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We investigated the collapsed structure of a weakly charged wormlike chain under a moderate
concentration of 1:1 electrolyte solution. By assuming a torus as a grand state, we found that the size
of a torus is determined by the balance between surface energy and electrostatic energy, which leads
to a finite torus thickness almost independent of the chain contour length. Owing to this unique
characteristic, a long charged wormlike chain forms multiple tori structure as a collapsed product,
which is never seen with a neutral wormlike chain. These features were confirmed by a Monte Carlo
simulation. © 2004 American Institute of Physics.@DOI: 10.1063/1.1652433#

I. INTRODUCTION

When a polymer chain is immersed in a poor solvent, its
conformation changes from a statistical coil into a compact
collapsed state. This conformational transition, so-called
coil–globule transition, has been the subject of extensive
studies in polymer physics.1–3 The nature of this coil–
globule transition critically depends on the chain stiffness.2–4

In the case of flexible chains, a gaslike coil gradually shrinks
as the solvent quality becomes worse, and a liquidlike glob-
ule is formed in poor solvent, which is characterized as a
disorder–disorder transition. On the other hand, an abrupt
first-orderlike transition is expected for stiff or semiflexible
chains, suggesting the possible occurrence of a disorder–
order transition. Actually, it is known that a chain with uni-
form rigidity ~wormlike chain! forms a torus by wrapping
upon itself circumferentially.5–11 In fact, many of the confor-
mational properties of DNA molecules can be modeled quite
well by a wormlike chain, and electron microscopy has re-
vealed that the most common morphology of collapsed DNA
is a torus.12–15Computer simulation studies have also shown
that, for a stiff chain with wormlike flexibility, a torus shape
is the most stable over a wide range of conditions.15–21

If a polymer chain bears ionizable groups, i.e., polyelec-
trolyte, long-range electrostatic interaction acts between
charged groups. This has a significant influence on the over-
all shape of the collapsed polymer chain in a poor solvent as
well as the nature of the coil–globule transition. In the case
of a flexible polyelectrolyte, a single globule may become
unstable due to the balance between the surface energy and
the electrostatic energy. Scaling theory predicts that the re-
sulting structure consists of multiple small collapsed glob-
ules connected by strings, or a so-called pearl-necklace.22

This pearl-necklace structure has been further supported by
a variational approach23 and intense computer
simulations.24–26Such pearl-necklace structures are regarded
as micro-segregation with liquidlike mini-globules. On the
contrary, it has recently been shown that multiple tori struc-
ture is generated from single giant DNA molecules by the
addition of certain cationic surfactants.27

Although, as described above, both the stiffness and
Coulomb interaction have a great significance on the col-
lapsed structure of a polymer chain, there seems to have been
almost no studies on how these two factors work simulta-
neously. In particular, synergy between these two factors is
expected to be important for the collapsing behavior of DNA
molecules. In fact, there is an early report on the possible
role of electrostatic interaction in the striking feature of DNA
condensation that the size distribution of multi-molecular
DNA condensates is independent of the DNA molecular
length.13

In the present study, we investigate the structure of a
single semiflexible chain with uniform rigidity and charge
density ~uniformly charged wormlike chain! in a poor sol-
vent. We consider the case with high screening, i.e., the sol-
vent contains a moderate concentration of 1:1 salt. Thus, the
electrostatic interaction is screened at the monomer scale.
Assuming a torus as a collapsed structure, we discuss how its
size depends on the chain length and other physical param-
eters, and demonstrate qualitative differences from a neutral
wormlike chain. We also point out the possible formation of
multiple tori, which is improbable for a neutral wormlike
chain. These predictions are discussed in comparison with
the results of a Monte Carlo simulation.

