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Semiquantal analysis of hydrogen bond
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The semiquantal time-dependent Hartree �SQTDH� theory is applied to the coupled Morse and
modified Lippincott-Schroeder �LS� model potentials of hydrogen bond. The structural correlation
between the heavy atoms distance and the proton position, the geometric isotope effect, the energy
of hydrogen bond formation, and the proton vibrational frequency shift are examined in a broad
range of structural parameters. In particular, the geometric isotope effect is found to depend notably
on the choice of the potential model, for which the LS potential gives the isotope shift of the heavy
atoms distance in the range of 0.02–0.04 Å, in quantitative agreement with the experimental
findings from assortment of hydrogen bonding crystals. The fourth-order expansion approximation
to the semiquantal extended potential was confirmed to be highly accurate in reproducing the full
SQTDH results. The approximation is computationally efficient and flexible enough to be applied to
general models of hydrogen bond. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2210477�
I. INTRODUCTION

One interesting nature of hydrogen bond is the range of
structural and energetic properties exhibited under different
chemical conditions and in various substances.1–4 For ex-
ample, the A¯B distance in A–H¯B hydrogen bond is
typically observed in the range of 2.4–3.0 Å, the hydrogen
bond energy 2–12 kcal/mol, the A–H bond length
0.95–1.2 Å, and the A–H vibrational frequency around
1700–3600 cm−1. Associated with the decrease of the A¯B
distance, the hydrogen bond energy becomes larger, the A–H
length longer, and the A–H vibrational frequency smaller.
These correlated changes appear to bear significant clue for
understanding chemical properties and functions of hydrogen
bonding materials.

The ab initio quantum chemical methods have been suc-
cessful in reproducing many of these static properties,5–7 al-
though after elaborate computations of the electron correla-
tion effects with sufficiently large basis set. These
calculations are still expensive enough to hinder their imple-
mentations into the condensed phase molecular simulations
when sufficient statistical samplings are essential. In this
sense, the empirical or semiempirical models are of practical
value for widening our approaches to variety of problems.
One of the most studied empirical potentials is the one pro-
posed by Lippincott and Schroeder.8–12 The empirical va-
lence bond model13 is also actively used in condensed phase
simulation studies.

Compared to the electronic structural aspects under the
adiabatic approximation, the quantum mechanical nature of
the proton has been studied rather scarcely to date. The A–H
vibrational frequency of 3000 cm−1 corresponds to the zero-
point energy of 4 kcal/mol, which implies that the quantum
nature is far from negligible. In particular, the zero-point
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energy level in strong hydrogen bonds may be located above
the potential barrier �or the convex region� such that the pro-
ton wave function is delocalized over the complex.14 This
will affect the structure and dynamics in ways beyond the
classical mechanical description. The quantum nature of the
proton also correlates with the heavy atoms distance A¯B,
as is observed in the geometric isotope effect, for which
consistent treatment of the light and heavy degrees of free-
dom would be essential. Recent advances of the combined
nuclear and electronic orbitals methods15–17 appear to be di-
recting toward these aspects.

The primary motivation of this work is to devise a prac-
tical and efficient method to take account of the nuclear
quantum aspects in hydrogen bonds. To this end, we apply
the semiquantal time-dependent Hartree �SQTDH� theory
developed recently.18,19 The empirical potential models are
usefully employed to examine the nature of hydrogen bond
in a broad range of the structural parameters. Extensive
works to combine with the electronic structure calculations
are planned, but are beyond the scope of this article.

The next section summarizes the SQTDH theory. The
empirical potential models and their semiquantal treatments
are described in Sec. III. The calculations of the structural
correlations, the geometric isotope effect, the hydrogen bond
energy, and the vibrational frequency shift are discussed in
Sec. IV. The paper concludes in Sec. V.

