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Radionic nonuniform black strings
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Nonuniform black strings in the two-brane system are investigated using the effective action approach. It is
shown that the radion acts as a nontrivial hair of the black strings. From the brane point of view, the black
string appears as the deformed dilatonic black hole which becomes a dilatonic black hole in the single brane
limit and reduces to the Reissner-Nordstrdlack hole in the close limit of two-branes. The stability of
solutions is demonstrated using catastrophe theory. From the bulk point of view, the black strings are proved
to be nonuniform. Nevertheless, the zeroth law of black hole thermodynamics still holds.
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I. INTRODUCTION witz, and StromingefGM-GHS) [13]. Interestingly, dila-
tonic black holes are stable in the same sense as a Schwarzs-
Recent progress in superstring theory has suggested tlohild black hole[14]. In this sense, these are realistic black
possibility that we reside on a hypersurface in higher-holes in superstring theory. Let us go back to the brane
dimensional space-timl]. This so-called brane world sce- world. The conventional Schwarzschild black hole can be
nario has rapidly become popular since Randall and Surrealized as a section of the uniform black string. However,
drum proposed simple models in which we live on a branenhis is not a unique possibility. The black hole can be local-
embedded in Ads$space-time[2]. There are two types of jzed on the brane, although it may not appear as an exact
Randall-Sundrum(RS) scenarios. In the first RS model schwarzschild black hole. Still, to find all of the stable black
(RS1), the two flat branes are embedded in Adpace-time poles in the brane world is an open issue. From the string
to solve the hierarchy problem. In the second RS modefheoretic point of view, it is also desirable to find GM-GHS-
(RS2, one positive tension brane is embedded in AdS jike solutions in the brane world scenario. Unfortunately, no

space-time. exact black string solution is known in this case. Therefore, it

. The_ cosmolo_gy and black holes in RS_ m°d°i'5 have beeg interesting to seek black strings corresponding to GM-
investigated actively3—10. The common issue is to under- GHS black holes in RS models

stand the effects of the bulk geometry on the brane world. In the RS2 model, it is argued that the black hole should

The radion and Kaluza-Klein modes are key ingredients foi)e localized on the brane because of “Gregory-Laflamme”

this aim. Here, it should be noted that most of the importan . . ;
phenomena occur at low energies or the low-curvature reinstability of the black string{15]. These localized black

gime. At low energies, the radion would dominate the effectd0l€S have been investigated intensiv[(.arly-9]. Qn th? other
of the extra dimension. In the case of the RS2 model, howhand, in the RS1 model, the black string exists without suf-

ever, the radion does not exist. Hence, except for a smaffring from the Gregory-Laflamme instability if the distance
contribution from the Kaluza-Klein modes, the conventionalPetween two branes is less than the radius of the black hole
Einstein theory is recovered at low energies in the RS2n the brane. In the opposite condition, Gregory-Laflamme
model. On the other hand, in the case of the RS1 model, thi@stability commences. Intriguingly, since the dynamics of
existence of the radion is crucial. Recently, we have develthe radion controls the length of the black string, it can trig-
oped a systematic method to study a brane world at lovger the transition from the stable to unstable black string. It
energies using the gradient expansion methdd. In par-  is argued that the fate of the unstable black string is either the
ticular, we have shown that gravity in the RS1 model can bdocalized black hole or the nonuniform black strifigg—18.
described by a four-dimensional scalar-tensor theory and th€learly, the first step to this direction is to understand the
information of the bulk can be reconstructed through holo+ole of the radion in the black strings. Although numerical
grams. The cosmology has been investigated using this apmnalysis is practical to attack this issue, the effort must be
proach and found to be an interesting scenfti®l. As our  made toward the analytic understanding of the phenomena.
method is quite general, it is also applicable to black hole The purpose of this paper is to present a semianalytic
physics. approach to investigate black strings in the RS1 model. We
In conventional general relativity, the Schwarzschild so-investigate the black strings corresponding to GM-GHS
lution is the simplest stable black hole solution, while inblack holes on the brane using the proposed method. In par-
superstring theory dilatonic black holes have been found byicular, the role of the radion in the nonuniform black strings
Gibbons and Maeda and independently by Garfinkle, Horois explored.
This paper is organized as follows. In Sec. I, we briefly
review our effective action approach. In Sec. IIl, we describe

