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Plastic flow in two-dimensional solids
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A time-dependent Ginzburg-Landau model of plastic deformation in two-dimensional solids is presented.
The fundamental dynamic variables are the displacementdialtd the lattice velocity = du/gt. Damping is
assumed to arise from the shear viscosity in the momentum equation. The elastic energy density is a periodic
function of the shear and tetragonal strains, which enables the formation of slips at large strains. In this work
we neglect defects such as vacancies, interstitials, or grain boundaries. The simplest slip consists of two edge
dislocations with opposite Burgers vectors. The formation energy of a slip is minimized if its orientation is
parallel or perpendicular to the flow in simple shear deformation and if it makes angtes#f with respect
to the stretched direction in uniaxial stretching. High-density dislocations produced in plastic flow do not
disappear even if the flow is stopped. Thus large applied strains give rise to structurally disordered states,
which are metastable due to the Peierls potential. We divide the elastic energy into an elastic part due to affine
deformation and a defect part. The latter represents degree of disorder and is nearly constant in plastic flow
under cyclic straining.
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I. INTRODUCTION where shear bands appear above a yield stress at [@4],
and highly viscous non-Newtonian flow and significant elon-
Plastic flow has long been studied in crystalline and amorgation of the chain shapes occur at elevaief25,32. In
phous solids and in glassy polymers. In crystals irreversiblglassy polymers, the entropic stress arising from molecular
motions of dislocations give rise to plastic deformation andorientations becomes significant at large strains and such sys-
large strains produce high-density dislocatidis2]. The tems behave like cross-linked rubb¢ts,29,30Q.
nonlinear flow properties are very sensitive to the amount of Recently much attention has been paigamming rheol-
such defects and strongly dependent on the deformation hisgy observed in sheared states of supercooled liquids, soft
tory. Simulations of dynamics of dislocation lines have re-glassy materials such as dense microemulsions, or granular

cently been performed but are still most diffic[®—6]. materials[33]. In these systems, the thermal agitation effect
In amorphous solids at low temperatur¢7—13], salient is very small if the particle size is large, but universal con-
features are as follows. strained dynamics is realized under external forces. In super-

(i) Shear strains tend to be localized in narrow sheacooled liquids(at relatively highT) [24] and dense micro-
bands in plastic flow above a yield stress. The width of suckemulsions (at effectively low T) [34,35, mesoscopic
shear bands is microscopic in the initial stgdd| but can  dynamic heterogeneity and strong shear-thinning behavior
grow to mesoscopic sizd45]|, sometimes resulting in frac- have been observed, but shear bands have not been identi-
ture. Shear bands were numerically realized at large shedied. In granular material&t effectively zero temperature
strains in molecular dynamic@MD) simulations of two- strain localization is most conspicuol36—-3§.

dimensional (2D) two-component glassegl6,17] and in In our recent work{39] we constructed a 2D nonlinear
simulations of a 2D phenomenological stochastic modektrain theory taking into account the underlying local peri-
[18]. odic lattice structure, where the elastic energy density is pe-

(ii) As another aspect, in 3D MD simulations on modelriodic with respect to the shear and tetragonal strains. There,
two-component glasses at loW, Takeuchiet al. [19] ob-  we found that plastic flow starts with appearance of slips. In
served heterogeneities among mobile and immobile regionthis work we will show that the simplest slips consist of two
after application of shear strains. In 2D and 3D MD simula-edge dislocations having opposite Burgers vectors with size
tions on model supercooled binary mixtures ab®ye simi-  a (a being the lattice constanéind they grow into mesos-
lar or much more extended dynamic heterogeneities haveopic shear bands as the applied strain is increased. Under
been detected in quiescent staf@®—23 and found to be uniaxial stretching[40], well developed shear bands were
sensitively suppressed by applied shear fl@v]. already numerically realized 7,18 and will be realized also

(iii) Furthermore, at rather high (=0.7-0.87g) (where in our simulations. These shear bands make angleso#
Tqis the glass transition temperatyrshear deformation oc- with respect to the stretched direction in agreement with ob-
curs quasihomogeneousigtill involving many particles in  servations in various amorphous mater{@s-11,29 includ-
each configuration changeeading to highly viscous non- ing granular materialg36,37. These angles will be shown to
Newtonian behaviof24—-27. minimize the elastic energy of incipient slips in this paper.

(iv) We also mention a phenomenological approach to re- In crystalline solids, dislocation pairs in 2D or dislocation
produce shear bands from constitutive equations for the elagsops in 3D forming slip lines or surfaces should be nucle-
tic and plastic deformation28]. ated at the inception of plastic deformati@n addition to

Glassy polymers also behave analogoughB,29,3Q, preexisting dislocations In amorphous solids, it has been
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controversial whether dislocations themselves can be well Il. MODEL EQUATIONS
defined or no{7,10]. It is not obvious how to characterize

the local rearrangement processes as to their shapes and
sizes. In MD simulations on binary mixtures, they have been Recently Doiet al. [46] described plastic flow in a highly

detected as clusterlike objects with various visualization/iScous 2D crystal phase of block copolymers assuming 1D
methods|19—25,41. If the size ratio of the constituent two SI'ding motions. Their theory is analogous to a Frenkel-
species is chosen such that crystallization is most suppressdgntorova model for commensurate-incommensurate transi-

strong frustration occurs in the packing of large and smal?lIons [47]. Hereafter we present a model to describe plastic

particles in jammed states. Then the local crystalline orde_oE’lVJ 'TJ ?I?ro[rigz]-:t. rler;e:;ncjz c?f s:{tr;(las?;?glﬁsgsgéevggftrain
can be well defined only over short distances. However, ing X' "Y y '

2D amorphous soap bubble raft, Argon and K] ob- components as

A. Elastic energy

served that nucleation of a dislocation pair gave rise to a 1= Ve + V,uy,

small-scale slip but such dislocations did not glide more than

two to three bubble distances. It is worth noting that Dehg e,=V,u,—V,uy,

al. [16] found extended sliplike strain localization in 2D MD

simulations with the size ratio rather close tfsée comment es=Viuy+Vyu,, (2.1

(iv) in the last sectioh Notice that the displacement field

around a slip is localized because the two constituent dislovhereV,=d/dx andV,=a/dy. We calle, the dilation strain,
cations have opposite Burgers vectors. As a result, smalf the tetragonal strain, arei the shear strain. If we suppose
scale slips should be well defined even in amorphous solid@ 2D triangular lattice with lattice constaat the elastic en-
as long as the slip size does not much exceed the range of tf&9Y Should be invariant with respect to the rotations of the
local crystal structure. reference frame by-n#/3 (n=1,2,...). Due tahis sym-

; : try, the elasticity must be isotropic in the harmonic ap-
The plastic flow phenomena are thus very complex, bem%1e L4 : .
influenced by many factors, but they are ubiquitous in varid roximation[48], being characterized by the bulk and shear

ous kinds of solidlike materials. The purpose of this paper i oduli, Ko and o, but it depend_s on the orlentatlon_al angle
. . ._ 0 of one of the crystal axes with respect to thexis for
to present a well-defined Ginzburg-Landau model consis:

tently taking account of nonlinear elasticity. A merit of this large shear strains. Under rotation of the reference frame by

