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Stability analysis of black holes via a catastrophe theory and black hole thermodynamics
in generalized theories of gravity
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We perform a linear perturbation analysis for black hole solutions with a “massive” Yang-Mills fileé&
Proca field in Brans-Dicke theory and find that the results are quite consistent with those via catastrophe
theory where thermodynamic variables play an intrinsic role. Based on this observation, we show the general
relation between these two methods in generalized theories of gravity which are conformally related to the
Einstein-Hilbert action.
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[. INTRODUCTION portant which variables we choose as catastrophe variables
such as control parameters and a potential funcifn In

Black holes and their thermodynamics are one of the mailgeneral relativity, the mass of the black hole is determined
topics of superstring theory, in particular, following the dis- unambiguously in an asymptotically flat space-time and its
coveries of the microscopic origin of the black hole entropyhorizon radius is related geometrically to the entropy. Hence
[1] and the AdS/conformal field theor§CFT) correspon- we can choose the natural catastrophe variables. In general-
dence[2]. To consider unified theory including gravity, their ized theories of gravity, however, there are some kinds of the
importance may be equal to the blackbody radiation whichmass, and horizon radius may not be related directly to en-
was a clue to developing quantum mechanics. tropy. There may be other variables depending on theories.

Recently, the classical stability pfbranes and its equiva- Hence there are ambiguities for the choice of the catastrophe
lence to local thermodynamic stability has been argued ivariables.
Refs.[3,4]. Here, thermodynamic stable means that the Hes- In Sec. Il, we review a black hole solution in Brans-Dicke
sian of the entropy with respect to the other thermodynami¢BD) theory [10] obtained previously as an exampl&l],
variables are negative definite in the microcanonical enand examine its stability by the linear perturbation analysis
semble. Since this equivalence does not hold for black hole® confirm the expectation obtained by catastrophe theory. In
(e.g., Schwarzschild black holave need another criterion of Sec. lll, we discuss what are the suitable variables for the
black holes. In general relativity, we investigated many blackcatastrophe analysis in generalized theories of gravity. Next,
hole solutions with non-Abelian matter fields in asymptoti-we show that we can obtain the consistent results with the
cally flat space-time and found that stability criterion via linear perturbation analysis by adopting the thermodynamic
catastrophe theory by using thermodynamic variables coinvariables defined in Ref7] as catastrophe variables in Sec.
cides with those of linear perturbati¢g]. A similar discus- IV. This leads to the conjecture that the dynamical stability
sion in AdS space-time can be seen in Ré&fl. lyer and can be judged via catastrophe theory by using thermody-
Wald formulated the black hole thermodynamics in arbitrarynamic variables at least at the linear level. In Sec. V, we offer
diffeomorphism invariant theories of gravify]. In their for-  concluding remarks and discuss future perspectives.
mulation, the black hole entropy is defined as a NoetheiThroughout this paper we use unitss2=G=1.
charge and satisfies the first law of black hole thermodynam-
ics. It remains, however, unclear whether or not it satisfies !l. PROCA BLACK HOLE IN BRANS-DICKE THEORY
the second law, although some examples were shown in Ref. AND ITS LINEAR STABILITY

[8]- We briefly review the Proca black hole in BD theory ob-

an;;ies: \;Vr? dSgggsi?(?p:]eelzi;[;]%r:)I’l))leit\rgvegeer:]!!Ipaelii;g)et;]tg:)?i(’ggoq ined in Ref[11] and perform a linear perturbation analysis
) . : o s an example to obtain the clue to the general case.
gravity which are conformally related to the Einstein-Hilbert P 9