*Electronic address: tamaki@tap.scphys.kyoto-u.ac.jp basic equations for the numerical analysis. In Sec. IV, we
"Electronic address: sugumi@tap.scphys.kyoto-u.ac.jp describe our solution from the four-dimensional point of
*Electronic address: jiro@tap.scphys.kyoto-u.ac.jp view with an emphasis on the role of the radion. In Sec. V,
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we view our solution from the bulk. In Sec. VI, we summa- From Eg. (6), the four-dimensional effective equations of

rize our results. motion can be reproduced.
Of course, we must resort to some approximation method
Il. EFFECTIVE ACTION APPROACH to solve bulk equations of motion. As the usual phenomena

occur at low energies
We begin by reviewing the low-energy effective action

derived in previous papefd1,19. We consider ars,/Z, pi K%pi  [€)\?
orbifold space-time with the two branes as the fixed points. ol %2al <1
In the RS1 model, the positivex() and negative®) tension
branes are embedded in Ad®ith curvature radiug. Our  whereL denotes the characteristic length scale of the curva-
system is described by the action ture on the brane, we can employ the gradient expansion
method[20]. We seek the metric as a perturbative series with

. @

7<2|0i|

the number of derivatives increasing with the order of
=—f d°xy - R+ 2 U|J’ d*V=g"™*" jteration—that isO((¢/L)?"), n=0,1,2 ...—as
9y X)) =D2(Y, ), (x4) + gLy X) + -1, (8)
d4 [ |5rane ) 1
i=5.0 f mater @ b(y,x)=exp —ye”/{), 9)
whereR, g' brane . andx? are the five-dimensional scalar where we put the Dirichlet boundary condition,,(y

=0x)=h,,(x) at the®-brane. Substituting Ed8) into the
bulk Einstein equations, we can obtain the relat{bn per-
turbatively. The first order correction is given by

($_1>(R ‘%%R)

curvature, the induced metric on tindrane, the tension on
thei-brane, and the five-dimensional gravitational constant
respectively. Here, we assume the relatiang= 6/(x%€)
andog=—6/(x%(). 1) £

For general nonflat branes, we cannot keep both the two g/w 2
branes straight in the Gaussian normal coordinate system.

Hence, we use the following coordinate system to describe 1 2ye” 1
the geometry of the brane model: — E— - 2 (WWJF 5 77Iana)
— a2n(x* 2 v
dsz_e (X )dy +g,u.1/(yvx'u)dxludx . (2) . 2y2e27] h,uv a . L
We place the branes gt=0 (®-brang andy=¢ (©-brane £2p2 M= 3~ Ma b? Xuv |
in this coordinate system. In this coordinate system, the
proper distance between two branes with fixedis repre- (10
sented as where
¢ 2(1-w
d(x*)= f e”(x#)dy. () Xt =— “2—‘1’){T®M”+ (1_\Ij)'|’9#y}
0

Hence, we cally the radion.
The strategy we take in this paper is the following. Let us
start with the variation of the action

> (W), = sl )

3

1
_ " [pley, — = geypla
+2(1—xp)(‘1’wv A qra” (1)

S .
+ > ——oh,,=0. (4 _ ,
i=2,0 oh' is nothing but the projected Weyl tenshy,, [21]. Here, k2

v -
:=x?/¢ and

5S[g,u,1/'hiuv]: 5

The variation with respect tg,, gives the bulk Einstein
equations and the variation with respectttg, yields the V:=1—exp —2e7) (12
junction conditions. First, we solve the bulk equations of.

