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Radionic nonuniform black strings

Takashi Tamaki,* Sugumi Kanno,† and Jiro Soda‡
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Nonuniform black strings in the two-brane system are investigated using the effective action approach. It is
shown that the radion acts as a nontrivial hair of the black strings. From the brane point of view, the black
string appears as the deformed dilatonic black hole which becomes a dilatonic black hole in the single brane
limit and reduces to the Reissner-Nordstro¨m black hole in the close limit of two-branes. The stability of
solutions is demonstrated using catastrophe theory. From the bulk point of view, the black strings are proved
to be nonuniform. Nevertheless, the zeroth law of black hole thermodynamics still holds.
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I. INTRODUCTION

Recent progress in superstring theory has suggested
possibility that we reside on a hypersurface in high
dimensional space-time@1#. This so-called brane world sce
nario has rapidly become popular since Randall and S
drum proposed simple models in which we live on a bra
embedded in AdS5 space-time@2#. There are two types o
Randall-Sundrum~RS! scenarios. In the first RS mode
~RS1!, the two flat branes are embedded in AdS5 space-time
to solve the hierarchy problem. In the second RS mo
~RS2!, one positive tension brane is embedded in Ad5
space-time.

The cosmology and black holes in RS models have b
investigated actively@3–10#. The common issue is to unde
stand the effects of the bulk geometry on the brane wo
The radion and Kaluza-Klein modes are key ingredients
this aim. Here, it should be noted that most of the import
phenomena occur at low energies or the low-curvature
gime. At low energies, the radion would dominate the effe
of the extra dimension. In the case of the RS2 model, h
ever, the radion does not exist. Hence, except for a sm
contribution from the Kaluza-Klein modes, the convention
Einstein theory is recovered at low energies in the R
model. On the other hand, in the case of the RS1 model,
existence of the radion is crucial. Recently, we have de
oped a systematic method to study a brane world at
energies using the gradient expansion method@11#. In par-
ticular, we have shown that gravity in the RS1 model can
described by a four-dimensional scalar-tensor theory and
information of the bulk can be reconstructed through ho
grams. The cosmology has been investigated using this
proach and found to be an interesting scenario@12#. As our
method is quite general, it is also applicable to black h
physics.

In conventional general relativity, the Schwarzschild s
lution is the simplest stable black hole solution, while
superstring theory dilatonic black holes have been found
Gibbons and Maeda and independently by Garfinkle, Ho
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witz, and Strominger~GM-GHS! @13#. Interestingly, dila-
tonic black holes are stable in the same sense as a Schw
child black hole@14#. In this sense, these are realistic bla
holes in superstring theory. Let us go back to the bra
world. The conventional Schwarzschild black hole can
realized as a section of the uniform black string. Howev
this is not a unique possibility. The black hole can be loc
ized on the brane, although it may not appear as an e
Schwarzschild black hole. Still, to find all of the stable bla
holes in the brane world is an open issue. From the str
theoretic point of view, it is also desirable to find GM-GHS
like solutions in the brane world scenario. Unfortunately,
exact black string solution is known in this case. Therefore
is interesting to seek black strings corresponding to G
GHS black holes in RS models.

In the RS2 model, it is argued that the black hole sho
be localized on the brane because of ‘‘Gregory-Laflamm
instability of the black string@15#. These localized black
holes have been investigated intensively@4–9#. On the other
hand, in the RS1 model, the black string exists without s
fering from the Gregory-Laflamme instability if the distanc
between two branes is less than the radius of the black
on the brane. In the opposite condition, Gregory-Laflam
instability commences. Intriguingly, since the dynamics
the radion controls the length of the black string, it can tr
ger the transition from the stable to unstable black string
is argued that the fate of the unstable black string is either
localized black hole or the nonuniform black string@16–18#.
Clearly, the first step to this direction is to understand
role of the radion in the black strings. Although numeric
analysis is practical to attack this issue, the effort must
made toward the analytic understanding of the phenome

The purpose of this paper is to present a semianal
approach to investigate black strings in the RS1 model.
investigate the black strings corresponding to GM-GH
black holes on the brane using the proposed method. In
ticular, the role of the radion in the nonuniform black strin
is explored.