action. In the analysis by using catastrophe theory, it is im- A. Model and basic equations
We consider the BD theory with matter fields;
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wherex?:=817 andI:m is a matter Lagrangian», and ¢ are e 1 s e 9 )
the BD parameter and the BD scalar field, respectively. We —(e’f7w) + (e fw') + —(1-w)w
consider a “SU2)” Proca field (a massive counterpart of the r
Yang-Mills field) as a matter field: _)\ﬁﬂze—ae—&p(lJrW):O’ (10)
1 2 1
L= TrF?— TrA?, 2 BTN - Ny -
" 16mg? 8mg> @ —(e’f 1) +r—2(e ’frie’) +2u’pe ‘e ¢
whereg,. andu are the coupling constant and the mass of the (1+w)?
Proca field, respectivel¥ is the field strength expressed by > Y (13)
its potentialA asF=dA+A/\A. We assume the spherically '
symmetric metric as 5 L
r : .
[ 26¢—1 2 12 25¢—1,,,2 12
- IR o o PO m’' = —(e“°f +f +—| e’f wo+fw
d&?=—F(r,0)e 2 0de2+ F(7,t) “*dr2+12dQ?,  (3) 7! erte™ N2
wheref(r,t)=1—2m(r,t)/r, and the potential of the Proca (1-w?)? _
wheref(r.1 (rt) P H e P, (12)
A=[1+w(r,t)](— 7,d0+ 7,sind ), (4) ; 5
S =— _(6251:72@2_’_@/2)_ 7(625f72w2+W12)1
where 7, and 7, are the generators of @) Lie algebra. 2 gl
We can examine this system also in the Einstein frame by (13
a conformal transformatiog,,= ¢gap, [12]. The equivalent .
action in the Einstein frame is o2 o Aww
m=—f| ¢¢ (14
2 A2r?
R 1
— 4 P 2
S_j d*xv-g o2 2 (Vo)™ +Lml, ) Here, we have omitted the bar on the variables. A prime and
a dot denote the differentiatiorédr andd/dt, respectively.
where Since we will study the stability by the perturbation
analysis, we expand the variables around a static solution as
1 2
Ln=— TrF2— e~ “BeTr A?, 6 fa(r,t)
m 167> 87g? ©) f(rit)="fo(r)+fi(r,t)e+ Tez+ ceel (15
2 1 Variables with the lower index O represent the static solution.
= 20+3 @::EIn - (") The lower indices represent theth order of the perturba-
tions. Then we obtain the perturbation equations order by
With the area radius, the metric becomes order.
ds?=—f(r,t)e 22 0dt2+ f(r,t) “dré+r2dQ?, (8) B. Static solutions

As for the static solution, we require the following bound-

where f(r,)=1-2m(r,)/r. We define dimensionless pa- ary conditions. To satisfy asymptotic flatness, we impose

rameters as
_ Mo() =M, () =¢o(*)=0, Wy(®)=—1.
pmi=plge, Np=rpde. 9 (16)

ry, is the radius of the event horizon. For the numerical calM is the gravitational mass in the Einstein frame. For the
culation, we introduce the following dimensionless variables€Xistence of a regular horizan,, we impose
t:=t/ry,, r:=r/r,, m:=m/r,. Then we obtain the basic ;
. . L _ h
equations in the Einstein frame; Mo(rp) = 5 So(rn) <=, @g(rn)<o. (17)

Yf the Yang-Mills field is massless and when we consider black®o(I'n), ®o(rn), andwy(ry) are determined to satisfy the
hole solutions with the Yang-Mills field under the static and spheri-conditions(16) by integrating the field equations to infinity.
cally symmetricAnsatz we can impose this form without loss of ~ We describe the relation between the variables in the Ein-
generality for the gravitational sector. In the present case, howevegtein frame and those in the BD frame. At the horizon radius,
we can just show that this is consistent with the field equation. it is easily found from Eq(8) as
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rh= V(T (18 _ S

The gravitational mass in the BD fran is defined by the
time-time component of the metri8) as

M :=ﬁ10(oo)+Jim (1 ). (19 <=7

r—o

It satisfies the relation

M=M+Ms, (20)

whereMg is a scalar mass defined by the asymptotic form of
the scalar fielde*#¢0~1+2M/r asr—o.

The static black hole solutions in this system are investi-
gated in detailsee Ref[11]). We summarize some of their
properties which are useful for later discussions.

Let us consider the special casge—, which corre-
sponds to general relativity. In the massless case, i.e., h%ral relativity, stability change may occur at poiAt(the
ordinary Yang-Mills field, there are infinite number of solu- Maximum point offy) or at pointB (the maximum point of
tions called colored black hol¢43], which are classified by M).
the node number of the Yang-Mills potential for fixed If we see theM-r,, diagram in the Einstein framig. 2),
horizon radius. Since the Yang-Mills potential decays fastewe can find cusp structures in both theories. Paimt Fig. 1
than r 1, the colored black holes have no global colorcorresponds to the cusp. Hence we may interpret that the
charge. It is formed by the delicate balance between thsolid branch is stable while the dotted branch is unstable
gravitational force and the gauge force. If we add the massven in BD theory. We should confirm it.
term in the vector field, another type of solutions appears, We discussed in Ref.11] that the nonexistence of the
which is the Schwarzschild counterpart in the massless limitcusp structure in the BD frame is due to the fact that the

Hence i.t is considered as the structyre of the self-gravitatingariablesv andfh are inappropriate to the catastrophe vari-
Proca field around the Schwarzschild black hole. The soluables. Since stability should be independent of the frame one
tion with large node number and/or the large horizon radiughooses, it is natural to choose frame independent variables

disappears. We concentrate on the solutions with one nodgs catastrophe variables. We develop this idea in the follow-
for matters of convenience, where Schwarzschild type soluing sections.

tion is stable and the colored black hole type has one un-
stable mode against the linear perturbafitd.

