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Stability analysis of black holes via a catastrophe theory and black hole thermodynamics
in generalized theories of gravity
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We perform a linear perturbation analysis for black hole solutions with a ‘‘massive’’ Yang-Mills field~the
Proca field! in Brans-Dicke theory and find that the results are quite consistent with those via catastrophe
theory where thermodynamic variables play an intrinsic role. Based on this observation, we show the general
relation between these two methods in generalized theories of gravity which are conformally related to the
Einstein-Hilbert action.
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I. INTRODUCTION

Black holes and their thermodynamics are one of the m
topics of superstring theory, in particular, following the d
coveries of the microscopic origin of the black hole entro
@1# and the AdS/conformal field theory~CFT! correspon-
dence@2#. To consider unified theory including gravity, the
importance may be equal to the blackbody radiation wh
was a clue to developing quantum mechanics.

Recently, the classical stability ofp-branes and its equiva
lence to local thermodynamic stability has been argued
Refs.@3,4#. Here, thermodynamic stable means that the H
sian of the entropy with respect to the other thermodyna
variables are negative definite in the microcanonical
semble. Since this equivalence does not hold for black h
~e.g., Schwarzschild black hole!, we need another criterion o
black holes. In general relativity, we investigated many bla
hole solutions with non-Abelian matter fields in asympto
cally flat space-time and found that stability criterion v
catastrophe theory by using thermodynamic variables c
cides with those of linear perturbation@5#. A similar discus-
sion in AdS space-time can be seen in Ref.@6#. Iyer and
Wald formulated the black hole thermodynamics in arbitra
diffeomorphism invariant theories of gravity@7#. In their for-
mulation, the black hole entropy is defined as a Noet
charge and satisfies the first law of black hole thermodyn
ics. It remains, however, unclear whether or not it satis
the second law, although some examples were shown in
@8#.

Here, we show the relation between linear perturbat
analysis and catastrophe theory in generalized theorie
gravity which are conformally related to the Einstein-Hilbe
action. In the analysis by using catastrophe theory, it is

*Email address: tamaki@phys.h.kyoto-u.ac.jp
†Email address: torii@gravity.phys.waseda.ac.jp
‡Email address: maeda@gravity.phys.waseda.ac.jp
0556-2821/2003/68~2!/024028~9!/$20.00 68 0240
in

h

in
s-
ic
-

es

k

n-

y

r
-

s
ef.

n
of

-

portant which variables we choose as catastrophe varia
such as control parameters and a potential function@9#. In
general relativity, the mass of the black hole is determin
unambiguously in an asymptotically flat space-time and
horizon radius is related geometrically to the entropy. Hen
we can choose the natural catastrophe variables. In gen
ized theories of gravity, however, there are some kinds of
mass, and horizon radius may not be related directly to
tropy. There may be other variables depending on theor
Hence there are ambiguities for the choice of the catastro
variables.

In Sec. II, we review a black hole solution in Brans-Dick
~BD! theory @10# obtained previously as an example@11#,
and examine its stability by the linear perturbation analy
to confirm the expectation obtained by catastrophe theory
Sec. III, we discuss what are the suitable variables for
catastrophe analysis in generalized theories of gravity. N
we show that we can obtain the consistent results with
linear perturbation analysis by adopting the thermodyna
variables defined in Ref.@7# as catastrophe variables in Se
IV. This leads to the conjecture that the dynamical stabi
can be judged via catastrophe theory by using thermo
namic variables at least at the linear level. In Sec. V, we o
concluding remarks and discuss future perspectiv
Throughout this paper we use unitsc5\5G51.

II. PROCA BLACK HOLE IN BRANS-DICKE THEORY
AND ITS LINEAR STABILITY

We briefly review the Proca black hole in BD theory o
tained in Ref.@11# and perform a linear perturbation analys
as an example to obtain the clue to the general case.