H ! ’
approach is that we can put emphasis on any aspect of it{h the shear strains, ande; are changed t@; and e,

phenomena by controlling the parameters or changing th\éVhere[48]

model itself. We will examingi) the fundamental flow units, e)=e, cos 20+ e, sin 20,

slips, in detail numerically and analytically arid) plastic

flow numerically in simple shear and elongatiorsiretch- e,=e5cos 20— e, sin 20. 2.2

ing) deformation. To make this paper simplest, as it is the

first detailed exposition of our scheme, we will neglédt  These relations are obtained from the orthogonal transforma-
vacancies and interstitials, or a varialferepresenting the  ions r'=J.r andu’=U-u. where r'=(x',y') and u’

local free volume. A dynamic model including such an addi-:(u)r( ,u}’,) represent the position and the displacement, re-

tional degree of freedom has already been presented in our . _ - .
previous work[39]. We will also neglect(ii) the configura- spectively, in the new reference frame, add,:{u”} ,W'th
tional frustration effect induced by the size difference be-2xx=Uyy=C0s#andU,,=—Uy,=sine. Thee; ande; are
tween the two species. Introducing these two ingredients wilfhe tetragonal and shear strgm;, respectively, in the new ref-
constitute future development of our scheme. erence frame where the axis is along one of the crystal

This paper is organized as follows. In Sec. Il we will axes. . . . .
. . . The elastic energy is written &%= [dr f with the elas-

present our dynamic model and explain our numencaltiC energy density in the form
method. In Sec. Il we will discuss the simplest form of slips
numerically obtained from our nonlinear elasticity theory. fo= 1Ko+ uod(€},e5), (2.3
We will also derive some analytic expressions for the slip
formation energy under general strain field starting with thewhich is independent of the rotation strain,
Peach-Koehler theolfyt3] and compare them with numerical
results. In our scheme stationary slip solutions exist for small = Vely— VyUy. (2.4

externally applied strains, where the force balance is ) _ . )
achieved in the presence of the Peierls potential energy fdhOte thate; andw are invariant with respect to the rotation
the dislocation position in crysta[g#4,45. Section IV will  ©Of the reference frame. The simplest formfis given by

present numerical results of the stress-strain relations and the 1
p_atterns of the strains, the ela_stic energy dens_ity, and_the d(e},eh)= 2[3—(:0577( \/§e§—eé)
displacement vector under applied strains. We will also give 6

a method for dividing the elastic energy into an elastic part S ,
due to affine deformation and a defect part. —cosm(\3ej+ey) —cog2me))]. (2.5
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FIG. 1. The scaling functio®(e3,e,) in Eq. (2.5, which is the FIG. 3. The stable regions of our elastic energy are shown in
shear deformation energy density divided py with one of the  white, where the two eigenvalues{sb 5} are both positive. In the
crystal axes being along theaxis. gray region one of them is negative, and in the black regions both of

them are negative.

This function is invariant with respect to the rotation- 6
+ 76, is a periodic function ok} with period 24/3 for e}
=0 (simple shear deformationand becomeseb+ e3)/2 for
small strains. In Fig. 1 we displag(e3,e,) supposingd
=0, where one of the crystal axes is along xhaxis. We can

see a hexagonal lattice structure in thge, plane. As a the isotropic third term.
xag ; P€2 P L . We examine elastic stability of homogeneously strained
characteristic feature, Fig. 2 shows that it is almost isotropic

ris a function ofe= (e2+ e2)X2 onlv even for rather lar States. That is, we superimpose infinitesimal stradieg,and

0 <SOa5u'CtE Oe.t_(elf te'[2|’)1 0! yelz i to ahe aﬂ?e 6e,, onez ande, assumed to be homogeneous. The second
&(=0.5) (in € unit celt a e orig In fact, we have the order terms in®(e;+ de;,e,+ de,) read

Taylor expansion,

If we sete;=ecosy ande,=esiny, the fourth term is re-
written as — (7*/720)e® cos(6) and is known to keep the
invariancey— y + m/3. Anisotropy appears in the terms of
ordere®, but the anisotropic fourth term is at most 10% of

16)) )
SAP = %’( Ses) 2+ ® y0e;0e,+ 722( 5ey)?, (2.7

where@aﬁzazd)/aeaaeﬁ (a,8=2,3). In the stable regions
><(e4—16e§e§)+0(e8). (2.6) the above seconq order contribution should be posmvg defi-

nite or the two eigenvalues,; and\,, of the 2<2 matrix

{® .5} should be both positive. In the Appendix we will
0.08 T - - 7 T T - derive this linear stability criterion by solving the linearized
version of our dynamic model to be presented in the follow-
ing section. Figure 3 shows that the system is stablesfor
=0.3, whered depends almost only aa This result readily
follows if we neglect the anisotropy inb by setting
®(e,,e3)=G(e?). Then some calculations yield

0.07F
0.06 |-
0.05

0.04

®,=2G'5,5+4G"e,ep, (2.9

@(83,92)

0.03 - instability points

where G’ =dG(e?)/de? and G"=dG’(e?)/de?. From Eq.
1 (2.6) we find G’ =1/2 andG"= — #?/4. The determinant of

0.02

&5 = @cos(mni30) {® 5} becomes &'(G' + 2G"e?). Thus the stability condi-
oo1} e, = esin(xn30) 1 tion becomes
00 OI.1 0.2 OI.S OI.4 OI.5 OI.6 OI.7 0.8 e<(G,/|ZG”|)l/ZEO-31 (29)

FIG. 2. d(ey,e,) for various directions in thes-e, plane. It ~ around the origin in thes-e; plane. The elastic instability
demonstrates isotropic behavior fer (e2+e2)?<0.5. The curve ~ With a negative eigenvaluen(<0 or \,<0) causes rapid
for uniaxial stretching €,=e ande;=0) coincides with the curve relaxation processes resulting in localized slips and stress
of n=5 in the figure. The instability points are marked, which release. In plastic flow the stability condition is satisfied at
separate stable and unstable regions. most points throughout the systeisee Fig. 10
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If we assume that small solid elements are rotated without

shape changes with the local angular veloci¥u [/ dx

—dvy/dy)l2, the orientation anglé is related to the rotation

strain as

0=30+ 06,

(2.10

where 6, is the initial value independent of tinte This re-
lation was assumed in our previous paf@®]. However, it

becomes not well defined when the three crystal axes are

PHYSICAL REVIEW E 68, 061502 (2003

1 . .
Ao=5—[cod J3mey)sin(me,) +sin(2me,)],

A3=Lsin( J3mes)coq we,).
a

V3

For small strains we havA,=e, and A;=e; to reproduce
the isotropic, linear elastic theory.
We assume that the lattice velocity

(2.195

rotated differently. For example, let a crystal with the three P

axes atf#=0, w/3, and —w/3 be affinely deformed by a

simple shear deformation given hy=vyy andu,=0 (e;
=y ande,=0). Then the first axis along thedirection is
not rotated, while the other axes are rotated by

(2.11)

1(1;/?57)_% '

Fory<1, we havesd. = —3v/4, so Eq(2.10 holds for the
average of the three rotation angles,H086 +66_)/3
=—y/2=w/2. Thus there remains ambiguity in E@®.10
particularly at large strains=0.5[49]. In this paper, in view
of the virtual isotropic behavior of our elastic energy for
=0.5, we will simply set

6=0 (212

(2.19

obeys

p5v=v-3+ 7oVv+V-&g, (2.17
where we introduce the shear viscosify but neglect the
bulk viscosity[50,51]. The ERz{aﬁ} is a symmetric random
stress tensor and satisfie§, + osyz 0, because the bulk vis-
cosity is neglected, and is related 4g by [48]

(ol (r, o (r' 1))y =2kgTmod(r—r') S(t—t').
(2.18
The mass density will be treated as a constant in Eq.

