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Universal area spectrum in single-horizon black holes
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We investigate highly damped quasinormal mode of single-horizon black holes motivated by its relation to
the loop quantum gravity. Using the WKB approximation, we show that the real part of the frequency ap-
proaches the valu&yln 3 for dilatonic black hole as conjectured by Medvetdal. and Padmanabhan. It is
surprising since the area spectrum of the black hole determined by the Bohr’s correspondence principle
completely agrees with that of Schwarzschild black hole for any values of the electromagnetic charge or the
dilaton coupling. We discuss its generality for single-horizon black holes and the meaning in the loop quantum
gravity.
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INTRODUCTION Recently, quite a new encounter to the LQG and the qua-
sinormal mode was considered in RE8]. We explain the
Progress in the loop quantum gravittQG) has been idea briefly. If we apply the first law of black hole thermo-
remarkable particularly after the introduction of the spin net-dynamics,
work formalism[1]. Due to this formalism, general expres-
sions for the spectrum of the area and the volume operators 4
can be derived2,3]. For example, the area spectruiris dA= T_HdM’ E)

where we only considered the “infinitesimal” change in
A=87T'y2 Vi(j+1), (1) gravitational mass for simplicity. Then we seek for a possi-
bility that there is a lower bound in the area change. The
discrete area spectrum is also favorable from the observation
wherey is the Immirzi parameter related to an ambiguity in that the horizon area of nonextremal black holes behaves as a
the choice of canonically conjugate variablds The sumis classical adiabatic invariah®], since the Ehrenfest principle
added up all intersections between a surface and a spin n&ays that any classical invariant corresponds to a quantum
work carrying a labej=0, 1/2, 1, 3/2, ... reflecting the entity with discrete spectrum. We identify minimum change
SU(2) nature of the gauge group. The statistical origin of thedM as the real part of the highly damped quasinormal mode
black hole entropyS is also derived using this formalism Re(w) based on the Bohr's correspondence principle “tran-
[and the introduction of the isolated horizfs] and the Y1)  sition frequency at large numbers should equal classical os-
Chern-Simons theolly The result is summarized 6] cillation frequencies” followed by{10]. For Schwarzschild
black hole, we hav§ll,12

. AIN(2jmint1) @ Rew)=TyIn3 for Im(w)—co. 4
87 YV imin(jmint1) ’

In this case, we obtain

where A and j i, are the horizon area and the lowest non- dA=41n3. (5)
trivial representation usually taken to be 1/2 because of
SU(2), respectively. In this case, the Immirzi parameter isAt this point, there is no direct relation to the LQG. Interest-
determined asy=In2/(w+/3) to produce the Bekenstein- ing and debatable issue is that we identify E). with the
Hawking entropy formulé&s= A/4. This is one of the impor- mMinimum area change in the area spectini.e.,
tant attainment in the LQG. However, it should be empha-
sized that progress in the LQG is not restricted to theoretical dA=41In3=87yVmn(Imnt1). (6)
interest. Phenomenological role in the early universe and the
role as a possible source of the Lorentz invariance violatioBy substituting this formula to Ed2), we obtainj,,=1 to
has also been discussgd. produceS= A/4. In this case, the Immirzi parameter is modi-
fied asy=In3/(2m2). This consideration calls various ar-
guments such as modification of the gauge groupg2gitb
*Electronic address: tamaki@tap.scphys.kyoto-u.ac.jp SQO(3) or the modification of the area spectrum in LQG and
TElectronic address: nomura@gravity.phys.waseda.ac.jp so on which we will discuss lat¢d3—17.
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We must also suspect that only Schwarzschild black hole g'(rp)=4=nTy, (10)
has the relatior{5) and the identificatior{6) has no univer-
sality. We should notice that the formulés) and(2) in the  where’:=d/dr andr is the event horizon. Our basic equa-
LQG do not depend on matter fields since their symplectidion for black hole perturbations are
structures do not have a contribution for the horizon surface

term[6]. Thus, it is important to investigate these properties d?y )
in other black holes in determining whether or not the dis- d—2+[w —V(r)]y=0, (11)
cussion above is related to the LQG. M

