>27 10 63</td>
<td>37 3 60</td>
<td>34 3 63</td>
<td>32 3 65</td>
<td>35 1 64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Partial rate factors were calculated from the isomer distribution and relative rates for the nitration with NO₂ in acetonitrile and plotted against the Hammett value (Fig. 1). As shown in Fig. 1, good relationship was found when σ⁺ was used and Hammett’s ρ value was -3.2. Therefore, this reaction should be electrophilic and the electrophilicity is greater than that in the nitration with NO₂ in carbon tetrachloride solvent (ρ = -1.7) and smaller than that in the nitration with NO₂⁺ (ρ = -6).

Fig. 1. Hammet plot for the nitration of mono-substituted benzenes with NO₂ in acetonitrile.
Chapter 5

The yields of the mononitro compounds obtained in the nitration with NO\(_2\) in several solvents (6 hours) are shown in Table 3. The yield increased with the increase in the polarity of solvent in a series of carbon tetrachloride, dibromomethane, and dichloromethane. However, the yield obtained in acetonitrile was lower than that in dichloromethane, although the polarity of acetonitrile is greater than that of dichloromethane. This fact suggests that the mechanism in acetonitrile is different from that for other solvents.

Table 3. Yield of the mononitro products in the nitration of benzene and toluene with NO\(_2\)

<table>
<thead>
<tr>
<th>yield of the mononitro products</th>
<th>in CCl(_4)</th>
<th>in CH(_2)Br(_2)</th>
<th>in CH(_2)Cl(_2)</th>
<th>in CH(_3)CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>dipole moment (D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(_6)H(_6)</td>
<td>0</td>
<td>1.43</td>
<td>1.62</td>
<td>3.91</td>
</tr>
<tr>
<td>C(_6)H(_5)CH(_3)</td>
<td>8.3 x 10(^{-5})</td>
<td>-</td>
<td>6.6 x 10(^{-4})</td>
<td>3.0 x 10(^{-4})</td>
</tr>
<tr>
<td>C(_6)H(_5)CH(_3)</td>
<td>4.9 x 10(^{-4})</td>
<td>9.0 x 10(^{-4})</td>
<td>9.6 x 10(^{-4})</td>
<td>7.7 x 10(^{-4})</td>
</tr>
</tbody>
</table>

The difference in the nitration mechanism seems to be attributed to the difference of the decomposition mechanism of N\(_2\)O\(_4\). It is known that N\(_2\)O\(_4\) undergoes decomposition in two different decomposition modes: homolytic cleavage (eq 2) and heterolytic cleavage (eqs 3 and 4), and heterolytic decomposition is preferentially occurred in polar solvents.\(^8\)

\[
\begin{align*}
\text{N}_2\text{O}_4 & \rightleftharpoons 2 \text{NO}_2 & (2) \\
\text{or} \quad \text{N}_2\text{O}_4 & \rightleftharpoons \text{NO}^+ + \text{NO}_3^- & (3) \\
\text{or} \quad \text{N}_2\text{O}_4 & \rightleftharpoons \text{NO}_2^+ + \text{NO}_2^- & (4)
\end{align*}
\]

NO\(_2\) radical produced by homolytic decomposition of N\(_2\)O\(_4\) might be the active species in lower polarity solvents such as dichloromethane. In such solvents, aromatic nitration seems to proceed by one electron-transfer from an aromatic substrate to NO\(_2\) radical to give a radical cation intermediate, which reacts with NO\(_2\) anion (Scheme 2).
On the other hand, in acetonitrile the active species should not be NO$_2^+$ nor NO$_2$ radical because Hammett’s ρ value was -3.2. NO$^+$ produced by the heterolytic decomposition of N$_2$O$_4$ seems to be the active species in acetonitrile. (Scheme 4).

Scheme 4. Proposed scheme for aromatic nitration with NO$_2$ in polar solvent

\[
\begin{align*}
\text{ArH} + \text{N}_2\text{O}_4 & \rightarrow \text{rate-determining step} & \text{ArNO} + \text{HNO}_3 \\
\text{ArNO} + \text{N}_2\text{O}_4 & \rightarrow \text{ArNO}_2 + \text{N}_2\text{O}_3 \\
\text{N}_2\text{O}_3 + 2\text{HNO}_3 & \rightarrow 2\text{N}_2\text{O}_4 + \text{H}_2\text{O}
\end{align*}
\]

Conclusion

In order to get an insight into the mechanism of the production of nitro-polyaromatic compounds in the atmosphere and to obtain fundamental information on the aromatic nitration mechanism with NO$_2$, the solvent effects on the nitration of mono-substituted benzenes with NO$_2$ was investigated. In solvents of lower polarity the aromatic nitration with NO$_2$ is suggested to proceed via radical cation intermediate, which is formed by one electron-transfer from an aromatic substrate to NO$_2$ radical. On the other hand, in solvents of higher polarity such as acetonitrile the aromatic nitration seems to proceed via the reaction with NO$^+$, which is produced by the heterolytic decomposition of N$_2$O$_4$.

Experimental Section

Anisole, toluene, benzene, chlorobenzene and bromobenzene were used as mono-substituted benzene substrates. Carbon tetrachloride, dibromomethane, dichloromethane and acetonitrile were used as solvents. These substrates and solvents were obtained as extra pure reagents from Wako Junyaku Kogyo. Dinitrogen tetraoxide, which is in equilibrium with NO$_2$ radical, was manufactured as 100% pure in cylinder by Takachiho Chemical.

A mixture of substrate 2mL, dinitrogen tetraoxide 10mL (or 1 or 2 mL in case of anisole as a substrate) and solvent 15mL was stirred in 100 mL flask for 6 hrs at 15°C. Analysis of products was carried out by Gas chromatograph. The analytical condition is as follows:
Detector: FID
Carrier gas: nitrogen, 40mL/min
Column: stainless column, 3 mmφ x 2.5 m
Filling agent: Silicon OV 101 5wt%
Support: Uniport HP 60/80 mesh
Detector temperature: 210 °C
Column temperature: 140-170 °C

In the analysis for the reaction of chlorobenzene and bromobenzene the following column was used.

Column: glass column, 3 mmφ x 1 m
Filling agent: Unisole 10T 2wt%
Support: Uniport HP 60/80 mesh

REFERENCES:

(2) Kaji, H. Anzen kogaku 1988, 27, 373.

