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Non-Gaussian dynamics of a dilute hard-sphere gas
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We have calculated nonlinear time correlation functions of a dilute hard-sphere gas numerically by
using the Monte Carlo method, to find that the single particle dynamics in a dilute hard-sphere gas
does not follow the Gaussian process. The deviation of the self-part of the dynamic structure factor
from a Gaussian function is observed. This non-Gaussian character corresponds to those of
Lennard-Jones liquids reported by ltagekial. [K. Itagaki, M. Goda, and H. Yamada, Physica A

265 97 (1999], if we scale the time unit by the collision frequency. Further, we trapped a particle

in a harmonic well and calculated the time development of its distribution, in order to clarify the
effect of collisions to the solvation dynamics. Both the Gaussian and the linear response
assumptions are broken, and the deviation becomes larger as the curvature of the harmonic well gets
larger. © 2001 American Institute of Physic§DOI: 10.1063/1.1340616

I. INTRODUCTION means thaF(t) is not a Gaussian process. The same discus-

It is one of the central problems in solution chemistry to sion works _in th? ge_\ner_alized Langevin formalism, wher(_a the

understand the static and the dynamic solvent ﬂuctuationnon_GaUSSIan distribution afr (t) means the non-Gaussian
Character of the random force.

felt by a solute molecule. Since solvent molecules have so o .
: Nishiyama and Okada measured hole-burning spectra of
many degrees of freedom~(10?%), fluctuations are usually : . . .
selveral dyes in solution, and compared the relaxation profile

fﬁﬁ?eﬁ]tez?ee,:qonﬂ;\?vg\l,irG2S;Séanh%rr?§risesngufatfetgigf?tcrl?the peak and the width of transient hofeBhey found that
g ' ' P §he relaxation of the width is slower than that of the peak.

ported that are not explained by the Gaussian statistics. : : " .
. . . " The relaxation function of the peak position approximately
Tominaga and Yoshihara measured the vibrational i R )
. .~ “represents the averaged transition energy, which is defined
dephasing rates of overtones of chloroform by a time- . )
. . theoretically as follows:
resolved higher-order nonlinear Raman spectros¢opyey
found that the decay curves of response functions were ex- (BU(t))ne
ponential, and the vibrational quantum number dependence P (8U(0))pe’
of dephasing rates is smaller than quadratic. The exponential o »
decay means that the system is in the fast modulation limitvhere U stands for the deviation of the transition energy

while quadratic quantum number dependence is expected from the equilibrium average, arfel -),. means the nonequi-

the fast modulation limit under Gaussian statistics. I|br|_um qverag_e._The relaxation function of the width can be
It has been known that the self-part of the dynamic strucd€fined in a similar way as follows:

ture factor[Fy(r,t)] of liquid argon does not to follow a ey ((BU(1) = (8U(1))ne)*)ne= (U = (U )eq)*)eq

Gaussian distribution at the time of ps orddtagakietal. Py ()= ((8U(0)—(8U(0))nd D ne—((8U—(6U)eq%)eq

recently calculated the shape Bf(r,t) of a Lennard-Jones ne’ /ne © 6‘4(3)

liquid and a molten salt in detail for longer time scale by o ] )
molecular dynamicsMD) simulations and discussed the Both nonequilibrium averages are approximated by the equi-

non-Gaussian characteFrom the definitionF(r,t) is the  librium time correlation functions[P(eeq).(t) and P\(/f(?)(t)] .
distribution of the displacement of a tagged particle betweeN/ithin the linear response assumption in the following way:
the time interval of 0,t] that is defined by (8U(0)8U(L))

o= 2

(N® 1+~ ,(ed
. o Pe (t)—pe (= <(5U)2> ) 4
5r(t)zr(t)—r(0)=v(0)t+f dt’f dt” F(t"), (1) ) ) oo
0 0 (ne 1) = (eq)(t)5<(5U(0)) (8U(t))5)—((8U)*)
wherer(t), v(t), andF(t) stand for the position, velocity, Pu Pw ((8U(0)H—((sU)?*
and force from other particles of the tagged particle, respec- ()

tively. The sum(or integra) of Gaussian processes should bewhere(: - -y stands for the equilibrium average. The following
a Gaussian process. Sing®) obeys a Gaussian distribution relationship forsU(t) is expected iféU(t) is a Gaussian
(Maxwell distribution, non-Gaussian character afr(t) process:

