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Non-Gaussian dynamics of a dilute hard-sphere gas
T. Yamaguchia) and Y. Kimura
Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

~Received 23 October 2000; accepted 20 November 2000!

We have calculated nonlinear time correlation functions of a dilute hard-sphere gas numerically by
using the Monte Carlo method, to find that the single particle dynamics in a dilute hard-sphere gas
does not follow the Gaussian process. The deviation of the self-part of the dynamic structure factor
from a Gaussian function is observed. This non-Gaussian character corresponds to those of
Lennard-Jones liquids reported by Itagakiet al. @K. Itagaki, M. Goda, and H. Yamada, Physica A
265, 97 ~1999!#, if we scale the time unit by the collision frequency. Further, we trapped a particle
in a harmonic well and calculated the time development of its distribution, in order to clarify the
effect of collisions to the solvation dynamics. Both the Gaussian and the linear response
assumptions are broken, and the deviation becomes larger as the curvature of the harmonic well gets
larger. © 2001 American Institute of Physics.@DOI: 10.1063/1.1340616#
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I. INTRODUCTION

It is one of the central problems in solution chemistry
understand the static and the dynamic solvent fluctuat
felt by a solute molecule. Since solvent molecules have
many degrees of freedom (;1023), fluctuations are usually
assumed to belong to the Gaussian process due to the ce
limiting theorem. However, some phenomena have been
ported that are not explained by the Gaussian statistics.

Tominaga and Yoshihara measured the vibratio
dephasing rates of overtones of chloroform by a tim
resolved higher-order nonlinear Raman spectroscopy.1 They
found that the decay curves of response functions were
ponential, and the vibrational quantum number depende
of dephasing rates is smaller than quadratic. The expone
decay means that the system is in the fast modulation li
while quadratic quantum number dependence is expecte
the fast modulation limit under Gaussian statistics.

It has been known that the self-part of the dynamic str
ture factor @Fs(r ,t)# of liquid argon does not to follow a
Gaussian distribution at the time of ps order.2 Itagaki et al.
recently calculated the shape ofFs(r ,t) of a Lennard-Jones
liquid and a molten salt in detail for longer time scale
molecular dynamics~MD! simulations and discussed th
non-Gaussian character.3 From the definition,Fs(r ,t) is the
distribution of the displacement of a tagged particle betw
the time interval of@0,t# that is defined by

dr ~ t ![r ~ t !2r ~0!5v~0!t1E
0

t

dt8E
0

t8
dt9 F~ t9!, ~1!

where r (t), v(t), andF(t) stand for the position, velocity
and force from other particles of the tagged particle, resp
tively. The sum~or integral! of Gaussian processes should
a Gaussian process. Sincev(0) obeys a Gaussian distributio
~Maxwell distribution!, non-Gaussian character ofdr (t)
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means thatF(t) is not a Gaussian process. The same disc
sion works in the generalized Langevin formalism, where
non-Gaussian distribution ofdr (t) means the non-Gaussia
character of the random force.

Nishiyama and Okada measured hole-burning spectr
several dyes in solution, and compared the relaxation pro
of the peak and the width of transient holes.4 They found that
the relaxation of the width is slower than that of the pea
The relaxation function of the peak position approximate
represents the averaged transition energy, which is defi
theoretically as follows:

re
~ne!~ t ![

^dU~ t !&ne

^dU~0!&ne
, ~2!

wheredU stands for the deviation of the transition ener
from the equilibrium average, and^¯&ne means the nonequi
librium average. The relaxation function of the width can
defined in a similar way as follows:

rw
~ne!~ t ![

^~dU~ t !2^dU~ t !&ne!
2&ne2^~dU2^dU&eq!

2&eq

^~dU~0!2^dU~0!&ne!
2&ne2^~dU2^dU&eq!

2&eq
.

~3!