II. THEORY

We consider an infinitely dilute polyelectrolyte solution
with wormlike flexibility in the presence of 1:1 electrolyte
with concentrationc. A polyelectrolyte chain is characterized
by the total contour lengthL, the length of Kuhn segmentl ,
its thicknessd, and the linear charge densityr. In our nota-
tion, l is solely attributed to the nonelectrostatic mechanical
rigidity. There are two characteristic lengths associated with
electrostatic interactions, the Bjerrum lengthl B5e2/ekBT
and the Debye lengthr D5(8p l Bc)21/2, wheree, e, andkBT
denote the unit charge, the dielectric constant of the solvent
and thermal energy, respectively. We consider the case where
r l B,1. Thus, the effects of salt ions are simply reduced to
conventional linear screening with a decay length ofr D . In a
poor solvent, a chain is collapsed into a compact structure.
For the global shape of the collapsed structure of a chargeda!Electronic mail: sakaue@chem.scphys.kyoto-u.ac.jp
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wormlike chain, we first assume a single torus, by analogy
with a neutral wormlike chain. The torus is characterized by
two radii of curvature: The average radiusR, and the thick-
nessr of the torus. We also assume that the torus is com-
posed of densely packed stiff segments in a parallel align-
ment, which leads to the relationshippd2L/452p2r 2R.

To discuss the optimum shape of the torus, we adopt the
following semigrand potential~the ensemble considered is
specified by the fixed chain length and the fixed chemical
potential of the 1:1 salt!

V5Vattr1Vsurf1Vbend1Velec1V trans2mn32pR. ~1!

The torus structure is stabilized by the attractive interaction
between segments due to the poor solubility of the chain
backbone, which produces the first two terms. For simplicity,
we consider the case of a maximally dense torus. In this case,
the volume energetic termVattr does not depend on the torus
shape. The second term is the surface energy

Vsurf5gS, ~2!

whereg is the surface tension, andS54p2rR is the surface
area of a torus. The third term is the bending energy required
to form the torus, and can be approximated as

Vbend;k
L

R2 , ~3!

where k5kBTl/2 is the bending modulus. The remaining
terms represent the effects associated with electrostatic inter-
actions and are discussed below.

Although the chain considered here is weakly charged,
the electrostatic self-energy becomes substantially large by

forming a torus. Then, the competition between electrostatic
energyVelect and the translational freedom of the oppositely
charged salt ions may play some roles.28,29 In this article, we
consider the case with nonpenetrating salt ions, i.e., the salt
ions do not penetrate into the torus, but rather condense onto
its surface. We incorporate this possibility as follows. The
electrostatic energy of a torus is evaluated in two steps. First,
we calculate the electrostatic energy of a cylinder with radius
r and length 2pR ~without the end effect!. We then also
consider the change in electrostatic energy due to bending of
the cylinder. This treatment is allowed as long as the mean
radius of the torus is much larger than the Debye length. The
distribution of salt ions can be formally treated within the
framework of the Poisson–Boltzmann theory as long as the
effect of electrostatic correlations between salt ions is negli-
gible, as in our case. According to the solution of the
Poisson–Boltzmann equation, the profile of salt ions~with a
negative charge! is characterized by a high density in the
vicinity of a highly charged cylinder~with a positive charge!
and a rapid decrease outside of this region. We approximate
such a distribution using a so-called two-zone model, where
the negatively charged salt ions are considered to be either
condensed within close proximity to the cylinder surface, or
completely free, and thus occupying the entire volume
uniformly.28 We will regard the salt ions as condensed if they
are located within some distanced from the cylinder surface.
By denoting the number of condensed salt ions on the cylin-
der surface per unit lengthn, the spatial distribution of
charge densityrq(x) ~wherex is the radial distance from the
cylinder axis! is expressed as

rq~x!55
4r

pd2 ~x<r !

2ne

p~r 1d!22pr 2 ~r<x<r 1d!

2
rL/2pR2ne

pLsys
2 2p~r 1d!2 →0 ~Lsys→`! ~r 1d<x!

, ~4!

whereLsys is the system size for a single chain, which be-
comes infinite at the limit of infinite dilution. With the help
of axial symmetry and the Gauss theorem, the electric field
E(x0) is calculated as

E~x0!5
4p

x0e E0

x0
dxxr~x!. ~5!

