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Synchrony emerges in a population of oscillators interacting through in-phase couplings. We addressed a
question of whether inhibitory neurons simply hinder the emergence of the synchronous activity among
excitatory neurons, or facilitate it. An analysis of a simple phase model revealed that both cases may take place.
Numerical simulations of the more realistic models revealed that inhibitory neurons rather facilitate rhythmic
activity.
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I. INTRODUCTION

In spite of the strong tendency of neurons toward mutual
synchrony, collective synchronous activity is not ubiqui-
tously seen in the healthy brain; only in such limited areas as
the cat visual sensory area �1� and the olfactory bulb �2� is
synchrony observed. Extensive synchronization takes place
globally only in rather pathological conditions such as Par-
kinsonian tremor or epilepsy, in which the desynchronization
is a matter requiring attention �3�. It has nevertheless been
anticipated that synchronous activity plays an important role
in signal transmission in the brain �4–6�. In order for the
synchrony to be useful, the cooperation among neurons must
be something that can be precisely controlled.

The neocortex consists of excitatory and inhibitory neu-
rons. In understanding the dynamical cooperation and com-
petition between the excitatory and inhibitory neurons, we
address here a question of whether the presence of inhibitory
neurons hinders the emergence of synchronous activity
among the excitatory neurons, or facilitates it.

The emergence of synchronous activity in a population of
heterogeneous oscillators has been demonstrated using the
phase model �7–10�. The interaction function introduced in
the original “Kuramoto model” is −K sin � that minimally
satisfies the 2� periodicity with respect to the difference be-
tween the phases of the internal state of interacting oscilla-
tors, �. The unavoidable delay in the signal transmission can
be incorporated by introducing a phase shift, �, into the in-
teraction function as −K sin��+��. The dynamics of a popu-
lation of oscillators interacting uniformly through couplings
of this form were analytically solved by Sakaguchi and
Kuramoto �11�. Numerical simulations of locally coupled os-
cillators revealed the emergence of spiral and target patterns
that resemble those observed in real excitable media �12,13�.
Since then, a number of theoretical studies have been carried
out on the phase model �14–16�. Recent neurophysiological
experiments have shed light on the phase response �resetting�
characteristics of biological neurons �17,18�. Galan et al. dis-
cussed the relationship between the qualitative shape of the
experimentally obtained phase response curve and the corre-
sponding type of bifurcation leading to periodic behavior in
neural oscillators �19�.

In the present paper, the cooperation and competition be-
tween excitatory and inhibitory populations is investigated;
first by analytically solving the models having simple sinu-

soidal interaction functions; second via numerical simula-
tions of models having more realistic phase interaction func-
tions that incorporate the phase response characteristics of
type 1 and type 2 neurons. An analysis of the simple model
revealed that inhibitory neurons may either suppress or fa-
cilitate the synchronous activity. The synchrony is robustly
controlled by the global parameters such as the coupling
strength and the frequency difference between excitatory and
inhibitory neurons. Numerical simulations of the more real-
istic models revealed that inhibitory neurons rather mostly
facilitate the synchrony.

II. ANALYSIS OF A SIMPLE PHASE MODEL

First, we analytically solve the dynamics of a population
of excitatory and inhibitory oscillators interacting through
sinusoidal phase coupling functions, ����=−K sin��+��
with a common phase shift �. For convenience, we call the
oscillators interacting through a positive weight Ke�0 the
“excitatory neurons,” and those with a negative weight −Ki
�0 the “inhibitory neurons” �see Fig. 1�.

The phase of an individual oscillator obeys the evolution
equation

d�a

dt
= �a − �

b�ex

Ke

N
sin��a − �b + ��

+ �
b�in

Ki

N
sin��a − �b + �� , �1�

where �a represents the original frequency of the oscillator.

FIG. 1. A network consisting of excitatory and inhibitory neu-
rons with their frequencies distributed around different mean
values.
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The original frequencies of excitatory and inhibitory neurons
are distributed according to ge��� and gi���, whose sum is
normalized as ��ge���+gi���� d�=1. The order parameters
of excitatory and inhibitory neurons are defined as

	e exp�i
e� =
1

N
�

b�ex
exp�i�b� , �2�

	i exp�i
i� =
1

N
�

b�in
exp�i�b� . �3�

Assuming that these order parameters evolve with identical
frequencies and fixed phase lag 
e=�t=
i+�, the evolution
equation �1� can be rewritten as an equation of a phase vari-
able, ��−
e+�,

da

dt
= �a − � − A sin�a + B� , �4�

where A and B are defined by AeiB=Ke	e−Ki	ie
i�.