Mechanism of Aromatic Nitration with NO$_2$

Abstract

In order to get an insight into the formation process for aromatic nitro compounds in the atmosphere and the aromatic nitration mechanism with NO$_2$, the isomer distribution of dinitro compounds formed in the nitration of benzene and toluene with NO$_2$ was studied based on heats of formation and atomic electron densities of the intermediates obtained with PM3 calculations. A mechanism involving the addition of NO$_2$ to the initial adduct (the σ-complex intermediate) followed by the elimination of nitrous acid has been suggested for the formation of mononitrobenzene. A mechanism involving further addition of two mole of NO$_2$ to form a tetranitro-intermedaite followed by the elimination of two moles of nitrous acid has been suggested for the formation of dinitrobenzene.

Introduction

Mechanisms of aromatic nitration with NO$_2$ have received research interest from both synthetic and environmental view points.$^{1-3}$ The previous work4 suggested that aromatic nitration with NO$_2$ in solution phase depends on the polarity of solvent. In solvents with lower polarity such as carbon tetrachloride or dichloromethane aromatic nitration seems to proceed by an one-electron-transfer process (Scheme 1).

It is important to note that the nitration of benzene with NO$_2$ gave dinitrobenzenes as well as mononitrobenzene whereas the nitration of nitrobenzene never gave dinitrobenzenes.5 As for the mechanism of the formation of dinitrobenzenes, the addition of the second NO$_2$ to the initial adduct (\sigma-complex intermediate) seems to be likely. Pryor proposed a mechanism including multi-step addition of NO$_2$ in the nitration of naphthalene with NO$_2$ in carbon tetrachloride (Scheme 2).6
In this chapter, the isomer distribution of dinitro compounds in the nitration of benzene and toluene with NO\textsubscript{2} in dichloromethane was studied, and the mechanism of aromatic nitration with NO\textsubscript{2} was discussed based on the experimental results and heats of formation and atomic electron densities of the nitration intermediates obtained with PM3 calculations.

Results and Discussion

Isomer distribution in the nitration of benzene with NO\textsubscript{2} was determined and the result is shown in Table 1. o-Dinitrobenzene was a major isomer and p-dinitrobenzene was not formed. On the other hand the nitration of toluene with NO\textsubscript{2} gave a trace amount of dinitro compounds. The isomer distribution in the nitration of nitrobenzene with mixed acid of sulfuric and nitric acid reported in the literature7 is also shown in Table 1. It is interesting to note that the product distribution observed for NO\textsubscript{2} nitration
was very different from that obtained with mixed acid. A possible mechanism for dinitration with NO₂ seems to involve the attack of the second NO₂ to the initial adduct (σ-complex intermediate).

Table 1. Isomer distribution in the dinitration of benzene with NO₂ in dichloromethane

<table>
<thead>
<tr>
<th>isomer distribution</th>
<th>this work (mol%)</th>
<th>ref 7 (mol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-dinitrobenzene</td>
<td>75</td>
<td>7</td>
</tr>
<tr>
<td>m-dinitrobenzene</td>
<td>25</td>
<td>88</td>
</tr>
<tr>
<td>p-dinitrobenzene</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

In order to get an insight into this unusual dinitration of benzene and toluene with NO₂, heats of formation and atomic electron densities of possible σ-complex intermediate of the nitration of benzene and toluene were calculated with semiempirical molecular orbital method PM3 of MOPAC ver. 5. using a HITAC M-682H in University of Tokyo. The structures were optimized by the program.

PM3 calculation was carried out for NO₂-added σ-complex intermediate (1), (2) and (3). The results are shown in Table 2. In the case of benzene’s σ-complex (1) C2 and C6 carbons have high electron densities. Therefore, it was considered that NO₂ should attack H1 hydrogen (abstraction) or carbon in o-position (radical addition). The abstraction of H1 hydrogen gives nitrobenzene, and the addition to the carbon in o-position gives intermediates (4) (trans) and (5) (cis) (eq 1).

\[
\begin{align*}
\text{H} & \quad \text{NO}_2 \\
\text{H} & \quad \text{NO}_2 \quad \text{NO}_2 & \quad \text{HNO}_2 \\
\text{O}_2\text{N} & \quad \text{H} & \quad \text{H} \\
\end{align*}
\]

(1)

In the case of toluene the calculation was carried out for o- and p-substituted intermediates as the initial NO₂ adducts. C3 carbon in the o-substituted adduct or C3/C5 carbons in the p-substituted adduct show high electron densities. Therefore, these intermediates are considered to give o- or p-nitrobenzene
by hydrogen abstraction, intermediate (6) by NO₂ addition to C3 carbon of o-substituted adduct, and intermediate (7) by NO₂ addition to C3 or C5 carbon of p-substituted adduct (eqs 2, 3).

Figure 1. Structures of σ-complexes
Table 2. Heats of formation and net atomic charges of the compounds (1), (2) and (3)

<table>
<thead>
<tr>
<th>Compounds</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heats of formation / kcal mol^{-1}</td>
<td>40.32</td>
<td>31.05</td>
<td>29.63</td>
</tr>
<tr>
<td>C1</td>
<td>-0.210</td>
<td>C1</td>
<td>-0.128</td>
</tr>
<tr>
<td>C2</td>
<td>-0.172</td>
<td>C2</td>
<td>-0.197</td>
</tr>
<tr>
<td>C3</td>
<td>-0.062</td>
<td>C3</td>
<td>-0.177</td>
</tr>
<tr>
<td>C4</td>
<td>-0.100</td>
<td>C4</td>
<td>-0.058</td>
</tr>
<tr>
<td>C5</td>
<td>-0.063</td>
<td>C5</td>
<td>-0.098</td>
</tr>
<tr>
<td>C6</td>
<td>-0.149</td>
<td>C6</td>
<td>-0.066</td>
</tr>
<tr>
<td>N</td>
<td>+1.211</td>
<td>C7</td>
<td>-0.075</td>
</tr>
<tr>
<td>O1</td>
<td>-0.585</td>
<td>H1</td>
<td>+0.061</td>
</tr>
<tr>
<td>O2</td>
<td>-0.564</td>
<td>H2</td>
<td>+0.055</td>
</tr>
<tr>
<td>H1</td>
<td>+0.125</td>
<td>H3</td>
<td>+0.053</td>
</tr>
<tr>
<td>H2</td>
<td>+0.122</td>
<td>N</td>
<td>+1.205</td>
</tr>
<tr>
<td>H3</td>
<td>+0.109</td>
<td>O1</td>
<td>-0.586</td>
</tr>
<tr>
<td>H4</td>
<td>+0.111</td>
<td>O2</td>
<td>-0.563</td>
</tr>
<tr>
<td>H5</td>
<td>+0.109</td>
<td>H4</td>
<td>+0.125</td>
</tr>
<tr>
<td>H6</td>
<td>+0.117</td>
<td>H5</td>
<td>+0.119</td>
</tr>
<tr>
<td>H6</td>
<td>+0.108</td>
<td>H6</td>
<td>+0.123</td>
</tr>
<tr>
<td>H7</td>
<td>+0.111</td>
<td>H7</td>
<td>+0.119</td>
</tr>
<tr>
<td>H8</td>
<td>+0.111</td>
<td>H8</td>
<td>+0.110</td>
</tr>
</tbody>
</table>

In any case the next question to be answered is which is preferentially occurred hydrogen abstraction or addition to ring carbon as the act of NO\textsubscript{2} to σ-complex. Thus, the possibility of NO\textsubscript{2}-addition to the ring carbon of σ-complex intermediate was evaluated by calculating heats of formation and atom electron densities of the intermediates (4)-(7).