In reality, the dielectric constant inside the torus is different
from that of the solvent. However, we do not consider this
effect for the sake of simplicity. The electrostatic energy is
obtained as

Velec;
epR

2 E
0

r 1r D
dx@xE~x!2#1ke

2p

R
, ~6!

whereke is the bending modulus of the cylinder due to elec-
trostatic interaction. We approximate this modulus using the
Odijk–Skolnick–Fixman theory with the renormalized
charge density of the cylinder:30,31

ke5kBTlBr D
2

@*0
r 1ddx2pxrq~x!#2

4
, ~7!

5kBTlBr D
2 ~4rr 2/d22ne!2

4
. ~8!

The fifth term in Eq.~1! represents the translational entropy
of condensed salt ions

V trans52pkBTnRlnH n

p~r 1d!22pr 2 J . ~9!
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The last term in Eq.~1! assures particle conservation, where
m5kBT ln c is the chemical potential of salt ions.

Using the relationshippd2L/452p2r 2R, which means
that the segments inside the torus are most densely packed,
the expression for the semigrand potential Eq.~1! is reduced
to the two variablesr and n. By minimizing Eq. ~1! with
respect to these variables, one obtains the optimum salt ion
distribution and the size of a torus. The corresponding semi-
grand potential with total contour lengthL is denoted by
V(L).

III. RESULTS

In Fig. 1, we show the dependence of the torus sizer , R
on the chain contour length. For comparison, we also show
results for a neutral chain@ l B , r→0 in Eq.~1!#. As has been
well established, the size of the most densely packed torus
made of neutral wormlike chain can be described with the
scalingr;L2/5, R;L1/5. In our model withl B , r→0 in Eq.
~1!, these take the form

r;S gd6L2

k D 1/5

, R;S k2L

g2d2D 1/5

. ~10!

As the chain length increases, the thickness of torusr in-
creases more rapidly than the mean radiusR, and thus a
torus cannot be formed beyond the critical lengthL* , ob-
tained asR(L* )5r (L* ).

On the other hand, a charged wormlike chain shows a
qualitatively different length dependence, which is character-
ized by saturation of the torus thicknessr . This thickness is
determined as a function of the surface tensiong, linear
charge density of the chainr, Bjerrum lengthl B and Debye
length r D . In Fig. 2, we show the dependence of the thick-
nessr on these parameters. The thicknessr increases with an
increase ing and decreases inr, l B and r D ~or equivalently
with an increase in the 1:1 salt concentrationc).

IV. DISCUSSION

A. What determines the torus size?

A prominent structural property of a torus composed of
charged polymers is its finite thicknessr , i.e., r is almost
independent of the chain lengthL. The qualitative aspect of
this phenomenon can be easily understood as follows. The
finite nature of the torus thickness is a result of competition
between the surface energy@Vsurf in Eq. ~1!# and the elec-
trostatic self-energy@Velec in Eq. ~1!# of the torus. If we
neglect the possibility of the condensation of salt ions on the
torus surface and the effect of the electrostatic persistence
length @second term in Eq.~6!#, the electrostatic self-energy
of a torus can be written as

Velec;kBTlB
~rL !2

R F1

4
1 lnH r 1r D

r J G . ~11!

By further neglecting the logarithmic dependence onr in Eq.
~11!, it becomes possible to derive an approximate analytic
expression forr andR.

r;S gd4

kBTlBr2D 1/3

, R;S ~kBTlB!2r4

g2d2 DL. ~12!

This is the case for a relatively highly charged chain
@g2d2k3!(kBTlB)5r10L6#. Of course, the analysis with a
more sophisticated model~Sec. II! does not show any precise
power dependence ofr on these parameters. Nevertheless,
fitting with a power function gives exponents that are some-
what close to the above simple analysis, implying that the
difference between these analyses is mostly qualitative, ex-
cept for the dependence on the salt concentration. To capture
the effect of the salt concentration, which is interesting from
an experimental point of view, we need a model with salt
ions ~Sec. II!. Our model qualitatively agrees with a recent
experiment on the effect of the salt concentration.32 It should

FIG. 1. Double-logarithmic plot of the torus size, average radiusR, and
thicknessr vs chain lengthL. The parameters adopted are as follows;
gd2/kBT54.0, l /d515.0, d/d50.15, r D /d51.0, l B /d50.2, rd51.0 ~for
a charged chain!, and 0.0~for a neutral chain!.