(2.17). This is justified when the deviatiodp=p—{p) is
assumed to be much smaller than the ave{ay¢52]. In the

throughout the system. To check the appropriateness of thisual linear elasticity theoryp(] it is related to the dilation
assumption, we have also performed simulations with variStrain e, as dp=—pe;, so we are assuminge,|<1 (and
ous homogeneous held fixed in the range @ §< /6. For ~ coincidence of the lattice and mass ve_locit[ég]). In our

6= /12, slip lines become slightly curved in plastic flow simulation in the plastic flow regime ag=10"3, for ex-
and have higher elastic energigsy a few ten %, but there  ample,|e;| attains a maximum in a range of 0.2—0.3 and the
arises no qualitative change in the patterns and stress-strahariance\/@ increases up to about 0.06.

relations(see also the comment at the end of Seg. IV

B. Dynamic equations

. . tl
The elastic stress tensor should be defined for general

strains. Let us change an arbitrary displacemeby an in-

finitesimal amoun®u asu— u+ Su. The incremental change

of the elastic energy density is written [a3]
J
(Sfe':% O'ija_xjéui. (213

This is just the definition of the elastic stress tensgy.

Due to the presence of the random strasgndv are
random variables and Eg&.16 and(2.17) constitute non-
linear Langevin equationg48]. Their equilibrium distribu-
ion attained in the unstrained condition is given By
xexp(—F/kgT), where the total free enerdy is the sum of
the elastic energ¥., and the kinetic energy as

szdr

Furthermore, if the random stress is omitted in 317 and
the dynamic equations are treated as deterministic ones, the
time derivative ofF is non-negative definite in the unstrained

fot gv2>. (2.19

Under Eq.(2.12 [49] it is symmetric and its components are condition as

expressed as

Oyx=Ko€1+ 1ohs,  oyy=Koer1— oAy,

(2.19

Oxy= Oyx=— HoA3,

whereA = Jd®(es,e,)/ e, are written as

d
aF:—foer 70(Vivj)?<0, (2.20
i
where use is made of the relation,
V.o= 0 F 2.2
0= 5_U . ( . :D

061502-4
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The stationary conditionlF/dt=0 is attained fow=0and =L,=128, we setu,=yL, and u,=0 in the presence of
V.5=0. This is a condition to guarantee self-consistency ofapplied shear straity, while u,=—u,=€L/2 in the pres-
the dynamic equations which have stable equilibrium soluence of applied tetragonal straé In the x direction, we
tions. impose the periodic boundary conditiony(x+Lg,Y,t)

In the Appendix we will examine the linearized dynamic =u(x,y,t).
equations of our model around homogeneously strained We are interested in slips across which the atomic dis-

states to obtain two sound modes in the stable region. placement is discontinuous by the lattice constanin this
paper, by settind\x=a, we try to realize such singular ob-
C. Dimensionless forms jects numerically. For this purpose it is convenient to define

We make our equations dimensionless measuring space E@he strains_ and tensors on the .middle points+_a/2,m .
units of the lattice constarit and time in units of 1/2), while the vectors are defined at the lattice points
(n,m). For a vector compone#t (say,A=u,), V,A andV,A
0= (pl mo) 2. (222 at (n+1/2m+1/2) are defined as[A(n+1m+1)
—A(n,m)+A(n+1m)—A(n,m+1)]/2 and [A(n+1m
The stress components and the elastic energy density arel)—A(n,m)—A(n+1m)+A(n,m+1)]/2, respectively,
measured in units of,y and the elastic energy in units of usingA at the four pointsif+ 1/2+1/2m+ 1/2+1/2). In the
woa?, while the strains remain unscaled. To avoid introduc-same manner, we may construct the ve¥or& at (n,m)
ing too many symbols, we will rewrite the scaled positionusing the stress components at the four poims {/2m

vectora™!r, time Tglt, displacement vectaa 'u, and ve-  *=1/2). With this space discretization, slips consisting of a
1

locity 7pa™*v simply asr, t, u, andwv using the original straight line segment become well defined if their angle with
notation. Then, in the dimensionle&$ u, is replaced by 1 respect to the or y axis is 0 ormw/4. For other slip orienta-
andK, by the ratio tions, zigzag points appear along the slip line segment and an
extra elastic energy is needed. On the other hand, if we de-
A=Ko/ug. (2.23  fine all the quantities onn(m), slip discontinuity takes place

over a few lattice sizes, but macroscopic features such as the
stress-strain relation remain almost unchanged. Furthermore,
we will suppose simple shear or uniaxial deformation and, as
will be shown in the following section, the preferred slip

, (2.29 orientation angle is 0 ofr/4 with respect to the or y axis.

By this reason our simple numerical scheme seems to be
allowable at least in this first attempt.

In terms of the scaled quantities the equilibrium distribution
is written as

P 1fd ‘et L2
xex E_th r§e1+ (e3,e2)+§v

where

en=KgT/ moa?. (2.25 L. SLIPS
The parameteey, represents the degree of the thermal fluc-  |n our model system fundamental flow units in plastic
tuations(being proportional td’) and is an important param-  deformation are slips composed of a pair of edge dislocations
eter, for example, in describing the decay of metastable stategith opposite Burger vectoralislocation dipoles They are
by thermal agitations. If the dynamic equati¢hl?) is made  analogous to quantum vortex rings in superfluid hel[4].
dimensionless, the dimensionless viscosity is given by  Their elastic structure far from the dislocation cores may
. 1 —2 well be described by the linear elasticity theory, but nonlin-
70 =m0 “(pro) (2.26 ear elasticity theory is needéd to suppress the divergence
of the stress at the cores afif) to stabilize the slips them-
selves when they adjust to the crystal structure. Slips are not
in a stationary state in the linear elasticity theory in the ab-
D. Numerical method sence of impurities, etc., which can trap dislocations, as will

We integrate Eqs(2.16 and (2.17) in the dimensionless be evident in Eq(3.20. In our nonlinear theory, those along
units on a 12& 128 square lattice represented by, rf) the x axis (¢=0) can be in a stationary metastable state if
(1=n,m=128) with x=nAx and y=mAx. The modulus their length is a multiple of the lattice constant. This is con-
ratio A in Eq (223 is set equa' to 1. For S|mp||c|ty' the sistent with the Peierls-Nabarro the([M,4ﬂ, which takes

mesh sizeAx and the dimensionless viscosity in §§.26  into account the discreteness of the crystal structure and
are set equal to 1: gives a periodic Peierls potential energy for the position of

the dislocation center.