PM3 calculation was carried out for intermediates (4), (5), (6) and (7), which are considered to be formed by the addition of NO\textsubscript{2} to the σ-complexes (1), (2) and (3). The results are shown in Table 3. It was suggested that trans-addition intermediate (4) is more preferably formed than cis-addition one (5) by comparing their heats of formation. Therefore, hereafter the calculations were done only for trans-addition intermediates.
Table 3. Heats of formation and net atomic charges of the compounds (1), (2), (3) and (4)

<table>
<thead>
<tr>
<th>Compounds</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heats of formation / kcal mol(^{-1})</td>
<td>21.20</td>
<td>21.82</td>
<td>11.90</td>
<td>11.79</td>
</tr>
<tr>
<td>C1</td>
<td>-0.304</td>
<td>C1</td>
<td>-0.261</td>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
<td>-0.249</td>
<td>C2</td>
<td>-0.245</td>
<td>C2</td>
</tr>
<tr>
<td>C3</td>
<td>-0.171</td>
<td>C3</td>
<td>-0.179</td>
<td>C3</td>
</tr>
<tr>
<td>C4</td>
<td>-0.060</td>
<td>C4</td>
<td>-0.053</td>
<td>C4</td>
</tr>
<tr>
<td>C5</td>
<td>-0.085</td>
<td>C5</td>
<td>-0.097</td>
<td>C5</td>
</tr>
<tr>
<td>C6</td>
<td>-0.126</td>
<td>C6</td>
<td>-0.121</td>
<td>C6</td>
</tr>
<tr>
<td>N1</td>
<td>+1.231</td>
<td>N1</td>
<td>+1.242</td>
<td>C7</td>
</tr>
<tr>
<td>O1</td>
<td>-0.588</td>
<td>O1</td>
<td>-0.588</td>
<td>H1</td>
</tr>
<tr>
<td>O2</td>
<td>-0.560</td>
<td>O2</td>
<td>-0.558</td>
<td>H2</td>
</tr>
<tr>
<td>H1</td>
<td>+0.172</td>
<td>H1</td>
<td>+0.120</td>
<td>H3</td>
</tr>
<tr>
<td>N2</td>
<td>+1.221</td>
<td>N2</td>
<td>+1.237</td>
<td>N1</td>
</tr>
<tr>
<td>O3</td>
<td>-0.548</td>
<td>O3</td>
<td>-0.561</td>
<td>O1</td>
</tr>
<tr>
<td>O4</td>
<td>-0.582</td>
<td>O4</td>
<td>-0.580</td>
<td>O2</td>
</tr>
<tr>
<td>H2</td>
<td>+0.143</td>
<td>H2</td>
<td>+0.128</td>
<td>H4</td>
</tr>
<tr>
<td>H3</td>
<td>+0.135</td>
<td>H3</td>
<td>+0.132</td>
<td>N2</td>
</tr>
<tr>
<td>H4</td>
<td>+0.115</td>
<td>H4</td>
<td>+0.118</td>
<td>O3</td>
</tr>
<tr>
<td>H5</td>
<td>+0.120</td>
<td>H5</td>
<td>+0.121</td>
<td>O4</td>
</tr>
<tr>
<td>H6</td>
<td>+0.135</td>
<td>H6</td>
<td>+0.144</td>
<td>H5</td>
</tr>
</tbody>
</table>

As for the fate of intermediate (4), the major reaction course seems to be the elimination of nitrous acid to give mononitrobenzene (eq 4). In a similar way, the elimination of nitrous acid in intermediates (6) and (7) gives mononitrotoluenes. Since hydrogen of lower electron density was considered to be more easily eliminated, \(\alpha\)-nitrotoluene should be preferentially formed from intermediate (6) by elimination of H4 hydrogen, which has lower electron density than H5 hydrogen, and NO\(_2\) on C3 carbon. \(\pi\)-Nitrobenzene should be preferentially formed from intermediate (7) as well, and this speculation does not explain the experimental result of nitration of toluene by NO\(_2\) in dichloromethane at 15\(^\circ\)C, in which isomer distribution\(^5\) was \(\alpha\)- : \(m\)- : \(\pi\) = 54 : 6 : 41 (eq 5, 6).
The formation of dinitrobenzenes can be explained as follows: The elimination of two hydrogen atoms in intermediate (4) (oxidation by \(\text{NO}_2 \)) should give o-dinitrobenzene. However, the formation of m-dinitrobenzene as a byproduct (o- : m- : p- = 75 : 25 : 0) cannot be explained by this process. Therefore, a mechanism involving further addition of \(\text{NO}_2 \) to C3 and C6 carbon on intermediate (4) gives tetrinitro-intermediate (8) seems to be work considering.

The heat of formation and atom electron densities of intermediate (8) are shown in Table 4. Similar to intermediate (4), the elimination of two molecules of nitrous acid seems to take place in intermediate (8). Generally, hydrogen which has higher electron density seems to be less easily eliminated. H1 and H4 hydrogen has slightly higher electron density than H2 and H3, and therefore they would be more difficult to be eliminated. The major product seems to be o-dinitrobenzene, which is produced by elimination of H2-NO\(_2\) and H3-NO\(_2\). m-Dinitrobenzene could also be formed by elimination of H1-NO\(_2\) and H3-NO\(_2\) in small amount (eq 7). These considerations are in accord with the experimental results.
Table 4. Heats of formation and net atomic charges of the compounds (8)

<table>
<thead>
<tr>
<th>Heats of formation / kcal mol⁻¹</th>
<th>11.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 -0.321</td>
<td>O2 -0.557</td>
</tr>
<tr>
<td>C2 -0.335</td>
<td>H1 +0.184</td>
</tr>
<tr>
<td>C3 -0.349</td>
<td>N2 +1.231</td>
</tr>
<tr>
<td>C4 -0.253</td>
<td>O3 -0.537</td>
</tr>
<tr>
<td>C5 -0.156</td>
<td>O4 -0.565</td>
</tr>
<tr>
<td>C6 -0.078</td>
<td>H2 +0.194</td>
</tr>
<tr>
<td>N1 +1.237</td>
<td>N3 +1.229</td>
</tr>
<tr>
<td>O1 -0.566</td>
<td>O5 -0.546</td>
</tr>
</tbody>
</table>

In the case of toluene, the formation of tetranitro-intermediate by further addition of NO₂ seems to be less likely because of steric effect of methyl group. As a matter of fact, nitrination of toluene gave much lower amount of dinitro products than that of benzene, which is consistent with the mechanism involving tetranitro-intermedaite.