A. Model and basic equations

We consider the BD theory with matter fields;

Ŝ5E d4xA2ĝF f

2k2
R̂2

v

2k2f
~¹̂f!21L̂mG , ~1!
©2003 The American Physical Society28-1
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wherek2
ª8p and L̂m is a matter Lagrangian.v andf are

the BD parameter and the BD scalar field, respectively.
consider a ‘‘SU~2!’’ Proca field ~a massive counterpart of th
Yang-Mills field! as a matter field:

L̂m52
1

16pgc
2

Tr F22
m2

8pgc
2

Tr A2, ~2!

wheregc andm are the coupling constant and the mass of
Proca field, respectively.F is the field strength expressed b
its potentialA asF5dA1A`A. We assume the sphericall
symmetric metric as

dŝ252 f̂ ~ r̂ ,t !e22d̂( r̂ ,t)dt21 f̂ ~ r̂ ,t !21dr̂21 r̂ 2dV2, ~3!

where f̂ ( r̂ ,t)5122m̂( r̂ ,t)/ r̂ , and the potential of the Proc
field as1

A5@11w~ r̂ ,t !#~2tfdu1tusinudf!, ~4!

wheretf andtu are the generators of su~2! Lie algebra.
We can examine this system also in the Einstein frame

a conformal transformationgab5fĝab @12#. The equivalent
action in the Einstein frame is

S5E d4xA2gF R

2k2
2

1

2
~¹w!21LmG , ~5!

where

Lm52
1

16pgc
2

Tr F22
m2

8pgc
2

e2kbwTr A2, ~6!

bªA 2

2v13
, wª

1

kb
ln f. ~7!

With the area radiusr, the metric becomes

ds252 f ~r ,t !e22d(r ,t)dt21 f ~r ,t !21dr21r 2dV2, ~8!

where f (r ,t)5122m(r ,t)/r . We define dimensionless pa
rameters as

m̄ªm/gc , lhªr hgc . ~9!

r h is the radius of the event horizon. For the numerical c
culation, we introduce the following dimensionless variabl
t̄ªt/r h , r̄ªr /r h , m̄ªm/r h . Then we obtain the basi
equations in the Einstein frame;

1If the Yang-Mills field is massless and when we consider bla
hole solutions with the Yang-Mills field under the static and sphe
cally symmetricAnsatz, we can impose this form without loss o
generality for the gravitational sector. In the present case, howe
we can just show that this is consistent with the field equation.
02402
e
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2~ed f 21ẇ!
˙
1~e2d f w8!81

e2d

r 2
~12w2!w

2lh
2m2e2de2bw~11w!50, ~10!

2~ed f 21ẇ !
˙
1

1

r 2
~e2d f r 2w8!812m2be2de2bw

3
~11w!2

r 2
50, ~11!

m85
r 2

4
~e2d f 21ẇ21 f w82!1

1

lh
2 Fe2d f 21ẇ21 f w82

1
~12w2!2

2r 2 G1m2e2bw~11w!2, ~12!

d852
r

2
~e2d f 22ẇ21w82!2

2

lh
2r

~e2d f 22ẇ21w82!,

~13!

ṁ5
r 2

2
f S ẇw81

4ẇw8

lh
2r 2 D . ~14!

Here, we have omitted the bar on the variables. A prime
a dot denote the differentiations]/]r and]/]t, respectively.

Since we will study the stability by the perturbatio
analysis, we expand the variables around a static solutio

f ~r ,t !5 f 0~r !1 f 1~r ,t !e1
f 2~r ,t !

2
e21•••. ~15!

Variables with the lower index 0 represent the static soluti
The lower indicesi represent thei th order of the perturba-
tions. Then we obtain the perturbation equations order
order.

B. Static solutions

As for the static solution, we require the following boun
ary conditions. To satisfy asymptotic flatness, we impose

m0~`!5M , d0~`!5w0~`!50, w0~`!521.
~16!

M is the gravitational mass in the Einstein frame. For t
existence of a regular horizonr h , we impose

m0~r h!5
r h

2
, d0~r h!,`, w0~r h!,`. ~17!

d0(r h), w0(r h), and w0(r h) are determined to satisfy th
conditions~16! by integrating the field equations to infinity

We describe the relation between the variables in the E
stein frame and those in the BD frame. At the horizon radi
it is easily found from Eq.~8! as

k
-

er,
8-2
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r h5Af~ r̂ h! r̂ h . ~18!

