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Black-hole (BH) oscillations known as quasinormal modes (QNMs) are one of the most important
gravitational wave (GW) sources. We propose that higher perturbative order of QNMs, generated by
nonlinear gravitational interaction near the BHs, are detectable and worth searching for in observations
and simulations of binary BH mergers. We calculate the metric perturbations to second order and
explicitly regularize the master equation at the horizon and spatial infinity. We find that the second-order
QNMs have frequencies twice the first-order ones and the GW amplitude is up to�10% of that of the first-
order one. The QNM frequency would also shift blueward up to�1%. This provides a new test of general
relativity as well as a possible distance indicator.
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I. INTRODUCTION

Direct detections of gravitational waves (GWs) will
become a reality in the near future with current and future
detectors, such as LIGO, LISA, and DECIGO/BBO [1].
GWs can not only provide a test of general relativity but
also open a new window on the universe.

One of the most important GW sources are the quasi-
normal modes (QNMs) of black holes (BHs) [2]. QNMs
are oscillations of the BH metric perturbations, and they
are damped by emitting GWs. QNM frequencies are com-
plex with the real part representing the oscillation fre-
quency and the imaginary part representing the damping.
By observing the QNM frequencies, one can determine the
mass and angular momentum of spinning BHs.

The most promising sources that excite QNMs are bi-
nary BH mergers. For these events QNMs will be detected
with high signal-to-noise ratio (SNR) (e.g., SNR �105 for
�108M� BH mergers at �1 Gpc by LISA) [3] since a
large fraction of the energy (E� 1%�M for equal-mass
mergers with a total mass M) goes into GWs. The merger
rate is also estimated to be large enough [4,5]. In numerical
relativity there have been recent breakthroughs for calcu-
lating the entire phase of binary BH mergers [6]. The result
is that the ‘ � 2, m � 2 QNM is dominant, carrying away
�1% of the initial rest mass of the system [7].

In this paper we show that the higher-order QNMs are
also prominent in binary BH mergers and they are interest-
ing to search for in the observations and simulations. Here
the ‘‘higher-order’’ is with respect to the metric perturba-
tions. Although the dimensionless amplitude of the metric
perturbations are negligibly small when we observe them
at detectors, they are relatively large near the BH, up to

  �1�=M� �E=M�1=2 � 10% (1)

for QNMs with energy E=M� 1% [see Eq. (16) with !�
M�1.  �1� denotes a wave function to be discussed later].
Hence the generated second-order perturbations would

have the amplitude �10% of the first-order ones, which
may be detectable for high SNR events.

Higher-order QNMs are essentially analogous to the
anharmonic oscillations discussed by Landau and
Lifshitz in Mechanics [8]. In general, an oscillation with
small amplitude x is described by an equation, �x�!2x �
0, which gives the first-order solution x � a cos�!t���.
Here a and � are integration constants. Including the
second-order term with respect to the amplitude �x2, the
equation becomes

 �x�!2x � ��x2: (2)

With the right-hand side as a source term, we obtain a
successive solution x � a cos�!t��� � x�2�, where

 x�2� �
�a2

6!2 cos2!t�
�a2

2!2 / a
2: (3)

Here an oscillation arises with a frequency 2!. The im-
portant point is that the second-order oscillation x�2� is
driven by the first-order one and thereby always exists.

Our result is that the second-order QNMs would also
have frequencies twice the first-order ones !�2� � 2!�1�

and amplitude up to �10% of the first-order ones. Since
higher-order QNMs always exist, we may test the nonline-
arity of general relativity. The purpose of this paper is to
outline the calculations of the second-order QNMs for the
Schwarzschild BH and clarify the order-of-magnitude es-
timates. More details will be given in the forthcoming
papers. We use the units c � G � 1, and arbitrarily set
M � 1 which we can always recover, if necessary.

Although this paper is the first to study second-order
QNMs, the second-order analysis is pioneered by Tomita
[9], and the ‘ � 2,m � 0 case in the Schwarzschild space-
time is studied by Gleiser et al. [10]. It is also extended to
cosmology [11] and the Kerr case [12].
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II. FIRST ORDER

Let us consider the metric perturbations to second order,

 ~g �� � g�� � h
�1�
�� � h

�2�
��; (4)

where g�� is the Schwarzschild metric and the superscripts
denote a perturbative order. Expanding the Einstein’s vac-
uum equation we can obtain basic equations order by order
[10,13].

