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Phase structure of a compactU„1… gauge theory from the viewpoint of a sine-Gordon model

Kentaroh Yoshida* and Wataru Souma†

Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
~Received 13 March 2001; published 5 November 2001!

We discuss the phase structure of the four-dimensional compactU(1) gauge theory at finite temperature
using a deformation of the topological model. Its phase structure can be determined by the behavior of the
Coulomb gas~CG! system on the cylinder. We utilize the relation between the CG system and the sine-Gordon
~SG! model, and investigate the phase structure of the gauge theory in terms of the SG model. Especially, the
critical-line equation of the gauge theory in the strong-coupling and high-temperature region is obtained by
calculating the one-loop effective potential of the SG model.
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I. INTRODUCTION

Recently the scenario of treating a gauge theory as a
formation of the topological model has been proposed
several authors@1–3#. The motivation of this scenario is t
investigate the confinement and the phase structure at
temperature or finite temperature. In particular, we can
culate the expectation value of the Wilson loop~at zero tem-
perature! or Polyakov loop~at finite temperature! by consid-
ering the topological model and so derive the line
potential, which means the quark confinement@4#. The
Parisi-Sourlas~PS! dimensional reduction@5# is very power-
ful to study the topological model. This scenario can be a
applied to a compactU(1) gauge theory. It is quite related t
QCD by the use of the Abelian projection, which is a p
tially gauge fixing method@6,7#. In the case of the compac
U(1) gauge theory the topological model becomes the t
dimensionalO(2) nonlinear sigma model (NLSM2) and we
can show that the confining phase exists in the stro
coupling region at zero temperature and finite tempera
@8,9#.

In the case of zero temperature, the confining-deconfin
phase transition of the compactU(1) gauge theory can b
described by the Berezinskii-Kosterlitz-Thouless~BKT!
phase transition@10# in the O(2) NLSM2 @8#. It is well
known that theO(2) NLSM2 has vortex solutions and i
equivalent to several models, such as the Coulomb gas~CG!
system, sine-Gordon~SG! model, and massive Thirring
~MT! model. In the compactU(1) gauge theory the confin
ing phase exists at the strong-coupling region due to
effect of the vortex solution, which induces the linear pote
tial between the static charged test particles. The confin
phase transition corresponds to the BKT phase transitio
the CG system@10#, or the Coleman transition in the SG
model @11#. The CG system has a phase transition from
dipole phase to a plasma phase. The quantum SG m
undergoes a phase transition from a stable vacuum to
unstable vacuum at the certain critical coupling. Both ph
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transitions are intimately connected through the equivale
between the CG system and the SG model.

In our previous papers@9,12#, we have investigated the
phase structure of the compactU(1) gauge theory at finite
temperature from the viewpoint of the behavior of the C
system on the cylinder. In particular, we could study
strong-coupling and high-temperature region by using
behavior of the one-dimensional CG system@13#. This result
is consistent with the prediction in Ref.@14#.

In this paper we would like to investigate the phase str
ture of the compactU(1) gauge theory at finite temperatu
more quantitatively from the different aspect. We investig
its phase structure from the viewpoint of the SG model
the use of the relationship between the CG system and
SG model. The one-loop effective potential of the SG mo
enables us to investigate the phase structure of the ga
theory at the high-temperature and strong-coupling reg
Especially, we can evaluate the critical-line equation.

Our paper is organized as follows. Section II is devoted
a review of a deformation of the topological model. In Se
III we discuss the equivalence between the thermal
model and the CG system on the cylinder. In Sec. IV
one-loop effective potential of the SG model is discuss
Especially, the critical-line equation of the SG model can
obtained. We can evaluate the critical-line equation of
compactU(1) gauge theory at finite temperature from th
result. Section V is devoted to the conclusion and discuss

II. COMPACT U„1… GAUGE THEORY AS A
DEFORMATION OF A TOPOLOGICAL MODEL

In this section we introduce the method of the decom
sition of the compactU(1) gauge theory into the perturba
tive deformation part and the topological model part@topo-
logical quantum field theory ~TQFT! sector#. The
perturbative deformation part is topologically trivial but th
TQFT sector is nontrivial. The TQFT sector has the inform
tion of the topological objects such as vortices and mo
poles, which are assumed to play an important role in
confinement or phase transition. The dynamics of the c
finement is encoded in the TQFT sector. Therefore we
derive the linear potential by analyzing the TQFT sec
through the PS dimensional reduction@5#, which reduces the
four-dimensional TQFT sector to the two-dimensionalO(2)
NLSM2. If we consider the finite-temperature system th

-
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the two-dimensional space on which the reduced theory l
is the cylinder.