Oscillators having original frequencies ��a−���A are
entrained to the collective mode, with the phases being
locked to the values that satisfy �a=�+A sin�a+B�. The
distribution of the phases can be decomposed into those of
the excitatory and inhibitory neurons as n��=ne��
+ni��. Each component distribution is further decomposed
into distributions consisting of the synchronized and desyn-
chronized oscillators, n	e,i
��=n	e,i


s ��+n	e,i

ds ��. The

phase distribution of synchronized oscillators is

n	e,i

s �� = g	e,i
������ d�

d
� , �5�

which is explicitly written as

n	e,i

s ��� = �g	e,i
�� + A sin ��A cos � ��� �

�

2
� ,

0 ��� �
�

2
� ,�

�6�

where g	e,i
��� is either ge��� or gi���, and �=+B.
Oscillators with original frequencies ��a−���A are not

entrained to the collective mode. The distribution of the
phases of those desynchronized oscillators is

n	e,i

ds ��� = �

��−���A

g	e,i
���

2�

�� − ���1 −  A

� − �
�2

�� − � − A sin ��
d� .

�7�

Using the relation of Ae−iB=Ke	e−Ki	ie
−i�, the self-

consistent equations �2� and �3� can be summarized as

A = e−i��
0

2�

�Kene��� − Kini����exp�i��d�. �8�

The real number A can be decomposed into the synchronized
part,

As = Ae−i��
−�/2

�/2

G�� + A sin ��cos � exp�i��d�,

�9�

and the desynchronized part,

Ads = Aie−i��
A

� 	G�� + x� − G�� − x�

x + �x2 − A2

dx , �10�

where G����Kege���−Kigi���.
We solved these self-consistent equations to obtain the

order parameters, A=As+Ads, B, 	e, 	i, �, and �, for the
populations of oscillators interacting through simple sinu-
soidal couplings depicted in Figs. 2�a� and 2�b�. For simplici-
ty’s sake, we assumed the interactions of excitatory and in-
hibitory neurons to be of the same strength and the opposite
sign; K�=Ke=Ki�. Figures 3�a� and 3�b� depict the contour
plots of the order parameter 	e that quantifies the degree of
synchronous activity among the excitatory neurons. Here, the
fractions of excitatory and inhibitory neurons were chosen as
0.8 and 0.2 in accordance with neuroanatomical data �20,21�.
Their frequency distributions are both Gaussian with stan-
dard deviation unity and means 0 and W, respectively. Note
that the evolution equations of phases have the translational
invariance with respect to time, and therefore the frequencies
here have the meaning only in a relative sense.

FIG. 2. Sinusoidal interaction functions: �a� ����=−K sin �. �b�
����=−K sin��+0.4��.

FIG. 3. Contour plots of the degree of synchrony 	e, with a
contour interval of 0.2, in the space of parameters, coupling
strength K�=Ke=Ki� and the mean frequency of inhibitory neurons
W measured relative to that of excitatory neurons. �a� The case of
vanishing phase shift, �=0. Inhibitory neurons simply depress the
collective activity, at �W��0. �b� The case of a positive phase shift,
�=0.4�. Inhibitory neurons whose frequencies are distributed
around negative frequencies �relative to that of the excitatory neu-
rons� W�0 act on enhancing the synchronous activity.
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In the absence of the phase shift, �=0, inhibitory neurons
simply depress the collective activity, as is demonstrated by
the dip of the contour near �W��0 in Fig. 3�a�. However, in
the presence of a positive phase shift, ��0, the inhibitory
neurons whose frequencies are distributed around negative
frequencies W�0 �relative to that of excitatory neurons�,
enhance the synchronous activity, evidenced by the hump in
Fig. 3�b�, and vice versa. We also carried out numerical
simulations of a population of oscillators with the same pa-
rameters. The order parameters estimated from the simula-
tion fluctuate around the analytical solutions, but both are
mutually consistent �data not shown�.

Figures 4�a� and 4�b� demonstrate how the amplitude of
the order parameter 	e, the phase lag of the inhibitory group
�, and the frequency of the resulting synchronized motion �
depend on the coupling strength K, in the presence of the
frequency lag of W=−5 in the inhibitory group. In the fig-
ures, the degree of synchrony 	e is compared with that of a
network consisting of only the excitatory neurons of 80%,
with the inhibitory neurons of 20% being removed. It is ob-
served from Fig. 4�b� that the synchrony is substantially en-
hanced by the addition of inhibitory neurons, in the case that
the signal transmission delay is incorporated into the model.

