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Nonlinear rheological behavior associated with structural transitions
in block copolymer solutions via nonequilibrium molecular dynamics
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The nonequilibrium molecular dynamics computer simulation method was used to study
microsegregated block copolymer systems in a selective solvent under a shear flow field. Two
polymer concentrations were considered, 0.3 and 0.4, corresponding to the body centered cubic
spherical and hexagonal cylindrical zero-shear phases, respectively. As the shear rate increased, both
systems exhibited two-stage shear thinning, a peak in the scalar pressure, and normal stress
differences. Microscopic connections were investigated by calculating the gyration and bond
orientation tensors and the interaction energies per particle. At high shear rates, polymer chains
elongate and orient along the direction of shear, and this is accompanied by the breaking-up of
domains. The structure-rheology relation was discussed with regard to the morphological changes
reported in our last study for the same systems. In particular, the structurally relevant critical values
of the shear rate were found to delimit different behaviors of the shear rate-dependencies obtained
in this work. © 2004 American Institute of Physic§DOI: 10.1063/1.1642589

I. INTRODUCTION but rather is a mathematical device used to transform a dif-
ficult problem with boundary conditions into a much simpler

. echanical problem. Taking this approach a step further, it is
flow, is commonly encountered and should be understoog catp ng thiS app P "

. . . . . ossible to show that the boundary conditions that corre-
better. A suitable computer simulation technique is the non: .
S . ..~ 'spond to planar shear flow can be incorporated homoge-
equilibrium molecular dynamic€NEMD) method, which is . . . .
. . neously into the equations of motion. These equations are
an adaptation of the usual molecular dynamics method fo

sampling from nonequilibrium ensembles by applying exter-ﬂrowlnd.as t.he SLILOD eggaﬂogs gréc::mus;[hbf C?Upled V;”th
nal perturbatiort=3 Not only does this approach provide a ¢ S'dINg-IMage Lees—tawards » SO that a finéar veloc-

route to transport coefficients in the limit of zero-applied ity profile is established throughout all of the image cells.
field (so-calledlinear responsg as an alternative to the The Lees—Edwards PBC alone can be used to set up and

Green—Kubo method used in conventional Mith unfa- maintain a steady linear velocity profile, if the Reynolds
vorable signal to noise ratinsbut it also makes it possible to number is sufficiently small so that microturbulence does not

investigate nonlinear phenomena through the use of largéiccur- However, this algorithm has several disadvantages,
perturbations. e.g., lack of contact with response theory and inability to
Molecular systems under shear flow have been studiedtudy time-dependent flow.
extensively by NEMD to find the corresponding transport  1he conventional MD method takes samples from the
coefficient, the shear viscosity. The nonlinear behavior offhicrocanonical ensemble. To model a system in the canoni-
shear viscosity, such as shear thinning and shear thickeningal énsemble, a procedure has to be found to keep the tem-
is an important topic in materials science. Planar shear flonperature constant. One approach is to modify the equations
or Couette flow, with kinetics afi=i,yy can be generated in Of motion so that the kinetic temperature is an integral of
a NEMD simulation in several different ways. Computer motion. To derive such equations, one can use Gauss’ prin-
simulations of small systems aimed at studying bulk properciple of least constraint. The resulting Gaussian thermostat
ties, rather than surface effects, usually adopt periodic corrgidly builds a constant kinetic energy into equations of mo-
ditions on the boundaries of the simulation cell. Wall-drivention. As can be showhthe partition function of the Gaussian
flows, where the periodic boundary conditioi®BC) in one  isokinetic ensemble is still separable and its configurational
direction are replaced by hypothetical moving solid walls, dopart is the same as that of the standard canonical ensemble.
not allow for the study of bulk liquids free from the effects of Thus, all position-dependent equilibrium properties of the
the walls. A homogeneous procedure where an external spat@o ensembles will be identical, whereas the dynamics is of
periodic perturbation field consistent with PBC acts on eacltourse different from that in the Newtonian case.
particle makes it possible to compute a wave vector- When applied to the SLLOD equations, the Gaussian
dependent viscosity from the resulting velocity profile. Suchthermostat also serves to remove the heat produced by the
a field is synthetic in the sense that it does not exist in natureshear field, without which it would be impossible to achieve
a steady state. A side-effect of the Gaussian thermostat in this

A liquid far out of equilibrium, e.g., subjected to shear

3Electronic mail: rych@chem.scphys.kyoto-u.ac.jp case is that it acts asa “profile-biaged” thermostat because it
DURL: http://www.chem.scphys.kyoto-u.ac.jp interprets any deviations from laminar flow as thermal fluc-
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TABLE I. Structural behavior of diblock copolymers in selective solvents under shear flow depending on the
shear raté¢Ref. 17).