is defined for convenience. We also cd#ll the radion. The
motion with h'/w fixed; then, we get the relation

junction condition gives the effective equations of motion

g :gw[hi ] (5) from which the action for theb-brane can be read off as
Substituting Eq(5) into junction conditions, we get the four- :_f d*x\—h| ¥R(h)— 3 q,laq,‘
dimensional effective equations of motion for the induced 2(1-w) !
metric h'w. Or, by substituting Eq(5) into the action, we
obtain four-dimensional effective action +f d*x/—=h h£®+f d4x\—h(1—1)22°,
Seri= S G sl Ny, 10 ] 6) (13
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If we can obtain a solution for this systef@3), the bulk  wheref(r):=1— «?m(r)/4zr. We construct a black hole on
metric corresponding to the 4-dimensional effective theory ishe brane and construct a black string using hologréi¥s
given by We choose a vector potential, as
9= (1=9)"[h,,, (0 +g{(h,,, nlf,T;‘in,?V,yn,( ) A,=(0,0,0Q,C086), (19
14

which corresponds to Eq5). Thus the bulk metric is com- whereQ,, is a magnetic charge. If we also consider an elec-

pletely determined by the energy-momentum tensors on botHIC C?a@e' our system hils_ an electric-magnetic duglity
branes, the radion and the induced metric on ¢hérane. —€ --°F, ¢— — ¢, whereF is the Hodge dual of. Hence
Therefore, once the four-dimensional solution of the quasiWe can easily obtain the results for the electrically charged
scalar-tensor gravity is given, one can reconstruct the bulkase. Our basic equations are
geometry from these data. The quasi-scalar-tensor gravity
(13) works as holograms at the low energy. r2 2g-2a¢
Using the low-energy expansion scheme, in principle, we m’'=4m EfUJr — > |
can calculate the higher-order corrections and perform the 2r
holographic reconstruction of the bulk metric. In the low-
energy regime which is our main concern, however, these
corrections do not change our qualitative conclusion.

(20

K
§'==5ru, (21)

IIl. BASIC EQUATIONS FOR NUMERICAL ANALYSIS },<
- ¢)

Below, we consider a dilaton field coupled to the electro-
magnetic field on theb-brane since it appears in the com-
pactification process. Then, we have (22)

3

1
S, =2—K2f d4x\/—_h[‘lfR(h)— 5= wlwqqa}

V.  «k K . K
, (195 v =—T+%(¢ )zcosk(%zp>5|nr(%¢),

(23

1 1
4 a -2 v
—f d x\/—h[qu' Blat 7€ IR FH

where ¢ anda are a dilaton field and its coupling constant,
respectively. Since our theory is a scalar-tensor-type theoryhere the prime denotes the derivative with respectdad
we call this original action the Jordan-frame effective action.

In order to discuss the property of the radion, it is sometimes P
convenient to move to the Einstein frame in which the action U:=(y')%+ cosﬁ—zp) (¢")?, (24)
takes the canonical Einstein-scalar form. Applying a confor- G

mal transformatiorh,,,=(1/¥)q,, and introducing a new
field 2 2 K2Q2

KM
Viso— —— — _3me—2a¢_ (25
3 I—v—1 r 4ar 2r
lﬂ: — F|Og \/——\Ir s (16)
K 1-¥+1 We assume the existence of a regular event horizan at
=ry. h
we obtain the Einstein-frame effective action fu. SO we have
1 1 47TrH ,
S, :f d*xy—q _ZR(q)_E(Vw)Z mHZT, O, Pu, Yu<e, P4=0, (26
2k
1 K 1 —2a¢p 2
— i 2_ T a-2agp2 , ae Q
2(cosh’-£¢f (Vg)?—ze 22F2), (17) bl=— Km . 27)
VHrﬁcosh’-(—de)
whereV denotes the covariant derivative with respect to the G

metricq,,, . We also callys the radion. We take this action
and consider the static and spherically symmetric metric asThe variables with subscript are evaluated at the horizon.
The boundary conditions at spatial infinity to guarantee
ds?=—f(r)e~2°0dt>+ f(r) " 1dr2+r2dQ2, (18  asymptotic flatness are
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m(e)=:M=const, &(»)=0, 0.38

d(*)=0, ih(*)=:4.,=const, (29) 0.36

where M corresponds to a gravitational mass of the black
hole. We will obtain the black hole solutions numerically by 0.34
solving Egs.(20)—(29) iteratively with boundary conditions

(26), (27), and(29). 0.32

B

IV. VIEW FROM THE BRANE -

The radion is affected by the matter on the brane and
varies depending on the place on the brane. The other wa
around, the configuration of matter is affected by the radion.
Hence, the radion must play an important role in the system
of black string. As to the GM-GHS black holes, their stabil- 0.26
ity is already known. It would be interesting to investigate if
the radion destroys the stability or not.