For the finite value ofv, we also find two types of solu-
tions. Without the mass term, the matter Lagrangean is in- We perform a linear perturbation analysis to clarify
variant under the conformal transformation in 4-dimensionwhether stability judgement by catastrophe theory in the Ein-
So the colored black hole solution is the same as one istein frame is correct or not.
general relativity. We show the relation between the gravita- By defining the new variablé,:=r ¢; and substituting,

tional massM and the horizon radius, in the BD frame in _ iot

Fig. 1. There is no black hole solution above the critical Ya(r.)=&re, (21)
horizon radiugwhich corresponds to poi#tin Fig. 1), since 08
the nontrivial structure of the Proca field which spreads out ) ' ' ' ' '
to the Compton wavelength~1/u) is swallowed into the 0.75
horizon as the black hole becomes large, resulting in a 07
Schwarzschild space-time.

We can find the cusp structure at the pdatiin general 0.65
relativity, which is a symptom of stability change in the ca- L= 06
tastrophe theoretical point of view. We can infer from the
entropy consideration that the solutions in the branch showr
by the solid line are stable and those in the dotted branch ar 0.5
unstablg5]. On the contrary, the cusp structure disappears in
BD theory. If we consider the analogy with the case in gen-

FIG. 1. M-r,, diagram in the BD frame. The mass of the Proca
field is u=0.15.m, and the BD parameter is=0.

C. Linear perturbation analysis

0.55

0.45

0.4

0.86 0.88 0.9 0.92 0.94 0.96 0.98

°For the gravitational mass in the Einstein frame, there is no such
ambiguity becaused, in the Einstein frame decays faster than  FIG. 2. M-r}, diagram in the Einstein frame corresponding to the
~1Ir. solutions in Fig. 1.
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wi(r,t)=n(r)e', (22)

my(r,t)=¢(r)e'", (23)

ool o

where we have used the tortoise coordindtedefined by

we find the eigenequation

2
d (é)_ez%fo
dr*2\n

Uipn U
Ui U

dr
dr*

=g~ %f, (25)

The components of the potential matrix are

1 2mg  2m
Ull:_F fodo+ TO——O +2u’Be Ao
r
(1+ Wo)?
———(B—rpy) — fOCPo, (26)
4(1-wW3)Woeh 14w
= —Ante ——(B
Npr
- tow (27)
_r(P - T 5 W 7
0 2)\% ovWo
1+wg|2
Up=—p®BeFeo O[F(:H'WO)WE)“‘)\%
A !
4wg| Wo(1-wp)
- | 7 —Beo
22 ; e pe” P#o(1+wo)
1-3w5 ., , peg 2 ,
- >— t\jue  Fro— — Afgwy, (29
r Ap
where
1 12 4W62 2 Ions! Wé "
A=wp| @t 2 SoWo wo |, (30
’ 12
ror %o ” ’ ’ 4WO
B‘=2(50€00_T_€00 'H‘Po( e’ + Azrz) (31
h
{ is obtained by the linear combination gfand ¢ as
r ! 2 !
= E%‘Pof"‘ Pfowoﬁ- (32

h
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FIG. 3. r-0 diagram for Proca black holes:&0.15) in BD
theory (w=0) and colored black holes for reference. Pa\ntor-
responds to poinA in Fig. 1.

If there is at least one mode with negative eigenvalue
%<0, the solution is unstable. For a colored black hole, we
find one unstable modd.5]. We show its eigenvalue in Fig.

3. As for the Proca black hole in BD theory, we find an
unstable mode for the solutions in the dotted branch in Figs.
1 and 2. Point#\ andB in Fig. 3 correspond to those in Figs.

1 and 2. Thus we can confirm that the catastrophe analysis in
Einstein frame gives consistent results with the linear pertur-
bation analysis.