A preliminary report of this work has been published.20

The novel aspects in the present article include an assess-
ment of the fourth-order expansion approximation, compari-
son between the coupled Morse and modified Lippincott-
Schroeder potentials, analysis of the wave packet widths,
refinement of the parameters to better reproduce the hydro-
gen bond formation energy, and the examination of the vi-

brational frequency shift.
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II. SQTDH THEORY

The SQTDH theory has been outlined previously.19 It
describes the wave function as a Hartree product of the
squeezed coherent state Gaussian wave packets characterized
by the center and width parameters. The equations of motion
for the parameters are determined from the time-dependent
variational principle.21–23 One of the marked features is that
the equations of motion for both the center and width param-
eters have the form of classical Hamiltonian equations of
motion.24–26 This suggests us to extend the phase space such
as to include the width coordinates and their conjugate mo-
menta in addition to the center coordinates. The wave packet
dynamics is thus viewed as classical motion on an effective
potential in the extended phase space. In particular, the effect
of dissipative bath can be taken into account straightfor-
wardly and in a pictorial manner.19 Another computational
advantage is that the optimal stationary state wave function
is directly obtained from the minimum point on the extended
potential.

For simplicity of notation, we set �=1 and assume that
the coordinates q1 , . . . ,qf have been mass scaled. The trial
wave function is defined with the time-dependent Hartree
ansatz

��q1, . . . ,qf,t� = �
�=1

f

N� exp�A��t��q� − x��t��2 + ip��t�

��q� − x��t��� , �1�

in which

A��t� =
− 1 + 2i���t����t�

4���t�2 . �2�

N�= �2����t�2�−1/4 is the normalization factor. The time-
dependent parameters x��t� and ���t� describe the centers
and widths of the wave packet. The parameters p��t� and
���t� are seen later to describe the conjugate momenta of
x��t� and ���t�, respectively.

The Lagrangian for the time-dependent variational
theory is given by

L =��,t	i
�

�t
+ 


�

�2

2�q�
2 − V�q1, . . . ,qf�	�,t� , �3�

in which V is the potential. The variational condition
���Ldt� /�X=0, where X represents all the parameters, yields
the equations of motion,

ẋ� = �Hext/�p�, ṗ� = − �Hext/�x�,

�̇� = �Hext/���, �̇� = − �Hext/���, �4�

in which the extended Hamiltonian is defined by

Hext = 

�=1

f  p�
2

2
+

��
2

2
+

1

8��
2 � + �V� . �5�

These direct us to investigate the quantum dynamics in an
extended phase space formed by �x� ,�� , p� ,���. The key

quantity is the extended potential
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Vext = 

�=1

f
�2

8m���
2 + �V� �6�

defined in the configuration space �x� ,���. Note that p� and
�� vanish in �V� as they appear only in the phase factor of
�. Note also that � and the atomic masses m� have been
retrieved in the first term of Eq. �6�. This term serves to
broaden the wave packet by forming a potential wall grow-
ing along �→ +0, with the stronger tendency when the mass
is the lighter, and vanishes in the classical limit �→0.

The calculation of �V� is straightforward only in limited
cases. The coupled Morse potential described in the next
section is an example where a compact analytical form is
available. For general potentials, the Taylor expansion of V
around �q��q�− �q�� may be useful. Since �q��=x�,
��q�

2�=��
2 , ��q�

4�=3��
4 , and so on, we find19

�V� = V�x1, . . . ,xf� +
1

2 

�=1

f
�2V

�q�
2 ��

2 +
1

4 

�	


f
�4V

�q�
2�q


2 ��
2�


2

+
1

8 

�=1

f
�4V

�q�
4 ��

4 + . . . . �7�

We will assess the accuracy of the fourth-order expansion for
the hydrogen bond model potentials. As the second deriva-
tive of the potential will be negative around the potential
barrier region, divergence along � may be caused if the ex-
pansion was truncated at the second order. Therefore, the
fourth-order expansion would be the minimum requirement
for double-well potentials. It is interesting to note that the
fourth-order expansion is essentially equivalent to the
QHD-2 theory27 derived via an apparently different route
from mixed quantum-classical Heisenberg equations of mo-
tion.

III. MODEL POTENTIALS AND PARAMETERS

The Lippincott-Schroeder model describes the A–H¯B
hydrogen bond complex by a sum of A–H and B–H bond
potentials and nonbonded A¯B potential. Following this
idea, we have constructed an alternative form of model po-
tential employing the Morse potential for all the three com-
ponents. Although the Morse potential has been examined to
be no better than the Lippincott potential for modeling cova-
lent bonds,28 it still has an advantage in the SQTDH theory
that an exact analytical form of the extended potential is
available. We thereby employ the coupled Morse �CM� po-
tential as a cornerstone for developing and testing the theory,
and then proceed to the study of the Lippincott-Schroeder
�LS� potential. In particular, it plays a critical role in the
assessment of the fourth-order expansion approximation.