Conclusion

In order to get an insight into the formation process for aromatic nitro compounds in the atmosphere and the aromatic nitrination mechanism with NO₂, the dinitro-isomer distribution in the nitrination of benzene and toluene with NO₂ was studied and a mechanism was proposed on the basis of the experimental results and the heats of formation and atomic electron densities of the intermediates obtained with PM3 calculations. A mechanism involving the addition of NO₂ to the initial adduct (the σ-complex intermediate) followed by the elimination of nitrous acid has been suggested for the formation of mononitrobenzene. A mechanism involving further addition of two mole of NO₂ to form a tetranitro-intermediate followed by the elimination of two moles of nitrous acid has also been suggested for the formation of dinitrobenzene. It is hoped that further mechanistic studies will open a deeper insight into the formation of harmful aromatic nitro compounds, and will contribute to the development of an effective method for suppression of their formation.
Experimental Section

A mixture of substrate 2mL, dinitrogen tetraoxide 10mL and dichloromethane 15mL was stirred in 100 mL flask for 6 hrs at 15°C. Analysis of products was carried out by Gas chromatograph. The analytical condition is as follows:

Detector: FID
Carrier gas: nitrogen, 40mL/min
Column: stainless column, 3 mmφ x 2.5 m
Filling agent: Silicon OV 101 5 wt%
Support: Uniport HP 60/80 mesh
Detector temperature: 210°C
Column temperature: 140-170°C

REFERENCES:

(2) Kaji, H. Anzen kogaku 1988, 27, 373.
(3) Chuma, I.; Kondo, S.; Kakebe, K.; Kankyo to Jintai II; Todaishuppankai, 1983
Facile Preparation of Allylamines by Hydrazinolysis of 2-Ketoaziridines

Abstract
A new method for making unprotected allyl amines by simple hydrazinolysis of 2-ketoaziridines has been developed. A variety of aziridines, including N-unprotected, N-substituted, as well as bicyclic enamine and aminal type, can be transformed into diversely substituted allyl amines.

Introduction
Allyl amines are often found in the structures of natural products and pharmaceuticals. Specific examples of the allyl amine-containing drugs are flunarizine, naftifine and terbinafine, to name a few. In addition, allylamines are useful synthetic intermediates for the preparation of other value-added molecules. One of the well known examples of ally amine involvement in synthesis is the catalytic asymmetric hydrogen migration during the synthesis of (-)-menthol, α-tocopherol and methoprene. Traditional synthetic routes to allyl amines have been based on (a) Gabriel synthesis, (b) allylation of amines, (c) reaction of lithium amide and substituted alkyne in the presence of the zirconocene complex, (d) allylic amination catalyzed by the transition metal complexes, (e) azidation of allylhalide followed by azide reduction, (f) reduction of α,β-unsaturated imines or oximes, and (g) reaction between nitrobenzenes and allylmagnesium halides followed by reduction.

The interest in functionalized aziridines has led to investigate their use in the synthesis of other nitrogen-containing molecules such as allyl amines. At the outset, it has been decided to investigate the Wolff-Kishner type reduction of carbonyl group in 2-ketoaziridines. The 2-ketoaziridine starting materials were prepared using 1,4-addition of methoxyamine to α,β-unsaturated ketones following by base-promoted ring closure (Scheme 1) or by electrochemical olefin aziridination.
Scheme 1. Synthetic route on the starting 2-ketoaziridines.

1) DIBAL 1.1eq, toluene, -78°C
2) THF, BF$_3$/Et$_2$O 1.1eq, -78°C → 0°C

Reflected in EtOH
Yield 90%

PhO

OTMS

NH$_2$OMe 1.2eq
reflux in EtOH
Yield 80%

OEt

PhO

1.1eq

TsOH 1eq
toluene, 40°C
Yield 99%

Yield 90%

Results and Discussion

It was subsequently found that under alkaline conditions the hydrazine reduction of 2-ketoaziridines preferentially affords allyl amine derivatives instead of 2-alkylaziridines or pyrazoles (eq 1)9.

\[
\begin{align*}
\text{R}_1 \text{N} & \text{O} \\
\text{R}_3 \text{NH}_2\text{NH}_2/\text{H}_2\text{O} & 10\text{eq} \\
\text{KOH} & 3\text{eq} \\
\text{ethylene glycol, 100°C} & \text{NHR}_2 \\
\text{2a-e} & \text{3a-e}
\end{align*}
\]

(1)

The scope of base-mediated hydrazine reduction of 2-ketoaziridines was investigated (Table 1). The reactions are clean and give two readily separable spots on TLC, one of which corresponds to the allylamine and the other - to the pyrazole by-product. The selectivity between allyl amine and pyrazole is moderate to high. The separation of pyrazoles from allyl amines can be easily preformed on silica gel.10