For the first order, we use the Regge-Wheeler-Zerilli
formalism [14,15]. Separating angular variables with ten-
sor harmonics of indices �‘;m�, the equations decouple to
the even (or polar) part with parity ��1�‘ under a trans-
formation ��;�� ! ��� �;���� and the odd (or axial)
part with parity ��1�‘�1. Seven equations for the even
parity part are reduced to a single Zerilli equation, and
the other three equations for the odd parity part to a single
Regge-Wheeler equation. The Zerilli equation is given by

 

�
�
@2

@t2
�
@2

@r2
	

� VZ�r�
�
 �1�‘m�t; r� � 0;

VZ�r� �
�
1�

2

r

�
2�2��� 1�r3 � 6�2r2 � 18�r� 18

r3��r� 3�2
;

(5)

where r	 � r� 2 ln�r=2� 1� and � � �‘� 1��‘� 2�=2.
By Fourier transforming,  �1�‘m�t; r� �

R
e�i!t �1�‘m!�r�d!,

the Zerilli equation gives a one-dimensional scattering
problem, which is familiar from quantum mechanics. The
QNMs are obtained by imposing the boundary conditions
with purely ingoing waves  �1�‘m! � e

�i!r	 at the horizon

and purely outgoing waves  �1�‘m! � e
i!r	 at infinity. Such

boundary conditions are satisfied at discrete QNM frequen-
cies !�1�‘mn that are complex with the imaginary part repre-
senting the damping. There are an infinite number of
QNMs for each harmonic �‘;m� [16].

All physical quantities for the first-order even parity part
can be reconstructed from  �1�‘m. If we define

  �1�‘m �
r

�� 1

�
K�1�‘m �

r� 2M
�r� 3M

�
H�1�2‘m � r

@K�1�‘m
@r

��
(6)

in the Regge-Wheeler (RW) gauge according to [17,18],
the GW power is given by

 

dE�1�

dt
�

1

64�

X
‘m

�‘� 2�!

�‘� 2�!

��������
@
@t
 �1�‘m�t; r�

��������
2
: (7)

Note that in the RW gauge the gauge freedom is com-
pletely fixed and the physical quantities can be expressed
by the gauge invariant functions in simple differential
forms.

In this paper we focus on the most dominant modes in
binary BH mergers, i.e., the ‘ � 2, m � 2 even parity
mode for the first order [6] and its driving second-order
mode (the ‘ � 4, m � 4 even parity mode as shown be-

low). Note that we have to specify m since the degeneracy
between m breaks at the second order.

III. SECOND ORDER

For the second order, we also separate angular variables
in terms of tensor harmonics. Instead of  �2�‘m, we introduce
a function

 ��2�‘m �
r� 2M
�r� 3M

�
r2

r� 2M

@K�2�‘m
@t
�H�2�1‘m

�
(8)

in the RW gauge for convenience, which is essentially the
time-derivative of  �2�‘m [10]. The first-order counterpart
exactly satisfies ��1�‘m � @ �1�‘m=@t, and so the dimensions
are  �i�‘m �O�M� and ��i�‘m �O�M

0� (i � 1, 2). The equa-
tions for the even parity part are reduced to the Zerilli
equation with a source term,

 

�
�
@2

@t2
�
@2

@r2
	

� VZ�r�
�
��2�‘m�t; r� � S‘m�t; r�; (9)

where the source term S‘m is quadratic in  �1�‘m.
The most dominant second-order mode is the ‘ � 4,

m � 4 even parity one. This is because the dominant
first-order mode is the ‘ � 2, m � 2 even parity mode
and hence S‘m is dominated by the product �‘ � 2; m �
2� � �‘ � 2; m � 2� in Eq. (9). This gives them � 4 mode
that is ‘ � 4 and even parity. Note that what we are
considering is the particular solution. Homogeneous solu-
tions are just proportional to the first-order ones and are
therefore trivial.