Shear rate 0 0.05 0.4

bce micelles Domain rearranging into Domain melting and Perfect perpendicular
or parallel layers transition to lamellae; reduction in
HEX cylinders perpendicular lamellae lamellar spacing

tuations which should be suppressed. However, this effedireakup and remelting occur, leading to the formation of
becomes noticeable only in greatly nonlinear regimes, at experpendicular lamellae, see Table I. In this article, we present
treme and experimentally unrealistic shear rates. Another ighe numerical results for the corresponding changes in rheo-
sue arises when the Gaussian thermostat is applied to a mimgical and microscopic properties.

lecular system atomistically, i.e., without acknowledging the

saturating and unbreakable nature of bond interaction. The

Gaussian atomic the_rmos_tat treats t_hg shear-induced I‘Otatl?' MODEL AND METHOD

of bonded monomeric units as deviations to be suppressed.

However, this effect becomes significant only at higher sheaf. Model potentials

rates(y=2 in reduced units, see beloW* Using the bead—spring model, we studied systems of

NEMD techniques have been successfully applied t%ymmetrical diblock copolymer chains witN=N,+Ng
both atomic and molecular systanéOne of the most im- beads per chain and a compositibaN,/N=0.5. The se-

portant discoveries was the observation of a decrease in thgcyivity of the solvent is modeled using different parameters
shear viscosity as the shear rate _mcrez(aaevmell-knov_vn phe- for the Lennard-Joned.J) potential. The bead pairA—A
nomenon seen in complex fluids as shear thinhif  nga_B interact via purely repulsive, truncated at the mini-

simple liquids such as argon, and even for hard-spheregn,m and shifted LJ potentid\Weeks—Chandler—Andersen
which indicates the universality of the phenomenon. Thepotentia}

physically relevant variable is the produgt* of the shear

rate and the system-characteristic relaxation time; when its o2 (o8 1
magnitude becomes on the order of unity, fluid undergoes rep € (—) —(- + ik r<2Y6y
structural changes accompanied by shear thinning, or other- Ui3= r r @

wise has to respond as an elastic solid. In simple fluids, this 0, r=2Y%g.

corresponds to a shear rate which is several orders of mag-

nitude larger than the values reasonably attainable in labor&incee can be used to set the energy scale aman be used
tory experiments, whereas for complex fluids, such as polyfor the length scale, we will henceforth use so-called
mer solutions, with much longer relaxation times, shearlennard-Jones reduced units whereo=1 and also set the
thinning is observed experimentally. It has also been showmassm of the particles to unity, so that time is measured in
that at high shear rates both atomic and molecular fluidsinits of (o>m/€)¥?. B—B interaction includes an attractive
exhibit a volume dilatancy, which in a NEMD simulation of part and is modeled by the following form of the LJ poten-
NVT ensemble manifests itself as an increase in theial, modified so as to satisfy the continuity and smoothness
pressuré:® On the other hand, polymer systems have beemequirements at the truncation point,

found to show shear compressiot? At high shear rates,

normal stress differences, which are responsible for the ( 1 1
Weissenberg rod-climbing effett,have been reported for ad — et
polymeric systems.The effect of shear flow on chain con- r r

formations has also been investigated using NEMDU ;=¢ r2( 6 3 7 4 2)
methods»*? In a strong enough flow, chain molecules elon- S|\ % Tt sl ST
gate and preferentially orient along the direction of shear. Felfer Te/ e Te

We present here the results of a NEMD-SLLOD simula- L 0, r=r.

tion of a more complex fluid, microphase-segregated block

copolymer$®~18in a selective solvent. Block copolymers are The radius of interaction is chosen to be sufficiently small,
taken at two different concentrations: one corresponding to a,=2, to avoid possible “freezing” of multiparticle aggre-
body centered cubithco) lattice of spherical micellef0.3 gates and to increase the speed of calculation. The potential
and the other to hexagonalHEX) packed cylinderg0.4). has a minimum at~2'%; «=4.913 708 224 794 938 gives