The gravitational mass in the BD frameM̂ is defined by the
time-time component of the metric~3! as2

M̂ªm̂0~`!1 lim
r̂→`

~ r̂ d̂0!. ~19!

It satisfies the relation

M̂5M1Ms , ~20!

whereMs is a scalar mass defined by the asymptotic form
the scalar fieldekbw0;112Ms /r as r→`.

The static black hole solutions in this system are inve
gated in detail~see Ref.@11#!. We summarize some of the
properties which are useful for later discussions.

Let us consider the special casev→`, which corre-
sponds to general relativity. In the massless case, i.e.,
ordinary Yang-Mills field, there are infinite number of sol
tions called colored black holes@13#, which are classified by
the node number of the Yang-Mills potentialw, for fixed
horizon radius. Since the Yang-Mills potential decays fas
than r 21, the colored black holes have no global col
charge. It is formed by the delicate balance between
gravitational force and the gauge force. If we add the m
term in the vector field, another type of solutions appea
which is the Schwarzschild counterpart in the massless li
Hence it is considered as the structure of the self-gravita
Proca field around the Schwarzschild black hole. The so
tion with large node number and/or the large horizon rad
disappears. We concentrate on the solutions with one n
for matters of convenience, where Schwarzschild type s
tion is stable and the colored black hole type has one
stable mode against the linear perturbation@14#.

For the finite value ofv, we also find two types of solu
tions. Without the mass term, the matter Lagrangean is
variant under the conformal transformation in 4-dimensi
So the colored black hole solution is the same as one
general relativity. We show the relation between the grav
tional massM̂ and the horizon radiusr̂ h in the BD frame in
Fig. 1. There is no black hole solution above the critic
horizon radius~which corresponds to pointA in Fig. 1!, since
the nontrivial structure of the Proca field which spreads
to the Compton wavelength (;1/m) is swallowed into the
horizon as the black hole becomes large, resulting in
Schwarzschild space-time.

We can find the cusp structure at the pointC in general
relativity, which is a symptom of stability change in the c
tastrophe theoretical point of view. We can infer from t
entropy consideration that the solutions in the branch sho
by the solid line are stable and those in the dotted branch
unstable@5#. On the contrary, the cusp structure disappear
BD theory. If we consider the analogy with the case in ge

2For the gravitational mass in the Einstein frame, there is no s
ambiguity becaused0 in the Einstein frame decays faster tha
;1/r .
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eral relativity, stability change may occur at pointA ~the
maximum point ofr̂ h) or at pointB ~the maximum point of
M̂ ).

If we see theM -r h diagram in the Einstein frame~Fig. 2!,
we can find cusp structures in both theories. PointA in Fig. 1
corresponds to the cusp. Hence we may interpret that
solid branch is stable while the dotted branch is unsta
even in BD theory. We should confirm it.

We discussed in Ref.@11# that the nonexistence of th
cusp structure in the BD frame is due to the fact that
variablesM̂ and r̂ h are inappropriate to the catastrophe va
ables. Since stability should be independent of the frame
chooses, it is natural to choose frame independent varia
as catastrophe variables. We develop this idea in the foll
ing sections.

C. Linear perturbation analysis

We perform a linear perturbation analysis to clari
whether stability judgement by catastrophe theory in the E
stein frame is correct or not.

By defining the new variablec1ªrw1 and substituting,

c1~r ,t !5j~r !eist, ~21!

h

FIG. 1. M̂ -r̂ h diagram in the BD frame. The mass of the Pro
field is m50.15gcmp and the BD parameter isv50.

