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We analyze two pulse-coupled resonate-and-fire neurons. Numerical simulation reveals that an antiphase
state is an attractor of this model. We can analytically explain the stability of antiphase states by means of a
return map of firing times, which we propose in this paper. The resultant stability condition turns out to be quite
simple. The phase diagram based on our theory shows that there are two types of antiphase states. One of these
cannot be seen in coupled integrate-and-fire models and is peculiar to resonate-and-fire models. The results of
our theory coincide with those of numerical simulations.
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I. INTRODUCTION

The integrate-and-fire model[1] is well known in the con-
text of spiking neuron models. However, it cannot reproduce
voltage oscillations near the equilibrium state and resonance
in response to sinusoidal current inputs seen in the Hodgkin-
Huxley model[2–4]. Damped oscillations of membrane po-
tential are reported experimentally for biological neurons too
[5]. Although we need a model with more than two variables
to reproduce these phenomena[6], in general, it is difficult to
solve models with more than two variables analytically.

Izhikevich suggested the resonate-and-fire model, which
can reproduce voltage oscillations and resonance and is still
analytically tractable[2]. The resonate-and-fire model is a
two-dimensional linear dynamical system with a threshold. It
can be derived as a linearization of the FitzHugh-Nagumo
model [7,8] or the Morris-Lecar model[9] about their fixed
points. There is another way of simplification of the
FitzHugh-Nagumo model or the Morris-Lecar model. The
McKean model[10] can be derived as a piecewise linear
idealization of the nullclines of the FitzHugh-Nagumo model
and Tonnelier and Gerstner derived the piecewise linear
Morris-Lecar model in a similar way[11,12]. Note that these
models are different from the resonate-and-fire model we
consider in this paper.

Voltage oscillations can play an important role in trans-
mitting signals in the brain. For example, Izhikevich pointed
out that resonance provided an effective tool in selective
communication[2–4]. Therefore we need to find out whether
a network of resonate-and-fire models has properties that
cannot be observed in integrate-and-fire models. The net-
work properties of resonate-and-fire-like models(linearized
FitzHugh-Nagumo models) have been investigated[13], but
only an oscillatory regime where individual neurons fire
spontaneously was considered and subthreshold voltage os-
cillations were not focused on.

In this paper, we analyze a system of two excitatory or
inhibitory pulse-coupled resonate-and-fire models. We found

that the system settled into an antiphase state in both excita-
tory and inhibitory coupled cases in numerical simulations.
We theoretically evaluated the stability of antiphase states in
detail. The system of pulse-coupled integrate-and-fire models
has already been investigated[14], and it has been proved
that for almost all initial conditions the system evolves to an
in-phase state. This contrasts with resonate-and-fire models
where the system does not necessarily evolve to an in-phase
state.

In Sec. II we briefly review the resonate-and-fire model
and its properties. We then suggest a system for two pulse-
coupled resonate-and-fire models.

In Sec. III we demonstrate the existence of an antiphase
state and construct a theory that can be used to determine the
region of existence for antiphase states and assess their sta-
bility. We suggest an effective method of calculating the re-
gion. We show that global stability of antiphase states can be
determined by return maps and their local stability can be
determined by a simple equation.

In Sec. IV, using the method proposed in Sec. III, we
calculate a phase diagram for the existence and local stability
of antiphase states. Stability switches near the boundary of
the region of existence or at points where coupling strength
is zero. We also determine stability by direct numerical simu-
lations, and the results coincide with those of our theory. The
phase diagram indicates there are two types of antiphase
states. The antiphase state with a longer period utilizes
postinhibitory spiking[2] which cannot be seen in integrate-
and-fire models.