A. Setup

The action of the~compact! U(1) gauge theory on the
(311)-dimensional Minkowski space-time is given by

SU(1)52
1

4E d4xFmn@A#Fmn@A#, ~1!

Fmn@A#5]mAn2]nAm . ~2!

The partition function is given by

ZU(1)5E @dAm#@dC#@dC̄#@dB#exp~ iSU(1)1 iSJ!, ~3!

SJ5E d4x~JmAm1JcC1JC̄C̄1JBB!. ~4!

Here we use the Becchi-Rouet-Stora-Tyutin~BRST! quanti-
zation. Incorporating the~anti-!FP ghost fieldC(C̄) and the
auxiliary field B, we can construct the BRST transformatio
dB ,

dBAm5]mC, dBC50,

dBC̄5 iB, dBB50. ~5!

The gauge fixing term can be constructed from the BR
transformationdB as

SGF1FP52 idBE d4xGGF 1 FP@Am ,C,C̄,B#, ~6!

andGGF 1 FP is chosen as

GGF 1 FP5 d̄BF1

2
AmAm1 iCC̄G , ~7!

whered̄B is the anti-BRST transformation, which is define
by

d̄BAm5]mC̄, d̄BC5 iB̄,

d̄BC̄50, d̄BB̄50, B1B̄50. ~8!

The above gauge fixing condition~7! is convenient to inves-
tigate the TQFT sector.

We decompose the gauge field as

Am~x!5Vm~x!1Vm~x!~[Vm
U!,

Vm~x![
i

g
U~x!]mU†~x!, ~9!

where the g is the gauge coupling constant. Using t
Faddeev-Popov determinantDFP@A# we obtain the following
unity:
12500
s

T

15DFPE @dU#)
x

d~]mAm
U21

!

5DFP@AU21
#E @dU#)

x
d~]mAm

U21
!

5DFPE @dU#)
x

d~]mVm!

5E @dU#@dg#@dḡ #

3@db#expF i E d4x~b]mVm1 i ḡ]m]mg!G
[E @dU#@dg#@dḡ #@db#expF i E d4x

3~2 i d̃BG̃GF 1 FP@Vm ,g,ḡ,b#!G , ~10!

where we have defined the new BRST transformationd̃B as

d̃BVm5]mg, d̃Bg50,

d̃Bḡ5 ib, d̃Bb50. ~11!

When Eq.~10! is inserted, the partition function can be r
written as follows:

ZU(1)@J#5E @dU#@dC#@dC̄#@dB#exp~ iSTQFT@Vm ,C,C̄,B#

1 iW@U;J#1JmVm1JCC1JC̄C̄1JBB!, ~12!

STQFT[2 idBd̄BE d4xF1

2
Vm

2 1 iCC̄G , ~13!

where

eiW[U;J][E @dVm#@dg#@dḡ #@db#

3expS iSpU(1)@Vm ,g,ḡ,b#

1 i E d4xVmJ m D , ~14!

SpU(1)@Vm ,g,ḡ,b#5E d4xS 2
1

4
Fmn@V#Fmn@V#

2 i d̃BG̃GF 1 FP@Vm ,g,ḡ,b# D , ~15!

Jm[Jm1 idBd̄BVm .
2-2
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PHASE STRUCTURE OF A COMPACTU(1) GAUGE . . . PHYSICAL REVIEW D 64 125002
The action~15! describes the perturbative deformation p
@24#. The actionSTQFT is dB-exact and describes the top
logical model, which contains the information of the confin
ment.

In what follows we are interested in the finite-temperatu
system~i.e., the system coupled to the thermal bath!. There-
fore we have to perform the Wick rotation of the time ax
and move from the Minkowski formulation to the Euclidea
one.

B. Expectation values

We can define the expectation value in each sector u
the actionSpU(1) and STQFT. The expectation value of th
Wilson loop or Polyakov loop is an important quantity
study the confinement. In the case of the Wilson loopWC ,
the following relation:

^WC@A#&U(1)5^WC@V#^WC@V#&pU(1)&TQFT

5^WC@V#&TQFT̂ WC@V#&pU(1) ~16!

is satisfied@8#. The contourC is rectangular as shown in Fig
1. The Wilson loop expectation value is completely separa
into the TQFT sector and the perturbative deformation p
That is, we can evaluate the expectation value in the TQ
sector independently of the perturbative deformation part
fact, we can derive the linear potential by investigating
TQFT sector.