((8U(0))%(8U(1))?)=2(8U(0)8U (1)) +((8U)?)?.
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P (t)=(pEI(1))2. (7) po? m{(v+dv)-dv}?
: : . : Pe(v,dV) = —————m—eX — —5 o7
Therefore, if the corresponding relationship does not hold V27kgT|dv|?/m 2kgT[dv]|
betweenp{")(t) and p{"®(t), either the linear response as- (8

sumption or the Gaussian approximation is broken. A Monte Carlo methodin the sense of numerical analy-
~In the previous article, one of us proposed that the cOl;g \yas employed in order to calculate time correlation func-
lisional character of the solvent fluctuation felt by a solutejjyns of a tagged particle. Random walks in the momentum
molecule is a candidate for the origin of non-Gaussiangace were generated to follow the transition probability of
dynamics; which can explain the subquadratic guantum Eq. (8), and averages of the trajectories were calculated. The
number dependence of the vibrational overtone dephasingisa| velocity of a tagged particle was determined to obey
rates reported by Tominaga and Yoshihara. In this work, Wgne \axwell distribution. The details of the numerical imple-
examine a possibility whether the non-Gaussian character Qf antation are given in the Appendix. The numbers of trajec-
the binary collision between solute and solvent explain%ries were X 10 and 1x 10° for velocity auto correlation

other non-Gaussian processes mentioned above. The collction and the self-part of the dynamic structure factor,
sional effect on the non-Gaussian diffusion was already St”dr'espectively

ied mathematically in momentum spdtin the case of ro-
tational diffusion, collision-induced non-Gaussian relaxation
appears in angular space as the difference between t
J-extended diffusion model and the Fokker—Planck—
Langevin model:® However, so far as we know, this is the
first application of the collision-induced non-Gaussian pro-
cess to solvation dynamics in liquids. We consider a dilute . '

hard sphere gas as a model system due to the following tw-lc;he frequencies of the wefl) are 1, 3, and 5. The first one

reasons. The first is that we can neglect many-body eﬁec‘%‘elongs to the overdamped case, and .the last one belongs to
such as correlated collisions. The second is that the idea &F€ underdamped case. The harmonic potenfig) acts

“collision” exists undoubtedly in the hard-sphere system. At only on a tagged particle, and the other particles move freely

first, we calculate the non-Gaussian paramétefined in the except for the time Q_f c_oIIisions with eaph qther. We have
next section for the self-diffusion of dilute hard-sphere gas. performed both equilibrium and nonequilibrium runs. Both

The non-Gaussian character of the liquid state is qualitathe initial position and the initial velocity were determined to

tively reproduced in this model. Next, in order to simulateObey the equilibrium Gaussian distribution in the equilibrium
“solvation dynamics” in a dilute hard-sphere gas, we trap a'uns .In the nonequilibrium r”f‘s.'.the "““‘?" position(0)]
tagged particle in a harmonic well and follow the distribution walsl, ggeqbasxo,o,Tog, anld the 'th'al velé)cny quIO\(/jvs Mat:('
of the tagged particle. The harmonic well corresponds to thdvell distribution. The values ox, were determined so that

free energy surface, and the motion of the tagged particle i§°/“’ equals 0, 1 2, and 3. We regard bheoprdmate as.the
olvation coordinate. Therefore, we substitutéor SU in

regarded as the motion along the solvation coordinate. Th A—(7). Th ber of trai . 56 f
solvent motion along the solvation coordinate is perturbed b gs-(2)—( ): e number of trajectories was “1except for
he calculation of the functional form of the distributi@rig.

the collision with other solvent molecules in this model. ) .

When the characteristic frequency of the harmonic well is7)' where 2x 10° trajectories were averaged.
large, the relaxation of the time correlation function of the

distribution width is slower than that of the averaged energy.

