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Properties of global monopoles with an event horizon
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We investigate the properties of global monopoles with an event horizon. We find that there is an unstable
circular orbit even if a particle does not have an angular momentum when the core mass is negative. We also
obtain the asymptotic form of solutions when the event horizon is much larger than the core radius of the
monopole, and discuss if they could be a model of galactic halos.
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I. INTRODUCTION

In unified theories, various kinds of topological defec
have been predicted and may appear in cosmological p
transitions in the early Universe. Therefore it is important
investigate such defects both theoretically and observat
ally. Concerning global monopoles, important facts we
found recently:~i! Solutions with an event horizon exis
@1–3#; ~ii ! regular global monopoles coupled nonminima
to gravity have a stable circular orbit and may explain ro
tion curves in spiral galaxies, as shown by Nucamendi, S
gado, and Sudarsky~NSS! @4#.

The result~i! is interesting since the static solutions
regular global monopoles are always repulsive@5#. More-
over, black hole solutions are stable though topologi
charge is lost in the strict sense@6# and there are solution
with zero mass which are somewhat pathological@2#. Thus,
we need to understand their properties. In particular, it wo
be interesting to investigate a particle motion around the
rizon. This is one of our main concerns in this paper.

Possibility~ii ! shows that global monopoles can be loca
attractive in the nonminimally coupled theory of gravity. A
though there have been many attempts to explain rota
curves in spiral galaxies, there is no definite one at pres
Among solitonic objects, global monopoles have the rema
able property that energy density decreases with the dist
r 22 @7#, which may be desirable to explain the flatness
rotation curves. To remove the unprefereble repulsive pr
erty of global monopoles, NSS introduced nonminimal co
pling and succeeded to obtain locally attractive solutions

Taking both ~i! and ~ii ! into consideration, we notice
possibility that global monopoles with an event horizon c
explain rotation curves since they would be attractive. Th
are several advantages in this model compared with the
model. First, we need not require the nonminimal coupli
which are constrained astrophysically@8#. Second, they
would also be model black holes in the central galaxi
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Third, the core mass can be chosen to be astronomic
large, contrary to the NSS model, where the core mas
necessarily microscopic. Therefore it is important to stu
the properties of such global monopoles, and discuss whe
or not they can be a realistic candidate as galactic ha
taking astrophysical bounds into account@9#.

This paper is written as follows. In Sec. II, we explain o
model and basic equations. In Sec. III, we investigate glo
monopoles with an event horizon in two situations se
rately. In Sec. III A, we consider the case where the size
event horizon is comparable to the core radius of the mo
pole to compare with regular monopoles. In Sec. III B, w
consider the case where the size of an event horizon is
trophysically large. In Sec. IV, we denote concluding r
marks and discuss problems concerning the restriction f
observation.

II. BASIC EQUATIONS FOR NUMERICAL ANALYSIS

We begin with the action

S5E d4xA2gF R

16pG
2

~¹Fa!2

2
2

l

4
~FaFa2v2!2G ,

~1!

whereG and Fa are the gravitational constant and the re
triplet Higgs field, respectively. The theoretical parameterv
and l are the vacuum expectation value and the s
coupling constant of the Higgs field, respectively.

We assume that the space time is static and spheric
symmetric, in which the metric is written as

ds252 f ~r !e22d(r )dt21 f ~r !21dr21r 2dV2, ~2!

where f (r )ª122Gm(r )/r . We adopt the hedgehog ansa
given by

Fa5vrah~r !, ~3!

wherera is a unit radial vector.
Under the above assumptions, the basic equations ar
©2004 The American Physical Society18-1
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m̄85 r̄ 2v̄2F f

2
~h8!21UG , ~4!

d852 v̄2r̄ ~h8!2, ~5!

h952
h8

r̄
1

1

f Fh~h221!1
2h

r̄ 2

12r̄ v̄2h8U2
h8

r̄
G , ~6!

where 85d/dr̄ and

U5
~h221!2

4
1

h2

r̄ 2
. ~7!

We have introduced the following dimensionless variable

r̄ 5vAlr , m̄5GvAlm, v̄5vA4pG. ~8!

We assume the regular event horizon atr 5r H :

m̄H5
r̄ H

2
, dH,`, ~9!

hH8 5
hH@21 r̄ H

2 ~hH
2 21!#

r̄ H~122r̄ H
2 v̄2UH!

. ~10!

The variables with subscriptH are evaluated at the horizon
We introduce the variable

m̄core~ r̄ !ªm̄~ r̄ !2 v̄2r̄ ~11!

and assume the boundary conditions at spatial infinity as

m̄core~`!5:M̄5const, d~`!50, h~`!51, ~12!

which means that the space time is asymptotically ‘‘fla
with deficit angle. HereM̄ corresponds to a core mass of t
monopole, which determines a particle motion we will s
below. We will obtain the black hole solutions numerica
by solving Eqs.~4!–~6! iteratively with the boundary condi
tions ~9!, ~10!, and ~12!. For our numerical calculation, w
use the double-precision Bulirsch-Store Method based
Ref. @10#.

