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Universal area spectrum in single-horizon black holes
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We investigate highly damped quasinormal mode of single-horizon black holes motivated by its relation to
the loop quantum gravity. Using the WKB approximation, we show that the real part of the frequency ap-
proaches the valueTHln 3 for dilatonic black hole as conjectured by Medvedet al. and Padmanabhan. It is
surprising since the area spectrum of the black hole determined by the Bohr’s correspondence principle
completely agrees with that of Schwarzschild black hole for any values of the electromagnetic charge or the
dilaton coupling. We discuss its generality for single-horizon black holes and the meaning in the loop quantum
gravity.
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INTRODUCTION

Progress in the loop quantum gravity~LQG! has been
remarkable particularly after the introduction of the spin n
work formalism@1#. Due to this formalism, general expre
sions for the spectrum of the area and the volume opera
can be derived@2,3#. For example, the area spectrumA is

A58pg( Aj ~ j 11!, ~1!

whereg is the Immirzi parameter related to an ambiguity
the choice of canonically conjugate variables@4#. The sum is
added up all intersections between a surface and a spin
work carrying a labelj 50, 1/2, 1, 3/2, . . . reflecting the
SU~2! nature of the gauge group. The statistical origin of t
black hole entropyS is also derived using this formalism
@and the introduction of the isolated horizon@5# and the U~1!
Chern-Simons theory#. The result is summarized as@6#

S5
A ln~2 j min11!

8pgAj min~ j min11!
, ~2!

whereA and j min are the horizon area and the lowest no
trivial representation usually taken to be 1/2 because
SU~2!, respectively. In this case, the Immirzi parameter
determined asg5 ln 2/(pA3) to produce the Bekenstein
Hawking entropy formulaS5A/4. This is one of the impor-
tant attainment in the LQG. However, it should be emp
sized that progress in the LQG is not restricted to theoret
interest. Phenomenological role in the early universe and
role as a possible source of the Lorentz invariance viola
has also been discussed@7#.
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Recently, quite a new encounter to the LQG and the q
sinormal mode was considered in Ref.@8#. We explain the
idea briefly. If we apply the first law of black hole thermo
dynamics,

dA5
4

TH
dM, ~3!

where we only considered the ‘‘infinitesimal’’ change
gravitational mass for simplicity. Then we seek for a pos
bility that there is a lower bound in the area change. T
discrete area spectrum is also favorable from the observa
that the horizon area of nonextremal black holes behaves
classical adiabatic invariant@9#, since the Ehrenfest principle
says that any classical invariant corresponds to a quan
entity with discrete spectrum. We identify minimum chan
dM as the real part of the highly damped quasinormal mo
Re(v) based on the Bohr’s correspondence principle ‘‘tra
sition frequency at large numbers should equal classical
cillation frequencies’’ followed by@10#. For Schwarzschild
black hole, we have@11,12#

Re~v!5THln 3 for Im~v!→`. ~4!

In this case, we obtain

dA54 ln 3. ~5!

At this point, there is no direct relation to the LQG. Intere
ing and debatable issue is that we identify Eq.~5! with the
minimum area change in the area spectrum~1!, i.e.,

dA54 ln 358pgAj min~ j min11!. ~6!

By substituting this formula to Eq.~2!, we obtainj min51 to
produceS5A/4. In this case, the Immirzi parameter is mod
fied asg5 ln 3/(2pA2). This consideration calls various a
guments such as modification of the gauge group SU~2! to
SO~3! or the modification of the area spectrum in LQG a
so on which we will discuss later@13–17#.
©2004 The American Physical Society41-1
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We must also suspect that only Schwarzschild black h
has the relation~5! and the identification~6! has no univer-
sality. We should notice that the formulas~1! and ~2! in the
LQG do not depend on matter fields since their symple
structures do not have a contribution for the horizon surf
term @6#. Thus, it is important to investigate these propert
in other black holes in determining whether or not the d
cussion above is related to the LQG.

The work we should mention are Refs.@18,19# which
show that the imaginary part of the highly damped quasin
mal mode have a period proportional to the Hawking te
perature for the single-horizon black holes. This result s
gests a generalization of the case in Schwarzschild b
hole, i.e.,

v5THln 322pTHi S n1
1

2D . ~7!