II. MODEL

A resonate-and-fire model is a two-dimensional linear dy-
namical system with a threshold,

dx

dt
= − x − 10y + I ,

dy

dt
= 10x − y, s1d

wherex andy are internal state variables andI is an external
input. We assume that all the variables are dimensionless for*Electronic address: kmiura@brain.riken.jp
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simplicity. If y exceeds the thresholdsy=1d, the internal state
is reset tos0,−1d. Figure 1 shows typical solutions. The neu-
ron with I =1 does not fire, while the neuron withI =2 ex-
ceeds the threshold and fires. There is a critical valueIC

1

=1.56, and neurons withI . IC
1 can fire.

The resonate-and-fire model has a fixed point satisfying

0 =
dx

dt
= − x − 10y + I ,

0 =
dy

dt
= 10x − y. s2d

The fixed point issx,yd= s I
101, 10I

101
d. When I . IC

2 =10.1, the
fixed point is above the threshold and there is no stationary
state. The eigenvalues of a linearized system at the fixed
point are −1±10i. Since the real part of the eigenvalue is
negative, the fixed point is always stable if it exists. The
imaginary part represents the angular velocity around the
fixed point.

In this paper, we analyze a system of two pulse-coupled
resonate-and-fire models,

dxi

dt
= − xi − 10yi + I + K o dst − tkd si = 1,2d,

dyi

dt
= 10xi − yi s3d

whereK is coupling strength. A neuron receives a pulse in
the x direction at the moment another neuron exceeds the
thresholdsy=1d. The neuron that has fired is immediately
reset tosx,yd=s0,−1d. Our reset value is different from the
original value,sx,yd=s0,1d, in Izhikevich [2]. The reason is
that with the original value, autocatalytic growth in the firing
rate would accelerate indefinitely, leading to an explosion of
the system. To avoid this, we chose a reset value that did not
lie directly on the threshold. Since a neuron with our reset
value has a refractory period, our reset value is suitable for a
neuron model.

III. THEORY OF ANTIPHASE STATES

A. Antiphase states

We simulated the system of coupled resonate-and-fire
models withK=0.5,I =11, and randomized initial conditions
and found that it evolves to the state shown in Fig. 2(a). The
solid lines and the dotted lines in the figure represent each
neuron. The dashed line is the thresholdsy=1d. The two
neurons fire alternately at regular intervals. Since each neu-
ron fires periodically, a phase can be defined with period 2p.
We describe the firing time of one neuron as phase 0, which
evolves in proportion to time. Here, the time at which an-
other neuron fires is described by phasep. We call this state
an antiphase state. In general, we refer to a state where two
neurons follow the same orbit but have phase shiftp as an
antiphase state[15–17].

Figure 2(b) plots the orbits in thex-y plane for the same
data as in Fig. 2(a). The arrow indicates a jump in thex
direction by a pulse input and the cross denotes a fixed point,
sx,yd=sI /101,10I /101d. The dashed line is the threshold.
Here, both neurons follow the same orbit, so the two orbits
overlap in the figure. In the following, we theoretically ex-
amine in what parameter regions antiphase states exist stably.

B. Existence of antiphase states

Before we discuss the stability of antiphase states, we
derived a theory about the region of existence of antiphase
states.

We can obtain the solution orbits of antiphase states ana-
lytically. Since the resonate-and-fire model is linear except
for the moment of firing, we can integrate it piecewise. For
ease of explanation, consider the imaginary plane and define

z; x + iy . s4d

Then, the resonate-and-fire model can be written as

d

dt
sz− z*d = s− 1 + 10idz+ I = s− 1 + 10idsz− z*d, s5d

where

FIG. 1. Solutions for the resonate-and-fire model. Orbits on the
xy plane are plotted. The cross represents a fixed point and the
dashed line is threshold.(a) Orbit for I =1. (b) Orbit for I =2. Neu-
ron is immediately reset tosx,yd=s0,−1d after it exceeds threshold.
The dotted line is the orbit a neuron follows if not reset.