The unprotected aziridines are within the scope of the process (Table 1). The aziridines which contain sterically demanding R$_1$ substituents show improved selectivity for allyl amine formation. Chalcone-derived aziridines afford low selectivity for allyl amine formation if the aryl group distal to the carbonyl functionality contains an electron-donating substituent or if the proximal aryl ring contains an electron-withdrawing substituent. In the cases of activated aziridines that contain amide nitrogen, the yields of pyrazoles are increased. The N-aminophthalimide containing aziridines do not
result in any allyl amine formation. The strained bicyclic enamines give clean formation of allyl amines, whereas the bromine-containing bicycle 1g leads to the concomitant transposition of the aziridine ring within the molecule. Finally, the aldehyde derived aziridine 1h led to cyclic imine 2h underhydrazinolysis conditions. The compounds of this type can be readily and stereoselectively reduced to the corresponding pyrrolidine derivatives using DIBAL-H.11
Table 1. Hydrazine Reduction of 2-Ketoaziridines under Alkaline Conditions.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Starting material</th>
<th>Product</th>
<th>Yieldc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N\textsubscript{O}PhH((1a))</td>
<td>N\textsubscript{H}Ph((2a))</td>
<td>60%</td>
</tr>
<tr>
<td>2</td>
<td>N\textsubscript{O}PhH ((1b))</td>
<td>N\textsubscript{H}Ph ((2b))</td>
<td>67%b</td>
</tr>
<tr>
<td>3</td>
<td>R\textsubscript{1}N\textsubscript{H}R\textsubscript{2}R\textsubscript{3} ((1c))</td>
<td>R\textsubscript{1}N\textsubscript{H}R\textsubscript{2}R\textsubscript{3} ((2c))</td>
<td>2c-1: R\textsubscript{1}, R\textsubscript{2}, R\textsubscript{3} = H 46% 2c-2: R\textsubscript{1}, R\textsubscript{3} = H; R\textsubscript{2} = Cl 60% 2c-3: R\textsubscript{2}, R\textsubscript{3} = H; R\textsubscript{1} = Cl 65% 2c-4: R\textsubscript{1}, R\textsubscript{2} = H; R\textsubscript{3} = Cl 33% 2c-5: R\textsubscript{1}, R\textsubscript{3} = H; R\textsubscript{2} = OMe 11%</td>
</tr>
<tr>
<td>4</td>
<td>N\textsubscript{O}Ph\textsubscript{Boc} ((1d))</td>
<td>N\textsubscript{H}Ph ((2a))</td>
<td>50%</td>
</tr>
<tr>
<td>5</td>
<td>N\textsubscript{O}PhN\textsubscript{O} ((1e))</td>
<td>(3e)</td>
<td>45%</td>
</tr>
<tr>
<td>6</td>
<td>N\textsubscript{O}Ph ((1f))</td>
<td>N\textsubscript{H}Ph ((2f))</td>
<td>65%a</td>
</tr>
<tr>
<td>7</td>
<td>N\textsubscript{O}Ph ((1g))</td>
<td>N\textsubscript{H}Ph ((2g))</td>
<td>30%</td>
</tr>
<tr>
<td>8</td>
<td>N\textsubscript{O}Ph ((1h))</td>
<td>(2h)</td>
<td>40%a</td>
</tr>
</tbody>
</table>

a The initial enamine product was tautomerized to cyclic imine. b based on 95\% conversion. c Isolated yield.
In a typical Wolff-Kishner reduction, the anionic portion of intermediate B is protonated followed by further deprotonation of the N=N-H fragment and subsequent elimination of nitrogen to give the methylene group. In the case of 2-ketoaziridines, the intermediate B reacts with the adjacent aziridine ring at the alpha position and opens it up to give the allyl amine product (Scheme 2, path a). Alternatively, the anionic nitrogen center in the intermediate A can attack the aziridine ring at the beta position to form the pyrazole ring (Scheme 2, path b).

Scheme 2. Proposed mechanism for the hydrazine reduction of 2-ketoaziridines

Conclusion

In conclusion, it has been developed a mild method for making allyl amines by simple hydrazinolysis of 2-ketoaziridine derivatives in good yields and moderate selectivity. Notably, the 2-ketoaziridine starting materials can be prepared in enantiomerically pure form using the Julia-Colonna epoxidation reaction. Thereby, enantiomerically enriched allyl amines should be readily available using this method.
Experimental Section

General: Anhydrous solvents such as ether, toluene, acetonitrile, and dichloromethane were prepared using the method described by Grubbs (Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* 1996, 15, 1518). Tetrahydofuran (THF) was distilled over sodium-benzophenone ketyl under argon. Unless otherwise stated, all reactions were performed under nitrogen or argon atmosphere using flame-dried glassware.

Nuclear magnetic resonance spectra: 1H and 13C NMR spectra were recorded on either Mercury 300, Varian Gemini 300, or VRX-S (Unity) 400 spectrometer. 1H NMR spectra were referenced to residual CDCl$_3$ (δ 7.27) and 13C NMR spectra were referenced to CDCl$_3$ (δ 77.23). Peak multiplicities are designated by the following abbreviations: s, singlet; bs, broad singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublets; dt, doublet of triplets; br, broad; and J, coupling constant in Hz.

Chromatography: Analytical thin layer chromatography (TLC) was performed on Macherey Nagel pre-coated glass-backed TLC plates (SIL G/UV$_{254}$, 0.25mm) purchased from Rose Scientific Limited and visualized by UV lamp (254 nm) or iodine. Solvent ratios for R$_f$ values are reported as v/v. Column chromatography was carried out using Silicycle 230-400 mesh silica gel.

Compounds 1a, 1f, 1g, and 1e were prepared according to the previous work.6a,11

trans-2-Benzoyl-3-tert-butylaziridine (1b).

\[
\begin{align*}
\text{CH}_2\text{Cl}_2 & \quad \text{reflux in EtOH} \\
\text{NaOH} & \quad \text{NaOMe} 1.2\text{eq} \\
\text{NH}_2\text{OMe} & \quad \text{DMF, r.t.}
\end{align*}
\]

A mixture of pivalaldehyde (2.58 g, 30 mmol), acetophenone (3.60 g, 30 mmol), NaOH (1.20 g, 30 mmol) and water (6 mL) in methanol (60 mL) was heated under reflux for 6 hrs. After removal of methanol, CH$_2$Cl$_2$ and aq. NH$_4$Cl were added to the reaction mixture. The product was extracted with CH$_2$Cl$_2$. The combined organic extracts were dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified on a silica gel column (hexane/ethyl acetate = 95/5), to give 2.60 g of (E)-4,4-dimethyl-1-phenyl-2-penten-1-one (yield 46%).
A mixture of \((E)\)-4,4-dimethyl-1-phenyl-2-penten-1-one (1.88 g, 10 mmol) and \(\text{NH}_2\text{OMe}\) (719 mg, 15.3 mmol) in ethanol (10 ml) was heated under reflux for 5 hrs. The solvent was evaporated and the residue was purified on a silica gel column (hexane/ethyl acetate = 9/1), to give 1.30 g of 3-methoxyamino-4,4-dimethyl-1-phenyl-1-pentanone (yield: 55%).

To a stirred solution of \(\text{NaO}^\text{tBu}\) (657 mg, 12.2 mmol) in DMF (20 mL), a solution of 3-methoxyamino-4,4-dimethyl-1-phenyl-1-pentanone (1.30 g, 5.5 mmol) in DMF (10 mL) was added dropwise at room temperature. After the solution was stirred for 20 min at the same temperature, water (60 mL) was added and the product was extracted with \(\text{CH}_2\text{Cl}_2\) (2 × 30 mL). The combined organic extracts were washed with water (20 mL) and the solvent was evaporated. The residue was purified on silica gel column (hexane/ethyl acetate = 9/1), to give 975 mg of \(\text{trans-2-benzoyl-3-}\text{tert-butylaziridine}\ (1\text{b}, \text{yield: 87%})\).