The work we should mention are Refsl8,19 which . :
show that the imaginary part of the highly damped quasinoryvhere Eri]ft time dependence Of. the pe_rturbanns are assumed
mal mode have a period proportional to the Hawking tem-© hee™*. The torioise coordinats, is defined as

perature for the single-horizon black holes. This result sug- dr 1
gests a generalization of the case in Schwarzschild black o= (12)
hole, i.e., dr  g(r)
1 The potentialV(r) for the general caséd) is written fol-
w=Tyln 3—2wTHi(n+ ik (7)  lowed by[18,26] as
For SchV\_/arz_schiId black h(_)le, this formula applies to scalar V(r)=g Id+1) o0 (1—k2)—me* 4 (1-K)
and gravitational perturbations. For electromagnetic pertur- r2 r3
bations, the real part disappears in this limit. What this
means in the context of Hod's proposal is not clear at g 2m _
present. Their work and Ref20] also suggest that if we are “\ Tl (13

between two horizons, we will see a mixed contribution from
the two horizons. Thus, we cannot see a periodic behavior i

. : ) X . Bor k=0, 1 and 2,V(r) corresponds to the case for the
the imaginary part in general which was also confirmed nu

'scalar, electromagnetic and the odd parity gravitational per-

merically in Ref.[21] for Schwarzschild—de Sitter black ; - :
" . . ) turbations, respectively. At present, we cannot obtain the
hole. The analysis for Reissner-Nordsiroblack hole in form like Eq. (11) for the even parity mode. First, we con-

Refs.[ll,lZ] _also .ShOWS that eX|stenpe .Of the_ Inner horlzoncentrate on the odd parity gravitational perturbations, ke.,
disturbs the imaginary part to be periodic. This result agrees_

with numerical results in Ref22]. This would also be true =2. We also define
for Kerr black hole where the contribution of the angular W =gl2y. (14)
momentum also makes things more complicdi28l.

Therefore, the strategy we take here is to investigatgsing Eq.(9), our basic equation can be rewritten as
whether or not the formul&7) holds for the single-horizon
black holes. From this viewpoint, we examine the WKB V" +R(r)¥=0, (15)
analysis following Ref[12] by exemplifying the case for
dilatonic black hold 24]. (For quasinormal mode of dilatonic \here
black hole, see Ref§25].) Surprisingly, the answer is in the
affirmative. If one see its derivation, one would confirm the R(r)=g Y w?—V+(g')%4—gg"2]. (16)
generality for the single-horizon black holes. Notice that
dilatonic black hole is a charged black hole with single-Then, we consider the WKB analysis combined with the
horizon. Thus, considering this model provides the evidenceomplex-integration technique which is a good approxima-
that the essential thing that determines whether or not&g. tion in the limit Im(w) — — .
holds isnot the electromagnetic chardaut the space-time First, we summarize the analysis for Schwarzschild black
structure. We also consider this direction and their meaningiole and consider in the complex r-plane below. Two WKB
in the LQG. solutions in Eq(15) can be written as

The WKB analysis for single-horizon black holes. . T
e analysis Tor single-horizon blac oles q,(ls)z(r):Q llzeXF{ﬂJ; Q(X)dX, (17)

As a background, we consider the static and spherically
symmetric metric as

whereQ?=R+ extra term. Here, the extra term is chosen for

ds?=—f(r)e~2°0d 2+ f(r)~tdr2+r2d0?, ®) ¥ to belr}%vze near the ori_gin appropriatelzy. From Etﬁ_),
v(r)~r“=< at r—0. Since R~—15/4< at r—0 in

wheref(r):=1—2m(r)/r. We define Schwarzschild black hole, we should choosg?:=R
—1/(4r?) for the WKB solution(17) to behave correctly.
g(r)=e %f(r). 9 We should consider the problem concerning the “Stokes
phenomenon” related to the zeros and polesQ@sf [27],
Notice that[18,19 which are written in Fig. 1 in the limit Im) — — . One of
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= fﬁ Qdr. (23

We should also perform the same analysis for the ingoing
solution near the event horizon. The result is the same as Eq.
(22).