This paper is organized as follows. In Sec. II, we brie
review our effective action approach. In Sec. III, we descr
basic equations for the numerical analysis. In Sec. IV,
describe our solution from the four-dimensional point
view with an emphasis on the role of the radion. In Sec.
©2004 The American Physical Society10-1
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TAMAKI, KANNO, AND SODA PHYSICAL REVIEW D 69, 024010 ~2004!
we view our solution from the bulk. In Sec. VI, we summ
rize our results.

II. EFFECTIVE ACTION APPROACH

We begin by reviewing the low-energy effective actio
derived in previous papers@11,19#. We consider anS1 /Z2
orbifold space-time with the two branes as the fixed poin
In the RS1 model, the positive (% ) and negative (*) tension
branes are embedded in AdS5 with curvature radius,. Our
system is described by the action

S5
1

2k̃2E d5xA2gS R1
12

,2D 2 (
i 5 % ,*

s iE d4xA2gi -brane

1 (
i 5 % ,*

E d4xA2gi -braneLmatter
i , ~1!

whereR, gmn
i -brane, s i , andk̃2 are the five-dimensional scala

curvature, the induced metric on thei-brane, the tension on
the i-brane, and the five-dimensional gravitational consta
respectively. Here, we assume the relationss % 56/(k̃2,)
ands*526/(k̃2,).

For general nonflat branes, we cannot keep both the
branes straight in the Gaussian normal coordinate sys
Hence, we use the following coordinate system to desc
the geometry of the brane model:

ds25e2h(xm)dy21gmn~y,xm!dxmdxn. ~2!

We place the branes aty50 (% -brane! andy5, (*-brane!
in this coordinate system. In this coordinate system,
proper distance between two branes with fixedxm is repre-
sented as

d~xm!5E
0

,

eh(xm)dy. ~3!

Hence, we callh the radion.
The strategy we take in this paper is the following. Let

start with the variation of the action

dS@gmn ,hmn
i #5

dS

dgmn
dgmn1 (

i 5 % ,*

dS

dhmn
i

dhmn
i 50. ~4!

The variation with respect togmn gives the bulk Einstein
equations and the variation with respect tohmn yields the
junction conditions. First, we solve the bulk equations
motion with hmn

i fixed; then, we get the relation

gmn5gmn@hmn
i #. ~5!

Substituting Eq.~5! into junction conditions, we get the four
dimensional effective equations of motion for the induc
metric hmn

i . Or, by substituting Eq.~5! into the action, we
obtain four-dimensional effective action

Seff5S@gmn@hmn
i #,hmn

i #. ~6!
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From Eq. ~6!, the four-dimensional effective equations
motion can be reproduced.

Of course, we must resort to some approximation meth
to solve bulk equations of motion. As the usual phenome
occur at low energies

r i

us i u
;

k̃2r i

k̃2us i u
;S ,

L D 2

!1, ~7!

whereL denotes the characteristic length scale of the cur
ture on the brane, we can employ the gradient expans
method@20#. We seek the metric as a perturbative series w
the number of derivatives increasing with the order
iteration—that is,O„(,/L)2n

…, n50,1,2, . . . —as

gmn~y,xm!5b2~y,x!@hmn~xm!1gmn
(1)~y,xm!1•••#, ~8!

b~y,x!5exp~2yeh/, !, ~9!

where we put the Dirichlet boundary conditiongmn(y
50,x)5hmn(x) at the% -brane. Substituting Eq.~8! into the
bulk Einstein equations, we can obtain the relation~5! per-
turbatively. The first order correction is given by

gmn
(1)52

,2

2 F S 1

b2
21D S Rmn2

1

6
hmnRD

2S 1

b2
212

2yeh

,

1

b2D S h umn1
hmn

2
h uah uaD

1
2y2e2h

,2b2 S h umh un2
hmn

2
h uah uaD1S 1

b4
21D xmnG ,

~10!

where

xm
n52

k2~12C!

2C
$T% m

n1~12C!T*m
n%

2
1

2C F ~C um
un2dn

mC ua
ua!

1
3

2~12C! S C umC un2
1

2
dn

mC uaC uaD G ~11!

is nothing but the projected Weyl tensorEmn @21#. Here,k2

ªk̃2/, and

Cª12exp~22eh! ~12!

is defined for convenience. We also callC the radion. The
junction condition gives the effective equations of moti
from which the action for the% -brane can be read off as

S% 5
1

2k2E d4xA2hFCR~h!2
3

2~12C!
C uaC uaG

1E d4xA2hL % 1E d4xA2h~12C!2L *.