As has been shown in Ref. 17, subjected to shear flow, suchs the well depth. We take the temperature and well depth as
systems undergo structural changes. In weak flow, the doF=1 and¢/T= 1.2, which implies that beadsandB are in
mains are rearranged into new lattices, with the most denselfavorable and weakly unfavorable solvent conditions, respec-
packed crystallographic planes sliding in parallel to the sheatively.

plane (with the normal oriented along the shear gradient di-  For any two adjacent beads along the chain, in addition
rection), whereas under stronger shear, significant domaio the excluded volume LJ potential, E@), the attractive
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chainsn=960, andp=0.4 with n=1280. Without flow, the
first block copolymer system corresponds to a bcc lattice of
u =iy spherical micelle$S), and the second to hexagonally packed
cylinders(C).}” For each shear rate, simulations were carried
out from a random configuration until the time dependencies
of energy and other variables of interest appeared to be con-
R stant. The typical times, required to reach a steady state
neutral direction o .
z shear direction varied from as long as,=6x10* at low shear rates tt,
— X =4x10° at the highest shear rate=2.

Solvent molecules surrounding block copolymers are not
simulated explicitly in our model. Instead, the main phenom-
enological effects of the medium such as shear impulse
transfer and thermostating are included in the equations of
motion, and selectivity is ensured by the effective potentials.
Such a mean-field approach to the medium corresponds to
the situation when the time and space scales of processes in

¥} shear gradient direction

FIG. 1. Geometry and kinematics of the planar shear flow.

anharmonic finitely extensible nonlinear elastiEENE)
spring potential is also used with spring constlant30 and
maximum extensiolRy=1.5,

_ EkRS Inl 1— r 2 r<R the solvent are much smaller than those of the solute. Thus,
U rene= 2 Ro/ |’ 0 (3)  the values calculated represent the corresponding polymer
%, r=R,. contributions.

B. Equations of motion

We model the systems under conditions of steady plana[r)' Pressure tensor
shear flow(viscometric flow.!* The geometry and kinetics The key quantity to be calculated in theoretical studies
of the flow are illustrated in Fig. 1. The phase space iof the rheology of shear flow is the pressure teRSdie
sampled by integrating the thermostated SLLOD equationsalculated the pressure tensor in the atomic representation,

of motior? for each particlé e [1,nN], which is given by a sum of site—site contributions,
é]i:pi/nH'ix')’Qyi- (4) 1 nN nN
: : == (S PP S, ®)
pi:Fi_lxypyi_)\pi 1 (5) V i mi j>i DR
du(t)=7, 6

whereF;; is the force exerted on beadby beadj, rjj=r;
where the position of the particleis g;(0yi,dyi.d2) ", the  —r, is the distance between the particles, and r;, p; are
momentum is;(Pyi . Pyi.Pz) ", Fi is the force acting on the the mass, position, and impulse of partigléhe vector pairs
ith particle, andd, is the lattice strain associated with the are dyadic products. Group-bas@de.g., “molecular,” ex-
Lees—Edwards periodic boundary conditions. The parametgsressions for the pressure tensor are also possible, leading to

A is the Gaussian thermostat multiplier, the same average values but to hopefully smaller fluctua-
nN tions, which gives better statistics. However, in the systems

\= > [Fi*pi— ¥PxiPyil- (7)  studied, the block copolymer chains also formed dynami-
2mKoi=1 cally open aggregates, effectively creating new temporal

The Gaussian thermostat fixes the instantaneous kinetic eRONdS. This makes the grouping for a group-based pressure
ergy along a trajectoryk (t) = 1/2ms"™ p,-p, =K (0)=K,.  tensor, where fast fluctuations are filtered out, a nontrivial

If the popular Gear predictor-corrector methdtfis used to  task. In test runs, the molecular pressure, for example, still
numerically integrate such equations of motion, the kinetid'@d significant high-frequency fluctuations.

energy tends to drift away from its initial value. Therefore, a In steéady planar shear flows=iyy, the only nonvan-
newer symplecticlike integrator obtained in Ref. 20 using ariShing components of the pressure tensor are the diaggnal
operator-splitting technique is employed, with the integratior2Nd Pxy=Pyx. Therefore, all of the information is included

time step as large as 0.01, which is one order of magnitud the isotropic scalar pressupeand three viscometric func-
greater than in the Gear method. tions,

C. Technical details n=——, 9

Simulations were performed in a cubic cell of size
=40 with periodic boundary conditions for systems of sym- ~ N;=P,,—P,,, N,=P,,—P
metrical diblock copolymers with a fixed chain length of
=10+ 10. Systems with different concentrations in the range  p=3TrP, (11
p=0.2-0.8 were simulated to obtain a zero-shear phase dia-
gram. The effect of shear flow on systems with two concenwhere 7 is the non-Newtonian shear viscosity, aNg, N,
trations was considereg=nN/L3=0.3 with the number of are the first and second normal stress differences.

vy (10
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FIG. 2. Isotropic pressure vs shear rate for the two systems. FIG. 3. Log—log plot of shear viscosity vs shear rate for the two systems.