FIG. 2. Dependence of the torus thicknessr on the~a! surface tensiong, ~b!
Bjerrum lengthl B , ~c! linear charge density of a chainr and ~d! Debye
lengthr D . We define the thickness as the optimum value ofr for the chain
lengthL/d56.03104. The parameters are the same as those in Fig. 1. The
lines in ~a!–~c! are the fittings by a power function, with exponents of 0.41,
20.37, and20.77, respectively.
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be mentioned that the strong~almost linear! dependence ofR
on L may be observed only in a narrow interval ofL, since
a torus may split into multiple tori in a long chain~Secs.
IV B and V!.

When the electrostatic effect becomes weak~the chain is
less charged and/or the Bjerrum length becomes small!, and
the chain becomes stiff, the bending energy@Vbend in Eq.
~1!# becomes more substantial than the electrostatic energy.
In this case, the thickness is mostly determined by the com-
petition between the surface energy and bending energy.
In the limit of weak electrostatic effect@g2d2k3

@(kBTlB)5r10L6#, we obtain the neutral chain scaling@Eq.
~10!#. Between these two limiting cases, the dependence of
the torus size on the chain length shows a crossover from
neutral chain scaling@Eq. ~10!# for small L to charged chain
scaling@Eq. ~12!# for largeL.

B. Multiple tori formation

So far, we have considered only a single torus. Thus, the
mean radius of a torus formed with charged wormlike chain
R increases almost linearly with the chain length while other
parameters are fixed. However, ifR becomes sufficiently
large, it is expected that a single large torus may split into
multiple small tori. In this subsection, we consider this issue
from a thermodynamic point of view. If the structure is com-
posed ofm small tori, there are (m21) connecting parts. In
these parts, the local structure is expected to deviate from the
ideal one, and can be regarded as a kind of defect. By denot-
ing the increase in the semigrand potential due to the pres-
ence of such defects asDV, the semigrand partition function
with m tori Jm is written as

Jm5(
$Li %

expH 2
V~m,$Li%!1~m21!DV

kBT J , ~13!

where V(m,$Li%)5( i 51
m V(Li) (Li is the chain length re-

quired to form thei th torus!. A chain with contour lengthL,
Kuhn lengthl is considered to be composed ofN5L/ l sta-
tistically independent segments. Therefore, to perform this
calculation, a chain is fractionalized by the bin width with
Kuhn segment, and the summation is made under the con-
straint ( i 51

m Li5L. The probability that the folded structure
is composed ofm tori P(m) is

P~m!5

Jm expS m tm

kBT D
( n51

`
Jn expS m tn

kBTD , ~14!

where the chemical potential of the torusm t50, since there
is no conservation of the number of tori. In Fig. 3, we show

the dependence ofP(m) on the chain contour lengthL.
When the chain becomes longer, a single torus first splits into
two tori. With a further increase inL, a structure with more
tori becomes preferable.

These sequential structural changes can be explained by
the property of the system that the torus thicknessr is limited
to a finite value. Thus, the total volume and surface area of
the collapsed structure do not depend on the number of tori
m, if we ignore the connecting parts between neighboring
tori. Therefore, the apparent contribution we should consider
here is the bending energy (Vbend) and the increase in the
semigrand potential due to the presence of connecting parts
~DV!. While splitting a torus into multiple small tori requires
penalties in both of these contributions, it still may occur due
to entropic considerations. When the chain is long, and ac-
cordingly the mean radius of the torus is large, the bending
energy cost due to splitting of the torus is rather small. On
the other hand, the possible number of states significantly
increases. In fact, the number of ways thatm tori can be
formed fromN (5L/ l ) segments is (N21)!/((N2m)! (m
21)!), each of which has a different weight proportional to
exp(2V(m,$Li%)/kBT). The competition between these two
tendencies leads to the sequential structural changes in a
charged wormlike chain. We emphasize that such splitting of
a torus is never expected with a neutral wormlike chain.