~13!
0-2
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If we can obtain a solution for this system~13!, the bulk
metric corresponding to the 4-dimensional effective theor
given by

gmn5~12C!y/,@hmn~x!1gmn
(1)~hmn ,C,Tmn

% ,Tmn
* ,y!#,

~14!

which corresponds to Eq.~5!. Thus the bulk metric is com
pletely determined by the energy-momentum tensors on b
branes, the radion and the induced metric on the% -brane.
Therefore, once the four-dimensional solution of the qua
scalar-tensor gravity is given, one can reconstruct the b
geometry from these data. The quasi-scalar-tensor gra
~13! works as holograms at the low energy.

Using the low-energy expansion scheme, in principle,
can calculate the higher-order corrections and perform
holographic reconstruction of the bulk metric. In the low
energy regime which is our main concern, however, th
corrections do not change our qualitative conclusion.

III. BASIC EQUATIONS FOR NUMERICAL ANALYSIS

Below, we consider a dilaton field coupled to the elect
magnetic field on the% -brane since it appears in the com
pactification process. Then, we have

S% 5
1

2k2E d4xA2hFCR~h!2
3

2~12C!
C uaC uaG

2E d4xA2hF1

2
f uaf ua1

1

4
e22afFmnFmnG , ~15!

wheref anda are a dilaton field and its coupling constan
respectively. Since our theory is a scalar-tensor-type the
we call this original action the Jordan-frame effective actio
In order to discuss the property of the radion, it is sometim
convenient to move to the Einstein frame in which the act
takes the canonical Einstein-scalar form. Applying a conf
mal transformationhmn5(1/C)qmn and introducing a new
field

c52A 3

2k2
logUA12C21

A12C11
U , ~16!

we obtain the Einstein-frame effective action

S% 5E d4xA2qF 1

2k2
R~q!2

1

2
~¹c!2

2
1

2 S cosh2
k

A6
c D ~¹f!22

1

4
e22afF2G , ~17!

where¹ denotes the covariant derivative with respect to
metric qmn . We also callc the radion. We take this actio
and consider the static and spherically symmetric metric

ds252 f ~r !e22d(r )dt21 f ~r !21dr21r 2dV2, ~18!
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where f (r )ª12k2m(r )/4pr . We construct a black hole on
the brane and construct a black string using holograms~14!.
We choose a vector potentialAm as

Am5~0,0,0,Qmcosu!, ~19!

whereQm is a magnetic charge. If we also consider an el
tric charge, our system has an electric-magnetic dualityF

→e22afF̃, f→2f, whereF̃ is the Hodge dual ofF. Hence
we can easily obtain the results for the electrically charg
case. Our basic equations are

m854pS r 2

2
f U1

Qm
2 e22af

2r 2 D , ~20!

d852
k2

2
rU , ~21!

f952
2k

A6
c8f8tanhS k

A6
c D

2
1

f F f8V1
ae22afQm

2

r 4cosh2S k

A6
c D G , ~22!

c952
c8V

f
1

k

A6
~f8!2coshS k

A6
c D sinhS k

A6
c D ,

~23!

where the prime denotes the derivative with respect tor and

Uª~c8!21S cosh2
k

A6
c D ~f8!2, ~24!

Vª
2

r
2

k2m

4pr 2
2

k2Qm
2

2r 3
e22af. ~25!

We assume the existence of a regular event horizonr
5r H . So we have

mH5
4pr H

k2
, dH , fH , cH,`, cH8 50, ~26!

fH8 52
ae22afHQm

2

VHr H
4 cosh2S k

A6
cHD . ~27!

The variables with subscriptH are evaluated at the horizon
The boundary conditions at spatial infinity to guarant
asymptotic flatness are
0-3
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TAMAKI, KANNO, AND SODA PHYSICAL REVIEW D 69, 024010 ~2004!
m~`!5:M5const, d~`!50,

f~`!50, c~`!5:c`5const, ~28!

where M corresponds to a gravitational mass of the bla
hole. We will obtain the black hole solutions numerically b
solving Eqs.~20!–~23! iteratively with boundary conditions
~26!, ~27!, and~28!.