The viscosity obtained from the heat production-removal equality(E2),
is shown with open symbols.
IIl. RESULTS

A7
h In tE% Iggt srt'ﬁlé we showgd that at shea}r rhates Iar]f-:]erceeds in two stages: initially there is a steep slope, and then,
thany*~0.05, both systems undergo structural changes OMfter some insignificant shear thickening, there is a second

parallel sliding layers to perpendicular lamellae. Perfect peréhear-thinning curve, somewhat less steep. These two re-

H * . * _ ) ) X L
phendlcrl;llar Iamgllaledare folrmedda’t ,”O'A," alt7>7|f , fur ._gions correspond to the two different flow regimens: sliding
ther changes include only re UCt'Or.] In- lametiar Spac_'ngparallel layers and the flow of perpendicular lamellae. Unfor-
through the splitting of lamellae. In this article, we descr'betunately, the methodology adopted does not easily allow to

the dependence of rheological and microscopic properties O;k%d the linear, Newtonian, regime at the lowest shear rates.

the shear rate for the systems studied in Ref. 17. It is natur his is because the atomistic pressure tensor compdhgnt
. - "
to anticipate that the critical valueg and ™ should mark as, due to bond oscillatiofidarge standard deviations and,

different behaviors in the corresponding figures presente the Newtonian regime, a near-zero mean valuéy)O

below. All of the f'gl%res g|ve.the shear @te ona Ioga”thm'cleading to large statistical uncertainties #n The same rap-
scale along thet-axis, and, if not specified otherwise, the

squares correspond tp=0.3 and the filled triangles to
p=0.4; vertical dotted lines correspond fe&=y* and y**.

idly fluctuating bond contributions to the atomic pressure
tensor cause oscillatory behavior in the stress—stress autocor-
relation function, which hampers attempts at obtaining zero-
A. Pressure shear viscosity using the Green—Kubo relation. Another
value that suffers from large statistical errors at small shear
rates is the shear viscosity, obtained from the heat
production-removal equalify,

The dependence of the isotropic scalar presgyrgq.
(11), on the shear ratgis shown in Fig. 2. For both systems,
the pressure increases in the interyak y<y** , reaches a
maximum value at/*, and then falls. To analyze this be- 3TpA
havior, we can deduce from the formula for the pressure 72=— , - (12)
tensor, Eq.(8), that at a given temperature an increase in 4
pressure means that repulsive forces become stronger, or théis is, in principle, the same physical quantity as that in Eq.
system is less “associative.” For a decrease in pressure, urni9), however its reliable estimates are attained only at rather
der the usual experimental conditions with a constant ambihigh shear rates, see Fig. 3.
ent pressure, this would correspond to an increase in density,
or compression. Conversely, structural changes that make the¢ Normal stress differences
system more compressible should lead to a decrease in pres- o
sure in the canonical ensemble. Returning to our systems, as_ Polymeric liquids under shear flow have normal stress
shown in Ref. 17, increasing the shear rate abgvinitiates Fhfferences, which are res.pon.5|ble for several V|'sua'lly strik-
the break-up of domains and their rearrangement into peind &ffects, such as rod-climbing: the polymer will climb up
pendicular lamellae, which are perfectly formed i . an msert_ed rota_tmg roth. The flrst_ normal stress pllfference,
Thus, within this transition region, the system becomes lesE- (10), is practically always positive and numerically much
associative. However, at>**, the chains elongate and are larger thap the usually negative sec_:ond normgl stres_s differ-
significantly oriented about the shear direction, thereby al€Nce, which leads to a strengthening of the inequatiy

lowing finer packing, i.e., the system becomes more com=" Pz~ Pxx- The same conclusions can be drawn for the
pressible. block copolymer systems studied, as seen from Fig. 4. The

figures also show that the increaseNn with increasingy

begins aty~+y* and becomes greater @at-y** . Also, since

this is a polymeric effect, the normal stress differences are
The systems studied exhibit shear thinning, as can beaturally more pronounced for systems with a greater poly-

seen from the dependence of the shear viscosity on the sheaer concentration, which is indeed the case for our systems.

rate, Eq.(9), as shown in Fig. 3. The observed thinning pro- A simple structural explanation of the existence of the first

B. Viscosity
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normal stress difference is that extra tensiamegative con-

tribution to pressurearises along the streamlines which the
chain molecules stretch and align along: thermal motion
makes the chain want to snap back. This explanation is sugwherer,=1/NX r; is the center of mass of a polymer. The

1 N
G= N; (rai—ra)(rai—ra), (13

=

ported by the results presented below, see Fig) Below,
which show the corresponding changes in chain conforma-

tions.