FIG. 2. M -r h diagram in the Einstein frame corresponding to t
solutions in Fig. 1.
8-3



lue
we
.
n

igs.
.

is in
tur-

ck

ind-
of
,
in

late
zed
now
ich
or

ble
he
pt.

in
rs.
of
re-

We

le,
n

TAMAKI, TORII, AND MAEDA PHYSICAL REVIEW D 68, 024028 ~2003!
w1~r ,t !5h~r !eist, ~22!

m1~r ,t !5z~r !eist, ~23!

we find the eigenequation

d2

dr* 2 S j

h D 2e22d0f 0FU11 U12

U21 U22
G S j

h D 52s2S j

h D , ~24!

where we have used the tortoise coordinater * defined by

dr

dr*
5e2d0f 0 . ~25!

The components of the potential matrix are

U1152
1

r S f 0d081
2m08

r
2

2m0

r 2 D 12m2be2bw0

3
~11w0!2

r 2
~b2rw08!2

Br

2
f 0w08 , ~26!

U1252
4~12w0

2!w0w08

lh
2r 2

24m2e2bw0
11w0

r
~b

2rw08!2
4B

2lh
2

f 0w08 , ~27!

U2152m2be2bw0
11w0

r F2

r
~11w0!w081lh

2G
2

A

2
r f 0w08 , ~28!

U2252
4w08

r Fw0~12w0
2!

lh
2r 2

2m2e2bw0~11w0!G
2

123w0
2

r 2
1lh

2m2e2bw02
2

lh
2

A f0w08 , ~29!

where

Aªw08S w08
21

4w08
2

lh
2r 2 D 1

2

r S d08w081
w08

r
2w09D , ~30!

Bª2S d08w082
w08

r
2w09D 1rw08S w08

21
4w08

2

lh
2r 2 D . ~31!

z is obtained by the linear combination ofh andj as

z5
r

2
f 0w08j1

2

lh
2

f 0w08h. ~32!
02402
If there is at least one mode with negative eigenva
s2,0, the solution is unstable. For a colored black hole,
find one unstable mode@15#. We show its eigenvalue in Fig
3. As for the Proca black hole in BD theory, we find a
unstable mode for the solutions in the dotted branch in F
1 and 2. PointsA andB in Fig. 3 correspond to those in Figs
1 and 2. Thus we can confirm that the catastrophe analys
Einstein frame gives consistent results with the linear per
bation analysis.

III. CATASTROPHE VARIABLES IN GENERALIZED
THEORIES OF GRAVITY

Here, we explain how to apply catastrophe theory to bla
hole stability along the same lines as in Ref.@5# and try to
extend it to generalized theories of gravity.

If we consider compact stars, such as a neutron star, b
ing energy plays a role as a natural potential function
catastrophe theory@16#. After the collapse to black holes
much information of the stellar object is lost as is stated
black hole no-hair conjecture. Hence we cannot calcu
binding energy. Kerr-Newman black holes are characteri
by three parameters, which are regarded as hairs. We k
these hairs are stable. However, for exotic black holes wh
have other hairs it is not trivial whether they are stable
not. Actually there are many exotic black holes with unsta
hairs @17#. When we examine their stability by catastrop
theory, we should first determine which variables we ado
This is a nontrivial subject.

We proposed the stability analysis of the black holes
general relativity via catastrophe theory in previous pape
If we use the variables which are related to the first law
black hole thermodynamics, we can obtain appropriate
sults. We briefly explain its relation to catastrophe theory.
describe the potential function of the system byF(s,x),
wheres and x are a control parameter and a state variab
respectively. The equilibrium point of the system is writte
as

FIG. 3. r h-s2 diagram for Proca black holes (m50.15) in BD
theory (v50) and colored black holes for reference. PointA cor-
responds to pointA in Fig. 1.
8-4
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]F~s,x!

]x
50. ~33!

We write x which satisfies this condition asxeq(s). We also
defineFeq(s)ªF@s,xeq(s)#. Then we obtain

dFeq~s!

ds
5S ]F

]s D
eq

1S ]F

]x D
eq

dxeq

ds
5S ]F

]s D
eq

, ~34!

d2Feq~s!

ds2
5S ]2F

]s2 D
eq

1S ]2F

]x]sD
eq

dxeq

ds
. ~35!

Because of the condition thatFeq(s) is an equilibrium point,
we also have

05
d

dsS ]F

]x D
eq

5S ]2F

]x]sD
eq

1S ]2F

]x2 D
eq

dxeq

ds
. ~36!