IV. VIEW FROM THE BRANE

The radion is affected by the matter on the brane a
varies depending on the place on the brane. The other
around, the configuration of matter is affected by the radi
Hence, the radion must play an important role in the sys
of black string. As to the GM-GHS black holes, their stab
ity is already known. It would be interesting to investigate
the radion destroys the stability or not.

A. Radion as a hair

If we include the moduli fields, the first law of black ho
thermodynamics has the term depending on the scalar ch
@22#. A contribution from both the dilaton field and radio
field can be expected. We shall examine it starting from
action~17!. Here, we consider the spherically symmetric a
magnetically charged cases for simplicity. We denote
time translational Killing vector askª]/]t and the null vec-
tor orthogonal to the event horizonH asnm which is normal-
ized as

nmkm521. ~29!

We represent the volume element and the surface eleme
dsm anddSmn , respectively. Then, the gravitational massM
and the ‘‘magnetic charge’’Qm can be defined as

Mª

21

4p È km;ndSmn , ~30!

Qmª2 È e22afFmndSmn . ~31!

We can obtain the mass formula using the standard pr
dure @23# as

M5
1

k2E FR2~¹c!22cosh2S k

A6
c D ~¹f!2

2
1

2
e22afF2Gkmdsm1

TH

2
A12FHQH , ~32!

whereTH , FH , andQH are the Hawking temperature, th
magnetic potential at the horizon, and the ‘‘magnetic char
at the horizon, respectively. Taking the variation of this eq
tion, we obtain the first law of black hole thermodynamic

dM5TH

dA

4
1FHdQH2Sdc, ~33!
02401
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where we defined the radionic chargeS as

Sª2 È c ;mkadSam . ~34!

This formula shows that the dilatonic charge cannot b
true hair, because it is absorbed into the definition of
‘‘magnetic charge’’@24#. However, the radion field is a hai
of black strings. To derive Eq.~33!, we used the property tha
c asymptotically behaves asO(1/r ) which can be confirmed
by asymptotic analysis of Eqs.~20!–~23!. We can prove that
c (C) is a monotonically increasing~decreasing! function
of r from Eq.~23!. In Fig. 1, as an example,C for a solution
āªA2a/k5A3, C`ªC(`)50.25, and the horizon radiu
lHªA2r H /kQm50.119 is depicted@25#.

B. Stability of the black string

First, we summarize the relation betweenC ~or c) andd
using Eqs.~12! and ~16! in Table I. C (c) is a monotoni-
cally increasing~decreasing! function with respect tod.

In the single brane limitc→0, the effect of the radion
ceases. Hence, the solution approaches the GM-GHS s
tion. In the close limitc→`, we havef(r )50 from Eqs.
~22! and~27!. Thus, only Reissner-Nordstro¨m ~RN! solutions
are possible in this limit because of the no-hair theorem@26#.
Therefore, we expect that the nontrivial radion (cÞ0,̀ ) in-

FIG. 1. The behavior ofC for C`50.25, lH50.119, andā
5A3.

TABLE I. Relation between variables.

Close limit Single brane limit

d 0 → `

c ` → 0
C 0 → 1
0-4
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RADIONIC NONUNIFORM BLACK STRINGS PHYSICAL REVIEW D69, 024010 ~2004!
terpolates RN and GM-GHS solutions.
As an illustration, we show the relation between the ho

zon radius lH and the gravitational mass M̄
ªkM /4pA2Qm in Fig. 2. In fact, in the single brane limit
the solution approaches GM-GHS and the effect of the d
ton field fades away in the close limit.

We also notice that solutions exist untillH→0 except for
the RN solution. This suggests that there is no inner horiz
Indeed, we can prove it. First, rewrite Eq.~22! as

F f r 2e2dcosh2S k

A6
c D f8G 85

a

r 2
e22afe2dQm

2 . ~35!

It follows that Dª f r 2e2dcosh2@(k/A6)c#f8 monotonically
increases withr for a.0. Hence,D,0 holds inside the
horizon and thenf cannot become 0, which implies that the
is no inner horizon. Thus, the causal structure is the sam
that of Schwarzschild black hole. This suggests that our
lutions are as stable as the GM-GHS solutions@14#.