D. Interaction energy

Figure 5a) shows the voluméLennard-Jonésinterac-

other is the bond orientation tensor,

O

S 2n&

n

>

3

N—-1
1 (rai+l_rai)(rai+l_rai) 1

N—-1i=

5l
(14

b? 2

wherel is the unit tensor and is the mean bond length,

tion energy per particle. For the systems studied here, thi¢hich for the potentials used is1. In accordance with the
value reflects the degree of system association, i.e., it is @€ometry of shear flow, a symmetry consideration requires
measure of the participation of a particle in an aggregatethat for the elements of both tensofg,=T,,=T,,=T,,
With this in mind, Fig. %a) suggests that ag=+*, the do- =0, which was confirmed in our simulations, and therefore
mains begin to disintegrate, and this process is further edust three diagonal element3y,, Ty, andT,,, provide
hanced aty>y**, although there may be an asymptotic pla-€nhough information. Figure (8 shows the dependence of
teau aty=2. The less intuitively clear dependence is that ofthe diagonal elements of the gyration tensor on the shear rate
the bond oscillation energy per monomer, presented in Figfor beads of typeA and B. Increasing the shear rate much
5(b). Again, changes begin when the shear rate excgéds above y* leads to the following inequalitiesGy,>G,,
The bond oscillation energy decreases, with an inflection™ Gyy, Which means that the blocks elongate and orient
point at approximate|yy**’ and reaches a p|ateau W;Z along the shear direction. Naturallg;blOCkS elongate less
This means that the formation of perpendicular lamelladdecause these blocks are still in the condition of a poor sol-
leads to the chain bonds being less stretched. Such chaygnt. Furthermorey=+** is roughly the inflection point for

“relaxation” can be caused by the breaking_up of the do_a” of the curves in F|g @.), which SuggeStS the existence of
mains and a decrease in domain curvature. a plateau at some higher shear rates. It is worth noting that

not only do changes occur in thgy() plane but that alsG,,
decreases at higher shear rates, which provides a microscopic
explanation for the shear-induced decrease in the spacing of
Although chain bonds relax under shear flow, chains as gerpendicular lamellae observed in Ref. 17. The diagonal
whole elongate and also orient along the shear direction. Telements of the bond orientation tensor are shown in Fig.
study the changes in chain conformations, two tensob(b). Again, starting from*, there is ever-increasing asym-
quantities? were calculated for beads of both types for themetry, which for this tensor means that bonds are signifi-
system 0.3. One is the gyration tensor, defined as follows: cantly oriented along the shear direction, and this effect is

E. Chain conformations

1 @ . (v)
01 [} 05u . L LT R 1 Py
1 " p=03 ) iy
5 124 A p=04 s i
%-1.3- ‘i go.a- . p=03 3
- . ry
£ 14 A p=04 3 FIG. 5. Lennard-Jonega) and bond
154 “h E i oscillation energy(b) per particle.
6] ] 03 .
2 H PP L it s
AT 1 l;l““ .-‘
! ; . : ; 024 : : . .
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Y v

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 120, No. 7, 15 February 2004 Structural transitions in block copolymer solutions 3487

04+
354 (a‘) A (b) —— AXX
——Ayy 034 oAy
304 * Az ¢ Az
—7—Bxx v—Bx
25 A 0.24 —4—Byy
T Byy 4 Bz

9 Bz FIG. 6. Components of gyratiofa)

E
32

20- 0.14 ! '
% and bond orientatior(b) tensors for
§1.5- 0.0+ A-beads andB-beads (triangleg for
g _ the system 0.3.