Both nonequilibrium averages are approximated by the e
librium time correlation functions@re

(eq)(t) and rw
(eq)(t)#

within the linear response assumption in the following wa

re
~ne!~ t !>re

~eq!~ t ![
^dU~0!dU~ t !&

^~dU !2&
, ~4!

rw
~ne!~ t !>rw

~eq!~ t ![
^~dU~0!!2~dU~ t !!2&2^~dU !2&2

^~dU~0!!4&2^~dU !2&2 ,

~5!

where^¯& stands for the equilibrium average. The followin
relationship fordU(t) is expected ifdU(t) is a Gaussian
process:

^~dU~0!!2~dU~ t !!2&52^dU~0!dU~ t !&21^~dU !2&2.
~6!

The above equation relatesre
(eq)(t) andrw

(eq)(t) as follows:

y,
9 © 2001 American Institute of Physics
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rw
~eq!~ t !5~re

~eq!~ t !!2. ~7!

Therefore, if the corresponding relationship does not h
betweenre

(ne)(t) and rw
(ne)(t), either the linear response a

sumption or the Gaussian approximation is broken.
In the previous article, one of us proposed that the c

lisional character of the solvent fluctuation felt by a solu
molecule is a candidate for the origin of non-Gauss
dynamics,5 which can explain the subquadratic quantu
number dependence of the vibrational overtone depha
rates reported by Tominaga and Yoshihara. In this work,
examine a possibility whether the non-Gaussian characte
the binary collision between solute and solvent expla
other non-Gaussian processes mentioned above. The
sional effect on the non-Gaussian diffusion was already s
ied mathematically in momentum space.6 In the case of ro-
tational diffusion, collision-induced non-Gaussian relaxat
appears in angular space as the difference between
J-extended diffusion model and the Fokker–Planc
Langevin model.7,8 However, so far as we know, this is th
first application of the collision-induced non-Gaussian p
cess to solvation dynamics in liquids. We consider a dil
hard sphere gas as a model system due to the following
reasons. The first is that we can neglect many-body eff
such as correlated collisions. The second is that the ide
‘‘collision’’ exists undoubtedly in the hard-sphere system.
first, we calculate the non-Gaussian parameter~defined in the
next section! for the self-diffusion of dilute hard-sphere ga
The non-Gaussian character of the liquid state is qua
tively reproduced in this model. Next, in order to simula
‘‘solvation dynamics’’ in a dilute hard-sphere gas, we trap
tagged particle in a harmonic well and follow the distributi
of the tagged particle. The harmonic well corresponds to
free energy surface, and the motion of the tagged particl
regarded as the motion along the solvation coordinate.
solvent motion along the solvation coordinate is perturbed
the collision with other solvent molecules in this mod
When the characteristic frequency of the harmonic wel
large, the relaxation of the time correlation function of t
distribution width is slower than that of the averaged ener
In addition, the nonequilibrium relaxation of the distributio
width is found to depend strongly on the initial position.

II. MODELS AND NUMERICAL METHODS

The system under consideration is composed of ha
sphere molecules, whose number density, mass, and d
eter arer, m, ands, respectively. The solute~tagged particle!
and the solvent~other particles! are assumed to have th
same mass and the same radius. Since the length is scal
rs2 in the low-density limit, we can reduce the entire un
so thatrs2, m, andkBT ~Boltzmann constant3temperature!
are unity. The molecular chaos assumption holds in the l
density limit, that is, the equilibrium distribution~Maxwell
velocity distribution! of solvent molecules is not perturbe
by the history of the solute motion. Under this assumpti
we can express the probability that a solute of velocityv
collides with a solvent, and that the velocity of the solu
increases bydv in a unit time@Pc(v,dv)# as follows:9
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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Pc~v,dv!5
rs2

A2pkBTudvu2/m
expF2

m$~v1dv!•dv%2

2kBTudvu2 G .
~8!

A Monte Carlo method~in the sense of numerical analy
sis! was employed in order to calculate time correlation fun
tions of a tagged particle. Random walks in the moment
space were generated to follow the transition probability
Eq. ~8!, and averages of the trajectories were calculated.
initial velocity of a tagged particle was determined to ob
the Maxwell distribution. The details of the numerical impl
mentation are given in the Appendix. The numbers of traj
tories were 23106 and 13106 for velocity auto correlation
function and the self-part of the dynamic structure fact
respectively,

We have also studied the time development of the pr
ability distribution of a tagged particle in a three-dimension
harmonic well@V(r )# as follows:

V~r !5
v2ur u2

2
. ~9!