FIG. 2. Example of antiphase states.K=0.5, I =11. (a) Time
evolution of y. Horizontal axis represents time and vertical axis
represents y. Solid lines and dotted lines represent each neuron. The
dashed line is the thresholdsy=1d. Two neurons fire alternately at
regular intervals.(b) Orbits inxy plane. The arrow indicates a jump
in the x direction by a pulse input and the cross denotes a fixed
point, sx,yd= s 11

101, 110
101

d. The dashed line is the threshold line. Here,
both neurons follow the same orbit, so two orbits overlap.
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z* =
I

101
+

10I

101
i . s6d

We can integrate it easily to

zstd = z* + sz0 − z*des−1+10idt, s7d

wherez0 denotes an initial condition att=0. For simplicity,
let us consider an orbit that is reset att=0. The reset value is
sx,yd=s0,−1d. Therefore the initial condition isz0=−i in the
complex plane.

We assume the orbit receives a pulse input and jumps in
the x direction att=T. Let t=T in Eq. (7) and addK. Then,
the neuronal state just after the pulse input becomes

zsT + 0d = z* + s− i − z*des−1+10idT + K. s8d

Then, the orbit evolves tot=T+T8. The orbit att=T+T8 is
written using Eq.(8) as

zsT + T8d = z* + fzsT + 0d − z*ges−1+10idT8. s9d

The threshold line isy=1 and the imaginary part ofz is y.
Thus the condition for firing time is

ysT + T8d = ImfzsT + T8dg = 1. s10d

The orbit withT8=T matches a situation where two neurons
fire alternately at regular intervals. Thus the condition that
the orbit is an antiphase state is

ys2Td = 1. s11d

Next, to set a limit to theT range satisfyingys2Td=1 theo-
retically, we used the following theorem.

Theorem 1. Given the following assumptions:(1) the neu-
rons are in an antiphase state(as defined in Sec. III A) and
(2) one of the neurons from the pair has received a pulse
input, then the following must be true. The neuron receiving
the input must fire within a 360° rotation around the fixed
point.

Note that the antiphase state is obtained from the firing
times of the two neurons while the angle of the rotation
around the fixed point may be defined without reference to
the firing times. The proof is as follows. The radius of an
orbit shrinks with time. If a neuron does not fire within 360°
rotation, it cannot fire forever. Therefore a neuron in an an-
tiphase state must fire within a 360° rotation after a pulse
input.

This theorem restricts theT range in which to search to a
finite region. The restricted region is 0,T,

2p
10 because the

angular velocity around the fixed point is always 10 and it
takes2p

10 to rotate by 360°.
Thus we should find aT value satisfyingys2Td=1 in

0,T,
2p
10, where the orbit must reach the threshold at time

2T for the first time after being reset. The condition that the
orbit exceeds the threshold at time 2T for the first time after
being reset can be mathematically represented asystd,1 in
0, t,2T.

C. Stability of antiphase states

In this section we derive a theory for the stability of an-
tiphase states.

T8 satisfyingysT+T8d=1 [Eq. (10)] can be obtained as a
function of T. ysT+T8d=1 can be explicitly written as

10I

101
+ Ke−T8sins10T8d − e−T8−Tcosf10sT8 + Tdg

−
Ie−T8−T

101
h10 cosf10sT8 + Tdg + sinf10sT8 + Tdgj = 1.

s12d

HereT8 denotes the interval between pulse input and firing
andT denotes the interval between reset and pulse input. We
refer to the map that mapsT to T8 as a return map. Figure
3(a) plots the return map withK=0.5 andI =11.

In antiphase states, the interval between pulse input and
firing for one neuron equals the interval between reset and
pulse input for another neuron. Thus we can obtain the firing
times of both neurons by using the return map iteratively.
The thin line with the arrow in Fig. 3(a) demonstrates how to
iterate the return map.

The intersection between the return map and diagonal line
represents an antiphase state and is a fixed point on the return
map. For the return map in Fig. 3(a), the orbit finally arrives
at the fixed point starting from any initial value and the an-
tiphase state is globally stable. However, Fig. 3(b) demon-
strates that the antiphase state withK=−0.5 and I =11 is
unstable.