In addition, the nonequilibrium relaxation of the distribution 1Il. RESULTS AND DISCUSSION

width is found to depend strongly on the initial position.

We have also studied the time development of the prob-
ability distribution of a tagged particle in a three-dimensional
rmonic well[V(r)] as follows:

_w2|l’|2
V(n=——. 9

A. Free particle

We will discuss non-Gaussian character of the motion of
1. MODELS AND NUMERICAL METHODS a tagged free particle in a dilute hard-sphere gas. First, we
show in Fig. 1 the normalized velocity autocorrelation func-
The system under consideration is composed of hardjon. The motion of a tagged particle in the dilute gas is
sphere molecules, whose number density, mass, and dialgnown to be described well by the Enskog theory, which
eter arep, m, ando, respectively. The solut¢agged particle  predicts that the velocity autocorrelation function decays in a
and the solvenfother particles are assumed to have the single exponential way, and the time constant)(can be
same mass and the same radius. Since the length is scaled byculated analytically. In the case of the hard-sphere gas, the
pa? in the low-density limit, we can reduce the entire units, 4 e of 7 is equal to 3/(8 ) =0.21157. The prediction of
so thatpo?, m, andkgT (Boltzmann constanttemperature  the Enskog theory is also shown in Fig. 1. Although the
are unity. The molecular chaos assumption holds in the lowpmerical result deviates upward slightly, the agreement
density limit, that is, the equilibrium distributioMaxwell  \yith the Enskog theory is good. We also show the time cor-
velocity distribution of solvent molecules is not perturbed rejation function of thefluctuation of the Kkinetic energy

we can express the probability that a solute of velogity

collides with a solvent, and that the velocity of the solute  ((V2(0)—(v®))(V2(t) =(V?)))
increases bylv in a unit time[ P.(v,dv)] as follows? ((V2={v?))?)

(10
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FIG. 1. Velocity autocorrelation functions. Solid and broken curves meang|G, 3. Time development of the non-Gaussian param@&pP) of the
the numerical result and the Enskog theory, respectively. Dotted curve is thge|f-part of the dynamic structure factor defined as @d) (solid curve.
time correlation function of the kinetic energy fluctuation defined as Eq.The x-axis is a log-scale. The™! time profile is also shown by a broken

(10). curve.

The decay of the kinetic energy fluctuation is similar to the
velocity auto correlation function in the short-time scale, andequals 59/581.0172 by Chapman and Cowling, and 57/56
the upward deviation is found at the long-time. It appears=1.0179 by Kihara. The result of our calculation is close to
quite natural that the fluctuation of the kinetic energy decayshe values of these theories. When the random force felt by a
at the same time constant as that of the velocity auto corresolute particle follows the Gauss—Markov statistics, the ve-
lation function, since both kinetic energy and translationallocity autocorrelation function must be exponential, and the
momentum relax through collisions with solvent molecules.Enskog theory holds exactly. Therefore, the deviation of
However, the time correlation function of the fluctuation of the diffusion coefficient from the Enskog value stands for the
velocity power ton(v") should decayn times faster than non-Gauss—Markovian nature of the transition probability
linear velocity auto correlation function, that is, the decaydescribed by Eq(8).

rate of kinetic energyEg. (10)] would be twice as large as We also studied the non-Gaussian character of the self-
that of velocity autocorrelation function, if the velocity obeys part of the dynamic structure factor. For this purpose, we
the Gaussian process. Therefore, this result clearly indicateslculated the time development of the non-Gaussian param-
v(t) is not a Gaussian process, although the instantaneowser (NGP) as is the case of Itagaki al® The definition of
distribution of v(t) is always Gaussian(Maxwell- NGP in three-dimensional systems is given by the following
Boltzmann distribution which was confirmed both analyti- expression:
cally and numerically. Since all relaxation processes are lim-