Let us evaluatd® andl. I' is written as

r—r
['=—2i lim T“\/w% (g')%4, (24)

r—ry

since the contributions frorw/(r) and —gg"/2 disappear at
the event horizon. Since the term|{_, )?/4=4(wT.)? has

finite value[remember Eq(10)], we can also neglect it in the
limit Im( w)— —. Then, we have

r—ry

I'=—27i lim
r—ry

w,

. rFr=ry
FIG. 1. Zeros and poles @?2(r) and for Schwarzschild black =—2mi lim ’(r—— . w="I 2T, (29
hole in the complex-plane in the limit Img)— —c. The related =9 H
Stokes and anti-Stokes lines are shown by dashed lines and sol

lines, respectively. Hotice that this result does not depend on species of black

holes which becomes important later.

the important points are that the zeros@f approach the To integratel, we define

origin in the limit Im(w)— —. Near the origin, we can .2
write as _or
Y= (26)
2_ -2, 2 4g® .
Q=g o~ 7| (18 From Eq.(18), we can perform the integralas
Since g——2M/r for r—0 where M is the mass of 1 1
Schwarzschild black hol&? has four zeros. When we start I=- Jll 1- Fdr: . (27)

the outgoing solution at the poiatas

By substituting Eqs(25) and(27) into Eq.(22), we have Eq.

(7) as derived in previous papers.

and proceeds along anti-Stokes lines and encircles the pole gt Next, V\I’_e _consr:der generg_l;zathn t;)lf ﬂl](ehalbmfl_eh argume?t
the horizon clockwise, and turns back o we investigate °Y €x€mplifying the case in dilatonic black hole. The crux o

. . 2 . .
what conditions are imposed to reproduce the original soluth® Point we now show is thaR(r) for dilatonic black

tion (19). For this purpose, we should account for the Stoked!/€S have two second order poles and four zeros in the limit
phenomenon associated with the zergs r, andrs. For Im(w)— —o which is qualitatively same as Schwarzschild

example, if we proceeds the poiatto b passing the Stokes black hole. Dilatonic black hole can be expressed using the

v=wi, (19

line, we have the solution coordinatef24]
P, = 7i|q,(r3)_' iI\P(rB), 20 1
=€ TH T TIERS 20 ds’= —A3(p)de2+ —dp?+1%(p)d02, (29
where A
r where
sz Qdr. (21
rs (1-a?)/(1+a?)
| . y . . xzz(l—p—*)<1—p—) , 29
For details, se¢12]. The final condition to be imposed is p p
e?l'=—-1-2cos2, (22 o @2l(1+a?)
where r:l’( 1- 7) (30)
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p+, p— anda are the event horizon, the “inner horizon,” (1-k)(1+k) 3

and the dilaton coupling, respectively. We can see from Eq. R(r) 5 — (36)
(30) that the “inner horizon” corresponds to the origin in the r ar
area radius. in the limi btai
By comparing Eqs(28) and (8), we obtain in the limitr—0, we obtain
e?l'=—1-2cos 2rk, (37)

_[q_PH|[,_P=
g(r)_(l p)(l

1(1+ a?) o> -
1+ i
p

1+a? P pP-

(31

—a2/(l+a2) 2 -1
- o _
e“5=(l——p ) 1+ - .
1+a?pP—pP-

(32

At first glance, it is not evident whether or not zerosQ@ft
approach the origin in the limit In§) — — . However, we
can find from Eqs(31) and (32) thate ® andg(r) do not
show singular behavior for#0, ry (p#p_, p.) as itis

expected from the fact that dilatonic black hole is a single
horizon black hole. Thus, zeros approaches the origin as i

the Schwarzschild case. We evaluaté) in the limit r
—0, which is

2 p-—p+

g(r): l+(12 (p_pi)az/(l+a2)p1/(l+a2) ' (33)
If we substitute Eq(30) in this relation, we obtain
o)== PP (34
1+ a? r .