The frequencies of the well~v! are 1, 3, and 5. The first on
belongs to the overdamped case, and the last one belon
the underdamped case. The harmonic potentialV(r ) acts
only on a tagged particle, and the other particles move fre
except for the time of collisions with each other. We ha
performed both equilibrium and nonequilibrium runs. Bo
the initial position and the initial velocity were determined
obey the equilibrium Gaussian distribution in the equilibriu
runs. In the nonequilibrium runs, the initial position@r (0)#
was fixed as (x0,0,0), and the initial velocity follows Max-
well distribution. The values ofx0 were determined so tha
x0 /v equals 0, 1, 2, and 3. We regard thex-coordinate as the
solvation coordinate. Therefore, we substitutex for dU in
Eqs.~2!–~7!. The number of trajectories was 105 except for
the calculation of the functional form of the distribution~Fig.
7!, where 23105 trajectories were averaged.

III. RESULTS AND DISCUSSION

A. Free particle

We will discuss non-Gaussian character of the motion
a tagged free particle in a dilute hard-sphere gas. First,
show in Fig. 1 the normalized velocity autocorrelation fun
tion. The motion of a tagged particle in the dilute gas
known to be described well by the Enskog theory, whi
predicts that the velocity autocorrelation function decays i
single exponential way, and the time constant (tE) can be
calculated analytically. In the case of the hard-sphere gas
value oftE is equal to 3/(8Ap)50.211 57. The prediction o
the Enskog theory is also shown in Fig. 1. Although t
numerical result deviates upward slightly, the agreem
with the Enskog theory is good. We also show the time c
relation function of thefluctuation of the kinetic energy
~squared translational velocity! defined as follows:

^~v2~0!2^v2&!~v2~ t !2^v2&!&

^~v22^v2&!2&
. ~10!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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The decay of the kinetic energy fluctuation is similar to t
velocity auto correlation function in the short-time scale, a
the upward deviation is found at the long-time. It appe
quite natural that the fluctuation of the kinetic energy dec
at the same time constant as that of the velocity auto co
lation function, since both kinetic energy and translatio
momentum relax through collisions with solvent molecul
However, the time correlation function of the fluctuation
velocity power ton(vn) should decayn times faster than
linear velocity auto correlation function, that is, the dec
rate of kinetic energy@Eq. ~10!# would be twice as large a
that of velocity autocorrelation function, if the velocity obe
the Gaussian process. Therefore, this result clearly indic
v(t) is not a Gaussian process, although the instantane
distribution of v(t) is always Gaussian~Maxwell–
Boltzmann distribution!, which was confirmed both analyti
cally and numerically. Since all relaxation processes are l
ited by the collision frequency in collisional system
Gaussian approximation is not appropriate for relaxation p
cesses comparable to the collision frequency.

In Fig. 2, we show the mean-square displacement o
tagged particle. The prediction of the Enskog theory is a
shown. The diffusion coefficient from this calculation~D! is
slightly larger than that from the Enskog theory (DE

53/(8Ap)50.211 57), although both values are very clo
to each other. The value ofD/DE from this calculation is
1.018360.0008. The Enskog theory is not an exact, but
approximated theory, and there are some higher-order t
ries to correct the Enskog theory.10 For example,D/DE

FIG. 1. Velocity autocorrelation functions. Solid and broken curves m
the numerical result and the Enskog theory, respectively. Dotted curve i
time correlation function of the kinetic energy fluctuation defined as
~10!.

FIG. 2. Mean-square displacement. Solid and broken curves mean th
merical result and the Enskog theory, respectively.
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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equals 59/5851.0172 by Chapman and Cowling, and 57/
51.0179 by Kihara. The result of our calculation is close
the values of these theories. When the random force felt b
solute particle follows the Gauss–Markov statistics, the
locity autocorrelation function must be exponential, and
Enskog theory holds exactly.11 Therefore, the deviation o
the diffusion coefficient from the Enskog value stands for
non-Gauss–Markovian nature of the transition probabi
described by Eq.~8!.