In Eq. (2.18 the noise strengtkgT 7, is replaced byey, 75 -

Ax=1, n5=1. (2.27)

) . A. Slips in li lasticity th
The first relation means that the mesh size is just equal to the Slips in linear elasticity theory

lattice constant, and the second one is rewritten 7gs To begin with, let us write the solution of an edge dislo-
=a(pumo) V2 cation asu=bu‘®=(bu;®,buy®), whose Burgers vector is

We next explain our boundary conditions employed. Atassumed to be along the direction and is written a®
the bottomy=0, we always seti,=u,=0. At the topy =(b,0). The linear elasticity theorys0] gives

061502-5
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1 y 1 Xy
e = |amqm 22| = Y
FT x) 21— ) x21y?)
_ XZ
Le_ _ 212
Uy ypE— (1-2v)Inyx+y +x2+y2' (3.1

In the 3D theory the dislocation line is along thaxis andy
is 3D Poisson’s ratio. In our 2D theony is related to\ in
Eqg.(2.23 as

1 1

yp=—— —

=55 (3.2)

In our simulations we set=1 and hence’=0. In the linear

PHYSICAL REVIEW E 68, 061502 (2003

theory a slip is a superposition of two edge dislocations with  FIG. 4. Thex component of the displacement for a numerically

opposite Burgers vectors expressed as

uLsi =+

. (33

u-e x—f y|—ute x+f y
2’ 2’

where is the slip length andb=*+1 (both in units ofa).
The slip line segment is between the two points¢(2,0)

calculated typeC slip with length 10 along thex axis in the un-
strained condition.

ust(x,y) = lim u(x,y,t),

t—ow

(3.6

where u(x,y,0)=u5*(x,y). The core points of the linear

and (¢/2,0). The + sign corresponds to a clockwise slip solution, where the strains diverge, are placed at middle

(type C), and the— sign to a counterclockwise slifiype

points (h+1/2m+ 1/2) of the mesh of integration &at=0.

CC). The displacement vector around a slip is clockwiseThe limit us* is a steady metastable solution satisfying the

(counterclockwisgfor type C (type CQ (as will be evident
in Fig. 5 below. Across the line segmenk|<¢/2 andy
=0, the displacement is discontinuous as

UL (X, y+0) — Uk (x,y—0)=*1. (3.4
The corresponding strains are written as
o @l oy oy
Yoo2a(l-v) |2 +y2 X2 +y?|
oo _ T1 X2y - X2y
2 m(1-v) | (2 +y?)2 (P +y?)?]
e 1 X 0E -y xo(xE—y?)
eks* — _
3 277(1_]/) (X2++y2)2 (X%+y2)2
+8(y)O(£%14—x3), (3.5

where x.=x*¢€/2, and ©(¢) is the step function being
equal to 1 for{>0 and to 0 for{<0. There appears nd

function in the dilation and tetragonal strains. The strainsW
diverge at the cores where the linear elasticity theory break

down.

B. Slips in nonlinear elasticity theory

mechanical equilibrium condition,

V.5=0. (3.7

It nearly coincides with the linear solutiarr* far from the
dislocation cores |+ €/2|2+y?=3 in our casgand keeps
satisfying the slip conditioii3.4). The strain and stress com-
ponents calculated frora®* are finite even in the core re-
gions. In fact, in the presence of a slip along ¥hdirection,
the maximum values attained by, |e,], |3, and|oy,| in
the core regions are about 0.18, 0.08, 1.1, and 0.1, respec-
tively. In Fig. 4 we show thex componentu,=u;" of a
clockwise slip with¢ =10 in the unstrained condition, which
is discontinuous by 1 across the slip segment.

The elastic energy of a slip in our nonlinear theory is then
of central importance. We will neglect the Peierls potential
energy for the time being. We generally assume that a slip
line is oblique to thex axis making an angle oy and is
under externally applied strains,

(e1)=0,

here(- - -) is the space average. The slip energy to create a
Single slip is defined by

(e3)=7, (&)=¢, 3.9

Fslip:F_FO:J df(fe|_fg|), (3.9

Next we numerically construct the corresponding slip so-

lution in our nonlinear elasticity theory for integér By
starting with the linear solution"s* in Eq.(3.3) att=0 and
neglecting the random stre$&, we integrate Eqs(2.16)
and(2.17 to seek the steady solutiari™ attained after tran-
sient relaxation. That is,

wheref is the elastic energy density in our nonlinear theory
with one slip calculated numerically, ama,:(b(y, €) is that

in a homogeneously strained state. In the unstrained condi-
tion (y=€=0), the expressionFg,=In{/2m(1—v) (in
units of uea?) is well known[53].
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Dislocation motions perpendicular to the slip litgimb (@)  Shear deformation
motiong create a large number of defectsf) and the en- oy
. PRI SR AR AR AR A An 4 LNERNEEN “wT s
ergy needed is very Iarg_e, S0 th_ey may be negle_[cﬁé]d Qn \ : oaicecitis in NP
the other hand, dislocation motions along the slip ligikde N NN Y
. . . . LY N N
motiong involve displacements of a relatively small number N A NN \‘ } { : { : /
. . . - /]
of particles(of order 10 for a unit-length motion as can be AT YA N S ,”;": AN N : : b 44
seen in the inset of Fig.)%nd hence play a major role in ) ",\’j_::_-\\ N YT vy g : NN
plastic flow. A forceF= (F,,y) acting on a dislocation un- S N NN
. . A Y A
der an applied stresoi} may be calculated using the :,,,:::::::::: AR L ENNINN
Peach-Koehler theory1,2,43. For b=(b,0) along thex DTN s 2Tt TIW
axis, the components of the force are written as T_, X Ctype CC-ype
Fy= —O'i);b, fy=0'§§b. (3.10
(b) t
(i) For a slip along thex axis, 7, is canceled by the force “‘. Extension , ‘.‘ CG-ype
due to an additional elastic deformation in the surrounding Caype 4 o ““\ o ' '
medium. If the dislocation on the left is fixed and that on the «"1" AL ,’,:o‘ LM
right is moved bys¢ along thex axis, the change df g, is e /'/",‘ ,\:\“ RGPS AN \:\‘ -~
equal toF,6¢. Here the Peierls force is neglected. There- ‘—',’,'///'/_-'-', ,','-’-\\\: -
fore, IR el i L ST O N
S A e SR N N
& ~;‘\\l,,,’,, /’/‘,‘ ‘-\\\\\\‘\\\ ,’; -
— F.=F =— g% Vo ‘. s M
Y Feo=Fy o'xyb. (3.11 ‘:‘.""'l"; \“"\ \ 4
L A y I 1]
LI 'v y ?
The o}y consists of the stress produced by the dislocation on "y Compression —» «+— !
the left and the externally applied stress. For smalthe he disol q q
externally applied stress igoy, so in the units in which ~_FIG: 5. The displacement vectoraround typeC and type CC
—b=1 we obtain slips with length 10. The orientations {ia) are most favorable in
Ko shear deformation, while those (h) are most favorable in uniaxial
stretching. The arrows are from the original undeformed position to

In¢
Fslip:m F e, (3.12  the displaced position.
o . ing from our linearized dynamic equations, or perpendicular
whg_re is for type C and + s for _type_ cC. to the softestdirections for the sound modes. This coinci-
(ii) For general angle of the slip with respect to the . : . . ) )
: . dence is obtained with the aid of the isotropic behayg),
axis, we rotate the reference frame gyto obtain the shear L : . .
A i . so it is not a general result for anisotropic solids. We remark
strain y' =y cos 2p—esin2p in the new reference frame . . ; e
that previous theories of strain localizati¢87,55,58 are
from Eq.(2.2). Therefore, ; - .
based on 1D analysis, where all the quantities vary only in
In¢ one directionn normal to the plane of the band, and reduce
Fs,ip=m1(ycos 2p—esin2¢p)f. (3.13 to linear stability analysis for small amplitude perturbations
. v for the wave vector in the direction of.
If ¢ is varied in Eq.(3.13, Fg, is minimized for In Fig. 5 we display the displacement vectoraround
type C and type CC slips calculated in the unstrained condi-
e=3(nm—a) (n=0,12...), (3.14  tion. The slips are oriented in the most favorable directions
in shear deformation i@ and in uniaxial stretching ib).
wheren is even for typeC and odd for type CC, and is  Away from the slips the directions af continuously change
determined by to those of the macroscopic deformation supposed to be ap-
plied. In Fig. 6 the slip energ¥ g, of type C slips with ¢
Y L € 31 =10, 20, and 30 is shown as a function of the applied shear
cosa= e Sina= it (3.19 strain y. For |y|=<0.05 we confirm Eq(3.12) with the —
sign. For largery the linear relatiorvF;,/dy =const does
not hold. For y<y.(~—0.1) or for y>y.(~0.1), a
steady metastable solution becomes nonexistent and, as a
result, the slip grows up to the system length or shrinks to