Using this asymptotic relation to E@16), we haveQ?(r)

wherek=0, 1 for scalar and electromagnetic perturbations,
respectively. Thus, Eq7) also holds for scalar perturbations
and the real part of electromagnetic perturbations disappears
as for the case in Schwarzschild black hole.

For even parity gravitational perturbations of dilatonic
black hole, isospectrality between odd and even parity mode
does not hold and the corresponding basic equation becomes
complicated as shown in Rg25]. However, there remains a
possibility that isospectrality is restored in the highly
damped mode. This is under investigation.

From the observation for the case in dilatonic black hole,
the important things aré) the number of poles i@? which
is restricted to two in the single-horizon black holés) the
umber of zeros iMQ? near the originy(iii) asymptotically
atness that guarantees our boundary conditions. Therefore,
if we turn back the case for higher dimensional Schwarzs-
child black hole in Refs[11,28-30Q, it is not difficult to
extend the formuld7) for single-horizon black holes which
behave near the origin as

C
g(r):r—n, (39

whereC andn are the constant and the natural number, re-
spectively. Unfortunately, since black holes with non-
Abelian fields, which have one horizon in general, show
complicated behavior near the oridigl—35, we need fur-

=R—1/(4r?) again for¥ to behave near the origin appro- ther analysis to include these cases.

priately. Then, we have the forifl8) near the origin and Conclusion and discussionVe investigated the highly
using the fact that dilatonic black hole has one horizon, wedamped quasinormal mode of single-horizon black holes and
find thatQ?(r) have four zeros and two second order polesobtained the relatioi7) for dilatonic black hole and consid-
as in Schwarzschild black hole. ered the possibility of its generality. Our results are important
Therefore, the WKB condition to obtain the global solu- since we supply the first example which shows Ef.for
tion is quite analogous to the case in Schwarzschild blacklack holes with matter fields. They suggest the generality of
hole and is written as Eq22). As we noted above, the ex- Eq. (7) in single-horizon black holes. Then, what we think
pression(25) is not also changed in dilatonic black hole. The about the confrontation in determining the Immirzi param-
nontrivial factor isl. However, since only difference of(r) etery and the case in multihorizon black holes? It would be
in Eq. (34) from Schwarzschild case is its coefficient, if we worth examining the present proposls,14,16 since the

define

resultsj i, andy in both case$would) turn out to be general
for single-horizon black holes, and are too close to ignore
and suggest some relations.

y=—"= , (39 First, the possibility of modified area spectrum in Ref.
20 (pi—p_) [13] is not correct. Notice that the physical state does not
1+ "7 change by adding or removing closed loops with0. The

we can also perform the integralas Eq.(27). Thus, we

problem is thatj=0 spin network has nonzero eigenvalue
for the area operator. That is, we can obtain different eigen-

obtain Eq.(7) again which is the realization of the conjecture values for the area to the same physical sta64. Thus, we

in [18,19.

cannot accept this possibility.

As for scalar and electromagnetic perturbations, we can The mechanism that prohibits the transitijon1/2 by the
perform them quite analogously. Using the asymptotic befermion conservation is importaritt4]. This implies jmin

havior

=1 if we consider thalynamicalprocess in the area change.
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However, we should recognize that, in Eq. (2) means the tum leads to the quantum behavior of the asymptotic sym-

statistically dominant element which does not necessarily cometry algebra. At present, their relation to the loop quantum

incide with the former. The drawback in R¢14] is that we ~ gravity is not clear. It is also the important direction we

can not prohibits the existence pf1/2 edges puncturing Should seek for.

the horizon as it was already pointed out. Therefore, it is Of course, there are problems we should solve before go-

important to investigate the mechanism that suppfespro-  ing to the consideration above. We need to prove the case for

hibit) j=1/2 punctures. For the supersymmetric case, thigingle-horizon black holes in possibly general form. We must

mechanismwould exist as discussed in RdfL7]. also include the case for the even parity mode. They are the
However, there is another possibility. In our opinion, thework we are now considering.

discussion in the quasinormal modes is like the old quantum

theory and its description_is within the general relativity. ACKNOWLEDGMENTS
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