\(^1\text{H NMR (CDCl}_3, 300\text{ MHz):}\ \delta\ 8.00-8.05\ (m, 2H), 7.60-7.66\ (m, 1H), 7.39-7.54\ (m, 2H), 3.35-3.38\ (m, 1H), 2.00-2.10\ (m, 2H), 1.00\ (s, 9H).

\textit{trans-2-Benzoyl-3-phenylaziridine (1c).}

\textit{trans-2-Benzoyl-3-phenylaziridine (1c)} was prepared in the same way as \textit{trans-2-benzoyl-3-}\textit{tert-butylaziridine} starting from \textit{trans-chalcone}.

\(^1\text{H NMR (CDCl}_3, 300\text{MHz):}\ \delta\ 8.01-8.05\ (m, 2H), 7.63-7.68\ (m, 1H), 7.50-7.55\ (m, 2H), 7.35-7.41\ (m, 5H), 3.55\ (br, 1H), 3.22\ (br, 1H), 2.71\ (br, 1H).

\textit{2-Benzoyl-3-but-3-enylaziridine-1-carboxylic acid tert-butyl ester (1d).}

![Diagram of 2-Benzoyl-3-but-3-enylaziridine-1-carboxylic acid tert-butyl ester (1d).]

To a mixture of (3-but-3-enyl-\textit{trans}-aziridin-2-yl)-phenylmethanone (1d, 500mg, 2.5 mmol), dicholomethane (10 mL), and DMAP (610 mg, 5.0 mmol) was added di-\textit{tert}-butyl dicarbonate (818 mg, 3.7 mmol) at room temperature and stirred for 3 hours. After completion judged by TLC, the reaction
mixture was washed with water (5 mL), and was dried over sodium sulfate. The solvent was removed in vacuo and the residue was purified on a silica gel column (hexane/ethyl acetate = 7/3), to give 677 mg of 2-benzoyl-3-but-3-enylaziridine-1-carboxylic acid tert-butyl ester (1d, yield: 90%).

(2-Hydroxy-1-aza-bicyclo[3.1.0]hex-6-yl)-phenyl-methanone (1h).

To a mixture of (3-but-3-enyl-trans-aziridin-2-yl)-phenylmethanone (1a, 0.9 g, 4.5 mmol), N-methylmorpholine oxide (0.53 g, 4.5 mmol), THF (40 mL), and water (4 mL) was added OsO₄ (4% aqueous solution, 286 μL, 0.045 mmol) at the ice bath temperature and the mixture was stirred overnight in ice bath. After completion judged by TLC, the reaction mixture was concentrated. The volatiles were removed under vacuum to afford the crude product as brown oil (1.05 g, yield: >99%, NMR indicates purity over 90%). The crude product was used in next step without additional purification.

To a mixture of [3-(3, 4-dihydroxy-butyl)-aziridin-2-yl]-phenylmethanone (1.0 g, 4.3 mmol), MeOH (40 mL) and water (0.5 mL) was added sodium periodate (0.92 g, 4.3 mmol) at room temperature and the mixture was stirred for 2 hours. After completion judged by TLC, the reaction mixture was concentrated. To the residue, water (50 mL) was added. Product was precipitated as yellow solid. The suspension was treated in an ultrasonic bath for 20 min, and then filtered. After drying over P₂O₅ over 48 hours, the product (2-hydroxy-1-aza-bicyclo[3.1.0]hex-6-yl)-phenyl-methanone (1h) was collected as yellow solid (0.86 g, yield: 99%).

NMR of product 1h is complicated with broad peaks due to the equilibria between its open (aldehyde) form and closed (hemiaminal) forms. HR-MS (EI) m/z: calcd. for C₁₂H₁₃NO₂ 204.1025, found 204.1026. The characterization was achieved by forming the acetylated derivative (see below).

To a mixture of (2-hydroxy-1-aza-bicyclo[3.1.0]hex-6-yl)-phenyl-methanone (1h), (120 mg, 0.59 mmol), 4-dimethylaminopyridine (144 mg, 1.18 mmol) and dichloromethane (2 mL), was added acetic anhydride (111 μL, 1.18 mmol). The mixture was stirred at room temperature for 1 hour. The reaction
mixture was concentrated and purified on a silica gel column chromatography (EtOAc) to afford one
diastereomeric acetate (2^R, 5^R, 6^S)-6-benzoyl-1-aza-bicyclo[3.1.0]hex-2-yl ester (102 mg, yield
71%) as major product. A trace amount of the other diastereomer (less than 10 mg) was obtained as a
minor product.

Acetic acid (2^R, 5^R, 6^S)-6-benzoyl-1-aza-bicyclo[3.1.0]hex-2-yl ester

![Acetic acid structure](image)

1H NMR (CDCl$_3$, 400MHz): δ 8.06 (d, $J = 8.0$ Hz, 2H), 7.61 (t, $J = 7.2$ Hz, 1H), 7.50 (t, $J = 7.2$ Hz,
2H), 6.03 (t, $J = 7.2$ Hz, 1H), 3.44 (d, $J = 2.8$ Hz, 1H), 3.05 (d, $J = 2.0$ Hz, 2H), 2.39-2.11 (m, 7H,
includes 2.11 , s, 3H); 1.55-1.44 (m, 1H); 13C NMR (CDCl$_3$, 100MHz): δ 195.3 , 169.6 , 136.9 ,
133.4 , 128.7 , 128.4 , 90.7 , 47.6 , 37.7 , 25.6 , 25.0 , 21.0 ; HR-MS (El) m/z: calcd. for C$_{14}$H$_{15}$NO$_3$
245.1130, found 245.1132.

Typical procedure for hydrazine reduction (Table 1, entry 1):

![Typical procedure](image)

A mixture of (3-but-3-enyl-$trans$-aziridin-2-yl)-phenylmethanone (1a, 100 mg, 0.5 mmol), hydrazine
monohydrate (250 mg, 5.0 mmol), potassium hydroxide (84 mg, 1.5 mmol) and ethylene glycol (2 mL)
was stirred at 100 °C for 1 hour. After completion judged by TLC, dichloromethane (10 mL) and water
(10 mL) were added, and the water layer was extracted with dichloromethane (5 mL). The combined
organic layers were washed with water (10 mL), and were dried over sodium sulfate and the solvent
was removed in vacuo. The residue was purified on a silica gel column (hexane/ethyl acetate = 6/4), to
give 1-styrylpent-4-enylamine (2a, yield: 60%) and 5-but-3-enyl-3-phenyl-1H-pyrazole (3a, yield: 30%).