If we eliminatedxeq /ds from Eq. ~35! by using this equa-
tion, we obtain

d2Feq~s!

ds2
5S ]2F

]s2 D
eq

2S ]2F

]x]sD
eq

2 Y S ]2F

]x2 D
eq

. ~37!

Since the point where stability changes corresponds to
inflection point of the potential function, we have

S ]2F

]x2 D
eq

50.

Then, if

S ]2F

]x]sD
eq

50 ~38!

is not satisfied, we have

d2Feq~s!

ds2
5`. ~39!

In the previous papers, we regard a horizon radiusr h or
equivalently black hole entropyS as a potential functionF
and the gravitational massM as a control parameters. If we
assumethe first law of black hole thermodynamics,dFeq /ds
corresponds todS/dM51/T. Because of Eq.~39!, stability
changes at

d~1/T!

dM
5`. ~40!

We show theM̂ -1/T ~Fig. 4! andM -1/T ~Fig. 5! correspond-
ing to the solutions in Fig. 1. These diagrams also show
stability changes at pointsA andC and suggest that thermo
dynamic variables which satisfy the first law is useful. Sim
lar discussion can be seen in Ref.@18#. Note that there is no
contradiction even if we regardM as a potential function and
02402
e

at

-

S as a control parameter for black holes at present, si
stability change can be characterized bydT/dS5` in this
case and it gives the same result.~You may find it by con-
sidering Fig. 2 and by viewing Fig. 5 upside down.! When
the matter fields have parameters, for example, the mas
the Proca fieldm, they also become other control paramete
We assume that the field strength at horizonBh or the lapse
function at horizondh is a state variable. To verify choosin
Bh or dh as a state variable and the condition~38! are beyond
our scope at present.

Next, we explain the necessary condition forM to be a
potential function. We show a schematic diagram ofM -Bh-S
of the Proca black hole in general relativity in Fig. 6. In th
diagram, the mass of the Proca field, which may be one
the control parameters, is fixed. The extremum of the entr
corresponds to the cusp on theM -S projected plane~see Fig.
1!. When we fix the entropy of the black hole, we expect t
potential curve in Fig. 7. The pointsSandU correspond to a
stable and an unstable solution, respectively. Other po
correspond to the nonequilibrium solution. The potent
curve for eachM forms a so-called Whitney surface. Th
bifurcation set, which is a set of singular points of a cat

FIG. 4. M̂ -1/T diagram for the solutions corresponding
Fig. 1.

FIG. 5. M -1/T diagram for the solutions corresponding
Fig. 1.
8-5
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trophe map, becomes a simple curve on the control pl
M -m. Thus we can interpret this system as a fold catas
phe.

What we consider in this paper is whether catastro
theory is also applicable for the black holes in generaliz
theories of gravity or not, and if it is, what variables a
appropriate for the catastrophe variables. First, we sho
note that there is an ambiguity in which frame do we co
sider. Actually, as we showed in Sec. II, the gravitation

FIG. 6. M -Bh-S diagram for Proca black hole. In this diagram
static solutions are denoted in bold lines.

FIG. 7. Bh-M diagram for Proca black holes, whenm andr h are
fixed.
02402
e
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mass and the area radius depend on the frame in BD the
In the previous section we have got a clue that a c

structure appears and the results obtained by linear pertu
tion analysis exactly coincide with those in catastrop
theory if we choose the variables in the Einstein frame.
cannot say immediately, however, that the variables in
Einstein frame are appropriate for catastrophe theory or
others are, not even if there appears the cusp structure s
it can be always created at any point we like by choos
other inappropriatevariables.

Since the stability of black holes does not depend on
frame, it would be favorable to choose conformally invaria
variables. The second clue is the thermodynamic variab
proposed by Iyer and Wald which satisfy the first law
black hole thermodynamics in generalized theories of gra
@7#. These variables have remarkable properties in that t
are invariant under the field redefinitions@19# and the con-
formal transformation@20#. Hence these variables seem su
able for the analysis by catastrophe theory. Furtherm
these thermodynamic variables coincide with those in
Einstein frame when gravitational theories can be tra
formed to the Einstein-Hilbert action by the conformal tran
formation. Hence we naturally expect that these thermo
namic variables are suitable for catastrophe theory.