0.28

0.24 : ‘
1 10 100 1000

A. Radion as a hair r/rH

If we include the moduli fields, the first law of black hole
thermodynamics has the term depending on the scalar charge
[22]. A contribution from both the dilaton field and radion ~
field can be expected. We shall examine it starting from the ) S
action(17). Here, we consider the spherically symmetric and/here we defined the radionic charjeas
magnetically charged cases for simplicity. We denote the
time translational Killing vector ak:=4/dt and the null vec- p :=2f PrHkeds,, . (34
tor orthogonal to the event horizéhasn, which is normal- *
ized as

FIG. 1. The behavior of for ¥,=0.25 \,;=0.119, anda

This formula shows that the dilatonic charge cannot be a
n,k#=—1. (29 true hair, because it is absorbed into the definition of the
“magnetic charge”24]. However, the radion field is a hair
We represent the volume element and the surface element agblack strings. To derive E¢33), we used the property that

do, anddS,,, respectively. Then, the gravitational mads ¢ asymptotically behaves &3(1/r) which can be confirmed
and the “magnetic chargeQ,, can be defined as by asymptotic analysis of Eq&0)—(23). We can prove that
¢ (W) is a monotonically increasingdecreasing function
M= | kerds,,, (30) 9‘ r from Eq.(23). In Fig. 1, as an exampl&; for E.i soluuop
4r ). a:=\2a/k=3, ¥ :=W () =0.25, and the horizon radius
Ay=v2r4/kQ,,=0.119 is depicted25].
= —2app v
Qm Le FH S, (3Y) B. Stability of the black string

First, we summarize the relation betwedn(or ) andd
ng Egs.(12) and (16) in Table I. ¥ () is a monotoni-
cally increasing(decreasingfunction with respect tal.

We can obtain the mass formula using the standard proce;
dure[23] as

1 In the single brane limity—0, the effect of the radion
M= _f R—(V)2—cosht Lw (V)2 ceases. Hence, the solution approaches the GM-GHS solu-
K? 6 tion. In the close limityy—oo, we haved(r)=0 from Egs.

(22) and(27). Thus, only Reissner-Nordstro(RN) solutions

1 Th are possible in this limit because of the no-hair theof26j.
_ Za-2adp2 A
>€ Felkdo,+ 2 A+20,Q,, (32 Therefore, we expect that the nontrivial radiap# 0,) in-
where Ty, ®,, andQy are the Hawking temperature, the TABLE |. Relation between variables.
magnetic potential at the horizon, and the “magnetic charge”® . i .
at the horizon, respectively. Taking the variation of this equa- Close limit Single brane limit
tion, we obtain the first law of black hole thermodynamics: g 0 - o
— 0
SA $ -
SM=Ty = +®5Q, -2 8y, (33 0 - 1
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FIG. 2. The relation between the horizon radiug and the
gravitational mas#/ for a= /3.
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FIG. 3. M-1/T,, for a= /3.

VIEW FROM THE BULK

Our interest here is thedependence of the horizon which

As an illustration, we show the relation between the hori—had not been investigated so far in the RS1 model. The ho-

zon radius Ay and the gravitational massM

logram(14) can be used to see the shape of the black strings.

:=kM/4m\2Q,, in Fig. 2. In fact, in the single brane limit, The differences from the previous papéi$—1§ are that
the solution approaches GM-GHS and the effect of the dilathe matter is confined on the-brane and the branes are

ton field fades away in the close limit.
We also notice that solutions exist unti,— 0 except for

deformed by black strings. These differences will affect the
shape of the horizon. Indeed, we will see that the black

the RN solution. This suggests that there is no inner horizorstrings are nonuniform.

Indeed, we can prove it. First, rewrite EQ2) as

To see the nonuniformity of the horizon, let us investigate

the change of the circumference radius algmtirection. The

(35

frzeécosﬁ(%z//) ¢’1 = %e*2a¢e*5Q,2n.

It follows that D :=fr2e~ °cosH[(x/\/6)]¢’ monotonically
increases withr for a>0. Hence,D<0 holds inside the
horizon and ther cannot become 0, which implies that there
is no inner horizon. Thus, the causal structure is the same a
that of Schwarzschild black hole. This suggests that our so-
lutions are as stable as the GM-GHS solutipb4].