We also studied the non-Gaussian character of the s
part of the dynamic structure factor. For this purpose,
calculated the time development of the non-Gaussian par
eter ~NGP! as is the case of Itagakiet al.3 The definition of
NGP in three-dimensional systems is given by the followi
expression:

NGP5
3^udr ~ t !u4&
5^udr ~ t !u2&221. ~11!

The value of NGP indicates how much the distribution de
ates from the Gaussian one, since the value of NGP is e
to zero for the Gaussian distribution.

We show in Fig. 3 the time development of NGP. A
though it is not shown in the figure, NGP converges to z
ast approaches zero. The value of NGP also approaches
in the long-time limit due to the central limiting theorem
However, NGP has nonzero values at the intermediate ti
as is reported by Rahman2 and Itagakiet al.3 for Lennard-
Jones~LJ! liquid and molten AgI. The non-Gaussian chara
ter remains up tot5100, about 500 times larger than th
Enskog collision time (tE). The time dependence of NGP
close to that of liquid argon reported by Itagakiet al. if we
regard our time unit as 1 ps. Since the collision frequency
liquid is an order of 100 fs, we consider that this scaling
time unit is reasonable. Therefore, we consider that the
lisional dynamics can be a reason for the non-Gaussian
tion in liquids, and that the liquid state dynamics has inh
ited its non-Gaussian character from the collisional dynam
of gases. The time profile oft21 is also shown in Fig. 3. As
is seen in the figure, the asymptotic form of NGP is prop
tional to t21 within the error of our numerical calculation
Considering that NGP is a ratio of fourth-order cumulant
the squared second-order cumulant essentially,t21 decay of

n
he
.

u-

FIG. 3. Time development of the non-Gaussian parameter~NGP! of the
self-part of the dynamic structure factor defined as Eq.~11! ~solid curve!.
The x-axis is a log-scale. Thet21 time profile is also shown by a broken
curve.
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NGP is quite natural from the view of the central limitin
theorem. The velocity of the tagged particle loses its mem
after the interval longer thantE . Since the value ofdr (t) is
the accumulation of the velocity of the tagged particle,dr (t)
can be regarded as the sum of individual stochastic varia
whose number is proportional tot in the case of larget. The
central limiting theorem predicts that the ratio of the four
order cumulant to the squared second-order one approa
zero as inversely proportional to the number of individu
stochastic processes,12 which means thet21 decay of NGP.
The t21 decay is quite a slow relaxation process, and
relaxation time diverges if we define the relaxation time
time integration. In this sense, there is an ultraslow rel
ation process in normal liquids~and in gases, too!.

B. Tagged particle in a harmonic well

In the first part of this subsection, we show equilibriu
time correlation functions that correspond to peak and wid
Since we regard thex-coordinate of a tagged particle as th
solvation coordinate, the functional forms ofre

(eq)(t) and
rw

(eq)(t) @Eqs.~4! and ~5!# are described as follows:

re
~eq!~ t !5

^x~0!x~ t !&

^x2&
5

v2

3
^r ~0!•r ~ t !&, ~12!

rw
~eq!~ t !5

^x2~0!x2~ t !&2^x2&2

^x4&2^x2&2 5
^x2~0!x2~ t !&2v24

2v24 .

~13!

In addition to the time correlation function of theone-
dimensionaldistribution as described by Eq.~13!, we also
calculated the time correlation function of the thre
dimensional distribution@rw3

(eq)(t)# defined as follows:

rw3
~eq!~ t ![

^ur ~0!u2ur ~ t !u2&2^ur u2&2

^ur u4&2^ur u2&2

5
^ur ~0!u2ur ~ t !u2&29v24

6v24 . ~14!