For simple shear deformation witg>0 ande=0, the most
favorable slip orientation with the lowest, is ¢=0 for
type C and ¢ = 7/2 for type CC. For uniaxial stretching with

vanish in the simulation. In Fig. 7 the slip ener@g/[—fgI

y=0 ande>0, it is given by o= — /4 for type C ande
=m/4 for type CC, in agreement with the experimentswith f2|=<I>(y,0) is displayed for the three valueg=0,
[8—-11,29,36,3¥ 0.065, and—0.04. Interestingly, the elastic energy density in

As will be shown in the appendix, the slip directions de-the middle region between the two dislocations at the ends is
termined by Eq(3.14) are perpendicular to the wave vectors decreased for positive and increased for negative giving
which minimize the angle-dependent sound velocity follow-rise to the contribution- €y in the slip energy. In the core
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FIG. 6. The slip energ¥;, vs applied shear straip for type C
slips with length¢ =10, 20, and 30 oriented along tleaxis. For 0015
| v|<0.05 relation(3.12 holds with slope—¢. The arrows indicate 0.01
the instability points where expansion or shrinking of the slips
occurs.

0.005

0

region, f. has two peaks and is rather insensitive to applied
strains in our model.

Furthermore, in Fig. 8 we numerically demonstrate coin-
cidence ofdF g,/ 9y and the space integral of,,— vy for a
single isolated slip in simple shear deformation. This relation
may be obtained from Eq2.1). If y is increased by an
infinitesimal amountdy, the change ofg), is written in

terms of the incremental displacement; as 0,02 ¢ Y= - 0.04
0.015 = z
5Fs,ip:f dr> [oj—o? 7 su,, 316 T ,?«:./,0;2332‘:52’«7
S A ey
0, | O i

where{oj;} is the stress in the homogeneous state and use is 7
made of the relation for the space averag&u;/dx;)
= §ix9jy0y. The deviationéu; consists of the applied dis- 4
placement changé,,y 8y and the induced deviatiodu; lo-
calized near the slip. However, the contribution frafa/ X 0 e y
vanishes in Eq(3.16) from the mechanical equilibrium con-
dition (3.7). Thus, FIG. 7. The slip energy density around a ty@slip with length

20 for y=0 in (a), 0.065 in(b), and —0.04 in (c). In the middle

J region between the dislocations at the ends, the elastic energy is
;ylzs”p((’ y)= f dr[axy— Ugy]_ (3.17 decreased iifb) and increased ifc).
C. Peierls potential energy
; o 0
In Fig. 8y is in the range Vls,o',l’ S0oy,= v holds excel- We continue to consider a slip along tixeaxis under
lently fpr our elastic energy. Slmllarly, thg coqnterpart of Eq-simple shear deformation, but the slip lendttere can be
(3.17 in the case of uniaxial stretching is written as noninteger. For generdl we modify Eq.(3.12 as
] 1 o o In¢  _
%anp({’,e): Ef drlow—oyy— gt oyyl. (3.18 Fslip_m+7€+UPN(€)y (3.19

Relations(3.17) and(3.18 hold for any strain amplitudes as whereUp\(€) represents the Peierls potential energy being
long as a steady slip solution can be obtained from(Ed), zero for integerf and nonvanishing for nonintegér. The
while Eg. (3.12 or Eq. (3.13 is valid only for very small force acting on the slip along the glide direction is then given
strains 0.05 in our case by
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FIG. 8. Coincidence of the derivativeFg;,/dy (X) and the
space integral ofo,,—y (+) confirming the general relation
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0.08F T T T T 7]

A Fgli

20 204 20.6 20.8 21

Slip length

FIG. 9. The slip energy differenceAF (€)= Fgy({)
—F4ip(20) in the range 28 <21 obtained for the extrapolated
displacemen(3.2]) for y=—0.04, 0, 0.08, and 0.1. The position of

(3.17. These quantities are calculated from the steady slifhe maximum is a decreasing functionpfThe maximum position

solutions.

1 d
S Fsip=[27(1=w)] 7 55 y+ -7 Up((). (3.20

approaches¢=21 as y—vy;1=-—0.09 and €=20 as y— vy
=0.12. The inset shows the displacement vecigr- u,, heeded
for slip growth by unit length front =20 to 21.

9°F 4ip/€?>0 holds at¢ =20 and 21. The maximum df py

This force should vanish for a stationary slip. In the realm ofis about 0.03 fory=0. Figure 9 also indicates thal;,
linear elasticity theory, where the crystal structure is—21 as y—7yu(=-0.09) and {,,—20 as y—
smoothed out, the Peierls potential energy is nonexistent ang.»(=0.12). For intege and noninteger’, the critical
we are led to the following conclusion: A type CC slip strains, y.1(€) and y.(€), with respect to shrinkage and

shrinks for any¢(>1), but a typeC slip shrinks for€<€t
=1[2m(1-v)vy] and expands fo€>€t. Here we assume
y>0. If ¢ is fixed, we obtain a critical shear straip;
=127 (1—v)€]. In our nonlinear theory, however, this
critical length(or strain loses its physical relevance.

In our simulations(without the random strepslips can

expansion satisfy the following(i) JF g (€')/3€¢'>0 for
any €' smaller thant for y<yc(€), (i) dFg(€')/ ¢’
<0 forany¢’ larger thant for y> y,(£), and(iii) Fgjg(€)

is locally minimum at integer lengtid for y.(€)<vy
<ve(f). These are consistent with the positions of the in-
stability points in Fig. 6.

be stationary suggesting the existence of the Peierls potential

energy. To show this, we numerically create two typslips
along thex axis obtained in limit(3.6); one is in the range
0=<x=20 with length 20, and the other is in the rangd

IV. PLASTIC FLOW

In this section we induce deformation at a constant strain

<x=20 with length 21. Here the positions of the dislocation"@(€; ¥ Or €, or cyclic shear deformation for=0 in the
core on the left are different by 1 but those on the rightPrésence of the random stress tenggrwith €;=0.1 (ex-

coincide. As a result, the corresponding displacemengs

cept for the curveb) in Fig. 21 wheree;,=0.25). Att=0,

andu,, are different only near the core region on the left, asthe values ofv at the lattice points are Gaussian random
can be seen in the inset of Fig. 9. Note that the differenc&umbers with variance 0.01. The shear stress and the normal

U’ = Uy — Uy is the displacement realized when the shorterstress difference in the following figures are the space aver-

slip grows into the longer one. Now, we calculd&dor the
interpolated displacement,

(3.2)

As the slip energy atf=20+a (0<a<l1), Fg(€)=F
—F is determined as in E¢3.9). TheF,(¢) here depends
on the displacement path connecting, andu,;. In Fig. 9
the resultant energy differencer ;= Fip(€) — Fjip(20) is
shown. The Peierls potential is determined bhpy(€)
=Fgip(€) —[In€27w(1—v)* y£] from Eq. (3.19. We rec-
ognize thafF () takes a maximum at= € ,,, between 20
and 21 and takes local minima &t=20 and 21. It follows
that the stable force-balance conditiarfg;,/¢ =0 with

Ue=(1— a)Uypt+ alyy=Usgt+ al’.

ages(oyy) and(oy—oyy), respectively.