104 * 014 3

] 3 g
‘o
051 mﬂ 021 &\(

1E4 1E3 001 01 1 1E4 13 0.01 01 1

bond orientation tensor’s elements

also somewhat more pronounced febonds. Similar graphs thinning: the shear viscosity rises and then the second

were obtained for both tensors for the system 0.4. “stage” of shear thinning begins. The crossover delimits two
different structures and therefore two different patterns for
IV. CONCLUSIONS releasing the stress in the system: the sliding of parallel
. . close-packed layers and the formation of perpendicular

This work follows a previous orté by the authors and Iamellge y Perp

describes the rheological and microscopic aspects of the Interestingly, similar dependencies are seen for the sys-
same systems. In the last work, the structural changes th% m '

th ¢ d ith : in the sh t s ofp=0.3 andp=0.4, even though the two systems have
€ systems undergo with an increase In the shear rate We\r/%ry different morphologies in the absence of shear flow, i.e.,

e e 1 e micelles and HEX.cylnders Ths suggess e e
the flow regime as the sliding of parallel micellar layers and ality of the_ parallel—p_erpendmullar phase transition and the
the onset of the formation of perpendicular lamellae. Th corres.pondmgl rheological behavior in block copolymer sys-

S . : ems in selective solvent under shear flow, regardless of the
second value, which is one order of magnitude larger tha@oncentration.

the first value, marks the end of this phase transition. The Although the method used here allowed us to draw some

second critical shear rate_ corresponds to the appearance &Inysically interesting conclusions consistent with previous
perfectly formed perpendicular lamellae and with a further eports, there is of course room for further developments,

increase in the shear rate the only structural changes inclu e problem of low statistical certainty in determining the

a shear-lnduced_r_edugtlon in lamellae spacing, W|th_no fur'I\Iewtonian shear viscosity can probably be solved by some
ther phase transitions in the shear rate interval considéred.

. . L o reaveraging of the fast oscillations in the pressure tensor.
Not surprisingly, we were very interested in |nvest|gat|ngp ging P

whether these values have anv special meaning with re a;l’ e issue of the applicability of the atomistic thermostat can
. . Ny Specia Y 924 avoided by incorporating a configurational temperature
to rheological and microscopic properties. Indeed, these va h

ues appear to delimit different behaviors in the correspond: ermostat, which would also allow deviations from a fixed
ing graphs. Except for the shear viscosity, all of the quanti-lmear velocity profile, i.e., richer hydrodynamics. The pos-

i tudied show little or no dependen n shear rates | sible effects of periodic boundary conditions on the struc-
es studied show Titlie or no dependence on shear rates 1exg o5 formed should also be investigated. These points are
than the first critical value. Greater shear rates lead to suc

non-Newtonian phenomena as pressure dilatancy and normggrrently being studied by the authors. Many of the physical

. i . ) : . nclusions and explanations in this paper are somewhat
stress dl_ffere_zn_ces, the_ microscopic propertle_s show eV!denCsf'\peculative. A more theoretically sound treatment is also un-
of domain disintegration, and chain elongation and orienta- erway
tion along the shear direction. The second critical value o '
the shear rate is the maximum point of isotropic pressure-
dependence that may be a turning-point in the CompetitionlD M. Heyes, The Liquid State: Applications of Molecullar Simulations
between shear-induced domain dissociation, which increases(v'vney, Gryeat,Britain,q1998 - App
the pressure, and chain packing, which decreases it. The seep. 3. Evans and G. P. Morris§tatistical Mechanics of Nonequilibrium
ond critical value of the shear rate is the inflection point in _Liquids (Academic, London, 1990

graphs of interaction energies and the diagonal elements O}M. P. Allen and D. J. Tildesleycomputer Simulation of Liquid€xford
. . - . . University Press, London, 1989
the gyration tensor, which implies the existence of a plateaw Minary, G. J. Martyna, and M. E. Tuckerman, J. Chem. Phy8. 2510

in these graphs at greater shear rates and a limit in the sheare003.

induced changes in these values. 5J. Delhommelle and D. J. Evans, J. Chem. Py, 43 (2007).
. . 6 H H
Perhaps the most important rheological property, shear (Sl'ng'aCUI' P. T. Cummings, and H. D. Cochran, J. Chem. Pby4, 255

VISC.OSIty, d.oes. n.Ot remain constaim fact the Newtonian ’S. Hess, C. Aust, L. Bennett, M. Kger, C. P. Borgmeyer, and T. Weider,
regime, which is inherently small for polymers, was not even Physica A240, 126 (1997.

found in this work because of the large statistical uncertain-zD- J. Evans,dPhySLcla ,4M82i 51(1983. ) (1995
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