A. Coupled Morse potential

We define the coupled Morse potential by

VCM = VAH
M + VBH

M + VAB
M − DBH − DAB, �8�

M
where VXY is the Morse function for the XY bond,
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VXY
M = DXY�1 − exp�− aXY�rXY − rXY

0 ���2. �9�

The parameters DXY and rXY
0 are the bond dissociation en-

ergy and the equilibrium bond length, and aXY is related to
the potential well curvature. The last two terms in Eq. �8� are
subtracted such that the completely dissociated complex has
VCM=0 at the classical minimum.

Among the bare internuclear distances rAH, rBH, and rAB,
two are independent in the collinear complex. They are con-
verted to the Jacobi coordinates29 r and R that diagonalize
the kinetic operators, as defined by r=rAH and R=rBH

+�ArAH where �A=mA / �mA+mH� and mX denotes the mass
of atom X. For ordinary hydrogen bonds with mA�mH, we
find R�rAB. The mass for the Jacobi coordinates are given
by mr=mAmH/ �mA+mH� and mR= �mA+mH�mB / �mA+mH

+mB�. Conversely, the bare internuclear distances are re-
trieved as rAH=r, rBH=R−�Ar, and rAB=R+�Hr where �H

=mH/ �mA+mH�.
We will now denote the centers of the SQTDH wave

packets by the same symbols r and R, assuming that no
confusion will arise between the coordinates and the param-
eters. The corresponding wave packet widths are denoted by
w and W. The semiquantal extended potential for VCM is
straightforwardly derived as

Vext
CM�r,R,w,W�

=
�2

8mrw
2 +

�2

8mRW2 + Vext
M �r,rAH

0 ,w2,aAH,DAH�

+ Vext
M �R − �Ar,rBH

0 ,W2 + �A
2w2,aBH,DBH� − DBH

+ Vext
M �R + �Hr,rAB

0 ,W2 + �H
2 w2,aAB,DAB� − DAB,

�10�

where

Vext
M �r,r0,w2,a,D�

= D�1 + e−2a�r−r0�+2a2w2
− 2e−a�r−r0�+a2w2/2� . �11�

B. Lippincott-Schroeder potential

The Lippincott-Schroeder potential for hydrogen bond is
given by8

VLS = VAH
L + VBH

L + VAB − DBH, �12�

where VXY
L is the Lippincott potential30,31 for the XY bond

VXY
L = DXY�1 − exp�− nXY�rXY − rXY

0 �2/2rXY�� . �13�

In the original paper,8 the nonbonded term was given the
form VAB=A exp�−brAB�−B /rAB

m , and the results of the cal-
culations were found to be insensitive to the choice of m
=1 or 6. Consequently, some later works omitted the term
−B /rAB

m and others used the Morse function for the VAB

part.10,12 We will follow the latter option considering the
merit to have the correspondence with the CM potential.
Therefore, our choice is

VLS = VAH
L + VBH

L + VAB
M − DBH − DAB. �14�

We will call it a modified LS potential �or simply the LS

potential hereafter�.
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Due to lack of a compact analytical form of �VL�, we
employ the fourth-order expansion approximation �cf. Eq.
�7�� and find

Vext�4�
LS �r,R,w,W�

=
�2

8mrw
2 +

�2

8mRW2 + VLS�r,R� +
1

2
�VAH

L�2� + �A
2VBH

L�2�

+ �H
2 VAB

M�2��w2 +
1

2
�VBH

L�2� + VAB
M�2��W2 +

1

4
��A

2VBH
L�4�

+ �H
2 VAB

M�4��w2W2 +
1

8
�VAH

L�4� + �A
4VBH

L�4�

+ �H
4 VAB

M�4��w4 +
1

8
�VBH

L�4� + VAB
M�4��W4, �15�

in which VXY
L/M�2� and VXY

L/M�4� are the second and fourth de-
rivatives of VXY

L/M with respect to rXY. The corresponding ex-
pansion for the CM potential Vext�4�

CM is obtained similarly.