Although we can determine global stability by drawing
return maps, we have to redraw them when we change the
values ofK and I. Therefore it is difficult to monitor global
stability over the whole range ofK and I. In the following,
we limit our focus to local stability and show that the con-
dition of neutral stability is analytically obtained over the
whole range ofK and I. Local linear stability is determined
as described below. We calculate the slope of the return map
(bold line) at the fixed point. An antiphase state is stable if
the absolute value of the slope is smaller than 1. Otherwise,
it is unstable. When the slope is −1, an antiphase state desta-
bilizes through the period doubling bifurcation[18–21].
When the slope is 1, a pair of antiphase states disappears
through saddle-node bifurcation.

FIG. 3. (a) The bold line represents the return map withK
=0.5 andI =11. The dashed line is diagonal. The thin line with an
arrow is construction to obtain firing times. The antiphase state is
stable.(b) Return map withK=−0.5 andI =11. The antiphase state
is unstable.
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We already derived the theory to determine the region of
existence of antiphase states in the previous section. Here,
we will derive a condition for the neutral stability of an-
tiphase states.

We definefsT,T8d as a function ofT andT8,

fsT,T8d ; ysT + T8d = ImfzsT + T8dg, s13d

whereysT+T8d is defined in Eq.(10). An antiphase state is
neutrally stable if the slope of its return map at the fixed
point is −1, i.e.,

dT8

dT
= −

S df

dT
D

S df

dT8
D = − 1, s14d

where the derivative is evaluated at the fixed point. After
additional calculations, the condition for neutral stability
[Eq. (14)] becomes

Kftans10T8d − 10g = 0. s15d

Note that Eq.(15) only depends on the sign ofK and
T8s=Td, and can be rewritten as

K = 0, s16d

T = arctans10d/10 = 0.147 112 8, and s17d

T = farctans10d + pg/10 = 0.461 272, s18d

where the principal value is chosen. An antiphase state is
neutrally stable if any of the above three conditions are sat-
isfied. Although arctan is a multivalued function, the theorem
in the previous section restricts theT range to 0,T,

2p
10 and

we only need to consider two values ofT.
We can rewrite the three conditions in terms ofK andI by

settingT=T8=0.147 112 8(or 0.461 272) in Eq. (10). As a
result, the three conditions for neutral stability become

K = 0, s19d

I = − 5.056 553K + 1.587 449, and s20d

I = 4.585 63K + 4.461 462. s21d

IV. RESULTS

We calculated the phase diagram for the existence and
stability of antiphase states in theKI plane based on our
theory. The results are plotted in Fig. 4. The antiphase state is
stable in the region marked “S” and unstable in that marked
“U.” In the region marked “S&U” there are two types of
antiphase states. One of these is stable and the other is not.
The dashed line represents neutral stability[Eq. (19)]. There
are no antiphase states in the dark region. In the dark region,
we found two types of solutions. One is the resting state
where both neurons stay at the fixed point. The other is the
state where one of the neurons repetitively fires while the
other neuron oscillates under the threshold.

To verify the theoretically obtained phase diagram in Fig.
4, we did a numerical simulation using the Runge-Kutta
method for numerous parameter values. To reduce the com-
putational error, we used a modified Runge-Kutta method
[22,23] at the moment an orbit crosses the threshold, where
we approximate the orbit by a line and obtain a firing time
with the accuracy ofOsdt2d. Thus the order of the computa-
tional error at the threshold isOsdt2d. We adopted the
second-order Runge-Kutta method because the fourth-order
Runge-Kutta method does not improve the order of the com-
putational error in total. The computational error with the
second-order Runge-Kutta method isOsdt3d in each step and
the number of steps isOs1/dtd. Therefore the total compu-
tational error except at the threshold isOsdt2d. This is exactly
the same order as the computational error at the threshold
[23]. Therefore we cannot improve the computational error if
we use the fourth-order Runge-Kutta method. We did nu-
merical simulations on 17 500 lattice points in theKI plane.
We choseK from −9.9 to 9.9 with a fixed step size of 0.2 and
I from −70 to 70 with a fixed step size of 0.8. We assessed an
antiphase state as stable if the orbit starting from it remained
as it was. The results of the numerical simulations coincided
with those of our theory for all the parameter values.