We show@re
(eq)(t)#2, rw

(eq)(t), andrw3
(eq)(t) in Fig. 4. These

three functions should agree with each other ifr (t) is a
Gaussian process. However, their time developments are
ferent in the intermediate and the underdamped cases@Figs.
4~b! and 4~c!#, which clearly indicates thatr (t) does not
belong to the Gaussian process. Since the relaxation tim
the case ofv51 is much larger than the Enskog collisio
time, r (t) approaches the Gaussian process due to the ce
limiting theorem. In the cases ofv53 and 5, the relaxation
of the width is slower than that of the average, which ha
pens to agree with the experiments of Nishiyama and Oka
We consider that the slower relaxation of the width in o
system is explained by the fact that, since all the relaxa
rates are limited by the collision frequency~no relaxation can
occur without collision!, the relaxation of higher-order cu
mulants cannot become as fast as expected from the Ga
ian assumption. The relaxation of the three-dimensional
tribution is slower than that of one-dimensional distributio
which indicates the correlation between different comp
nents ofr (t).
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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Hereafter we show the numerical results on the noneq
librium relaxation of the tagged particle in the harmon
well. In Fig. 5, we show typical examples of the time deve
opment of the probability distribution. Both figures are t
results ofv53, with different initial positions (x0). Figures
5~a! and 5~b! are the results ofvx050 and 3, respectively
The former corresponds to the transient hole-burning sp
trum near the absorption maximum, and the latter cor
sponds to the transient fluorescence spectrum with large
vation reorganization energy. The relaxation of distributi
width shows rather complicated behavior in these figur
The width once becomes larger than the equilibrium one
Fig. 5~b!, whereas such behavior is not found in Fig. 5~a!. In
Figs. 6 and 7, we show the relaxation function of distributi
centers and widths defined as below:

re
~ne!~ t ![

^x~ t !&ne

^x~0!&ne
, ~15!

rw
~ne!~ t ![

^~x~ t !2^x~ t !&ne!
2&ne2^~x2^x&eq!

2&eq

^~x~0!2^x~0!&ne!
2&ne2^~x2^x&eq!

2&eq
, ~16!

FIG. 4. Equilibrium time correlation functions of a tagged particle in
harmonic well. The solid, broken, and dotted curves are$re

(eq)(t)%2, rw
(eq)

3(t), andrw3
(eq)(t), which are defined as Eqs.~12!–~14!, respectively. The

frequencies of the well are 1, 3, and 5 for~a!, ~b!, and~c!, respectively.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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wheredU in Eqs. ~2! and ~3! is replaced byx in Eqs. ~15!
and ~16!. Looking at Fig. 6, it is noticed that the linear re
sponse assumption@Eq. ~4!# works approximately well, and
the agreement becomes better with a decrease of the
quency of the harmonic well. Deviations from the linear r
sponse are found for the wells of higher frequencies,
there is a tendency that the oscillation becomes smaller
an increase of the deviation of the initial position from t
equilibrium one.

Figure 7 shows the relaxation function of the distributi
width. Compared with Fig. 6, the deviation from the line
response@Eq. ~5!# is larger than the case of distribution ce
ters. As is the case in Fig. 6, the deviation becomes la
with an increase of the frequency of the well. In addition, t
relaxation functions get smaller than zero when the value
x0 and the frequency of the well are large, which cor
sponds to the broadening of distribution in Fig. 5~b!. We do
not have any explanation at present for the nonlinear
sponse as is seen in Figs. 6 and 7. Since the collisional
namics contains complex behavior even in the absenc
correlation between collisions, the situation will be mo
complicated in liquids where many-body correlation is e
sential.

IV. CONCLUDING REMARKS

We have calculated nonlinear time correlated functio
of a tagged particle in a dilute hard-sphere gas. In the
sence of external forces on the tagged particle, the sp
distribution of the tagged particle broadens with an incre
of time, and the transient distribution does not follow
Gaussian function. From the time development of the n

FIG. 5. The nonequilibrium spatial distributions of the tagged particle in
harmonic well whose frequency equals 3. Solid, broken, dotted, and d
dotted curves are the distributions att50.3, 0.6, 0.9, and 1.5, respectively
The initial positions are 0 and 1 for~a! and ~b!, which are indicated by
vertical arrows in the figure. Solid curves with filled circles are the equi
rium Gaussian distribution.
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Gaussian parameter, we found that the non-Gaussian d
bution lasts about 500 times as long as the Enskog collis
time. This behavior is in parallel with those of Lennar
Jones liquids2,3 and molten salts.3 Therefore we consider tha
the liquid state dynamics has inherited its non-Gauss
character from the collisional dynamics of dilute gases.