C. Parameters and computationals

The parameters for the potentials are mostly taken from
Refs. 8 and 12, and hence correspond to the O–H¯O hydro-
gen bonds. For the bonding part, we take DAH

=110.6 kcal/mol, DBH=DAH/g, nAH=9.8 Å−1, nBH=nAH·g,
and rAH

0 =rBH
0 =0.97 Å. The parameter g controls the asym-

metry of the potential, and its numerical value will be speci-

FIG. 1. The coupled Morse potential along the Jacobi coordinate r, and the
ground state wave functions from the SQTDH calculation with the exact
extended potential �dotted, labeled SQ� and the fourth-order approximation
�solid, SQ4�. The asymmetry parameter g is 1.45 �a� and 1.0 �b�, respec-
tively. The numerical quantum solution is also included �dashed, QM�. The
horizontal lines are the corresponding energy levels. The amplitude of the

wave functions is in arbitrary unit.
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fied in the results. The parameters aXY are derived via a
=�n /2r0 to give the same potential curvature between VXY

M

and VXY
L at the well bottom. For the nonbonded part, we take

aAB=2.9 Å−1 from Ref. 12. In the previous publication,20 we
also used DAB=2000 cm−1=5.7 kcal/mol from the same ref-
erence. However, in the course of the present work we find it
overestimates the hydrogen bond formation energy by
around 5 kcal/mol. We have thus reoptimized it and ob-
tained DAB=1.6 kcal/mol, which gives reasonably good re-
sults as will be demonstrated later. rAB

0 is taken as a variable
parameter that controls the shape of the potential and hence
the results in Figs. 3–8. RAB is thus not an external parameter
but is an outcome of the calculation. �Hereafter, the AB dis-
tance will be denoted by the capital RAB.� We found mono-
tonic but nonlinear correlation between rAB

0 and RAB.
The optimal wave packet is obtained by minimizing Vext

in the extended coordinate space �r ,R ,w ,W�. We employ the
downhill simplex and the direction set methods32 for the
minimization. Both methods were used to check the conver-
gence of the results.

IV. RESULTS AND DISCUSSION

A. Accuracy of the fourth-order approximation

Figure 1 compares the wave functions from the exact
Vext

CM and the fourth-order approximation Vext�4�
CM �SQ and SQ4

in the figure� for the CM potential. They look almost indis-
tinguishable in both the asymmetric and symmetric cases.
The quantum mechanical �QM� solutions by the renormal-
ized Numerov method33,34 are also displayed. It is seen that

FIG. 2. Same as Fig. 1 but for the modified Lippincott-Schroeder potential.
Note that the exact semiquantal solution �SQ� is unavailable for this poten-
tial, so that only the QM and SQ4 results are compared.
the agreement of the semiquantal wave packets to the quan-
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tum solution is better for the asymmetric case. We note that
Fig. 1�b� presents a stringent case where the wave function is
delocalized over the low barrier double well. The accuracy of
the fourth-order approximation will be further confirmed in
Figs. 3–5.

Figure 2 shows the corresponding results for the LS po-
tential. Note that the exact semiquantal potential is unavail-
able in this case, so that only the SQ4 and QM calculations
are compared. The quality of the semiquantal wave packets
in reproducing the quantum wave function is almost compa-
rable to that in the case of the CM potential in Fig. 1. It is
seen that the LS potentials in Fig. 2 are slightly narrower
than the CM ones in Fig. 1. This comes from the smaller RAB

resulted from the same parameters. For example, we used
g=1.45 and rAB

0 =3.0 Å to generate Figs. 1�a� and 2�a�, which
yield RAB=2.59 and 2.56 Å for the CM and LS potentials,
respectively. For Figs. 1�b� and 2�b�, we used g=1 and rAB

0

=3.1 Å and found RAB=2.63 and 2.59 Å.
The ground state energy levels are also shown as the

horizontal lines in Figs. 1 and 2. The differences between the
semiquantal and quantum energies are too small to be re-
solved in the displayed range of the figures: The difference

FIG. 3. The correlation between the internuclear distances RAB and rAH for
the modified Lippincott-Schroeder �a� and the coupled Morse �b� potentials.
Solid and dash-dotted lines are from the fourth-order SQTDH �SQ4� calcu-
lations for hydrogen and deuterium, respectively. Dashed lines are the clas-
sical mechanical limit. The cross marks are from Table I of Ref. 8. In �b�, the
SQTDH calculations with the exact extended potential �dotted, SQ� are in-
cluded, but are almost indistinguishable from those with the fourth-order
approximation.
between the semiquantal and quantum energies, E�SQ�
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−E�QM�, was 0.081 and 0.095 kcal/mol in Figs. 1�a� and
1�b�. With the fourth-order approximation, E�SQ4�−E�QM�
was 0.075, 0.043, 0.074, and 0.094 kcal/mol in Figs. 1�a�,
1�b�, 2�a�, and 2�b�, respectively. As the consequence of the
variational nature of the semiquantal approximation, the ex-
act quantum energy is always the lowest.