Ill. CATASTROPHE VARIABLES IN GENERALIZED
THEORIES OF GRAVITY

Here, we explain how to apply catastrophe theory to black
hole stability along the same lines as in Ré] and try to
extend it to generalized theories of gravity.

If we consider compact stars, such as a neutron star, bind-
ing energy plays a role as a natural potential function of
catastrophe theorj16]. After the collapse to black holes,
much information of the stellar object is lost as is stated in
black hole no-hair conjecture. Hence we cannot calculate
binding energy. Kerr-Newman black holes are characterized
by three parameters, which are regarded as hairs. We know
these hairs are stable. However, for exotic black holes which
have other hairs it is not trivial whether they are stable or
not. Actually there are many exotic black holes with unstable
hairs[17]. When we examine their stability by catastrophe
theory, we should first determine which variables we adopt.
This is a nontrivial subject.

We proposed the stability analysis of the black holes in
general relativity via catastrophe theory in previous papers.
If we use the variables which are related to the first law of
black hole thermodynamics, we can obtain appropriate re-
sults. We briefly explain its relation to catastrophe theory. We
describe the potential function of the system Bys,x),
wheres andx are a control parameter and a state variable,
respectively. The equilibrium point of the system is written
as

024028-4
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IF(s,X) o

X (33

We write x which satisfies this condition ag(s). We also
defineFqy(s) :==F[s,Xeq(S)]. Then we obtain

dFeq(s) [dF JF\  dXeq
= | — + | — =
ds Js X ds

e eq

d?Feq(s) [ 9°F (aZF) dXeq

— = —] + .

d<? 952 IXJS ds
eq €q

Because of the condition th&t,(s) is an equilibrium point,
we also have

d (dF J°F PF|  dXeq
O:d_s x|\ axas o2 ds
eq eq \ X/
If we eliminatedx.q/ds from Eq. (35) by using this equa-

tion, we obtain

d?Feq(s) [ 0°F PPF \? PF

¢=( _( —| . @D
e €q 2 eq

JF
Js

) . (39
eq

(39

(36)

IXJS

ds? 982

9s?
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FIG. 4. M-1/T diagram for the solutions corresponding to
Fig. 1.

S as a control parameter for black holes at present, since
stability change can be characterized dy/dS=< in this
case and it gives the same resgfou may find it by con-
sidering Fig. 2 and by viewing Fig. 5 upside dowkVhen

the matter fields have parameters, for example, the mass of
the Proca fielgu, they also become other control parameters.
We assume that the field strength at hori&or the lapse

Since the point where stability changes corresponds to thiinction at horizons, is a state variable. To verify choosing

inflection point of the potential function, we have

JP°F o
NG
e

q

Then, if
F =0 38
axds| B (38)
is not satisfied, we have
d?F (s
ds?

In the previous papers, we regard a horizon radiusr
equivalently black hole entropg as a potential functior
and the gravitational madd as a control parametear If we
assumehe first law of black hole thermodynamiaf-¢,/ds
corresponds t@S'dM=1/T. Because of Eq(39), stability
changes at

dMm

daam o)

We show theM-1/T (Fig. 4 andM-1/T (Fig. 5 correspond-

B}, or &, as a state variable and the conditi@8) are beyond
our scope at present.

Next, we explain the necessary condition fdrto be a
potential function. We show a schematic diagranMoB,-S
of the Proca black hole in general relativity in Fig. 6. In this
diagram, the mass of the Proca field, which may be one of
the control parameters, is fixed. The extremum of the entropy
corresponds to the cusp on the'S projected planésee Fig.
1). When we fix the entropy of the black hole, we expect the
potential curve in Fig. 7. The poin&andU correspond to a
stable and an unstable solution, respectively. Other points
correspond to the nonequilibrium solution. The potential
curve for eachM forms a so-called Whitney surface. The
bifurcation set, which is a set of singular points of a catas-

ing to the solutions in Fig. 1. These diagrams also show that
stability changes at pointd and C and suggest that thermo-
dynamic variables which satisfy the first law is useful. Simi-
lar discussion can be seen in REI8]. Note that there is no

024028-5
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S mass and the area radius depend on the frame in BD theory.

In the previous section we have got a clue that a cusp
structure appears and the results obtained by linear perturba-
tion analysis exactly coincide with those in catastrophe
theory if we choose the variables in the Einstein frame. We
cannot say immediately, however, that the variables in the
Einstein frame are appropriate for catastrophe theory or the
others are, not even if there appears the cusp structure since
it can be always created at any point we like by choosing
otherinappropriatevariables.