We can also argue stability of our solutions using cat
trophe theory. In Fig. 3, the relation between the inve
temperature 1/T̄Hª(1/TH)/(kQm/2) and M̄ is plotted. Ac-
cording to catastrophe theory, the stability changes
d(1/TH)/dM5` @27–30# ~see the Appendix!. Since we can-
not find the pointd(1/TH)/dM5` in the graph for various
parameters, our solutions are stable in the catastrophic s

Finally, let us interpret a feature seen in Fig. 3. Seeing
relation betweenM̄ andCH for fixed C` in Fig. 4, we find
thatCH varies from a small value to 1 by reducing the ma
Thus, the separation between branes at the horizon is s
for large mass; hence, the solution mimics the RN bla
hole. By reducing the mass, the separation goes to the in
ity. Thus,TH eventually diverges like the GM-GHS solutio
as seen in Fig. 3.

FIG. 2. The relation between the horizon radiuslH and the

gravitational massM̄ for ā5A3.
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V. VIEW FROM THE BULK

Our interest here is they dependence of the horizon whic
had not been investigated so far in the RS1 model. The
logram~14! can be used to see the shape of the black strin
The differences from the previous papers@16–18# are that
the matter is confined on the% -brane and the branes ar
deformed by black strings. These differences will affect t
shape of the horizon. Indeed, we will see that the bla
strings are nonuniform.

To see the nonuniformity of the horizon, let us investiga
the change of the circumference radius alongy direction. The
procedure to obtain a circumference radius of the horizo
summarized as follows:~i! Seek for the radiusr 5r 1(y)

FIG. 3. M̄ -1/T̄H for ā5A3.

FIG. 4. M̄ -CH for ā5A3.
0-5
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TAMAKI, KANNO, AND SODA PHYSICAL REVIEW D 69, 024010 ~2004!
which satisfiesh001g00
(1)50 ~or equivalentlyh111g11

(1)5`
as we denote below!. ~ii ! Evaluate the circumference radiu
in the Einstein frame as

RHªAr 1
2 1C~r 1!g22

(1)~r 1!. ~36!

Note that we subtracted the effect of the AdS background
the above expression@see Eq.~14!#.

First, let us findr 1(y). Writing g00
(1)5:h00f 0(r ,y) and

g11
(1)5:h11f 1(r ,y) and using Eq.~10!, we can verify thatf 0

5 f 1 and they have finite values atr 5r H . Hence, the coor-
dinate value of the horizon does not changer 1(y)5r H even
at this order. Thus, we can evaluate the circumference ra
~36! using the expression

g22
(1)~r H!52

,2w

2 FR222
1

6
h22R1~w12!x22G . ~37!

Here, we introduced the variablewª1/b221 which in-
creases toward the*-brane. Notice thatR22 andR are those
in the Jordan frame.

As an example, we show the ratio of the horizon,RH /r H ,
as a function ofy in Fig. 5. We find that the circumferenc
radius of the horizon monotonically shrinks toward t
*-brane even if we subtract the background effectb(y).
Although we showed only one example, we can easily c
firm that this is general by differentiating Eq.~37! with re-
spect tow since the fields satisfy the conditions

T225
CQm

2

2r 2
e22af.0, Tm

m50, ~38!

at r 5r H , whereT22 andTm
m are those in the Jordan frame.

fact, by rewriting Eq.~37! as

FIG. 5. Deformation of the horizon forC`50.25, lH51.11

31022, ā5A3, and,/r H50.5.
02401
in

us

-

Kª2
2

,2
g22

(1)~r H!

5wFh22

3
R1

k2

C
T22H 12~w12!

12C

2 J G , ~39!

we obtain

dK

dw
5

h22

3
R1

k2

C
T22$12~w11!~12C!%, ~40!

d2K

dw2
52

k2

C
~12C!T22,0. ~41!

From Eq.~41!, we see thatdK/dw takes the minimum value
at the*-brane. On the*-brane, we have

dK

dw
5

1

3
h22R52

1

3
h22Tm

m50. ~42!

Therefore,dK/dw is always positive in the bulk. This mean
that dg22

(1)/dw,0. As the horizon has nontrivialy depen-
dence, the black strings are nonuniform.

Numerically we found that the nonuniformity of the hor
zon becomes larger for solutions with smaller gravitatio
mass—i.e., smaller horizon radius.

Finally, we comment on the zeroth law of the nonunifor
black string. Using the metric~18!, the Hawking temperature
TH is calculated as

TH5
2p2k2mH8

8p2r H

e2dHA11 f 0~r H ,y!