III. PROPERTIES

The space-time structure of global monopole black ho
depends on the expectation value of the Higgs field@1#. For

v̄2,1/2, there is a solution with asymptotically ‘‘flat’’ spac
time. We concentrate on this realistic case.

A. Small horizon

Typically, it is supposed that a global monopole has
nontrivial structure in the corer &r coreª2/vAl @5#, while
the field is almost constant,h>1, outside the corer
04401
’
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*rcore. Therefore, we expect that a monopole black ho

with a small horizonr H>r core ~i.e., r̄ H>1) may have new
properties.

First, we show field distributions of black hole solution
in Figs. 1~a! r̄ -h and 1~b! r̄ -m̄core. We choosev̄50.6,0.2 and
r̄ H50.3. In Fig. 1~a!, we find that the Higgs field has a
nontrivial structure extending to;10 and it does not depend
on the expectation value of the Higgs field, which is impo
tant in the later analysis. In this solution,h increases mono-

FIG. 1. The behavior of~a! h, ~b! m̄core for r̄ H50.3 and v̄
50.6, 0.2.
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tonically with r̄ . Although solutions whereh is not mono-
tonic exist @3#, here we only consider monotonic solution
for simplicity. Figure 1~b! shows thatm̄core for v̄50.6 de-
creases withr̄ much faster than that forv̄50.2. This is natu-
ral because of the factorv̄2r̄ in Eq. ~11!. The important point
is that m̄core becomes negative forv̄50.6 and positive for

v̄50.2 in the asymptotic region. As we will discuss belo
the sign ofm̄coreat larger ~i.e., M̄ ) determines the qualitative
behavior of particle motions around the monopole.

Let us consider the geodesic equation of a test particl
the equatorial plane. In our coordinate system~2!, this is
expressed as

E2

2
5

ṙ 2

2
e22d1Veff , ~13!

where ˙5d/dt and E is the energy of the particle per un
rest mass.Veff is defined as

Veffªe22dS 12
2Gm

r D S 11
L2

r 2 D , ~14!

whereL is the angular momentum of the particle per unit r
mass.

We show the effective potentialVeff for r̄ H50.3 in Figs.
2~a! v̄50.2 and 2~b! v̄50.6. The angular momentum is cho
sen as (L/r H)250 and 5. For (L/r H)255, there is no poten-
tial minimum for v̄50.6, while there is forv̄50.2. For
(L/r H)250, there is a potentialmaximumfor v̄50.6, while
there is not forv̄50.2. While the properties of the monopo
black hole withv̄50.2 are essentially the same as those
the Schwarzschild black hole, largerv̄ changes propertie
qualitatively. These different properties are determined
the sign ofM̄ .

To evaluate the potential minimum, we substitute t
asymptotic formd→0 andm̄→ v̄2r̄ 1M̄ into Eq.~14!. Then,
dVeff /dr̄50 is satisfied at the positions

r̄ 65
L̄2~122v̄2!6AL̄4~122v̄2!2212L̄2M̄2

2M̄
, ~15!

where L̄ is defined asL̄ªvAlL. We find r̄ 6,0 when
L̄2(122v̄2)2.12M̄2 and M̄,0. Therefore, there is no po
tential minimum even if a test particle has large angular m
mentum.

On the other hand, the potential maximum cannot
evaluated from the asymptotic form of the solution becaus
is near the horizon if it exists, as shown by Fig. 2. Howev
we can discuss its existence as follows. IfM̄,0,Veff de-
creases withr̄ and approaches 122v̄2 Asymptotically, since
Veff50 at the horizon, there is at least one local maximum
some r̄ . If M̄.0, on the other hand,Veff increases withr̄
04401
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and approaches 122v̄2 asymptotically; whether or not the
potential maximum appear depends onL̄ as in the Schwarzs
child black hole. Thus, the sign ofM̄ is important to deter-
mine the particle motion around the black hole.

Such a convex form of the potential for aL50 particle
motion is characteristic of a global monopole black hole, a
does not appear neither in a Schwarzschild black hole no
a regular global monopole. In the case of a regular glo
monopole, the whole space time is repulsive@5#, which
means thatVeff decreases monotonically.