B. Structural correlation

The correlation between rAH and RAB is displayed in Fig.
3. The cross marks are from Table 1 of Ref. 8 which agree
well with our results in Fig. 3�a� for the LS potential with
g=1.45. On the other hand, the corresponding results for the
CM potential in Fig. 3�b� shows slower decrease along RAB.
Nonetheless, the overall qualitative behavior is similar be-
tween the two potentials. In particular, it is noted that the
correlation depends strongly on the asymmetry parameter g.
This seems to have notable implication for explaining the
scattered data points observed from a variety of hydrogen
bonding crystals.20 The present results suggest the necessity
to reexamine the potential asymmetry for each specific sys-
tem before attempting to extract a unified correlation curve
from the scattered data.

In the symmetric case with g=1, rAH increases rapidly
along with the decrease of RAB and then merge to the line
rAH=RAB /2. This is because that the proton wave packet cen-
ter approaches to the middle of A¯B and then stays there
along with the compression of the complex. Corresponding

FIG. 4. Similar to Fig. 3, but the ordinate is the distance between the two
hydrogen positions �HH. The potential is symmetric with g=1.
phenomenon is observed in the high-resolution neutron dif-
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fraction measurements as a doublet proton density peaks col-
lapsing to a single peak as RAB becomes shorter. We plot in
Fig. 4 the distance between the two proton positions �HH

along RAB. The quantum effect is clearly seen in the exis-
tence of the critical distance RAB at which �HH vanishes
abruptly. This contrasts with the gradual decrease of �HH in
the classical limit. In the classical case, the proton positions
are at the minima of the double-well potential that shift con-
tinuously along with the deformation of the potential. In con-
trast, the quantum wave packet does not follow the potential
minima but starts to delocalize over the potential at the criti-
cal RAB. This quantum nature is suppressed to some extent in
the deuterated complex, which resulted in the smaller critical
RAB. Comparing between the LS and CM potentials, the
quantum critical distances are shorter in the former whereas
the classical limits are very close.

C. Geometric isotope effect

We define the geometric isotope effect by the difference
of RAB between the deuterated and protonated complexes,
�RAB�RAB�D�−RAB�H�. The results are displayed in Fig. 5.
Interestingly, the magnitude of the geometric isotope effect
differs markedly between the LS and CM potentials such that
the former exhibits about twice as large �RAB. The effect
depends strongly on the asymmetry parameter g, with the

FIG. 5. The isotope shift of the heavy atoms distance �RAB for the modified
Lippincott-Schroeder �a� and the coupled Morse �b� potentials. In �b�, the
SQTDH calculations with the exact extended potential �dotted, SQ� are in-
cluded, but the results are almost indistinguishable from those with the
fourth-order approximation.
largest effect observed for the symmetric g=1 case. The
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small amount of the asymmetry with g=1.1 nearly halves the
effect. The present results are in good accordance with the
experimental data collected in Ref. 35 which shows that
�ROO is observed when ROO is in the range of 2.4–2.7 Å
and its magnitude is typically less than 0.03 Å. Moreover,
compared to our previous investigation20 based on the CM
potential, we seem to have approached closer to understand-
ing the exceptional compounds such as HCrO2 and HCoO2

that exhibit much larger �ROO of around 0.06–0.10 Å. The
present results suggests that the magnitude of �RAB is sensi-
tive to the small change of the potential shape. More elabo-
rate and specific examinations, together with the possibility
of collective and cooperative effects, would be needed to
fully understand the effect in those exceptional compounds.