It should be noted that even in the case of a positive phase
shift, ��0, there is a parameter region in which the syn-
chrony is diminished by inhibitory neurons. The �rightward�
dip of the contour near �W��0 relative to the contour near
�W��10 in Fig. 3�b� indicates such situations: The case of a
very large frequency difference such as �W��10 exhibits the
situation similar to the case that inhibitory neurons are ab-
sent, because with a large �W�, inhibitory neurons “rotate”
rapidly �relative to excitatory neurons� and their interactions
are smoothed out. Therefore, the small value of 	e for �W�
�0 in comparison with the value of 	e for �W��10 indicates
the diminution of the synchrony. This nevertheless implies
that rhythmic activity can be either facilitated or diminished
according to global parameters such as the frequency differ-
ence between excitatory and inhibitory groups of neurons.

� of about � /2 in Fig. 4 indicates that a group of inhibi-
tory neurons lags behind a group of excitatory neurons. The
frequency of the resulting synchronized motion � is positive
even in the presence of the frequency lag of W=−5 in the
case of vanishing phase shift, �=0, while it is negative in the
case of a positive phase shift, ��0. Figures 5�a� and 5�b�
depict distributions of phases and frequencies of excitatory
and inhibitory groups of neurons obtained with the presently
developed analytical formula.

III. SIMULATIONS OF THE MORE REALISTIC MODELS

We thus observed the case in which “inhibitory neurons”
facilitate synchronous activity among “excitatory neurons.”
However, the sinusoidal phase interaction function might be
regarded as too simple to be considered realistic. We carried
out numerical simulations of the phase models interacting
through more realistic couplings in order to address this criti-
cism. The phase interaction function ���� can be obtained
from the phase response curve Z�t� �9,17–19�,

���� =
1

T
�

0

T

Zt +
T�

2�
�s�t�dt , �11�

where s�t� is the synaptic current typically given by an alpha
function whose effective time scale is on the order of milli-
seconds. We approximate the type 1 and type 2 interaction
functions as

���� = K�0.4 − 0.5 sin�� + 2.2� + 0.1 sin�2� + 2.8�� ,

�12�

���� = K�0.4 − 0.6 sin�� + 1.3�� , �13�

which are, respectively, depicted in Figs. 6�a� and 6�b�. Note
that these phase interaction functions were given by moving
the raw phase response curves to the left by an amount of
about 0.2� in a periodic interval of 2�, assuming that the

FIG. 4. Upper, �solid line� the degree of synchrony 	e; �dotted
line�, the degree of synchrony of a network consisting of only the
excitatory neurons of 80%, with the inhibitory neurons of 20%
being removed; middle, the phase lag of the inhibitory group �;
lower, the frequency of the synchronized motion � measured rela-
tive to the original mean frequency of excitatory neurons. The mean
frequency of inhibitory neurons is chosen as W=−5, relative to that
of excitatory neurons. �a� The case of vanishing phase shift, �=0.
�b� The case of a positive phase shift, �=0.4�.

FIG. 5. Upper, phase distributions represented as ovals extended
from a unit circle; lower, frequency distributions. The solid and
dashed lines, respectively, represent the groups of excitatory and
inhibitory neurons. �a� �=0, K=4, and W=−5. �b� �=0.4�, K=4,
and W=−5.
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transmission delay caused by s�t� in Eq. �11� to be of ms
order, and the period of oscillation T to be one order longer.
The qualitative features of the following results were not
altered even if the above phase interaction functions are
moved back by 0.1� or 0.2� to the right; the latter of which
corresponds to the absence of signal transmission delay. The
inhibitory couplings are approximated here by reversing the
sign of the excitatory couplings, as before.

We were interested in whether the presence of inhibitory
neurons brings about the synchronous activity in the net-
work. Figures 7�a� and 7�b� depict contour plots of the order
parameters computed from the numerical simulations of
those two models. In the numerical simulation, the numbers
of excitatory and inhibitory neurons were, respectively, 800
and 200. It is observed from those plots that the synchronous
activity is enhanced by the presence of inhibitory neurons.
Note that the realistic phase response curves can be approxi-
mated by simply adding a constant to a sinusoidal function,
as demonstrated in Fig. 6�b� of Eq. �13�. Adding a constant
to the interaction function simply induces the frequency shift
simultaneously in all neurons in this uniform coupling
model. Therefore, the constant term in the coupling function
does not affect the emergence of synchrony, and therefore
the self-consistent equation formula developed above can be
directly applied to the model of Eq. �13�. We have carried out
both the analysis of self-consistent equations and the direct
simulation of the evolution equations with respect to the type
2 model. Though the analysis of the self-consistent equations
gave more accurate estimate of the order parameters, we
demonstrated in Fig. 7�b� the results of numerical simulation.