Figure 3 shows the relation betweenr̄ H andM̄ for various

v̄. M̄ is negative in the limitr̄ H→0 as it is expected from the
regular solutions. Asv̄ increases, the region ofM̄,0 ex-
tends to largerr̄ H . As it was pointed out in Ref.@2#, there are

FIG. 2. The behavior ofVeff for r̄ H50.3, and (L/r H)250, 5.~a!

v̄50.2 and~b! v̄50.6.
8-3
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solutions withM̄50. In this case, a potential minimumr̄ 2

goes to infinity and a test particle cannot feel a black ho

B. Large horizon

NSS argued that global monopoles with the nonminima
coupled gravity may explain rotation curves in spiral gala
ies @4#. However, the nonminimally coupled gravity has be
constrained astrophysically. Moreover, in the NSS model
bound orbits exist only in the microscopic regionr &r core.
Thus, it is desirable to seek for other possibilities.

On the other hand, Wetterich discussed the possibility
a massless scalar field may explain rotation curves of ga
tic halos@11#. In his solutions, however, physical bounda
conditions were not taken into account. If we assume re
larity at the center or an event horizon of a black hole, o
a trivial solution remains. Nonexistence of nontrivial bla
hole solutions are guaranteed by no hair theorem@12#. In this
sense, his model is also unrealistic.

Then, we turn to a global monopole with an event ho
zon. This model is free from the above difficulties existing
the NSS model. Furthermore, the existence of an event h
zon is realistic because massive black holes are observe
the central regions of galaxies.

Let us consider astrophysical bounds from the mass d
sity of monopoles in the universe at first. If we demand t
mass density of monopoles should be less than 10 time
critical density@9#, we have

n,1023S 1016 GeV

v D 3

Mpc23, ~16!

where n is the number density of monopoles. Thus,v
!1016 GeV is required to explain rotational curves of gala
tic halos. For definiteness, we choosev̄50.231024 and dis-
cuss the case where the event horizon is cosmological

FIG. 3. The relation betweenr̄ H andM̄ for variousv̄.
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This corresponds to the caser̄ H@1 unless the self-coupling
constant of the Higgs fieldl takes extremely smaller valu
than 1.

To see the structure of the Higgs field forr̄ H@1, we plot
r H-(12hH) in Fig. 4. To maintain numerical accuracy, w
change the variable fromh(r ) to s(r )ª12h(r ). In this dia-
gram, the error is below a percent. We findhH>1 and (1
2hH)>1/r H

2 . We can check this relation analytically as fo
lows. In the asymptotic region, supposing the asympto
form

h511 (
n51

`

Cnr 2n, ~17!

we haveC150 andC2521, which are consistent with ou
numerical results above.

Because of this asymptotic behavior,M̄ can be estimated
by substituting h51 into Eq. ~4!. Then, we have the
asymptotic relation

M̄5
r̄ H

2
~122v̄2!. ~18!

We show the relationr̄ H-M̄ in Fig. 5 for v̄50.231024 and

v̄50.2, which confirms the relation~18!. Actually, Fig. 3
shows that this approximation is fairly good even forr̄ H

;1 whenv̄ is small.
Let us consider particle motions. Settingh51, we have

Veff;S 122v̄21
2M̄

r̄
D S 11

L̄2

r̄ 2 D . ~19!

FIG. 4. The relation betweenr̄ H and (12hH) for v̄50.2
31024.
8-4
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Sincev̄ is small as constrained by Eq.~16!, we find that the
particle motion is practically the same as that in Schwar
child black hole. We can regard this kind of behavior
natural since the massive field has its structure comparab
the Compton wavelength. Therefore, as long as we cons
an astronomical-sized event horizon, the effect of sca
fields on particle motions is negligible.

IV. CONCLUSION AND DISCUSSION

We investigated properties of global monopoles with
event horizon and revealed interesting features which

FIG. 5. The relation betweenr̄ H and M̄ for v̄50.231024 and

v̄50.2 by a solid line and by a dotted line, respectively.
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not been known so far. The main features of test part
motions are determined by the sign of the core mass; if i
negative and if the event horizon is as small as the c
radius, there is an unstable circular orbit even for a part
with zero angular momentum. We also found the asympto
form of the solutions when the event horizon is much larg
than the core radius; the qualitative features of the monop
black hole is the same as that of the Schwarzschild bl
hole.

Although our model does not explain observed rotat
curves very well, we obtain some lessons here. Our res
indicates that massive scalar fields would encounter with
same difficulty as in our model. A typical mass scale of p
ticle physics is so large that it generally contributes only
microscopic structure, whose size is of order of the inve
of the mass. In this sense, a massless scalar field consid
by Wetterich@11# might be useful. Although his model itse
does not satisfy physical boundary conditions neither o
black hole nor of a regular solution, interaction with matt
may be a key ingredient to solve this problem. Including t
possibility, we also want to consider other solitonlike mod
such as boson-fermion stars in the future@13#.
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