IV. REGULARIZATION

Although it is straightforward to calculate the ‘ � 4,
m � 4 source term S44 in terms of  �1�22 , the raw source term
does not behave well at infinity and is not suitable for
calculations. We can find S44 �O�r0� at infinity by using
the expansion

  �1�22 �
1

3
F00I �

1

r
F0I �

1

r2 �FI � F
0
I� �O�r

�3�; (10)

where FI � FI�T�� is some function of T� � t� r	 and
F0I denotes dFI�T��=dT�. We need a regularized source
Sreg

44 �O�r
�2� at least [i.e., the same as the potential VZ �

O�r�2�]. At the horizon the source behaves well, S44 �
O
�r� 2��, with

  �1�22 � F0H �
1

4
FH �

27

56
�r� 2�FH �O
�r� 2�2�; (11)

where FH � FH�T�� is some function of T� � t� r	.
We can regularize the source term by using the regular-

ized function,

 ��2�reg
44 � ��2�44 �

������
70
p

126
����
�
p
�r� 2�2

r
@ �1�22

@r
@2 �1�22

@r@t
; (12)
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which satisfies the Zerilli Eq. (9) with a well-behaved
source term, Sreg

44 �O�r
�2� at infinity and Sreg

44 �O
�r�
2�� at the horizon. Thus we can remove an unphysical
gauge-dependent divergence. Note that such a regulariza-
tion is not unique, and, for example, we can replace @=@r

with @=@t in Eq. (12). The regularization is equivalent to
adding quadratic terms of the first-order gauge invariant
function to the second-order gauge invariant function, so
that it preserves the gauge invariance [19].

The explicit form of the regularized source term is

 

Sreg
44 �t; r� �

r� 2

42

������
70
p

����
�
p

�
228r7� 8r6 � 370r5� 142r4� 384r3� 514r2� 273r� 48

r5�3r� 1�2�2r� 3�2
_ 0 0

�
72r8 � 3936r7 � 2316r6 � 2030r5 � 7744r4 � 9512r3 � 3540r2 � 1119r� 144

r6�3r� 1�2�2r� 3�3
 0 _ 

�
�7r� 4�r

3�r� 2�2
 
:::

� �
24r7� 344r6� 872r5� 771r4� 120r3� 77r2� 237r� 48

r3�3r� 1�2�2r� 3�2�r� 2�2
� _ 

�
66r4 � 106r3� 220r2� 156r� 45

r�3r� 1�2�2r� 3��r� 2�
� 0 _ �

198r5� 318r4� 664r3 � 458r2� 127r� 24

3r2�3r� 1�2�2r� 3��r� 2�
 
:::
 0

�
3�2160r9 � 11760r8� 30560r7� 41124r6� 31596r5� 11630r4� 1296r3� 4182r2� 1341r� 144�

r7�2r� 3�4�3r� 1�2
 _ 

�
7r� 4

3r
� 0 _ 0 �

2�r� 2�

3�3r� 1�2r2
� _ 0 �

252r6� 636r5� 674r4� 730r3� 524r2 � 171r� 24

r3�3r� 1�2�2r� 3�2�r� 2�
  
:::

�
216r8� 4296r7� 1992r6� 3488r5� 8716r4� 9512r3� 3540r2 � 1119r� 144

r6�3r� 1�2�2r� 3�3
 _ 0

�
; (13)

where _ � @ �1�22 =@t and  0 � @ �1�22 =@r. We can now
solve the regularized Zerilli Eq. (9). With Fourier expan-
sions, this provides a two-point boundary value problem
with purely ingoing boundary condition at the horizon and
purely outgoing at infinity. The numerical calculation will
be presented in a forthcoming paper.