Figures 8�a� and 8�b� demonstrate 	e, �, and � in the
presence of the frequency lag of W=−5 in the inhibitory

group, as in Figs. 4�a� and 4�b�. In these figures, the degree
of synchrony 	e is also compared with that of a network
consisting of only the excitatory neurons of 80%, with the
inhibitory neurons of 20% being removed. No effective syn-
chrony is observed in the network consisting of type 1 exci-
tatory neurons alone, as represented by the dotted line in Fig.
8�a�. This feature is consistent with the known fact that a
network of type 1 excitatory neurons with no transmission
delay does not exhibit a collective oscillation �22,23�. The
solid line in Fig. 8�a� demonstrates that the synchrony
emerges by adding the inhibitory neurons to the network
consisting of type 1 excitatory neurons.

� of about � /2 in the Fig. 8 is common to that in Fig. 4,
indicating that a group of inhibitory neurons lags behind a
group of excitatory neurons. The frequencies of resulting
synchronized motion � are both negative in two cases. Dis-
tributions of phases and frequencies of 800 excitatory neu-
rons and 200 inhibitory neurons are depicted in Figs. 9�a�
and 9�b�. It is observed from Fig. 9�a� that the synchrony of
type 1 network is mainly induced by inhibitory neurons. This

FIG. 6. Interaction functions: �a� type 1 interaction, Eq. �12�; �b�
type 2 interaction, Eq. �13�. These “phase interaction functions”
were given by moving the raw phase response curves to the left by
0.2�, by taking the signal transmission delay of a few milliseconds
into account, with Eq. �11�. See the text for details.

FIG. 7. Contour plots of the degree of synchrony 	e. �a� Type 1
excitatory and inhibitory neural oscillators of Fig. 6�a�. �b� Type 2
excitatory and inhibitory neural oscillators of Fig. 6�b�. The contour
intervals of �a� and �b� are, respectively, 0.04 and 0.2.

FIG. 8. Same as in Fig. 4; upper, �solid line� the degree of
synchrony 	e; �dotted line� the degree of synchrony of a network
consisting of only the excitatory neurons of 80%, with the inhibi-
tory neurons of 20% being removed; middle, the phase lag �; lower,
the frequency of the synchronized motion �; the mean frequency of
inhibitory neurons is chosen as W=−5, relative to that of excitatory
neurons. �a� Type 1. �b� Type 2.

FIG. 9. Upper, phase distributions; lower, frequency distribu-
tions. The solid and dashed lines, respectively, represent those of
excitatory and inhibitory neurons. �a� Type 1 network, with K=16
and W=−5. �b� Type 2 network, with K=8 and W=−5.
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situation is not altered by moving back the phase interaction
function ����, Eq. �12�, to the right by 0.1�, or 0.2�, the
latter of which corresponds to the vanishing transmission
delay.

IV. DISCUSSION

In this paper, we have demonstrated that inhibitory neu-
rons can either suppress or facilitate synchronous activity
among excitatory neurons. Especially in the models having
more realistic phase interaction functions, the presence of
inhibitory neurons rather facilitates the appearance of rhyth-
mic activity. Collective synchrony does not appear in a ho-
mogeneous population that consists of only type 1 excitatory
neurons, but is materialized in a heterogeneous population
that consists of excitatory and inhibitory neurons. The ap-
pearance of the rhythmic activity could be controlled by the
global parameters such as the frequency difference of the
groups of excitatory and inhibitory neurons. Note that the
firing frequencies of biological inhibitory neurons are typi-
cally higher than those of excitatory neurons. This condition
corresponds to W�0 in our model, indicating a tendency

toward the desynchronization, which is achieved in the
healthy brain. Our theory indicates that it is nevertheless pos-
sible that the synchrony is induced �temporally� in the net-
work by decreasing the firing frequencies of inhibitory neu-
rons.

In the present study, inhibitory couplings were approxi-
mated by reversing the sign of the excitatory couplings. It is
desirable to examine wider range of functions that account
for more realistic interactions, and furthermore, search for
the general condition for the synchrony being facilitated by
adding inhibitory neurons. It would be also interesting to
examine the present theoretical prediction in a biological ex-
periment by controlling the mean frequencies of excitatory
and inhibitory neurons.
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