11 f 1~r H ,y!
. ~43!

Sincef 05 f 1 at r 5r H , TH does not depend ony. Therefore,
the zeroth law of black hole thermodynamics holds.

VI. CONCLUSION

Nonuniform black strings in the two-brane system are
vestigated using the effective action approach. We con
ered the dilaton field coupled to the electromagnetic field
the % -brane. It is shown that the radion acts as a nontriv
hair of the black strings. From the brane point of view, t
black string appears as a deformed GM-GHS black h
which becomes a GM-GHS black hole in the single bra
limit and reduces to a RN black hole in the close limit
two-branes. In view of catastrophe theory@27–30#, our solu-
tions are stable. From the bulk point of view, the bla
strings are proved to be nonuniform. Nevertheless, the ze
law of black hole thermodynamics holds.

We established the picture shown in the upper right
Fig. 6. This picture shows that the event horizon shrin
toward the*-brane ~even if we subtract the effect of th
AdS background! and the distance between branes decrea
toward the asymptotically flat region. As the curvature on
brane increases, the nonuniformity of the horizon becom
larger.
0-6
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RADIONIC NONUNIFORM BLACK STRINGS PHYSICAL REVIEW D69, 024010 ~2004!
However, we cannot apply our present analysis if the d
tance between branes exceeds the horizon radius. Th
because the Kaluza-Klein effect becomes significant. It is
point that Gregory-Laflamme instability commences. T
transition to the localized black hole may occur as in
lower right of Fig. 6. The AdS/conformal field theory corr
spondence argument suggests classical evaporation of th
sultant black hole@31#. Moreover, there is also a possibilit
that the shape of the horizon becomes complicated as in
lower left of Fig. 6. To get a hint, we need to proceed to t
next order calculations corresponding to Kaluza-Klein c
rections. We want to investigate it in the future.
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FIG. 6. Upper half is the image that we established in the te
Lower half shows two of the possibilities when the curvature on
brane becomes strong.
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APPENDIX: CATASTROPHIC APPROACH

We proposed the stability analysis of the black holes
catastrophe theory in previous papers@28–30#. We briefly
summarize the discussion here. The potential function of
system is described byF(s,x), wheres andx are a control
parameter and a state variable, respectively@32#. The control
parameter means that the system is controlled by this par
eter. The state variable is named for the reason that its v
is determined after the state of the system is determin
Thom’s theorem guarantees that if a system has control
rameters<4, the potential function can be made to coinci
with one of the seven elementary catastrophe’s poten
functions by diffeomorphism.

The correspondence between catastrophic variables
black hole variables can be identified as in Table II. T
equilibrium point of the system is written as

]F~s,x!

]x
50. ~A1!

In the case of the black hole system, this corresponds to
static solution.

Let us find the catastrophic criterion of the stability
static solutions. We writex which satisfies the condition~A1!
as xeq(s). We also defineFeq(s)ªF„s,xeq(s)…. Then we
obtain

d2Feq~s!

ds2
5S ]2F

]s2 D
eq

1S ]2F

]x]sD
eq

dxeq

ds
. ~A2!

Because of the condition thatFeq(s) be an equilibrium point,
we also have

05
d

dsS ]F

]x D
eq

5S ]2F

]x]sD
eq

1S ]2F

]x2 D
eq

dxeq

ds
. ~A3!

If we eliminatedxeq /ds from Eq. ~A2! using this equation,
we obtain

d2Feq~s!

ds2
5S ]2F

]s2 D
eq

2S ]2F

]x]sD
eq

2 Y S ]2F

]x2 D
eq

. ~A4!

Since the point where stability changes corresponds to
inflection point of the potential function, we hav
(]2F/]x2)eq50. Then, unless

t.
e

TABLE II. Catastrophic interpretation.

Control Black hole massM
parameters Radion at asymptotic infinityC`

Magnetic chargeQm

Potential Black hole entropyA/4
0-7
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S ]2F

]x]sD
eq

50, ~A5!

we have
d2Feq~s!

ds2
5`. ~A6!

We apply the formula~A4! to black holes. If we fixC`

and Qm , dFeq /ds corresponds tod(A/4)/dM and equals
1/TH from the first law of black hole thermodynamics. B
cause of Eq.~A6!, stability changes at
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