We can also argue stability of our solutions using catas-
trophe theory. In Fig. 3, the relation between the inverse
temperature T, :=(1/Ty)/(kQ,/2) andM is plotted. Ac- B
cording to catastrophe theory, the stability changes at
d(1/Ty)/dM =0 [27-3Q (see the Appendjx Since we can-
not find the pointd(1/T4)/dM=c in the graph for various
parameters, our solutions are stable in the catastrophic sens

Finally, let us interpret a feature seen in Fig. 3. Seeing the

relation betweerM andV for fixed ¥, in Fig. 4, we find
thatW, varies from a small value to 1 by reducing the mass.
Thus, the separation between branes at the horizon is sma
for large mass; hence, the solution mimics the RN black
hole. By reducing the mass, the separation goes to the infin
ity. Thus, Ty eventually diverges like the GM-GHS solution
as seen in Fig. 3.

024010-5

procedure to obtain a circumference radius of the horizon is
summarized as follows(i) Seek for the radius=r_(y)
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1 |

2
e ooes | | Ki==508(rw)
0.999 = h22R K2T 1 2 1w 39
- =W 3 R+ Ty 1-(w+ )T , (39
e i we obtain
=
:“ BT 1 dK_happ K0 1 1)(1-¥ 40
w3 R Tadl—(w+1)( )} (40)
0.9975 - .
0.997 - 1 d2K_ K2
w— - a(l—‘l’)T22<0. (42)
0.9965 |- .
From Eq.(41), we see thatlK/dw takes the minimum value
0.996 ‘ : : ‘ at the©-brane. On théS-brane, we have
0 0.2 0.4 0.6 0.8 1
y dK 1 1 B
m: §h22R: - §h22TM:O. (42)

FIG. 5. Deformation of the horizon fo#,=0.25, A\y=1.11

x10°% a=\3, and¢/r,=0.5. ThereforedK/dw is always positive in the bulk. This means
that dgbs/dw<0. As the horizon has nontrivial depen-
dence, the black strings are nonuniform.

which satisfieshog+gfg'=0 (or equivalentlyhy;+g{y=c Numerically we found that the nonuniformity of the hori-
as we denote below(ii) Evaluate the circumference radius zon pecomes larger for solutions with smaller gravitational
in the Einstein frame as mass—i.e., smaller horizon radius.
= o) Finally, we comment on the zeroth law of the nonuniform
Ry=\ri+w(r)gsr.). (36 plack string. Using the metric8), the Hawking temperature

Ty lculated
Note that we subtracted the effect of the AdS background in w 1S calculated as

the above expressidsee Eq.(14)]. 2
First, let us findr(y). Writing gf)%))=:hoof0(r,y) and THZZW—KmHef&H\ /M_ (43
g{¥=:hy,f4(r,y) and using Eq(10), we can verify that, 87ry 1+f4(rn.y)

=f, and they have finite values atr,, . Hence, the coor- .
dinate value of the horizon does not chamgéy)=r,, even Sincefo=f, atr=ry;, T, does not depend on Therefore,
at this order. Thus, we can evaluate the circumference radil§® zeroth law of black hole thermodynamics holds.
(36) using the expression
VI. CONCLUSION
Wy EW ! i inas i -
955 (ry)=— - Ryo— §h22R+(w+ 2)x22|. (37 Nonuniform black strings in the two-brane system are in-
vestigated using the effective action approach. We consid-

ered the dilaton field coupled to the electromagnetic field on
the @-brane. It is shown that the radion acts as a nontrivial
hair of the black strings. From the brane point of view, the
black string appears as a deformed GM-GHS black hole
which becomes a GM-GHS black hole in the single brane
limit and reduces to a RN black hole in the close limit of
two-branes. In view of catastrophe the®7—30, our solu-
tions are stable. From the bulk point of view, the black
strings are proved to be nonuniform. Nevertheless, the zeroth
law of black hole thermodynamics holds.