. & ’ - 3(|or(t)])
ited by the collision frequency in collisional systems, NGP= ———>7— 1. (11
Gaussian approximation is not appropriate for relaxation pro- 5(lar(t)[%)

cesses comparable to the collision frequency. The value of NGP indicates how much the distribution devi-
In Fig. 2, we show the mean-square displacement of ates from the Gaussian one, since the value of NGP is equal
tagged particle. The prediction of the Enskog theory is alsao zero for the Gaussian distribution.
shown. The diffusion coefficient from this calculati¢D) is We show in Fig. 3 the time development of NGP. Al-
slightly larger than that from the Enskog theoryD{  though it is not shown in the figure, NGP converges to zero
=3/(8ym)=0.21157), although both values are very closeast approaches zero. The value of NGP also approaches zero
to each other. The value @/Dg from this calculation is in the long-time limit due to the central limiting theorem.
1.0183+0.0008. The Enskog theory is not an exact, but arHowever, NGP has nonzero values at the intermediate time,
approximated theory, and there are some higher-order theas is reported by Rahmamand ltagakiet al2 for Lennard-
ries to correct the Enskog theoly.For example,D/Dg  JonegLJ) liquid and molten Agl. The non-Gaussian charac-
ter remains up td=100, about 500 times larger than the
Enskog collision time £g). The time dependence of NGP is

140 close to that of liquid argon reported by Itagakial. if we

120 - regard our time unit as 1 ps. Since the collision frequency in

100 (- liquid is an order of 100 fs, we consider that this scaling of
é 80 - time unit is reasonable. Therefore, we consider that the col-
% 60 - lisional dynamics can be a reason for the non-Gaussian mo-
v 40 tion in liquids, and that the liquid state dynamics has inher-

20 ited its non-Gaussian character from the collisional dynamics

0 | | | 1 of gases. The time profile af ! is also shown in Fig. 3. As

0 20 40 60 80 100 is seen in the figure, the asymptotic form of NGP is propor-
t tional to t~* within the error of our numerical calculation.
FIG. 2. Mean-square displacement. Solid and broken curves mean the n&=Onsidering that NGP is a ratio of fourth-order cumulant to
merical result and the Enskog theory, respectively. the squared second-order cumulant essentitilly decay of
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NGP is quite natural from the view of the central limiting 1.2 I

theorem. The velocity of the tagged particle loses its memory = 1 -
after the interval longer than: . Since the value obr (t) is T 0.8 i
the accumulation of the velocity of the tagged partide(t) & 0.6 N
can be regarded as the sum of individual stochastic variables <3 '

whose number is proportional tdn the case of largé The 5 04 ]
central limiting theorem predicts that the ratio of the fourth- *“Qo 02 T
order cumulant to the squared second-order one approaches ~ 0

zero as inversely proportional to the number of individual 0.2 | 1 : l
stochastic processéswhich means theé ! decay of NGP. 0 5 10 15 20

Thet ! decay is quite a slow relaxation process, and the
relaxation time diverges if we define the relaxation time by
time integration. In this sense, there is an ultraslow relax-
ation process in normal liquidgnd in gases, tgo

B. Tagged particle in a harmonic well

In the first part of this subsection, we show equilibrium
time correlation functions that correspond to peak and width.
Since we regard the-coordinate of a tagged particle as the
solvation coordinate, the functional forms pf*%(t) and
ple9(t) [Egs.(4) and(5)] are described as follows:

(x(0)x(1))  w?
pI(t)= — = 3 (r0)-r(v), (12 o) .
(x9 7 _
_ Tz

(e 1) = (E0)x*(1) = (x*)* _ (x*(0)x*(1))—w* & 06 .
Pw = <X4>—<X2>2 = 2w 4 . @ .
(13 g N

In addition to the time correlation function of thene- S -

dimensionaldistribution as described by E@l3), we also

calculated the time correlation function of the three- 2
dimensional distributiofip{¢9(t)] defined as follows:
<|r(0)|2|r(t)|2>—(|r|2)2 FIG. 4. Equilibrium time correlation functions of a tagged particle in a
p\(,fév(t)E . ont harmonic well. The solid, broken, and dotted curves Gr¥(t)}2, p{e?
(Ir*=(Ir%) X(t), andp{&I(t), which are defined as Eq&l2)—(14), respectively. The

frequencies of the well are 1, 3, and 5 f@, (b), and(c), respectively.