A. Shear deformation
In Fig. 10 we show the stress-strain curves obtained by
integration of Eqs(2.16) and (2.17) under a constant shear

rate y. At small y(t) = yt these curves first follow the curve
in the homogeneous case,

1
Txy=Aal7) = = sin V3my), (4.0

whereA; was introduced in Eq(2.15. For the curve ofy
=10"* and that ofy=10"3 (with the higher peakwe set
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Mechanically unstable points

Y =0.40

FIG. 11. Mechanically stable region@vhite) and unstable

points (black) after application of shear flow withy=10"2. The
initial state is crystalline without defects. At the stable points the
eigenvalues of the matrigd .z} defined below Eq(2.7) are both
positive, while at the unstable points at least one of them is nega-
tive. At y=0.29 the system is close to the peak position,yat

=0.30 slips are appearing, and at 0.4 the unstable points are
FIG. 10. The stress-strain curves in shear flow. The initial state§luctuating in time near the dislocation cores.

are defectless foy=10"* and 103 (with the higher peak Four
slips are initially prepared foy=10"2 (with the lower peak Em-
bedded are snapshots 8&;=e;— y at y=0.3 at the inception of
slip formation and aty=0.4 in the plastic flow regime.

t=0, where the favorable sligin black in the upper part at
v=0) grow and the unfavorable onés white) shrink asy
increases. In the lower snapshots the elastic energy density

deviationsf o= fo— () is shown, where the black dots rep-

u=0att=0 (supposing a perfect crysjalhey approach the
elastic instability pointy=/3/6=0.289, wheredo,/Jy

resent the dislocation cores. At=0.176 we can see that the
energy density between the two dislocations at the slip ends

tends to vanish and softening with respect to further sheas decreased for the favorable slips and is increased for the
deformation occurs. Then the shear stress drops sharply aftenfavorable slips, in accord with E(B.13 and Fig. 7. At the

the peak with catastrophic formation of slips. See the twaplastic flow regimey=0.387 the initial favorable slips grow
snapshots obe;=e;— vy in the figure. The orientations of into thick layers where the dislocation density is very high.

the slips are the most favorable ones wjth0 and /2 as

determined in Eq(3.14). For y=10* the slip formation is
triggered at a smaller straire{0.25) and the spacing be-

tween the slips is a few times wider than in the caseyof
=10"3. In our simulation the slip spacing depends on the

shear ratey in the plastic flow regime if the other dimen-

sionless parameters are held fixed. For the other curve of
=103 (with the lower peakwe put four slips with length

20 att=0, as will be illustrated in Fig. 13 below in detail.
This curve indicates that the overshoot in the stress-strair
relation is weakened by the initially preexisting defects. In
Fig. 11 we display mechanically unstable poidots for
y=0.29, 0.30, and 0.40 ag=10"3, where at least one of
the eigenvaluea ; and\, of the matrix{® 4} defined be-
low Eg. (2.7) is negative. We recognize that the stability
conditions {1>0 andA,>0) are satisfied at most points in
plastic flow. Figure 12 displays a snhapshot of the displace-
ment vectoru in a 1/4 region of the total system gt=0.4
with y=10"%. We can see a number of slips and bataly
gregates of slips herewhere =0 for type C and ¢ = 7/2

for type CC. The large horizontal shear band in the lower

part is particularly conspicuous, where the band thickness
and the discontinuity ofi, across it are both increased up to
about three to four. We recognize that elementary dlips
poles of edge dislocation$end to be created around preex-

Next we apply a cyclic shear deformation, wheyét)

=10"% in the time regions nt,<t<(n+1/2)t, and

Shear deformation
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FIG. 12. The displacement deviatidn=u—(yy,0) in the plas-

isting ones, yielding thicker shear bands. Similar thick sheag. fow regime under shear strain gt=0.4 with y=10"*. A 1/4

bands have been observed in previous simulatji®isl§].
In Fig. 13 we follow time-development afe; and &f

region (64x 64) of the total system is shown. The arrows are from
the original position at=0 in a perfect crystal to the displaced

=fq—(fe) at y=10"% in the presence of four slips at position in plastic flow.
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Y=0
L-

'y(t)= —~10°% in the time regions i+ 1/2)t,<t<(n where® is defined by Ezq(2.5). For smallye, we haveye,
+1)t,. We choose,= 1000, so the maximum oj(t) is 0.5 =(oxy) and ®(ye,0)=7¢/2. Hence, in the vicinity of the
and the minimum is 0. For the first two cycles<0 and 3,  POINtS whergo,,) =0, (fe)(t) should take a minimum, pro-
Fig. 15 shows the stress-strain curve, while Fig. 16 shows théded thatfp(t) changes slowly there. To confirm these ar-
average elastic energy dens{ths) with a snapshot of  at guments, we pIof_D(t) in Fig. 16. For'y(t)so.?; in the first
the pointA where the average stress vanishes. As salierficle: however, it represents the elastic energy due to the
features, we noticé) residual strain at vanishing stre¢g)  'nhomogeneous fluctuations of the local straiminly due
the shear stress becomes negative at the end of the first cyc}8, #83) With the peak height at 0.01fhot shown in the
(il ) no overshoot in the stress and the elastic energy from thidure). After this initial period, fp(t) is in a range of
second cycle, andv) that the stress and the elastic energy0.004— 0.005 reasonably_represe_zntlng the elastic energy due
take roughly constant values characteristic of well-developed?_the defects produced in plastic flow. The energy variance
plastic flow in the region 0.25y(t)<0.5 for increasing V{(6fe)) is also about 0.005 in plastic flow obviously due
¥(t) and in the region € y(t)=<0.25 for decreasing/(t).  to the discrete nature of dislocation cores. er10 4, on
Thus we can see significant hysteresis behavior. In MOhe other handfp(t) is almost constant around 0.002 in
simulations of lowT glasses, similar stress-strain curves un-plastic flow.
der stepwise strain rates have been obtaifted without
overshoot behavior because of disordered initial states o2 r T T T T T T T T
[16,4];]. Cyclic shear deformation
We also notice that at the poings B, andC, where the 0.15
average stress vanishes as in Fig. 14, the curveé$pfin
Fig. 15 are locally minimum. This suggests that the strain 01
y(t) consists of an elastic straip, and a slip strain

Shear deformation y= Tt

FIG. 13. Time evolution of

3 ey ey and &f in shear flow when

0.176

0.176 0.25 0.387

se 0.25

four slips are placed in the initial
state.

1 —>

2 —»

0.05
Ys= VY~ Vel (4.2

ear stress

Roughly speaking, the elastic strain outside the slip linesg 1
should give rise to the average stress, while the slip strain is 005 72
caused by the jumps af, across the slips. To be more quan-

titative, we definey, as 01 T

- -0. 1 1 1 1 1 1 1 1 1
A3(7el)—<0'xy>- (4.3 0150 005 01 015 02 025 03 035 04 045 05

Strain Y (1)
The elastic energy density stored is then the sum of the elas- e

tic energy density and the defect energy density. We define FIG. 14. The stress-strain curve for cyclic shear deformation in

the average defect energy density by the first two cycles aty=+ 102 with period 16. Oncey=0.3 in
the first cycle, high-density dislocations are created. The shear
fo=(fe)—P(ve,0), (4.4  stress vanishes at the three poiAtsB, andC (X).
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FIG. 17. The stress-strain curves under uniaxial stretching. The

¥(t) for cyclic shear deformation in the first two cycles. At the jnitial states are defectless fer=10* and 10°* (with the higher
pOIntSA, B, andC the shear stress vanishes. In the inset the Snappeag. Four S|ips are |n|t|a||y prepared far= 10’3 (Wlth the lower

shot of fg at the pointA is shown, whergoy,)=v,=0 and the

black points represent dislocation cores.