We established the picture shown in the upper right of
Fig. 6. This picture shows that the event horizon shrinks
e 2ad>(Q TH=(, (3  toward the©-brane(even if we subtract the effect of the

g AdS backgroungand the distance between branes decreases
toward the asymptotically flat region. As the curvature on the
atr=ry, whereT,, andT/, are those in the Jordan frame. In brane increases, the nonuniformity of the horizon becomes
fact, by rewriting Eq.(37) as larger.

Here, we introduced the variable:=1/b%—1 which in-
creases toward th@-brane. Notice thaR,, andR are those
in the Jordan frame.

As an example, we show the ratio of the horizBp,/r,
as a function ofy in Fig. 5. We find that the circumference
radius of the horizon monotonically shrinks toward the
©-brane even if we subtract the background effaty).
Although we showed only one example, we can easily con
firm that this is general by differentiating E(B7) with re-
spect tow since the fields satisfy the conditions

TQ?

T,=
227 or2

024010-6
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>~ o - TABLE Il. Catastrophic interpretation.
<t _ T~ -+ Control Black hole mas#
- ~- parameters Radion at asymptotic infinity,
Magnetic charg&,,
| / Potential Black hole entrops/4

APPENDIX: CATASTROPHIC APPROACH

We proposed the stability analysis of the black holes via
catastrophe theory in previous pap¢28-30. We briefly
_ - - summarize the discussion here. The potential function of the
_ - - system is described biy(s,x), wheres andx are a control
e parameter and a state variable, respecti{@R}. The control
n u parameter means that the system is controlled by this param-
Y eter. The state variable is named for the reason that its value
~ ~ is determined after the state of the system is determined.
So+ -~ + Thom's theorem guarantees that if a system has control pa-
= - ~ - rameters<4, the potential function can be made to coincide
[ with one of the seven elementary catastrophe’s potential
functions by diffeomorphism.
The correspondence between catastrophic variables and
/ / black hole variables can be identified as in Table Il. The
N \ equilibrium point of the system is written as

]
\

JdF(s,X)
o =0.

(A1)

- - In the case of the black hole system, this corresponds to the
-7 - static solution.

FIG. 6. Upper half is the image that we established in the text, Let us find the catastrophic criterion of the stability of

Lower half shows two of the possibilities when the curvature on theStatIC solutions. We ertg which satisfies the conditiofh1)
as Xeq(S). We also defineF.(s):=F(S,Xe((S)). Then we
brane becomes strong. q q q

obtain
However, we cannot apply our present analysis if the dis- 2 2 9
tance between branes exceeds the horizon radius. This is M:(£> ( J F) % (A2)
because the Kaluza-Klein effect becomes significant. It is the ds? 9s? ), \9XIS/ 4 ds

point that Gregory-Laflamme instability commences. The
transition to the localized black hole may occur as in theBecause of the condition the&t,
lower right of Fig. 6. The AdS/conformal field theory corre- |\ aiso have
spondence argument suggests classical evaporation of the re-
sultant black holg31]. Moreover, there is also a possibility )
that the shape of the horizon becomes complicated as in the 0= d (‘9':) z(ﬁ)
IXJS
e e

o(S) be an equilibrium point,

lower left of Fig. 6. To get a hint, we need to proceed to the ds
next order calculations corresponding to Kaluza-Klein cor-
rections. We want to investigate it in the future.

- = 5 ﬁ ds (A3)

&2F> dXeq
eq

If we eliminatedx.q/ds from Eq. (A2) using this equation,

we obtain
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P*F 0 A d(1/Ty) A7
— —— =
IXIS eq ' (A5) dMm ' (A7)
we have Therefore, what we should do is to examine if the point

d2F, (s) where Eq.(A7) holds exists or not for variou¥., andQ,,.

B (A6)  We have already known that the GM-GHS solutions are
ds? stable at least. Then, if no such a point is found, the solutions

_ are stable in the catastrophic sense.
We apply the formuldA4) to black holes. If we fix¥ .. There may be a possibility that EGAS) holds. In such a

and Qr,,, dF¢,/ds corresponds tal(A/4)/dM and equals case, the argument based on catastrophe theory fails. How-
1/Ty from the first law of black hole thermodynamics. Be- ever, the argument of the inner horizon supports the belief
cause of Eq(A6), stability changes at that it is not the case.
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