V. MONTE CARLO SIMULATION

An off-lattice Monte Carlo simulation has been per-
formed to confirm the theoretical considerations discussed
above. In the simulation, a chain is composed ofN spherical
charged monomeric units with diameters and valencyq
connected by a harmonic bond potential with a cut-off:

Ubond5H kbond( ~ ur i2r i 11u2s!2 ~ if l min,~ ur i2r i 11u2s!, l max!

` ~otherwise!
, ~15!

FIG. 3. Probabilities for the appearance ofm tori depending on the chain
length.DV/kBT51, and other parameters are the same as those for Fig. 1.
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where the spring constantkbond520 kBT, and l min50.85s,
l max51.15s. To mimic a wormlike chain, stiffness is intro-
duced by the following bending potential:

Ubend5( kbend„12cos~u i !…
2, ~16!

whereu i is the angle between thei th andi 11th bonds. The
bending rigidity parameter is set to bekbend530 kBT. The
electrostatic interaction between monomeric units is imple-
mented through the Debye–Huckel potential:

UDH~r i , j !5kBTlB
q2

r i , j
expS 2

r i , j

r D
D . ~17!

In addition, nonadjacent monomeric units interact through
the truncated Lennard-Jones potential:

ULJ~r i , j !5eLJF S s

r i , j
D 12

2S s

r i , j
D 6

2c~r c!G , ~18!

whereeLJ controls the degree of poor solubility, andc(r c)
5(s/r c)

122(s/r c)
6 so that the potential value becomes zero

at a cut-off distance ofr c52.5s.
Simulations have been carried out for a charged chain

(q51, l B /s50.2, r D /s51, eLJ /kBT51.8), and a neutral
chain (q50, eLJ /kBT50.5).

The collapsed structure of a neutral chain with the
present parameters is always a single torus for a chain lentgh
of NP(400, 1500). On the other hand, not only the torus but
also rod structures as metastable states are formed in the case
of a charged chain. These two morphologies can be distin-
guished by analyzing several structural measures. To avoid
the mixing from the contribution of metastable rod struc-
tures, we monitored the following two indices:~1! The radial
density profile of monomeric units around the center-of-mass
of the chain,17 ~2! the asphericity as a measure of the differ-
ences in spatial symmetry, which is calculated from the three
eigenvalues of inertia of gyration tensor of the chain.16 We
also utilized the information from the snapshot, and only
considered the torus structure in the following analysis.

In Fig. 4, we show how the gyration radius of the torus
depends on the chain length. The gyration radius of the torus

for a charged chain rapidly increases with the chain length
compared to that of a neutral chain. The scaling relation is

Rg;Nn, ~19!

where n50.19760.019 for a neutral chain, andn50.897
60.022 for a charged chain. These results correspond well
with the theoretical argument in the present study, wheren
50.2, andn;1.0, respectively. These features are clearly
shown in snapshots from the simulation, as exemplified in
Figs. 5 and 6. The torus of a neutral chain~Fig. 5! increases
in thickness with an increase in the chain length. When the
chain length is increased beyond the critical length, a neutral
chain can not form a torus. AtN52000, we obtain a disklike
structure rather than a torus@Fig. 5~c!#. In the case of a
charged chain~Fig. 6!, the torus becomes large with an in-
crease in the chain length, while the thickness is almost con-
stant, and is composed of three strands under the present
conditions. However, with a further increase in the chain
length, it is difficult for a long chain to form a large torus. In
typical simulations with chain lengthN5500, two rings are

FIG. 4. Double-logarithmic plot of the gyration radius of~a! a neutral chain
and~b! a charged chain vs chain lengthN based on a Monte Carlo simula-
tion. The slopes are~a! 0.19760.019 and~b! 0.89760.022, respectively.