_(rOPIr ) -9

6w ¢
(a2 (eq) (e i Hereafter we show the numerical results on the nonequi-
We show[pe(t)1%, py, (1), andpys'(t) in Fig. 4. These jiniym relaxation of the tagged particle in the harmonic
three functions should agree with each other(f) is a o) |n Fig. 5, we show typical examples of the time devel-

Gaussian process. However, their time developments are difyment of the probability distribution. Both figures are the
ferent in the intermediate and the underdamped cdSgS.  (egyits ofw =3, with different initial positions X,). Figures

4(b) and 4c)], which clearly indicates that(t) does not g4 ang gh) are the results ofx,=0 and 3, respectively.
belong to the Gaussian process. Since the relaxation time e former corresponds to the transient hole-burning spec-
the case okw=1 is much larger than the Enskog collision {,m near the absorption maximum, and the latter corre-
time, r(t) approaches the Gaussian process due to the centighongs to the transient fluorescence spectrum with large sol-
limiting theorem. In the cases @f=3 and 5, the relaxation \aion reorganization energy. The relaxation of distribution
of the width is slower than that of the average, which hapyigih shows rather complicated behavior in these figures.
pens to agree with the experiments of Nishiyama and Okadge \idth once becomes larger than the equilibrium one in
We consider that the slower relaxation of the width in OUrEjg 5(b), whereas such behavior is not found in Figa)5In

system is explained by the fact that, since all the relaxatioftigs 6 and 7, we show the relaxation function of distribution
rates are limited by the collision frequen@yo relaxation can centers and widths defined as below:

occur without collision, the relaxation of higher-order cu-
mulants cannot become as fast as expected from the Gauss- (X())ne
(X(0))ne’

(14

pe(t)= (19

ian assumption. The relaxation of the three-dimensional dis-
tribution is slower than that of one-dimensional distribution,

which indicates the correlation between different compo- (ne)y) — (XD = (X(1))nd) D= {(X = (X)eq)*)eq (16)
nents ofr(t). " ((X(0) = (X(0))ne) Y ne— {(X—(X}eq)Veq’
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FIG. 5. The nonequilibrium spatial distributions of the tagged particle in the

harmonic well whose frequency equals 3. Solid, broken, dotted, and dash- 12 I |
dotted curves are the distributionstat0.3, 0.6, 0.9, and 1.5, respectively. 1 1
The initial positions are 0 and 1 fgm) and (b), which are indicated by 0.8 —
vertical arrows in the figure. Solid curves with filled circles are the equilib- =~ 06 -
rium Gaussian distribution. = 04
£ ° . -
& 0.2 -
. . . 0
where 8U in Egs.(2) and (3) is replaced by in Egs.(15) 02 ]

and (16). Looking at Fig. 6, it is noticed that the linear re- 04 i | |
sponse assumptidiEqg. (4)] works approximately well, and 0 05 1 1.5 2 25 3
the agreement becomes better with a decrease of the fre-
guency of the harmonic well. Deviations from the linear re- ) o ) )
; ] FIG. 6. The time development of the nonequilibrium relaxation function of

Spons_e are found for the Wells_ Of_ hlgher frequenmes, ar_]%e averaged position defined as E#5). Solid, dotted, and dash-dotted
there is a tendency that the oscillation becomes smaller witBurves are the relaxation functions when the initial positions a@ré,
an increase of the deviation of the initial position from the2e™*, and 30, respectively. Broken curves are the corresponding equi-
equilibrium one. librium time correlation functiohEq. (1_2)]. The frequencies of the well are