Since the stability of black holes does not depend on the
frame, it would be favorable to choose conformally invariant
variables. The second clue is the thermodynamic variables
proposed by lyer and Wald which satisfy the first law of
black hole thermodynamics in generalized theories of gravity
[7]. These variables have remarkable properties in that they
are invariant under the field redefinitioht9] and the con-
formal transformation20]. Hence these variables seem suit-
able for the analysis by catastrophe theory. Furthermore,
these thermodynamic variables coincide with those in the
Einstein frame when gravitational theories can be trans-

S=const. plane formed to the Einstein-Hilbert action by the conformal trans-
formation. Hence we naturally expect that these thermody-

FIG. 6. M-B;-S diagram for Proca black hole. In this diagram, namic variables are suitable for catastrophe theory.
static solutions are denoted in bold lines. In the following section, we show thall satisfies one of

) the important conditions as a potential function by drawing
trophe map, becomes a simple curve on the control plangs |oca) Whitney surface around the static solutions.
M-p. Thus we can interpret this system as a fold catastroTherepy we use the linear perturbation analysis. If we fix the
phe. o _ entropy, the local minimdmaxima of the thermodynamic

What we consider in this paper is whether catastrophe,ass correspond to the linearly stalflenstablé solution.
theory is also applicable for the black holes in generalizedsjnce e fix the horizon radius in the Einstein frame, which
theories of gravity or not, and if it is, what variables are s equivalent to fixing entropy, and perturb the fields in linear
appropriate for the catastrophe variables. First, we shouleyrhation analysis, the latter correspondence is easy to be
note that there is an ambiguity in which frame do we COn-grified. Thus, as a first step to justify the analysis by catas-
sider. Actually, as we showed in Sec. I, the grawtatlonaltrophe theory by using the thermodynamic variables in the
generalized theories of gravity, we first transform to the Ein-
stein frame and show

By

M

#

my()=:M;=0, (41)
0?>0emy(®)=:M,>0. (42

These are important conditions to say that the dynamical
stability can be judged via catastrophe theory. Similar discus-
sion about the gravitational mass is also found in Ref],
although the relation with catastrophe theory is not pointed
out.

U IV. LINEAR PERTURBATION AND LOCAL WHITNEY
SURFACE

Here, we show the properties which should be satisfied
for the thermodynamic mass to be a potential function dis-
| 5’: cussed in the previous section. As for the metric, we assume
Eq. (8). Since we consider in the Einstein frame, the gravi-
FIG. 7. B,-M diagram for Proca black holes, whagnandr, are  tational part of the action is the ordinary Einstein-Hilbert
fixed. action

024028-6
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where we use assumptiofig and (ii). Using Egs.(46) and
. (43 (47), the first order equation for the field variableis

S=J d*xV—g

R

N 2 ’ a2 ’ ’ 2
) ] W10 Lo+ (Wyd  Lo)' + (dwdw Lo) Wi—wq5L
The matter actior. ,, should be considered as the conformal Hwo w0 wowrmen T w0

transformed action. We assume the following conditigns: + (ImdwrLo) M1+ M]dmdy: Lot 810 50w Lo
zeroth order variables df,,, are independent ob. (ii) &’
does not depend on the matter fieldtself explicitly (it can —MyIymdyLo=0. (51

depend on the derivative of). This means that we include
a scalar field and a peculiar component of the Yang-Mills .
potential[e.g.,w in Eq. (4)]. Here we consider a single mat- €duation becomes
ter field, it is straightforward to generalize to multifields

Eliminating m;, m;, and §; using Eqgs.(48) and (50), this

cases. ThesAnsaze seem rather technical, but they cover a Wy — L[VW/]' —U(r)w;=0 (52)
large class of models and most of the exotic black hole so- (r?sing)? ! ’