For Schwarzschild black hole, this formula applies to sca
and gravitational perturbations. For electromagnetic per
bations, the real part disappears in this limit. What t
means in the context of Hod’s proposal is not clear
present. Their work and Ref.@20# also suggest that if we ar
between two horizons, we will see a mixed contribution fro
the two horizons. Thus, we cannot see a periodic behavio
the imaginary part in general which was also confirmed
merically in Ref. @21# for Schwarzschild–de Sitter blac
hole. The analysis for Reissner-Nordstro¨m black hole in
Refs.@11,12# also shows that existence of the inner horiz
disturbs the imaginary part to be periodic. This result agr
with numerical results in Ref.@22#. This would also be true
for Kerr black hole where the contribution of the angu
momentum also makes things more complicated@23#.

Therefore, the strategy we take here is to investig
whether or not the formula~7! holds for the single-horizon
black holes. From this viewpoint, we examine the WK
analysis following Ref.@12# by exemplifying the case fo
dilatonic black hole@24#. ~For quasinormal mode of dilatoni
black hole, see Refs.@25#.! Surprisingly, the answer is in th
affirmative. If one see its derivation, one would confirm t
generality for the single-horizon black holes. Notice th
dilatonic black hole is a charged black hole with sing
horizon. Thus, considering this model provides the evide
that the essential thing that determines whether or not Eq~7!
holds is not the electromagnetic chargebut the space-time
structure. We also consider this direction and their mean
in the LQG.

The WKB analysis for single-horizon black holes.

As a background, we consider the static and spheric
symmetric metric as

ds252 f ~r !e22d(r )dt21 f ~r !21dr21r 2dV2, ~8!

where f (r )ª122m(r )/r . We define

g~r !5e2d f ~r !. ~9!

Notice that@18,19#
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g8~r H!54pTH , ~10!

where 8ªd/dr andr H is the event horizon. Our basic equ
tion for black hole perturbations are

d2c

dr
*
2

1@v22V~r !#c50, ~11!

where the time dependence of the perturbations are assu
to bee2 ivt. The tortoise coordinater * is defined as

dr*
dr

5
1

g~r !
. ~12!

The potentialV(r ) for the general case~8! is written fol-
lowed by @18,26# as

V~r !5gF l ~ l 11!

r 2
e2d1~12k2!

2m

r 3
e2d1~12k!

3S g8

r
2

2m

r 3
e2dD G . ~13!

For k50, 1 and 2,V(r ) corresponds to the case for th
scalar, electromagnetic and the odd parity gravitational p
turbations, respectively. At present, we cannot obtain
form like Eq. ~11! for the even parity mode. First, we con
centrate on the odd parity gravitational perturbations, i.ek
52. We also define

C5g1/2c. ~14!

Using Eq.~9!, our basic equation can be rewritten as

C91R~r !C50, ~15!

where

R~r !5g22@v22V1~g8!2/42gg9/2#. ~16!

Then, we consider the WKB analysis combined with t
complex-integration technique which is a good approxim
tion in the limit Im(v)→2`.

First, we summarize the analysis for Schwarzschild bla
hole and consider in the complex r-plane below. Two WK
solutions in Eq.~15! can be written as

C1,2
(s)~r !5Q21/2expF6 i E

s

r

Q~x!dxG , ~17!

whereQ25R1extra term. Here, the extra term is chosen
C to behave near the origin appropriately. From Eq.~15!,
C(r );r 1/262 at r→0. Since R;215/4r 2 at r→0 in
Schwarzschild black hole, we should chooseQ2

ªR
21/(4r 2) for the WKB solution~17! to behave correctly.

We should consider the problem concerning the ‘‘Stok
phenomenon’’ related to the zeros and poles ofQ2 @27#,
which are written in Fig. 1 in the limit Im(v)→2`. One of
1-2
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the important points are that the zeros ofQ2 approach the
origin in the limit Im(v)→2`. Near the origin, we can
write as

Q25g22Fv22
4g2

r 2 G . ~18!