B. Uniaxial stretching

peak. Embedded are snapshots &,=e,— € at e=0.31 at the
inception of slip formation and a&=0.46 in the plastic flow
regime.

In Fig. 17 we show the normal stress vs strain at constantespect to the stretched direction in agreement with the ex-
strain ratee for t=0. The characteristic features are very Periments{8-11,29,36,3fand the simulation§17,18. The

similar to those in Fig. 10. At smak(t)= et these curves

first follow the curve in the homogeneous case,
2 .
Uxx—a'nyZAz(e):ﬁ[sm(ﬂ'e)-i-sm(Zﬂ'e)], (4.5

whereA, was introduced in Eq(2.15. For the curve ofe
=10"* and that ofe=10"3 (with the higher peakwe set

u=0 att=0. They approach the elastic instability point
= 1cos (33—1)/8]=0.298. After the catastrophic

formation of slips, the slip orientation angles ater/4 with

0.007 | , ) b
Cyclic shear deformation

0.006

0.005

0.004

0.003

Defect energy density

0.002

0.001

0 L L .
0 0.05 041 015 02 025 03 035 04 045 05

Strain Y (1)

FIG. 16. The energy densify, defined by Eq(4.2) vs the strain

discontinuity across the slip lines appears in the tetragonal
strain e,, which can be seen in the two snapshotsédep
=e,— €. In Fig. 18 the displacement vectoiin a 1/4 region
of the total system at=0.46 with e=10"2 is displayed,
where the orientations of the slips are the most favorable

—» <«— Compression

Extension «— —»

s
Wwss {l@
R N

=== AR X
ST, ‘ N ;1/ ’\

’"—’ZTW N\
10

FIG. 18. The displacement deviatiotu=u— (ex/2,— €y/2) in

v(t) for cyclic shear deformation in the first two cycles. It is the the plastic flow regime under uniaxial stretchingeat 0.46 with
defect energy density in plastic flow, but in the preplastic regime ite=10"3. A 1/4 region (64<64) of the total system is shown. The
arises from the heterogeneities in the strains and is enhanced at taerows are from the original position &t 0 in a perfect crystal to

onset of plastic flow.

the displaced position in plastic flow.
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FIG. 19. The stress-strain curve for cyclic uniaxial stretching in - FIG. 20. The average total elastic energy densétty) (solid
the first four cycles ag= =+ 102 with period 1. Oncee=0.3 in line) and the defect paft, (broken ling vs the straire(t) for cyclic
the first cycle, high-density dislocations are created. In this case theniaxial stretching in the first two cycles. In the inset the snapshot
stress-strain relation becomes nearly periodic from the secondf f at the pointA in the first cycle in Fig. 19 is shown, where
cycle. (oxx—0oyy)=€=0 and the black points represent dislocation
cores.
ones witho= * 7/4 as determined below E¢3.14). In the
plastic flow regime, the shear bands grow into thick layergphous solid. In Fig. 4 in our previous wofR9] we switched
containing high-density dislocations. off a shear flow(a) before the peak time of the stre¢ls) just
Next we apply cyclic uniaxial stretching, where(t)  after the peak time, antt) in well-developed plastic flow.
=102 in the time regionsnt,<t<(n+1/2)t, and e(t) A_fflne Qeformauon in(a) was maintained, wh|_Ie no appre-
——10"3in the time reg|onsr¢+ 12)t, <t<(n+ Dty ciable t_lme evolution was detected after'tran3|ent€b)rand
chooset,=1000, so the maximum ot(t) is 0.5 and the (c). This means that the structurally disordered states are

minimum is 0. Figure 19 shows the stress-strain curve for thénetastable obviously due to the Peierls potential.

first four cycles, where it is nearly periodic from the second Here a shear flow witly=10"2 is applied at=0 and is
cycle. As in the shear deformation case we introduce th&topped at timeé,=600 (at the pointA in Fig. 14), and then

average elastic straiey, by the system is relaxed for a time periodtgf=10°. In Fig. 21,
slow relaxation of the average energy densit)(t)
2A (€)= (Txx— Tyy) (4.6 =F¢/N? is shown in the time rangg,<t<t,+t,,, where
we setu,=vyalo and u,=0 at the topy=L, with y,
and the average defect energy densgyby =0.40 together withu=0 at the bottom. The dislocation
distributions here closely resemble that in the inset of Fig. 15
fo=(fe) —P(0s€e), (4.7 (but are not identical because they are obtained from differ-

) ] . ~entrung. In the upper curvea) the noise strengtlay, in Eq.
where® is defined by Eq(2.5. The average slip strain is (2,25 is 0.1 as in the previous simulations in this section,
given by es=e—e€q. For small g we have Zg  where each maximum in the initial stage corresponds to an
=(0w— 0yy) and P (0,e.) = €5/2. Figure 20 shows the av- energy increase accompanied with a configuration change
erage elastic energy densitf,) and the defect energy den- around a dislocation core. Ifa) the typical energy increase
sity fp. The latter is in a range 0.008—0.009 in plastic flow. (in F,) is of order 10°N?~0.1 for each event. However,
The inset of Fig. 20 displays a snapshotfgfat the pointA  there is no appreciable relaxation foe3x10%. In (b) we
in the first cycle, where the average normal stress differenccrease the noise strengg, to 0.25 to obtain a larger en-
vanishes. Comparing it with the snapshotfefin Fig. 15  ergy decrease iffq)(t) with a larger thermal noise super-
under shear deformation, we notice a considerable differendénposed. In these cases only a small number of configuration
in the spatial anisotropy of the dislocation distribution be-changes {10) occur around dislocation cores even fgr

tween the two cases. =10, so the effect of the structural relaxation is negligible
on the macroscopic levého aging effect In fact, the stress-
C. Strain-induced disordered states strain curves after switching-on of the shear flowtatt,

In the plastic flow regime dislocations are proliferated and™ tw With y=10* are almost independent tf if plotted as
a structurally disordered state is realized. This effect may ba function of A y(t)= y(t—ta—t,). Interestingly, they ex-
called strain-induced disorderingWWe mention a simulation hibit a rounded peak & y=0.15 as can be seen in the inset.
by Ikedaet al. [57], who applied a tensile strain to a 3D We also comment on the average shear st(esg)(t). In
model to induce a change from a perfect crystal to an amorthe waiting time regiont<t<t,+t,), it fluctuates in time
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FIG. 21. Relaxation of the average energy
; ] density(f)(t) for €,,=0.1(a) (upper curvgand
1000 t-ty 10000 100000 €4,=0.25 (b) (lower curve. The shear flow is
T T stopped at time =600 (at the pointA in Fig.
000439 [ ' ' ' ' I 14) and the system is relaxed for a time period of
' t,=10°. The energy decreases are extremely
small as compared to the initial values, so there is
almost no appreciable aging behavior here. The
inset displays the stress-strain curvesy,) vs
Ay(t), after the shear is switched on again for
=t,+t,,, where the solid line corresponds (@
and the noisy broken line tgb). The Ay(t)
=y(t—ty—t,) is the excess strain withy
=10"3. Almost identical stress-strain curves are
obtained for any waiting timé,, shorter than 10
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around 0, and its noise amplitude is only of order 0.002 folWe remark that the previous experiments have mostly been
(a) and 0.004 for(b), so the stress is nearly fixed. performed under uniaxidbiaxial or triaxia) deformation, so
Note that the crystal angle with respect to the axis has ~ future experiments with shear deformatiofu)=yy and
been assumed to be[See Eq(2.12]. We need to show that (uy>=0) should be informative. On the other hand, in crys-
the strain-induced disordered states remain metastable evédlline solids with strong crystal anisotropy, the slip planes
for different angles of the crystal axes with respect to thedre parallel to particular crystal plangs8]. In our simula-
flow direction. To this end, as in Fig. 240, we have calcu- tions we may obtain slips as steady solptlons of our dynamic
lated the elastic energy density fé= /12 with the other model due to the presence qf the Peierls potential energy.
parameters unchanged for 1C°. In such a run, it has de- OWever, they cannot be stationary fpr ye,~—0.1 or y