At finite temperature we must evaluate the correlator
the Polyakov loopsP(x). It can be evaluated in the sam
way as the Wilson loop, due to the following relation~as
shown in Fig. 2!:

^P~x!P†~0!&U(1)5^WC&U(1) . ~17!

FIG. 1. The rectangular Wilson loop. This includes the ima
nary time axis in order to study the confinement.
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Furthermore, we can derive the Coulomb potential~at
zero temperature! @8# or Yukawa-type potential~at finite tem-
perature! using the hard thermal loop approximation@9# from
the perturbative deformation part.

C. TQFT sector and PS dimensional reduction

When the gauge group is the compactU(1) the TQFT
sector becomes theO(2) NLSM2 through the PS dimen
sional reduction@5#. The four-dimensional TQFT sector ac
tion

STQFT5dBd̄BE d4xF1

2
Vm

2 1 iCC̄G ~18!

can be rewritten as theO(2) NLSM2 on the two dimensiona
space,

STQFT5pE d2xVm
2 ~x!

5
p

g2E d2x]mU~x!]mU†~x!,

Vm[
i

g
U~x!]mU~x!†,

where we have omitted the ghost term. When we write
gauge group element asU(x)5eiw(x), we obtain

STQFT5
p

g2E d2x]mw~x!]mw~x!. ~19!

If the gauge groupU(1) is not compact, then the TQFT
sector becomes the ordinary free scalar field theory on
two dimensional space, which has no topological object.
the confining phase cannot exist. If theU(1) is compact, the
theory described by the action~19! is the periodic boson
theory. The angle variablew(x) is periodic~mod 2p), and so
w(x) is a compact variable. It is well known that the com
pactness plays an important role in the confinement@15#. If
we consider the system at finite~zero! temperature, then the
dimensionally reduced theory lives on the cylinder~two
plane!.

We should remark here that the compactness also lead
monopole configurations in the original gauge theory, wh
is assumed to play an important role in the confinement.
the other hand, the reduced theory has vortex solutions

-

n

FIG. 2. The correlator of

Polyakov loops. The expectatio
value of a Wilson loop W is
equivalent to a correlator of the
Polyakov loopsP andP†.
2-3
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KENTAROH YOSHIDA AND WATARU SOUMA PHYSICAL REVIEW D 64 125002
to the compactness ofU(1). It is quite natural that the two
configuration above are intimately connected, as sugge
in Ref. @8#. Therefore we can include the monopole effe
from the reduced theory and obtain the physical quan
such as a string tension through this sector which inclu
the unphysical degrees of freedom only.

The O(2) NLSM2 is equivalent to the CG system a
shown in Fig. 3. The partition function of the CG system
given by

ZCG5 (
n50

`
z2n

~n! !2)i 51

n E d2xid
2yi expS 2

~2p!3

g2

3F(
i , j

@D~xi2xj !1D~yi2yj !#2(
i , j

D~xi2yj !G D ,

~20!

where z[exp(2Sself) is the chemical potential of the CG
system@25# and can be written in terms of the self-ener
part of a vortexSself. This quantityz does not depend on th
physical temperatureT in the original theory. TheD(xi
2xj ) expresses the Coulomb potential on the two plane~at
zero temperature! or on the cylinder~at finite temperature!.
The temperature of the CG system is defined by

TCG[
g2

8p3
. ~21!

The linear potential between the test charged particle
induced by the effect of the vortices. The expectation va
of the Wilson loop~Polyakov loops’ correlator! is obtained
as follows~for details, see Ref.@8#!:

^P~x!P†~0!&U(1)5^WC@V#&>e2sA, ~22!

FIG. 3. The TQFT sector is equivalent to the two-dimensio
theory through the PS dimensional reduction. When the ga
group is the compactU(1) it becomes theO(2) NLSM2. The two-
dimensional space is a two plane~at zero temperature! or a cylinder
~at finite temperature!. It is well known that it is equivalent to the
several model.
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e

s5S 2p
q

gD 2

z, ~23!

whereA5RTi , R5uxu andq is a charge of the test particles
It is significant that the expression of the string tension~23!
does not depend on the temperature explicitly, but on
behavior of the CG system. Whether the string tension
mains or vanishes is determined only by the behavior of
CG system which consists of vortices. Thermal effe
changes the behavior of the topological objects. The cha
is reflected to the linear potential. We also note that the str
tensions is proportional toz. The z→0 limit implies that
the self-energy of the vortex is infinity and we fail to includ
the effect of the vortex. Therefore the confining phase a
vanishes in the limitz→0 as is expected.