Since g→22M /r for r→0 where M is the mass of
Schwarzschild black hole,Q2 has four zeros. When we sta
the outgoing solution at the pointa as

Ca5C1
(r 1) , ~19!

and proceeds along anti-Stokes lines and encircles the po
the horizon clockwise, and turns back toa, we investigate
what conditions are imposed to reproduce the original so
tion ~19!. For this purpose, we should account for the Sto
phenomenon associated with the zerosr 1 , r 2 and r 3. For
example, if we proceeds the pointa to b passing the Stoke
line, we have the solution

Cb5e2 i I C1
(r 3)

2 ieiI C2
(r 3) , ~20!

where

I 5E
r 3

r 1
Qdr. ~21!

For details, see@12#. The final condition to be imposed is

e2iG52122 cos 2I , ~22!

where

FIG. 1. Zeros and poles ofQ2(r ) and for Schwarzschild black
hole in the complexr-plane in the limit Im(v)→2`. The related
Stokes and anti-Stokes lines are shown by dashed lines and
lines, respectively.
04404
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We should also perform the same analysis for the ingo
solution near the event horizon. The result is the same as
~22!.

Let us evaluateG and I. G is written as

G522p i lim
r→r H

r 2r H

g
Av21~g8!2/4, ~24!

since the contributions fromV(r ) and2gg9/2 disappear at
the event horizon. Since the term (gur 5r H

8 )2/454(pTH)2 has

finite value@remember Eq.~10!#, we can also neglect it in the
limit Im( v)→2`. Then, we have

G522p i lim
r→r H

r 2r H

g
v,

522p i lim
r→r H

r 2r H

g8~r 2r H!
v52 i

v

2TH
. ~25!

Notice that this result does not depend on species of b
holes which becomes important later.

To integrateI, we define

y5
vr 2

4M
. ~26!

From Eq.~18!, we can perform the integralI as

I 52E
21

1 A12
1

y2
dr5p. ~27!

By substituting Eqs.~25! and~27! into Eq.~22!, we have Eq.
~7! as derived in previous papers.

Next, we consider generalization of the above argum
by exemplifying the case in dilatonic black hole. The crux
the point we now show is thatQ2(r ) for dilatonic black
holes have two second order poles and four zeros in the l
Im(v)→2` which is qualitatively same as Schwarzsch
black hole. Dilatonic black hole can be expressed using
coordinate@24#

ds252l2~r!dt21
1

l2
dr21r 2~r!dV2, ~28!

where

l25S 12
r1

r D S 12
r2

r D (12a2)/(11a2)

, ~29!

r 5rS 12
r2

r D a2/(11a2)

. ~30!

lid
1-3
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r1 , r2 and a are the event horizon, the ‘‘inner horizon,
and the dilaton coupling, respectively. We can see from
~30! that the ‘‘inner horizon’’ corresponds to the origin in th
area radius.

By comparing Eqs.~28! and ~8!, we obtain

g~r !5S 12
r1

r D S 12
r2

r D 1/(11a2)S 11
a2

11a2

r2

r2r2
D ,

~31!

e2d5S 12
r2

r D 2a2/(11a2)S 11
a2

11a2

r2

r2r2
D 21

.

~32!

At first glance, it is not evident whether or not zeros ofQ2

approach the origin in the limit Im(v)→2`. However, we
can find from Eqs.~31! and ~32! that e2d and g(r ) do not
show singular behavior forrÞ0, r H (rÞr2 , r1) as it is
expected from the fact that dilatonic black hole is a sing
horizon black hole. Thus, zeros approaches the origin a
the Schwarzschild case. We evaluateg(r ) in the limit r
→0, which is

g~r !.
a2

11a2

r22r1

~r2r2!a2/(11a2)r1/(11a2)
. ~33!

If we substitute Eq.~30! in this relation, we obtain

g~r !.
a2

11a2

r22r1

r
. ~34!

Using this asymptotic relation to Eq.~16!, we haveQ2(r )
5R21/(4r 2) again forC to behave near the origin appro
priately. Then, we have the form~18! near the origin and
using the fact that dilatonic black hole has one horizon,
find thatQ2(r ) have four zeros and two second order po
as in Schwarzschild black hole.

Therefore, the WKB condition to obtain the global sol
tion is quite analogous to the case in Schwarzschild bl
hole and is written as Eq.~22!. As we noted above, the ex
pression~25! is not also changed in dilatonic black hole. Th
nontrivial factor isI. However, since only difference ofg(r )
in Eq. ~34! from Schwarzschild case is its coefficient, if w
define

y5
vr 2

2a2

11a2
~r12r2!