In the following section, we show thatM satisfies one of
the important conditions as a potential function by drawi
the local Whitney surface around the static solutio
Thereby we use the linear perturbation analysis. If we fix
entropy, the local minima~maxima! of the thermodynamic
mass correspond to the linearly stable~unstable! solution.
Since we fix the horizon radius in the Einstein frame, whi
is equivalent to fixing entropy, and perturb the fields in line
perturbation analysis, the latter correspondence is easy t
verified. Thus, as a first step to justify the analysis by cat
trophe theory by using the thermodynamic variables in
generalized theories of gravity, we first transform to the E
stein frame and show

m1~`!5:M150, ~41!

s2.0⇔m2~`!5:M2.0. ~42!

These are important conditions to say that the dynam
stability can be judged via catastrophe theory. Similar disc
sion about the gravitational mass is also found in Ref.@21#,
although the relation with catastrophe theory is not poin
out.

IV. LINEAR PERTURBATION AND LOCAL WHITNEY
SURFACE

Here, we show the properties which should be satisfi
for the thermodynamic mass to be a potential function d
cussed in the previous section. As for the metric, we assu
Eq. ~8!. Since we consider in the Einstein frame, the gra
tational part of the action is the ordinary Einstein-Hilbe
action
8-6
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S5E d4xA2gF R

2k2
1LmG . ~43!

The matter actionLm should be considered as the conform
transformed action. We assume the following conditions:~i!
zeroth order variables ofLm are independent ofd. ~ii ! d8
does not depend on the matter fieldw itself explicitly ~it can
depend on the derivative ofw). This means that we includ
a scalar field and a peculiar component of the Yang-M
potential@e.g.,w in Eq. ~4!#. Here we consider a single ma
ter field, it is straightforward to generalize to multifield
cases. TheseAnsätzeseem rather technical, but they cover
large class of models and most of the exotic black hole
lutions in static spherically symmetric space-time discove
previously satisfy theseAnsätze.

We consider the reduced action using the metric fu
tions. Varying the reduced action with respect tod andm, we
obtain

m852
k2

2
r 2Lm , ~44!

d852
k2

2
r 2]mLm , ~45!

where] fª]/] f . As for the matter field equation, we obta

~] ẇL!
˙
1~]w8L!82]wL50, ~46!

whereLªA2gLm . The zeroth order equation becomes

~]w8L!82]wL50. ~47!

Next, we consider the first order equations. From E
~44!, the equation for the first order of the mass functionm1
is

~e2d0m1!852
k2r 2e2d0

2A2g0

~w18]w8L01w1]wL0!,

52
k2

2 sinu
~w1]w8L0!8, ~48!

where we have used Eq.~47!. Using the fact thatm1 is con-
stant at the horizon, the final form is

m152
k2r 2

2
w1]w8Lm . ~49!

By using the fact thatw0 decays faster than 1/r at r→`
because of the asymptotically flatness and the renorm
ability of w1, we obtainM150, i.e., the relation~41!.

From Eq.~45!, the equation for the first order lapse fun
tion d1 is

d1852
k2r 2

2A2g0

~w18]w8]mL01m1]m
2 L0!, ~50!
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where we use assumptions~i! and ~ii !. Using Eqs.~46! and
~47!, the first order equation for the field variablew is

ẅ1] ẇ
2 L01~w18]w8

2 L0!81~]w]w8L0!8w12w1]w
2 L0

1~]m]w8L0!8m11m18]m]w8L01d18]d]w8L0

2m1]m]w8L050. ~51!

Eliminating m1 , m18 , andd18 using Eqs.~48! and ~50!, this
equation becomes

ẅ12
V

~r 2sinu!2
@Vw18#82U~r !w150, ~52!

where

U~r !ª2~] ẇ
2 L0!