In our previous paper@9# we have investigated the phas
structure of the compactU(1) gauge theory at finite tem
perature using the behavior of the CG system on the cylin
The behavior of the CG system on the two plane is shown
Fig. 4. The behavior of the CG system on the cylinder wo
be analogous. We expect that the system undergoes the B
like phase transition. In fact, the CG system causes the B
like phase transition in the high-temperature region that
haves as the one-dimensional system.

III. EQUIVALENCE BETWEEN SG MODEL AND CG
SYSTEM

The action of the SG model on the two plane~at zero
temperature! or the cylinder~at finite temperature! is defined
by

SSG5E d2xH 1

2
~]mf!22

m4

l FcosSAl

m
f D 21G J . ~24!

The partition function is given by

ZSG5E @df#exp~2SSG!. ~25!

This can be rewritten as follows:

l
e

FIG. 4. Two-dimensional Coulomb gas has two different phas
Over the critical temperatureTCG51/8p, the system is the plasm
phase with Debye screening and so the mass gap exists. Below
TCG it is the dipole phase, in which Coulomb charges form dipol
The system has a long-range correlation and no mass gap.
2-4
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PHASE STRUCTURE OF A COMPACTU(1) GAUGE . . . PHYSICAL REVIEW D 64 125002
ZSG5e2(m4/l)E d2x(
n50

`
1

n! S m4

l D nE @df#e2*d2x(1/2)(]mf)2

3F E d2x cosSAl

m
f D Gn

5e2(m4/l)E d2x(
n50

`
1

2n! S m4

2l D 2nE @df#e2*d2x(1/2)(]mf)2

3F E d2x~ei (Al/m)f1e2 i (Al/m)f!G2n

5e2(m4/l)E d2x(
n50

`
1

~n! !2 S m4

2l D 2nE @df#

3e2*d2x(1/2)(]mf)2

)
i 51

n E d2xid
2yie

i (Al/m)[f(xi )2f(yi )] .

Here, we note that

^e*d2xJf&SG[E @df#expF E d2xS 2
1

2
~]mf!21Jf D G

5expF E d2xd2yJ~x!D~x2y!J~y!G , ~26!

whereD(x2y) is the massless scalar field propagator,

D~x2y![E d2p

~2p!2

eip•(x2y)

p2
. ~27!

In particular, if we choose the external field as

J~x!5 i
Al

m (
i 51

n

qid~x2xi !, ~28!

then we obtain

K )
i 51

n

e*d2xiqif(xi )L
SG
12500
55 expF2
l

2m2 (
j ,k

qjqkD~xj2xk!G for (
i 51

n

qi50,

0 for (
i 51

n

qiÞ0.

~29!

If the net charge is not zero then the correlation funct
vanishes because of the symmetry under the transforma

f~x!→f~x!1const.

By the use of Eq.~26!, we obtain the following expression o
the partition function:

ZSG; (
n50

`
1

~n! !2 S m4

2l D 2n

)
i

n E d2xid
2yi

3expF2
l

m2 S (
i , j

@D~xi2xj !1D~yi2yj !#

2(
i , j

D~xi2yj ! D G . ~30!

The factore2(m4/l)*d2x can be ignored because of the no
malization of the partition function. Thus we obtain the pa
tition function of the neutral CG system, whose temperat
is defined by

TCG5m2/l. ~31!

This is equivalent to Eq.~21!. The phase transition in the SG
model at the critical coupling, i.e., the Coleman transitio
corresponds to the BKT phase transition in the CG syste

The equivalence holds on the cylinder~i.e., in the finite-
temperature case!. In this time, Eq.~27! is replaced with the
propagator on the cylinder,
D~x2y!;2
1

2p (
n52`

1`

ln@mA~x02y02nb!21~x12y1!2#

52
1

2p
lnFmbAcoshS 2p

b
~x12y1! D2cosS 2p

b
~x02y0! D G . ~32!
2-5
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KENTAROH YOSHIDA AND WATARU SOUMA PHYSICAL REVIEW D 64 125002
Here m is the infrared cutoff andb is the inverse of the
physical temperatureT. We remark that the SG model has th
physical temperature in common with the original gau
theory. It is because the cylinder is chosen as the t
dimensional space when we use the PS dimensional re
tion. If we use the complex coordinatesw5x11 ix0 ,w̄5x1

2 ix0 ,w85y11 iy0, and w̄85y12 iy0, then Eq.~32! is re-
written as

D~x2y!52
1

4p
lnue(2p/b)w2e(2p/b)w8u2

1
1

2b
Re~w1w8!2

1

4p
lnS 1

2
~mb!2D . ~33!