There are two distinct stable regions in Fig. 4. To deter-
mine the properties of these regions, we checked the orbits of
antiphase states at points marked “a” and “b” in Fig. 4. The
results are in Figs. 5(a) and 5(b).

Figure 5(a) plots the orbit of an antiphase state withK
=0.5 andI =10. The main characteristics of the orbit are that
K.0 and periodT is relatively short. Since a pulse input just
accelerates firing time, the orbit is not unique to coupled
resonate-and-fire models and can also be seen in coupled
integrate-and-fire models. The arrow indicates a jump in the
x-direction by a pulse input and the cross denotes the fixed
point. The dashed line is the thresholdsy=1d. The period of
this type of antiphase state cannot be longer than 0.147 112 8
because the antiphase state becomes unstable atT
=0.1471128 as shown in Eq.(17).

FIG. 4. Existence and stability of antiphase states. In regions
marked “S” or “U,” the antiphase state is stable or unstable. In the
region marked “S&U,” there are two types of antiphase states. One
of these is stable and the other is not. The dashed line is neutral
stability sK=0d. There is no antiphase state in the dark region.
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Figure 5(b) plots the orbit of the antiphase state withK
=−1.5 andI =0. The main characteristics of the orbit are that
K,0 and periodT is relatively long. The orbit jumps in the
negative direction by a pulse input and rebounds to fire as if
it were a spring. This is unique to coupled resonate-and-fire
models and cannot be seen in coupled integrate-and-fire
models. In the region withI . Ic

1=1.56, there is no antiphase
state such as this because a neuron spontaneously fires with-
out pulse inputs there. The period of this type of antiphase
state cannot be shorter thanp

10. In the limit thatK approaches
−`, T approachesp

10. However, it can be shown that there is
no antiphase state withT= p

10 if K is finite. ThereforeT= p
10

gives a lower limit.
Figure 6 is the magnification of Fig. 4 aroundsK ,Id

=s0,1.56d. The figure illustrates that stability changes near
the boundary of the region of existence and on lineK=0. In
the region marked “S,” the antiphase state is stable and un-
stable in “U.” The two dashed lines represent neutral stability
[Eqs.(19) and (20)]. There is no antiphase state in the dark
region.

Two antiphase states coexist in the region marked “S&U”
in Fig. 4. To examine this region, we computed the period of
antiphase states atK=4 as a function ofI. The results are
plotted in Fig. 7. The solid line denotes a stable state and the
dashed line denotes an unstable one. AtI =−19.13, two an-
tiphase states are created pairwise through the saddle-node
bifurcation [18–21]. In −19.13, I ,−18.83, the two states
coexist. At I =−18.83, the unstable state disappears because
the orbit of the unstable state becomes tangential to the
threshold. InI .−18.83, the orbit exceeds the threshold be-
fore the orbits of unstable antiphase state are formed; that is,
if an orbit is not reset at the first time that the orbit exceeds
the threshold and reset at the second time, then the orbit
becomes an antiphase state. However, this state is imaginary
and there is no unstable state. InI .−18.83, only the stable
state exists.