D. Wave packet widths

Figure 6 shows the wave packet widths w and W for the
LS potential. Interestingly, the behavior of w along RAB ap-
pears to be similar to that of rAH displayed in Fig. 3. In Fig.
6�b�, the correlation between rAH and w is seen to exhibit
two-valued w along rAH. This comes from the two-valued
RAB along rAH in Fig. 3. That is, the shorter RAB gives the
narrower potential well for the proton and squeezes the wave
packet, which gives the lower branch of the rAH-w curves in
Fig 6�b�. For the deuterated complex, the width w is smaller,
but the curves from the different isotopes are nearly parallel

FIG. 6. The wave packet widths w �upper four lines� and W �lower� along
RAB �a�, and w along rAH �b�, for the modified Lippincott-Schroeder
potential.
to each other. On the other hand, the isotope effect is very

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to 
small for W, naturally because the effect of the isotope sub-
stitution is indirect for the coordinate R. The width W in-
creases along RAB, which implies that the potential along R
becomes shallower and the hydrogen bond weaker. The hy-
drogen bond strength is discussed next.

E. Hydrogen bond formation energy

Figure 7 shows the hydrogen bond formation energy as a
function of RAB. The semiquantal calculations are from the
zero-point energies of the complex A–H¯B and the isolated
A–H moiety, while the classical limit was calculated from
the potential minima. As in Ref. 8, we included the thermal
correction of 3RT /2 for the change of translational and rota-
tional degrees of freedom. As seen in Fig. 7�a�, and noted in
Sec. III C, our modified LS potential agrees well with the
experimental data. The quantum effect is almost negligible in
the region of RAB larger than around 2.5 Å but becomes no-
table for the smaller RAB. We primarily used the asymmetry
parameter g=1.45, but included in Fig. 7�a� the result from
g=1.3 for comparison. It is seen that the hydrogen bond
energy depends notably on the potential asymmetry, which
sounds reasonable since the asymmetry represents the differ-

FIG. 7. The hydrogen bond formation energy from the modified Lippincott-
Schroeder �a� and the coupled Morse �b� potentials. The former is from the
fourth-order SQTDH �SQ4� and the latter is from the exact SQTDH �SQ�.
Solid and dashed lines are for hydrogen and deuterium, respectively. The
dotted lines are the classical mechanical limit. The cross marks are the
experimental data taken from Ref. 8. The asymmetry parameter g is 1.45,
but the calculation with g=1.3 �with SQ4 and hydrogen� is also included in
�a� for comparison.
ence of the proton affinity between the A and B atoms.
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It is seen in Fig. 7�b� that the energy is largely overesti-
mated in the CM potential. Although the better result by the
LS potential is just because of the parameter optimization
carried out on this potential, the difference between the two
potentials is notable. Since the VAB part is common between
the two, the difference would be the consequence of the dif-
ferent behavior of VBH

M and VBH
L .

F. The A–H vibrational frequency shift

We have also examined the frequency shift of A–H
stretching vibration as a function of RAB. Here we employed
the one-dimensional Numerov method in order to obtain the
first excitation energy of the r vibration.35 For comparison,
we also evaluated the frequency from the curvature at the
bottom of the classical potential with the harmonic approxi-
mation, as has been done in Ref. 8. The results are displayed
in Fig. 8. First we note the deviation between the quantum
calculation and the harmonic approximation. Interestingly,
they seem to overlap by introducing an appropriate scaling
along the RAB direction. The shift is smaller by a factor of
around 0.7 for the deuterated complex. Again, the shift de-
pends on the asymmetry parameter g as shown in Fig. 8�a�,
i.e., the small change of g=1.45 to 1.3 notably affects the
result. We also note the non-negligible difference between

FIG. 8. The vibrational frequency shift ��AH from the modified Lippincott-
Schroeder �a� and the coupled Morse �b� potentials. QM and HA denote the
quantum mechanical calculation and the harmonic approximation, respec-
tively. The cross marks are from Table I of Ref. 8. The asymmetry parameter
g is 1.45, but the calculation with g=1.3 �with QM and hydrogen� is also
included in �a� for comparison.
the LS and CM potentials.
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V. CONCLUDING REMARKS

A study on the structure and energetics of hydrogen bond
has been presented. The computational efficiency of the
SQTDH theory, providing the optimal wave packet from a
straightforward minimization on the extended potential, has
allowed the examination of the global nature of the hydrogen
bond potentials in the broad range of structural parameters.
The fourth-order expansion approximation to the extended
potential was found to be accurate enough for the models
studied here, which encourages us to proceed toward the
study of hydrogen bond dynamics in clusters and condensed
phase. Combining with the electronic structure calculations
is another direction to progress, in which, for example, the
non-Born-Oppenheimer electron-proton coupling and
transfers38–41 seem to represent interesting and important
open questions.
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