The propagator above involves the divergent term in
limit m→ 0, but this is removed by the neutral conditio
( iqi50 @see Eq.~29!#.

The parameters of the CG system in the previous sect
g and z, can be related to those of the SG model, massm,
and the coupling constantl. This relation is given by

l5
128p6z

g4
, m5

4p3/2z1/2

g
. ~34!

Recall that the string tensions;z vanishes ass→0 and
the confining phase disappears. We should note thatz→0
meansm→0 andl→0. That is, the SG model becomes fr
scalar field theory in this limit. This result is consistent wi
the disappearance of the confining phase.

IV. 1-LOOP EFFECTIVE POTENTIAL OF SG MODEL AT
FINITE TEMPERATURE

It is well known that the SG model at zero temperatu
undergoes the phase transition at certain coupling, whic
called the Coleman transition@11#. The critical coupling is
l/m258p, at which the quantum SG model undergoes
phase transition from a stable vacuum to an unsta
vacuum. Moreover, the existence of a phase transition du
the thermal effect has been shown in Ref.@16#. This transi-
tion would correspond to the BKT-like transition of the C
system. Thus we can investigate the phase structure o
compactU(1) gauge theory at finite temperature, at least
the region where we can investigate the SG model relia
In particular, we can read off from Eq.~34! that the weak-
coupling region of the SG model corresponds to the stro
coupling region of the gauge theory. That is, we can inve
gate the phase structure of the gauge theory with the st
coupling from the perturbative study of the SG model. T
is the advantage of our method.

We will discuss the one-loop effective action of the tw
dimensional SG model at finite temperature@16#. The effec-
tive potential is given by

V1loop~fc!5V0~fc!1VFT~fc!, ~35!
12500
e
-
c-

e

n,

is

a
le
to

he
n
y.

-
i-
ng
s

V0~fc![
m2

8p
cos~Alfc /m!@12 ln cos~Alfc /m!#,

~36!

VFT~fc![
1

pb2E0

`

dxln@12exp~2Ax21M2~fc!b
2!#,

~37!

M2~fc![m2cos~Alfc /m!. ~38!

The second equation~36! is the temperature-independe
part, and the third equation~37! is the temperature-depende
part which vanishes in the zero-temperature limitb→` .
Also, the minimum of the potentialfc50 is still stable un-
der one-loop quantum fluctuations at zero temperature. T
ing the second derivative of Eq.~35! with respect tofc at
fc50, we can evaluate a critical-line equation@17# as

m2~b!5m21
]2VFT

]fc
2 ~fc50!

5m22m2
l̄

2p
f ~ b̄ !50, ~39!

wherel̄[l/m2, b̄[bm, and f (b̄) is defined by

f ~ b̄ ![E
0

`

dx
1

Ab̄21x2@exp~Ab̄21x2!21#
. ~40!

That is, the critical-line equation is given by

12
l̄

2p
f ~ b̄ !50. ~41!

Note that the parameters of the SG model can be repla
with the ones of the compactU(1) gauge theory using the
relation ~34!. As the result, we obtain the relation

b̄5
4p3/2z1/2

gT
, l̄5

8p3

g2
. ~42!

Thus the critical-line equation can be rewritten as follows

12
4p2

g2
f S 4p3/2z1/2

gT D50. ~43!

The numerical solutions of this equation at various fixed v
ues ofz are shown in Fig. 5.

In particular, we can derive the simple relation betweenl
and T in the weak-coupling and high-temperature limit
Eq. ~41!. The critical temperatureTc is given by

Tc5
4m3

l
. ~44!

Equations~34! and ~44! lead to
2-6
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PHASE STRUCTURE OF A COMPACTU(1) GAUGE . . . PHYSICAL REVIEW D 64 125002
Tc5
2z1/2

p3/2
g. ~45!