We have also simulated the ‘‘solvation dynamics’’ in th
dilute hard-sphere gas by trapping the tagged particle i
harmonic well. Both the equilibrium and the nonequilibriu
time correlation functions are obtained. In the equilibriu
runs, the relaxation of the distribution width is slower th
that of the average, as is observed in the hole-burning exp
ments by Nishiyama and Okada. In the nonequilibrium ru
the linear response assumption works better for the distr
tion average than for the distribution width. The deviatio
from both Gaussian statistics and the linear response bec
larger with an increase of the frequency of the harmo
well. This indicates that the Gaussian statistics does not h
when the number of collisions is small. We suspect that s
a non-Gaussian relaxation will be found in the ultrafast s

e
h-

-

FIG. 6. The time development of the nonequilibrium relaxation function
the averaged position defined as Eq.~15!. Solid, dotted, and dash-dotte
curves are the relaxation functions when the initial positions arev21,
2v21, and 3v21, respectively. Broken curves are the corresponding eq
librium time correlation function@Eq. ~12!#. The frequencies of the well are
1, 3, and 5 for~a!, ~b!, and~c!, respectively.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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vation dynamics that is comparable with the collision fr
quency of liquids.
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APPENDIX: THE IMPLEMENTATION OF THE
RANDOM WALK IN THE MOMENTUM SPACE
DESCRIBED BY EQ. „8…

In our Monte Carlo calculation, we have used the fin
difference method on the time axis in order to obtain
trajectory according to the transition probability of Eq.~8!.
Equation~8! can be transformed into the following form i
the polar coordinate whose principal axis~z-axis! is parallel
to v:

FIG. 7. The time development of the nonequilibrium relaxation functions
the distribution width defined as Eq.~16!. Solid, broken, dotted, and dash
dotted curves are the relaxation when the initial positions are 0,v21, 2v21,
and 3v21, respectively. Solid curves with filled circles denote the cor
sponding equilibrium time correlation function@Eq. ~13!#. The frequencies
of the well are 1, 3, and 5 for~a!, ~b!, and~c!, respectively.
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Pc~v,dv!d3~dv!Dt

5
1

A2pdv
expF2

~dv1v•cosu!2

2 G
3~dv !2 sinud~dv !du dw Dt

5H d~cosu!

2 J
3H 1

A2p
expF2

~dv1v•cosu!2

2 Gd~dv !J
3$4pdvDt%H dw

2pJ , ~A1!

where v5uvu, and dv5(dv sinu cosw,dv sinu cosw,
3dv cosu). In Eq. ~A1!, all the units are scaled so thatrs2,
m, andkBT are unity. In the case of free particle, the veloc
at t1Dt is determined from that att with the following pro-
cedure. Firstly, cosu is determined to obey the uniform dis
tribution between21 and 1. Secondly, we generatedv as the
Gaussian distribution whose average is2v cosu and whose
variance is unity. The minus value ofdv means that no col-
lision occurs betweent and t1Dt. Thirdly, the uniform dis-
tribution between 0 and 1 is generated, whose value is ca
p hereafter. A collision occurs when the value ofp is smaller
than 4p dv Dt. Then, the value ofw is determined as the
uniform distribution. The time of collision (tc) follows the
uniform distribution betweent andt1Dt. The value ofDt is
0.0001 in all calculations. We performed several runs w
different values ofDt to find that its effect is small.

In the case of trapped particles, we integrate the equa
of motion with the following method:

v~ t1Dt !5v~ t !cosvDt2vr ~ t !sinvDt

1dv cosv~ t1Dt2tc!, ~A2!

r ~ t1Dt !5
v~ t !

v
sinvDt1r ~ t !cosvDt

1
dv

v
sinv~ t1Dt2tc!. ~A3!
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