, ~35!

we can also perform the integralI as Eq. ~27!. Thus, we
obtain Eq.~7! again which is the realization of the conjectu
in @18,19#.

As for scalar and electromagnetic perturbations, we
perform them quite analogously. Using the asymptotic
havior
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R~r !.
~12k!~11k!

r 2
2

3

4r 2
, ~36!

in the limit r→0, we obtain

e2iG52122 cos 2pk, ~37!

wherek50, 1 for scalar and electromagnetic perturbatio
respectively. Thus, Eq.~7! also holds for scalar perturbation
and the real part of electromagnetic perturbations disapp
as for the case in Schwarzschild black hole.

For even parity gravitational perturbations of dilaton
black hole, isospectrality between odd and even parity m
does not hold and the corresponding basic equation beco
complicated as shown in Ref.@25#. However, there remains
possibility that isospectrality is restored in the high
damped mode. This is under investigation.

From the observation for the case in dilatonic black ho
the important things are~i! the number of poles inQ2 which
is restricted to two in the single-horizon black holes;~ii ! the
number of zeros inQ2 near the origin;~iii ! asymptotically
flatness that guarantees our boundary conditions. There
if we turn back the case for higher dimensional Schwar
child black hole in Refs.@11,28–30#, it is not difficult to
extend the formula~7! for single-horizon black holes which
behave near the origin as

g~r !.
C

r n
, ~38!

whereC andn are the constant and the natural number,
spectively. Unfortunately, since black holes with no
Abelian fields, which have one horizon in general, sh
complicated behavior near the origin@31–35#, we need fur-
ther analysis to include these cases.

Conclusion and discussion.We investigated the highly
damped quasinormal mode of single-horizon black holes
obtained the relation~7! for dilatonic black hole and consid
ered the possibility of its generality. Our results are import
since we supply the first example which shows Eq.~7! for
black holes with matter fields. They suggest the generality
Eq. ~7! in single-horizon black holes. Then, what we thin
about the confrontation in determining the Immirzi para
eterg and the case in multihorizon black holes? It would
worth examining the present proposals@13,14,16# since the
resultsj min andg in both cases~would! turn out to be genera
for single-horizon black holes, and are too close to ign
and suggest some relations.

First, the possibility of modified area spectrum in Re
@13# is not correct. Notice that the physical state does
change by adding or removing closed loops withj 50. The
problem is thatj 50 spin network has nonzero eigenvalu
for the area operator. That is, we can obtain different eig
values for the area to the same physical state@16#. Thus, we
cannot accept this possibility.

The mechanism that prohibits the transitionj 51/2 by the
fermion conservation is important@14#. This implies j min
51 if we consider thedynamicalprocess in the area chang
1-4
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However, we should recognize thatj min in Eq. ~2! means the
statistically dominant element which does not necessarily
incide with the former. The drawback in Ref.@14# is that we
can not prohibits the existence ofj 51/2 edges puncturing
the horizon as it was already pointed out. Therefore, i
important to investigate the mechanism that suppress~or pro-
hibit! j 51/2 punctures. For the supersymmetric case,
mechanismwould exist as discussed in Ref.@17#.

However, there is another possibility. In our opinion, t
discussion in the quasinormal modes is like the old quan
theory and its description is within the general relativi
Thus the above confrontation and the apparent discrepa
for multihorizon black holes may be caused by this tempo
description. If we can appropriately consider the probl
corresponding to the quasinormal modes in the LQG, th
may be solved. It is one of the directions we are seeking

It is also important to consider other correspondence
done in BTZ black hole in Ref.@36#. In this case, identifica-
tion of the real part of the quasinormal frequencies with
fundamental quanta of black hole mass and angular mom
.

ev

ys

m
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tum leads to the quantum behavior of the asymptotic sy
metry algebra. At present, their relation to the loop quant
gravity is not clear. It is also the important direction w
should seek for.

Of course, there are problems we should solve before
ing to the consideration above. We need to prove the case
single-horizon black holes in possibly general form. We m
also include the case for the even parity mode. They are
work we are now considering.
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