Equation~45! is drawn as the dashed line in Fig. 5. No
again that the weak-coupling and high-temperature regio
the SG model corresponds to the strong-coupling and h
temperature region in the compactU(1) gauge theory. The
compact gauge theory is related to the SG model by a kin
S duality in our scenario. Thus we can reliably investig
the strong-coupling region of the gauge theory since the o
loop effective potential is appropriate in the weak-coupli
region.

In conclusion, we have obtained that the critical tempe
ture is proportional to the coupling constant of the comp
U(1) gauge theory in the strong-coupling and hig
temperature region. This result is in good agreement with
prediction in Ref.@14#. In thez→0 limit the gradient in Eq.
~45! goes to zero. This fact implies that the confining pha
vanishes.

Comment on the effective potential calculation.Our dis-
cussion in this section is closely analogous to Ref.@2# in
which the critical temperature has been estimated by the
culation of the one-loop effective potential in the TQFT se
tor. In the above discussion we have calculated the one-
effective potential in the SG model. If we naively calcula
the effective potential in theO(2) NLSM2 then we cannot
obtain the phase structure@2,12#. Note that theO(2) NLSM2
is equivalent to the SG model when we consider vortex
lutions. If we calculate the effective potential in theO(2)
NLSM2 we cannot include the effect of the vortex solutio
However, once we go from theO(2) NLSM2 to the SG

FIG. 5. The phase structure of the compactU(1) gauge theory
obtained by the one-loop effective potential calculation in the
model. The critical-line Eq.~43! can be numerically solved. Th
asymptotic line Eq.~45! is also drawn with the dashed line. Th
above graph shows that the confining phase vanishes inz→0 limit.
However, the result in the smallg region is not valid. It is because
the smallg means the largel and the one-loop approximation in th
SG model is not reliable.
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model, we can include the effect of the vortex solution
terms of the cosine-type potential. Therefore the phase st
ture that we have obtained in the SG model is not equiva
to the result in theO(2) NLSM2. Moreover, the SG model is
a massive theory and the Coleman-Mermin-Wagner theo
@18# is not an obstacle.

V. CONCLUSION AND DISCUSSION

We have discussed the phase structure of the com
U(1) gauge theory at finite temperature by using a deform
tion of the topological model. The compactness of the ga
group leads to a confining phase. In the case of zero t
perature, the phase transition of the gauge theory at ce
coupling can be described by the Coleman transition in
SG model. In the finite-temperature case we could inve
gate the phase structure at sufficiently high temperature
very strong-coupling region by analyzing the one-loop effe
tive potential of the SG model. We could consider the e
closed region by the dashed line in Fig. 6. In this paper
have used the one-loop effective potential, but we can a
use the Gaussian effective potential~GEP! @19#, which is
known as the nonperturbative method. For the SG mode
zero temperature this is given by the following expressio

VGEP5m2
12l̄/8p

l̄
@12~cosAl̄f!1/(12l̄/8p)#, ~46!

wherel̄5l/m2. That is, as the coupling constant of the S
modell̄→8p the GEP becomes a straight line continuous
If l̄ exceedsl̄c58p, which is the transition point of the
Coleman transition, then the GEP has the maximum and
system has no ground state. The GEP can describe the C
man transition at zero temperature@20,21#, which cannot be
described by the one-loop effective potential. Since the G
does not depend on the perturbation theory it might be
propriate to investigate the phase structure at the we
coupling and low-temperature region in the gauge the

FIG. 6. Phase structure of the compactU(1) gauge theory pre-
dicted in the Ref.@14#. In the above discussion using the one-lo
effective potential of the SG model we could study the region
closed by the dashed line, in which we can especially obtain
critical-line equation. Moreover, we might investigate the regi
enclosed by the solid line. It is well known that this region is nea
described by the Gaussian effective potential~GEP!, which is a
nonperturbative method and should include the physics beyond
one-loop level.
2-7
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~i.e., the strong-coupling and low-temperature region in
SG model! which corresponds to the enclosed region by
solid line in Fig. 6. This work is very interesting and will b
discussed in another place@22#.

We should comment on the well-known results in t
compact Abelian lattice gauge theory. This theory at z
temperature experiences the phase transition of the weak
or strong second order. Unfortunately, our results sugg
that at high temperatures the phase transition is of the B
type, and do not seem to correspond to the lattice results.
formalism deeply depends on the BKT phase transition,
.

.

12500
e
e

o
rst
st
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d

so it seems difficult to predict the order of the transiti
obtained in the lattice gauge theory.

It is also attractive to approach the phase structure fr
the viewpoint of the massive Thirring model@23#.
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