lutions in static spherically symmetric space-time discovered

previously satisfy thesAnsaze where

We consider the reduced action using the metric func-

tions. Varying the reduced action with respecttandm, we

2, (- ,
U(r)=—(3:Lo) | (dwdwrLo) —d5Lo

obtain
K2 K2
m' =— ?I’ZLm, (44) - mamﬁw'l—o(e%ﬁw'l—o)/
K2 ) 250 92 2
8'=——=1%Iplm, 45 — —— €709 Lo(dwLo) 7|, (53
2 | Omem 49 4sitg OO
whered;:=d/of. As for the matter field equation, we obtain V==f?3vr|—o- (54)
(aV'VL)- + (4, L) —4,L=0, (46) If we introduce the tortoise coordinate
wherelL:=+—gL,,. The zeroth order equation becomes - -V 9
alor™ = —
2ai !
(3yrL) — 3L =0. (47) rsing or
Next, we consider the first order equations. From Eq.Eq' (52) is written as
(44), the equation for the first order of the mass function 1 2w
is o |22 L) _
Wy r2<r ar*z) U(r)w;=0. (55
k?r?e” %
(e %m,)" = — ——— (W} Lot W1d,Lo), If we put the form of separation of variable as
2\ - 0 )
wy=7(r)e'", (56)
K2
=— m(wlﬁw'Lo) ", (48 Eq. (55) becomes
. . 1 92
where we have.used ECM). Using t_he fact tham, is con- 2 7 +Uzp=—o2y. (57)
stant at the horizon, the final form is r2 gr*2
K2r? a? is the eigenvalue.
mp=— _Wl(?wrl_m . (49) i
2 On the other hand, the second order equation of the mass

functionm, is
By using the fact thatv, decays faster than rl/at r—o s
because of the asymptotically flatness and the renormali£ “°(Mz— doMy)
ability of w,, we obtainM =0, i.e., the relatior(41).

- ’ 2,2 4=
From Eq.(45), the equation for the first order lapse func- _ KT w292 + 1w/ 1202 + lw 1252
tion 51 is 2 \/_—g“ 1| w | 1| w’ | 1| w
2r2 , +]my| 202+ 2 REWE W)) iy + 2 REWE M) 0yydim
81= — ——=—=(W1dys ImLot myd;Lo), (50)
! 2\/—90( Lm0 T Mo +2 REW,* My) e TLo- (58)

024028-7



TAMAKI, TORII, AND MAEDA PHYSICAL REVIEW D 68, 024028 (2003

We can integrate this as stability via catastrophe theory in the theory including a sca-
lar field such as the Brans-Dicke field or the dilaton field,

2 care should be taken.

_ 0 K * . 2 2
[e 5Om2]rh: - 2 sinﬁf dr[ |W1|2(9wl_0+ |Wi|2&W’LO
Th V. CONCLUSION

5 ) In this paper, we investigated stability analysis of black
Iwko= (dwdwLo) holes via a catastrophe theory and its relation to the analysis
by linear perturbation analysis. As a concrete model, we first
2 considered the Proca black hole in BD theory and found that
+ mﬁmaW,Lo(e‘soaw,Lo)’ we can ar_1alyze s_tabili_ty via catast_rophe theory by using the
variables in the Einstein frame, which are related to the ther-
modynamic variables defined in R¢7]. We also confirmed
|W1|2]- (59)  stability by linear perturbation, and it is consistent with the
analysis via catastrophe theory. Based on this observation,
we considered black holes with general matter fields in
Using assumptiofiii) and Eq.(53), we finally obtain gravitational theories that can be transformed to the Einstein-
2 Hilbert action by conformal transformation. We obtained the
_ ” 1242 122 result that thermodynamic mas®eesplay a potential func-
Mo=—3 sinaf, dr{jw[*d Lo+ [wal*dy Lo tion, which suggests that the thermodynamic variables play
important roles in catastrophic analysis. This consideration
—U(r)|w1|2c73VL0], will be also helpful to understand the stability of general
Dp-brane solutions as discussed in Héf.
_ r2 2 Our next task is to refine our discussion and to generalize
) %dr remn. (60) the result to other gravitational theories. Actually, if we apply
catastrophe theory by using thermodynamic variables de-
The right-hand side is positive definite except for the trivialfined in Ref.[7] for a string effective action which includes
one»=0. Hence we can satisfy E¢2). Equation(60) says the Gauss-Bonnet term and a dilaton figk2—24, the re-
that when we draw the Whitney surface by using the thersults are consistent with the analysis by linear perturbation
modynamical variables, it becomes rid@geugh around the [25]. We also have concerns about whether or not general-
stable(unstablé solutions. The static solution with 0-mode ized entropy satisfies the second law of black hole thermo-
just coincides with the inflection poirite., 92S/9B%=0) of ~ dynamics. Investigating these properties may shed new light
the Whitney surface. Hence we can obtain important correon what the black hole thermodynamics is.
spondence between the linear analysis and catastrophe theory
by using the thermodynamic variables defined by lyer and ACKNOWLEDGMENTS
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