Figure 7 shows the relaxation function of the distribution = > 3¢ 5 for@. (b), and(c), respectively.
width. Compared with Fig. 6, the deviation from the linear
responseéEq. (5)] is larger than the case of distribution cen-
ters. As is the case in Fig. 6, the deviation becomes largeGaussian parameter, we found that the non-Gaussian distri-
with an increase of the frequency of the well. In addition, thebution lasts about 500 times as long as the Enskog collision
relaxation functions get smaller than zero when the value ofime. This behavior is in parallel with those of Lennard-
X, and the frequency of the well are large, which corre-Jones liquidé® and molten saltd Therefore we consider that
sponds to the broadening of distribution in Fighp We do  the liquid state dynamics has inherited its non-Gaussian
not have any explanation at present for the nonlinear recharacter from the collisional dynamics of dilute gases.
sponse as is seen in Figs. 6 and 7. Since the collisional dy- We have also simulated the “solvation dynamics” in the
namics contains complex behavior even in the absence dfilute hard-sphere gas by trapping the tagged particle in a
correlation between collisions, the situation will be moreharmonic well. Both the equilibrium and the nonequilibrium
complicated in liquids where many-body correlation is es-time correlation functions are obtained. In the equilibrium
sential. runs, the relaxation of the distribution width is slower than
that of the average, as is observed in the hole-burning experi-
ments by Nishiyama and Okada. In the nonequilibrium runs,
the linear response assumption works better for the distribu-

We have calculated nonlinear time correlated functiongion average than for the distribution width. The deviations
of a tagged particle in a dilute hard-sphere gas. In the abfrom both Gaussian statistics and the linear response become
sence of external forces on the tagged particle, the spatighrger with an increase of the frequency of the harmonic
distribution of the tagged particle broadens with an increasevell. This indicates that the Gaussian statistics does not hold
of time, and the transient distribution does not follow awhen the number of collisions is small. We suspect that such
Gaussian function. From the time development of the nona non-Gaussian relaxation will be found in the ultrafast sol-

IV. CONCLUDING REMARKS
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12 | | | P(v,dv)d3(dv)At
(a) 1
! 1 [{ (dv +v-cosh)?
0.8 — = exg —
2 06 _ V2mrdo 2
To* 04 N X (dv)?sind(dv)de de At
0.2 =
0 . | d(cos6)
02 l 1 l B 2
0 5 10 15 20
t " 1 F{ (dv+v-cos6)? d(dv)
—exg——————— v
12 | N 2
: d
_ 32 : X{47TdvAt}[£}, (A1)
;E,: 0.4 -
e 02 7 where v=|v|, and dv=(dv sin#cose,dvsinfcose,
0 T Xdv cosé). In Eq. (A1), all the units are scaled so thad?,
-0.2 | - | | 7 m, andkgT are unity. In the case of free particle, the velocity
s 1 15 2 25 3 att+At is determined from that dtwith the following pro-
t cedure. Firstly, co8 is determined to obey the uniform dis-
tribution between-1 and 1. Secondly, we generateas the
1 © I I T I Gaussian distribution whose average-is cosé and whose
g'g A : variance is unity. The minus value dff means that no col-
04 bl i lision occurs betweenhandt+ At. Thirdly, the uniform dis-
& 0'2 L\ _ tribution between 0 and 1 is generated, whose value is called
EQ; '0 D _ - p hereafter. A collision occurs when the valuepas smaller
02k Voo - than 4 dv At. Then, the value ofp is determined as the
040 7 — uniform distribution. The time of collisiont{) follows the
0.6 |- = | | | - uniform distribution betweehandt+ At. The value ofAt is
0 05 1 1.5 2 25 3 0.0001 in all calculations. We performed several runs with

t different values ofAt to find that its effect is small.

FIG. 7. The time development of the nonequilibrium relaxation functions of In 'Fhe Ca_lse of trappeq particles, we imegrate the equation
the distribution width defined as E(L6). Solid, broken, dotted, and dash- Of motion with the following method:

dotted curves are the relaxation when the initial positions awe @, 201,

and 3w !, respectively. Solid curves with filled circles denote the corre- o .

sponding equilibrium time correlation functidigq. (13)]. The frequencies V(t+At)=v(t)coswAt—wr(t)sinwAt

of the well are 1, 3, and 5 fai), (b), and(c), respectively.

+dvcosw(t+At—t,), (A2)
vation dynamics that is comparable with the collision fre- v(t)
guency of liquids. r(t+At)= —sinwAt+r(t)coswAt

w
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