Figure 8 plots the period of antiphase states as a function
of I at different values ofK. The thick solid line denotes a
stable state and the thick dashed line denotes an unstable
one. The line withK=4 is the same as that in Fig. 7. Al-
though the period changes continuously withK, we plotted
only four lines for brevity. Instead, we plotted the envelopes
of the bifurcation points for all theK values. There are three
types of bifurcation and the three thin lines represent the
envelopes. Bifurcation points are obtained bym=−1,`, and
1. Herem is defined as the left-hand side of Eq.(14), i.e.,
m= dT8

dT . Note thatm depends onK. At m=1, two antiphase
states are created pairwise through the saddle-node bifurca-
tion of the return map. Atm=−1, the antiphase state desta-
bilizes through the period doubling bifurcation. Here, the
condition thatm=−1 becomes Eq.(17). At m=`, the an-
tiphase state disappears because the orbit is at a tangent to
the threshold. InK.Kc s=1.31d, two antiphase states with
different periods can coexist for someI ranges. One of these
is stable and the other is not. InK,Kc, there is only one
antiphase state and it is stable ifT,0.147 112 8. This is
consistent with Fig. 6. Note that the conditionm=−1 can be
written asT=0.147 112 8.

In K,0 and I , Ic
1 s=1.56d, there is also a region where

two antiphase states coexist and there is an unstable region

FIG. 5. Orbits of antiphase states at points marked “a” and “b”
in Fig. 4. The arrow indicates a jump in thex direction by a pulse
input and the cross denotes a fixed point. The dashed line is thresh-
old sy=1d. (a) Orbit with K=0.5 and I =10. (b) Orbit with
K=−1.5 andI =0.

FIG. 6. Magnification of Fig. 4 aroundsK ,Id=s0,1.56d. In the
regions marked “S” or “U,” the antiphase state is theoretically
stable or unstable. Two dashed lines represent neutral stability[Eqs.
(19) and (20)]. There is no antiphase state in the dark region. Sta-
bility changes near the boundary of the region of the existence and
on line K=0.

FIG. 7. Period of antiphase states atK=4 as a function ofI. Two
states coexist in the region. The solid line and dashed line denote
stable state and unstable state, respectively.
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near the boundary of the region of existence, as inK.0.
However, these regions are so small that we cannot see them
in Fig. 4.

V. SUMMARY AND DISCUSSION

In this paper, we analyzed a system for two pulse-coupled
resonate-and-fire models. We found that the system settled to
an antiphase state in numerical simulations. We looked for
the existence and evaluated the stability of antiphase states.
We found an effective method of calculating the region of
existence, where we set limits for the region theoretically and
then utilized analytically obtained orbits. We found that sta-
bility of antiphase states could be determined by means of a
return map of firing times. The condition for neutral stability

turned out to be unexpectedly simple[Eq. (15)]. Based on
our theory, we calculated a phase diagram for the existence
and local stability of antiphase states.

Stability changed near the boundary of the region of ex-
istence or atK=0. We also determined stability by direct
numerical simulations, and the results coincided with that of
our theory. The phase diagram revealed that there were two
types of antiphase states. An antiphase state with a longer
period is unique to coupled resonate-and-fire models and
cannot be seen in coupled integrate-and-fire models.

We modeled a spike as a delta function. The case where a
spike is modeled as an alpha function has been studied in
[13]. However, the stability condition was not obtained ex-
plicitly, and a phase diagram for existence of antiphase states
was not calculated as a function of coupling strength. There-
fore it is difficult to compare their results with ours.

In this paper, we focused on antiphase states. What about
in-phase states? If two neurons start under the same initial
conditions, they must continue to follow the same orbit.
Then, in-phase states exist atI . Ic

1 s=1.56d where a neuron
can fire spontaneously. However, in-phase states are unstable
against perturbations. This can be explained as follows. Let
the orbits of two neurons differ infinitesimally. When the
neurons fire in succession, the leading neuron receives a
pulse input from the following neuron just after being reset,
while the following neuron receives a pulse input from the
leading neuron just before firing. The positions where they
receive pulse inputs differ considerably. The effects of pulse
inputs on orbits are so different that the difference between
orbits becomes finite. Thus in-phase states are always
unstable.
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