FIG. 5. Top and side views of collapsed neutral chains from Monte Carlo
simulations. The chain length is~a! N5500, ~b! N51000, and~c! N
52000.

FIG. 6. Snapshots of collapsed charged chains from Monte Carlo simula-
tions. The chain length is~a! N5170, ~b! N5250, and~c! N5500.

6303J. Chem. Phys., Vol. 120, No. 13, 1 April 2004 Tori structures in a single polyelectrolyte chain

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



formed in different parts of the chain during thermal fluctua-
tion. Both rings grow and a structure with two tori is finally
obtained. Under the present conditions, it is practically im-
possible to relax into possible more stable states from this
kinetically trapped state with a conventional canonical sam-
pling. Thus, the multiple tori structure is formed due to ki-
netic effects, and we could not confirm our argument based
on equilibrium theory in Sec. IV B.

Finally, we would like to mention an additional point on
the torus structure for a charged chain. Interestingly, the
strands wrap around each other to form a triple helix. Such
helical structures formed of multiple strands of proteins are
ubiquitously seen as basic architectures of living matters,
such as collagen and actin. In our simulation, such a multi-
stranded helix is spontaneously formed upon collapse with-
out any specific chemical interaction such as hydrogen bond-
ing. This seems to be a natural result, since the optimum
packed structures of strings are helices.33 Our results indicate
the possibility that the number of strands~thickness of the
bundle! is controlled by adjusting apparent physical param-
eters.

VI. CONCLUSION

We have studied the structure of a collapsed wormlike
chain with a uniform linear charge density. We have specifi-
cally considered the case with weak electrostatic correlations
and high screening, where the role of small electrolyte mol-
ecules in the system can almost be reduced to conventional
linear screening. By assuming a torus as a collapsed struc-
ture, we have shown that the thickness of a torus made from
a relatively highly charged chain is limited to a finite value.
This thickness is determined by the balance between the sur-
face energy and the electrostatic self-energy of the torus, and
thus depends on physical parameters, such as surface tension,
linear charge density of the chain, Bjerrum length and Debye
length. We have also discussed the possibility of the forma-
tion of multiple tori for the collapsed structure of a single
charged wormlike chain.

The dependence of the torus size on the chain length
based on the results of a Monte Carlo simulation shows good
agreement with the theory for both neutral and charged
chains. In a long charged chain, the multiple tori is formed as
a collapsed structure. In the present simulations, the multipe
tori structure is generated due to the collapse kinetics rather
than to equilibrium theory, as has been discussed in Sec.
IV B. However, this does not mean that the kinetics are al-
ways the dominant factor, and it would be interesting to ex-
plore the situation in which the multiple tori structure is
formed under equilibrium.

Finally, we would like to address the possible mapping
of our theory into the case of DNA~and other strongly
charged wormlike chain!. DNA molecules are collapsed by
the addition of various kinds of condensing agents, such as
polyamines, neutral polymers, cationic surfactants, and alco-
hols. In this case, small positively charged ions in the solu-
tion renormalize the original DNA charge by counterion con-
densation, and also play important roles in generating
attractive interaction.34,35 Despite the various physical ori-
gins of attractive interaction, it is possible to determine the

structure of collapsed DNA with a renormalized charge un-
der phenomenological attractive interaction between seg-
ments, i.e., with an effectively poor solvent for DNA mol-
ecules. If the interior charge of a DNA torus is completely
neutralized by the condensation of positively charged guest
molecules, we can expect neutral chain scaling for the torus
size. However, it is not clear whether DNA is always neu-
tralized upon collapse. In fact, recent experiments have sug-
gested that in some conditions the interior charge of col-
lapsed DNA is not completely neutralized,27,36and thus there
is some surviving net charge under some circumstances,
which may lead to the unique collapsed morphology of DNA
molecules. In such cases, we expect that our theory, though
formulated for a weakly charged wormlike chain, could be
used to understand the collapsing behavior of DNA mol-
ecules, at least, in a qualitative manner.
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