21F ~]w]w8L0!82]w
2 L0

2
k2

2 sinu
]m]w8L0~ed0]w8L0!8

2
k4

4 sin2u
e2d0]m

2 L0~]w8L0!
2G , ~53!

Vª]w8
2 L0. ~54!

If we introduce the tortoise coordinate

]/]r *ª
2V

r 2sinu

]

]r
,

Eq. ~52! is written as

ẅ12
1

r 2 S r 2
]2w1

]r * 2 D 2U~r !w150. ~55!

If we put the form of separation of variable as

w15h~r !eist, ~56!

Eq. ~55! becomes

1

r 2 S r 2
]2h

]r * 2D 1Uh52s2h. ~57!

s2 is the eigenvalue.
On the other hand, the second order equation of the m

function m2 is

e2d0~m282d08m2!

52
k2r 2

2

e2d0

A2g
@ uw1u2]w

2 1uw18u
2]w8

2
1uẇ1u2] ẇ

2

1um1u2]m
2 12 Re~w1* w18!]w]w812 Re~w1* m1!]w]m

12 Re~w18* m1!]m]w8#L0. ~58!
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We can integrate this as

@e2d0m2# r h

` 52
k2

2 sinuEr h

`

drH uẇ1u2] ẇ
2 L01uw18u

2]w8
2 L0

1F ]w
2 L02~]w]w8L0!8

1
k2

2 sinu
]m]w8L0~ed0]w8L0!8

1
k4

4 sin2u
e2d0]m

2 L0~]w8L0!
2G uw1u2J . ~59!

Using assumption~ii ! and Eq.~53!, we finally obtain

M252
k2

2 sinuEr h

`

dr@ uẇ1u2] ẇ
2 L01uw18u

2]w8
2 L0

2U~r !uw1u2] ẇ
2 L0#,

5
k2s2

2 E
2`

`

dr* r 2h2. ~60!

The right-hand side is positive definite except for the triv
oneh50. Hence we can satisfy Eq.~42!. Equation~60! says
that when we draw the Whitney surface by using the th
modynamical variables, it becomes ridge~trough! around the
stable~unstable! solutions. The static solution with 0-mod
just coincides with the inflection point~i.e., ]2S/]BH

2 50) of
the Whitney surface. Hence we can obtain important co
spondence between the linear analysis and catastrophe th
by using the thermodynamic variables defined by Iyer a
Wald. It is worth noting that if we perform correspondin
analysis in the action~1!, the gravitational massM̂ in the BD
frame does not satisfy Eqs.~41! and~42!. Thus if we discuss
tt.
s.
i,

rs

-

02402
l

r-

-
ory
d

stability via catastrophe theory in the theory including a s
lar field such as the Brans-Dicke field or the dilaton fie
care should be taken.

V. CONCLUSION

In this paper, we investigated stability analysis of bla
holes via a catastrophe theory and its relation to the anal
by linear perturbation analysis. As a concrete model, we fi
considered the Proca black hole in BD theory and found t
we can analyze stability via catastrophe theory by using
variables in the Einstein frame, which are related to the th
modynamic variables defined in Ref.@7#. We also confirmed
stability by linear perturbation, and it is consistent with t
analysis via catastrophe theory. Based on this observa
we considered black holes with general matter fields
gravitational theories that can be transformed to the Einst
Hilbert action by conformal transformation. We obtained t
result that thermodynamic massdoesplay a potential func-
tion, which suggests that the thermodynamic variables p
important roles in catastrophic analysis. This considerat
will be also helpful to understand the stability of gene
Dp-brane solutions as discussed in Ref.@4#.

Our next task is to refine our discussion and to genera
the result to other gravitational theories. Actually, if we app
catastrophe theory by using thermodynamic variables
fined in Ref.@7# for a string effective action which include
the Gauss-Bonnet term and a dilaton field@22–24#, the re-
sults are consistent with the analysis by linear perturba
@25#. We also have concerns about whether or not gene
ized entropy satisfies the second law of black hole therm
dynamics. Investigating these properties may shed new l
on what the black hole thermodynamics is.
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