1-Styrylpent-4-enylamine (2a).

\[
\begin{align*}
\text{Ph} & \quad \text{NH}_2 \\
\end{align*}
\]

\(^1\)H NMR (CDCl\(_3\), 400MHz): \(\delta\) 7.25-7.37 (m, 5H), 6.50 (d, \(J=11.6\) Hz, 1H), 5.79-5.86 (m, 1H), 5.57 (dd, \(J=11.6\) Hz, 6.0 Hz, 1H), 4.94-5.04 (m, 1H), 3.89-3.91 (m, 1H), 2.11-2.17 (m, 2H), 1.58-1.66 (m, 2H); \(^{13}\)C NMR (CDCl\(_3\), 100MHz): \(\delta\) 138.3, 137.3, 129.1, 128.6, 128.3, 128.2, 126.9, 114.7, 48.2, 37.3, 30.4; HR-MS (EI) \(m/z\): calcd. for C\(_{13}\)H\(_{16}\)N 186.1283, found 186.1278.

1-tert-Butyl-3-phenylallylamine (2b).

\[
\begin{align*}
\end{align*}
\]

\(^1\)H NMR (CDCl\(_3\), 400MHz): \(\delta\) 7.33-7.40 (m, 4H), 7.25-7.30 (m, 1H), 6.55 (d, \(J=11.6\) Hz, 1H), 5.71 (d, \(J=11.6\) Hz, 10.4 Hz, 1H), 3.59 (d, \(J=10.4\) Hz, 1H), 1.26 (bs, 2H), 0.93 (s, 9H); \(^{13}\)C NMR (CDCl\(_3\), 100MHz): \(\delta\) 137.5, 134.0, 130.1, 128.7, 128.2, 126.7, 56.8, 26.1.

1,3-diphenylallylamine (2c-1).

\[
\begin{align*}
\end{align*}
\]

\(^1\)H NMR (CDCl\(_3\), 300MHz): \(\delta\) 7.29-7.49 (m, 5H), 6.62 (d, \(J=11.6\) Hz, 1H), 5.91 (dd, \(J=11.6\) Hz, 9.6 Hz, 1H), 5.05 (d, \(J=9.6\) Hz, 1H), 1.71 (br, 2H); \(^{13}\)C NMR (CDCl\(_3\), 75MHz): \(\delta\) 136.9, 136.0, 129.1, 128.7, 128.7, 128.3, 127.2, 126.6, 52.7.
1-(2-Chloro-phenyl)-3-phenyl-allylamine (2c-2).

\[
\text{\begin{figure}
\begin{center}
\includegraphics[width=0.5\textwidth]{1-(2-Chloro-phenyl)-3-phenyl-allylamine.png}
\end{center}
\end{figure}}
\]

\(^1\)H NMR: (300 MHz, CDCl\(_3\)) \(\delta\) 7.44 (dd, \(J = 6.6\) Hz, 1.8 Hz, 1H), 7.39-7.17 (m, 8H), 6.59 (d, \(J = 11.4\) Hz, 1H), 5.92 (dd, \(J = 11.5\) Hz, 9.3 Hz, 1H), 5.34 (d, \(J = 9.3\) Hz, 1H), 1.96-1.82 (b, 2H); \(^{13}\)C NMR: (75 MHz, CDCl\(_3\)) \(\delta\) 142.6, 136.8, 133.8, 133.3, 130.5, 130.1, 128.8, 128.5, 128.4, 128.1, 127.5, 127.4, 50.4; HR-MS (EI) m/z: calcd. for C\(_{15}\)H\(_{14}\)ClN 243.0737, found 243.0738.

1-(4-Chloro-phenyl)-3-phenyl-allylamine (2c-3).

\[
\text{\begin{figure}
\begin{center}
\includegraphics[width=0.5\textwidth]{1-(4-Chloro-phenyl)-3-phenyl-allylamine.png}
\end{center}
\end{figure}}
\]

\(^1\)H NMR: (300 MHz, CDCl\(_3\)) \(\delta\) 7.38-7.29 (m, 9H), 6.62 (d, \(J = 11.4\) Hz, 1H), 5.83 (t, \(J = 11.4\) Hz, 1H), 5.02 (d, \(J = 9.6\) Hz, 1H), 1.79-1.57 (b, 2H); \(^{13}\)C NMR: (75 MHz, CDCl\(_3\)) \(\delta\) 143.2, 136.7, 135.5, 132.8, 129.5, 128.8, 128.7, 128.4, 128.1, 127.3, 52.2; HR-MS (EI) m/z: calcd. for C\(_{15}\)H\(_{14}\)ClN 243.0737, found 243.0739.

3-(4-Chloro-phenyl)-1-phenyl-allylamine (2c-4).

\[
\text{\begin{figure}
\begin{center}
\includegraphics[width=0.5\textwidth]{3-(4-Chloro-phenyl)-1-phenyl-allylamine.png}
\end{center}
\end{figure}}
\]

\(^1\)H NMR: (300 MHz, CDCl\(_3\)) \(\delta\) 7.41-7.20 (m, 9H), 6.50 (d, \(J = 11.7\) Hz, 1H), 5.88 (dd, \(J = 11.7\) Hz, 9.6 Hz, 1H), 4.99-4.87 (b, 1H), 1.90-1.56 (b, 2H); \(^{13}\)C NMR: (75 MHz, CDCl\(_3\)) \(\delta\) 135.4, 133.1, 130.2, 129.0, 128.7, 128.1, 127.8, 127.5, 126.7, 125.9, 52.9; HR-MS (EI) m/z: calcd. for C\(_{15}\)H\(_{14}\)ClN 243.0737, found 243.0737.
1-(4-Methoxy-phenyl)-3-phenyl-allylamine (2c-5).

![Structural formula of 1-(4-Methoxy-phenyl)-3-phenyl-allylamine](image)

\(^1\)H NMR: (500 MHz, CDCl\(_3\)) \(\delta\) 7.36-7.24 (m, 7H), 6.89 (d, \(J = 7.2\) Hz, 2H), 6.54 (d, \(J = 11.8\) Hz, 1H), 5.84 (dd, \(J = 11.5\) Hz, 9.5 Hz, 1H) 4.96 (d, \(J = 9.0\) Hz, 1H), 3.80 (s, 3H), 1.80-1.62 (b, 2H); \(^{13}\)C NMR: (125 MHz, CDCl\(_3\)) \(\delta\) 158.9, 137.1, 136.3, 128.9, 128.9, 128.5, 127.9, 127.3, 114.2, 55.5, 52.3; HR-MS (EI) \(m/z\): calcd. for C\(_{16}\)H\(_{17}\)NO 239.1310, found 239.1311.

5-But-3-enyl-3-phenyl-1H-pyrazole (3a).