V. DETECTABILITY

Without solving Eq. (9) numerically, we can find the
essential properties of the solutions, i.e., the QNM fre-
quency !�2�44n and the order-of-magnitude QNM amplitude.
Since the source term S�2�reg

44 is quadratic in the first-order

function  �1�22 / e
�i!�1�22nt, we have ��2�reg

44 / e�2i!�1�22nt from
Eq. (9). Therefore the second-order QNM frequencies are
twice the first-order ones,

 !�2�44n � 2!�1�22n; (14)

which differ from any first-order QNM frequencies !�1�‘mn.
By matching the dimensions in both sides of Eq. (9), we
also estimate the order-of-magnitude amplitude as

 j��2�reg
44 j � j!�1�22n 

�1�
22 j

2: (15)

Then we can derive the second-order QNM energy E�2�

from the first-order one E�1�. For the QNM waveform,

 �1�22 �  �1�22 �0�e
�i!�1�22nt, the first-order energy E�1� in

Eq. (7) is given by

 

E�1�

M
�

3

8�
j!�1�22nj

2j �1�22 �0�j
2

Mj=!�1�22nj
; (16)

where E�1�=M� 1% for equal-mass mergers [6]. By noting
��2�44 � @ 

�2�
44 =@t� 2!�1�22n 

�2�
44 , we have a similar expression

for the second-order energy E�2� as

 

E�2�

M
�

45

8�
j��2�reg

44 �0�j2

Mj2=!�1�22nj
�Mj=!�1�22nj

�
E�1�

M

�
2
; (17)

where the second equality uses Eqs. (15) and (16). In a
future paper we will calculate the coefficient as E�2�=M�
15Mj=!�1�22nj�E

�1�=M�2.
Once we know the QNM frequency ! and energy E, we

can obtain the GW energy spectrum [3,20]

 

dE
df
’

16�2Ef2j=!j3

j!j2
�2�f�<!�2 � �=!�2�2
; (18)

and then the characteristic amplitude hchar�f�with Eq. (5.1)
of Flanagan and Hughes [3],

 hchar�f�2 �
2�1� z�2

�2D�z�2
dE
df

�1� z�f�; (19)

where D�z� is the luminosity distance.

VI. DISCUSSIONS

Our main results are summarized in Fig. 1 showing the
characteristic GW amplitudes hchar�f� of the Schwarz-
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schild BH QNMs for two equal-mass binary BH mergers of
total mass 106M� at redshift z � 5, together with the rms
noise amplitude hn�f� �

�����������������
5fSh�f�

p
for the space-based

detector LISA [3,20] and ultimate DECIGO [1]. The
first-order QNM has ‘ � 2, m � 2 and energy E�1�=M �
1%. We estimate the second-order QNM with Eqs. (17)–
(19) and the third-order QNM energy by extrapolating the
second-order Eq. (17) as E�3�=M� 15�M=!�2�E�1�=M�3.
We can see that the second- and third-order QNMs appear
at 2 and 3 times the first-order frequency, respectively, with
detectable amplitudes.

We can in principle identify the higher-order QNMs
since their frequencies differ from any first-order ones.
However the actual identification depends on the SNR of
the observations [20] or the accuracy of the simulations. In
simulations with current accuracy we may have already
mistaken the second-order QNMs for the first-order ones.
For example 2M!�1�2m0 � 0:7473� 0:1779i is close to
M!�1�4m0 � 0:80918� 0:09416i [16].

In order to prove that the second-order QNMs actually
exist, we have to find the second-order QNMs directly in
the numerical simulations. Such simulations are challeng-
ing because the mesh size should be less than�1%�M to
resolve �1% metric perturbations. Even 1� 1D spherical
models for the fully self-gravitating case have not found
the second-order QNMs [21]. Simulations of acoustic
black holes may be an alternative for this purpose [22].
We also need a mathematically rigorous definition of
second-order QNMs like the first-order ones that use the
Laplace transformation rather than the Fourier transforma-
tion [2,23].

Future problems include the Kerr BH case, the odd
parity mode case, and a more solid third-order formulation.
Since the master equation for Kerr BHs also has a source
term quadratic in the first-order function [12], we may
expect similar results. When BHs have no spin before
mergers, the final spin is a� 0:7 [6] and hence the Kerr
effects may not be so large (as inferred from the fact that
the QNM frequencies shift by only a small factor). The odd
parity mode appears when BHs have spin before mergers.
At the third-order the QNM frequencies will also shift up to
� �1�=M�2 � 1% as suggested by the anharmonic oscilla-
tions in [8], probably blueward because the GW carries
away the BH mass.

The ratio between the first- and higher-order QNM
amplitudes include new information about the total GW

energy E. Since the observed GW amplitude is h�
�E=M�1=2�M=r�, this could provide a distance indicator.
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