![Structural formula of 5-But-3-enyl-3-phenyl-1H-pyrazole](image)

\(^1\)H NMR (CDCl\(_3\), 400MHz): \(\delta\) 7.75-7.77 (m, 2H), 7.40-7.44 (m, 1H), 7.30-7.36 (m, 2H), 6.42 (s, 1H), 5.84-05.94 (m, 1H), 5.04-5.14 (m, 2H), 2.79 (t, \(J = 7.6\) Hz, 2H), 2.43-2.49 (m, 2H); \(^{13}\)C NMR (CDCl\(_3\), 100MHz): \(\delta\) 137.4, 128.7, 127.9, 125.7, 115.7, 101.2, 33.2, 25.9; HR-MS (EI) \(m/z\): calcd. for C\(_{13}\)H\(_{14}\)N\(_2\) 198.1157, found 198.1154.

5-tert-Butyl-3-phenyl-1H-pyrazole (3c).

![Structural formula of 5-tert-Butyl-3-phenyl-1H-pyrazole](image)

\(^1\)H NMR (CDCl\(_3\), 400MHz): \(\delta\) 7.78-7.80 (m, 2H), 7.42-7.45 (m, 2H), 7.33-7.37 (m, 1H), 6.44 (s, 1H), 1.43 (s, 9H); \(^{13}\)C NMR (CDCl\(_3\), 100MHz): \(\delta\) 128.7, 127.8, 125.6, 98.8, 30.4.

3,5-diphenyl-1H-pyrazole (3e).

![Structural formula of 3,5-diphenyl-1H-pyrazole](image)
1H NMR (CDCl$_3$, 300MHz): δ 7.77-7.80 (m, 4H), 7.37-7.51 (m, 6H), 6.90 (s, 1H); 13C NMR (CDCl$_3$, 75MHz): δ 128.9, 128.4, 125.6, 100.2.

Typical procedure for hydrazine reduction of bicyclic aziridines (Table 1, entry 2):

![Chemical reaction](image)

A mixture of (5R,6S)-(methylene-1-azabicyclo[3.1.0]hex-6-yl)-phenylmethanone (1f, 50 mg, 0.25 mmol), hydrazine monohydrate (125 mg, 2.5 mmol), potassium hydroxide (42 mg, 0.75 mmol) and ethylene glycol (1 mL) was stirred at 100 °C for 1 hour. After completion judged by TLC, dichloromethane (5 mL) and water (5 mL) were added, and the water layer was extracted with dichloromethane (3 mL). The combined organic layers were washed with water (5 mL), and were dried over sodium sulfate and the solvent was removed in vacuo. The residue was purified on a silica gel column (hexane/ethyl acetate = 6/4), to give 30 mg of 5-methyl-2-styryl-3,4-dihydro-2H-pyrrole (2b, yield: 65%).

5-Methyl-2-styryl-3,4-dihydro-2H-pyrrole (2f).

1H NMR (CDCl$_3$, 300MHz): δ 7.34-7.45 (m, 4H), 7.24-7.30 (m, 1H), 6.59 (d, J=11.4 Hz, 1H), 5.59 (dd, J=11.4Hz, 9.6 Hz, 1H), 4.92-5.01 (m, 1H), 2.46-2.70 (m, 2H), 2.17-2.28 (m, 1H), 2.11 (d, J=1.8 Hz, 3H), 1.62-1.75 (m, 1H); 13C NMR (CDCl$_3$, 100MHz): δ 175.5, 137.1, 134.4, 129.9, 129.0, 128.1, 126.9, 69.9, 39.4, 30.9, 19.9; HR-MS (EI) m/z: calcd. for C$_{13}$H$_{15}$N 185.1205, found 185.1202.

(2R,5S,6S)-6-Phenyl-2-styryl-1-azabicyclo[3.1.0]hexane (2g).
The reaction temperature and time for 2e: the reaction mixture was stirred at 60 °C for 30 minutes, then heated up to 100 °C and stirred for 10 minutes.

1H NMR (CDCl$_3$, 400MHz): δ 7.44-7.45 (m, 2H), 7.36-7.40 (m, 2H), 7.22-7.33 (m, 6H), 6.62 (d, J=11.6 Hz, 1H), 5.75 (dd, J=11.6Hz, 9.2 Hz, 1H), 4.32-4.39 (m, 1H), 2.73 (d, J=2.8 Hz, 1H), 2.52 (dd, J=4.4 Hz, 2.8 , 1H), 2.37 (dd, 9.6 Hz, 8.4 Hz, 1H), 2.07-2.16 (m, 1H), 1.89-1.96 (m, 1H), 1.43-1.54 (m, 1H); 13C NMR (CDCl$_3$, 100MHz): δ 131.7, 131.6, 128.8, 128.2, 128.2, 127.0, 126.7, 126.4, 61.1, 50.4, 36.0, 28.0, 27.7; HR-MS (EI) m/z: calcd. for C$_{19}$H$_{19}$N 261.1518, found 261.1512.

2-Styryl-3,4-dihydro-2H-pyrrole (2h).

1H NMR: (300 MHz, CDCl$_3$) δ 7.69 (s, 1H), 7.44-7.23 (m, 5H), 6.59 (d, J = 11.7 Hz, 1H), 5.54 (dd, J= 11.4 Hz, 9.6 Hz, 1H), 4.97 (d, J = 7.2 Hz, 1H), 2.79-2.49 (m, 2H), 2.20-2.09 (m, 1H), 1.62-1.55 (m, 1H); 13C NMR: (125 MHz, CDCl$_3$) δ 167.3, 137.2, 134.0, 130.5, 129.1, 128.3, 127.2, 70.4, 37.5, 28.8; HR-MS (EI) m/z: calcd. for C$_{12}$H$_{13}$N 171.1048, found 171.1043.
REFERENCES:

(9) Interestingly, the reactions between 2-ketoaziridines and hydrazine in the presence of acids proceed to give pyrazoles: Cromwell, N. H.; Barker, N. G.; Wankel, R. A.; Vanderhorst, P. J.; Olson, F. W.; Anglin, Jr., J. L. J. Am. Chem. Soc. 1951, 73, 1044.

List of Publications

(1) \textit{N}-Arylation of Aziridines

(2) Oxidative Cycloamination of Olefins with Aziridines as a Versatile Route to Saturated Nitrogen-Containing Heterocycles

(3) One-Pot Reduction-Aldol Reaction of Esters

(4) New Methods for the Synthesis of Heterocyclic Compounds

(5) Mechanism for aromatic nitrination with nitrogen dioxide

(6) Solvent effects on aromatic nitrination with nitrogen dioxide
Other Publications

(1) Facile Preparation of Allyl Amines and Pyrazoles by Hydrazinolysis of 2-Ketoaziridines

(2) Strained Enamines as Versatile Intermediates for Stereocontrolled Construction of Nitrogen Heterocycles

(3) A study on the reactivity of aromatic compounds with nitrogen dioxide