creased from 0.006 605 to 0.006575 foy<t<3000 and . Yc2~0-1 In shear strainy, where the potential minima

. o disappear and the slips shrink or grow.
satl,!rated f_ot23000, S|m|Ia_rIy to the_ behavior in Fig. ), (i) We have examined plastic flow by applying a constant
again leading to no appreciable aging.

strain rate at=0. If there is no initial disorder, the stress-
strain curve exhibits a pronounced overshoot with a peak
V. SUMMARY AND CONCLUDING REMARKS stress of order 10% of the shear modulus. However, in the
In summary, we have presented a nonlinear elasticiyP’€Sence of initial disorder, the ovc_arshoo.t is_, \_N_eakened_ or
theory taking into account the periodicity of the elastic en-€V€N erased, as revealed by simulations with initial four slips
ergy density with respect to the shear and tetragonal strain¥) Fig- 10, under cyclic shear in Figs. 14 and 20, and after
e; ande,. It has the symmetry of the 2D triangular lattice staying at the zero-stress poiAtin the inset of Fig. 21. In

but is surprisingly isotropic in thes-e, plane. We summa- accordan(_;e With the_se__findings, previous simulations per-
rize our main results together with some comments. formed with various initial states have demonstrated sensi-

(i) We have numerically examined the slip structure as &Ve dependence of the overshoot behavior on the quenching
function of its length¢, its anglee, and applied straing ~ conditions[18,59. In addition, a number of previous simu-
and e. In external strain field, slips should appear in thela:tlons havke lreported eltrllerl eX|StenCte or r?onle>(<j|_stence| of the
orientations minimizing the slip enerdys;, and they should ~S€SS Peax. in SOme real giassy systems including polymers,
grow into shear bandsgobserv?ed in g:yél\llrious expgriments urpvershoot behavior has been widely obseri#126,27,29
der external load in various materials. The snapshots of thift an amorphous metal, the stress mc_reased monotonically to
displacement vector in the plastic flow regime, Fig. 12 fora steady-state value for slow strain raée<10"%s™*), while
shear deformation and Fig. 18 for uniaxial stretching, mos® maximum appeared a&~0.06 for large strain rate
unambiguously illustrate the physical processes taking placée>5x10 3s1) [27].

061502-14



PLASTIC FLOW IN TWO-DIMENSIONAL SOLIDS PHYSICAL REVIEW E68, 061502 (2003

(ii ) As illustrated in Figs. 16 and 20 we have divided thefeature of fatigued statd$4] and has also been realized in
total elastic energy into the affine part and the defect par8D large-scale simulation8,4]. In the literature the inter-
following definitions(4.4) and(4.7). In our model, once de- dislocation elastic interaction is believed to yield mesoscopic
fects are created, the defect elastic energy is rather weaklyatterns in the dislocation distributidB,4,64.
dependent on the deformation history. On the basis of this (viii) As already stressed in the Introduction, in order to
division, we may easily understand the characteristic featuredescribe glass dynamics in a more satisfactory level, we
of the stress-strain curves in the cyclic straining mentioned irshould try to include a variable representing the local free-
the preceding section. In future microscopic simulations orvolume [39] and the configurational frustration effect in-
glassy materials, this kind of energy division should be in-duced by the size disparity between the two species. This
formative at relatively small strains, where we are interestedjeneralization should be essential with increasingwards
in the defect contribution to measurable quantities such athe glass transition. For example, we may predict a gradual
the specific heats. Here we mention microscopic calculationdiffusional increase of the free volume around dislocation
of the average potential energy per parti¢e in super- cores[39], which induces breakage of the Peierls potential
cooled states under shd&9—61, where{e) was increased and configuration changes presumably resulting in signifi-
considerably by shear flow above the initial value in quies-cant aging effectd.The critical strainsy.; and y, discussed
cent states. It is remarkable that, whil in quiescent states below Eq.(3.21) and indicated in Fig. 6 by arrows are sen-
sensitively depends on the quenching histaging effect  sitively decreased in magnitude by a small amount of the
[59,62, it becomes uniquely determined in shear flow forlocal free volume near the dislocation collds. the present
shear rates larger than the inverse structural relaxation timgtudy, as shown in Fig. 21, we have found no appreciable
7'(;1. This is because sheared systems are effectively driveaging effect.

away from the glass transitiof24]. This effect would be (ix) The simulation$13,16| suggested that the shear band
consistent with our result théi(t) is kept nearly constant in  regions tend to be disordered and exhibit liquidlike behavior.
plastic flow as in Figs. 16 and 20. A phase field approacf65] would be useful to account for

(iv) In our simulations slips emerge as long straight linesthis effect and also to describe melting due to dislocation
as shown in the snapshots ef or e,. In our model the proliferation.
crystal order is not broken over long distances, but if disor- (X) In this work we have not constructed macroscopic
der is fully introduced, the glide motions of slips in particular laws such as constitutive equations. To this end we need
directions should be much limited. In MD simulations of two deeper understanding of dislocation dynamics.
component glasses, for example, such degree of disorder
should be sensitive to the size ratio of the two species. In ACKNOWLEDGMENTS
fact, it was rather close to 1 in the simulation by Degigal.
[13,16, wherenanocrystalline ordemwas realized 63] be-
cause of rather weak frustration and long slips with atomi
thickness emerged along the crystal axes. It is therefore i
formative to perform MD simulations with various size ra-
tios and examine how the shapes of local configuratio
changes depend on the size ratio.

(v) As a special ingredient of our theory, our elastic en- APPENDIX
ergy is a_llmost isotropic if_ the distance from the_ center of & Here we examine the linearized equatiof&s16 and
unit cell in thees-e, plang is ;horter than O(See Figs. 1-8 (2.17 around a homogeneously strained state wié)
The snapshot ay=0.4 in Fig. 11 demonstrates that most =0, (e5)=7v, and(e,)=e. We neglect the random stress

spatial points are in the mechanically stable regions in plastig, assume that all the deviations depend on space and time
flow and hence are in the isotropic elasticity regions. Therezq expik-r+iwt). Then the deviation of the displacement
fore, our results such as the orientations of well-develope '

P€Gector (uy,éuy) obeys

shear bands should be applicable to those in amorphous ma-

This work was supported by Grants in Aid for Scientific
CResearch from the Ministry of Education, Science and Cul-
dure, Japan. The author thanks R. Yamamoto for valuable
discussions. Thanks are also due to A. S. Argon for sending
r{1is papers and informative correspondence.

terials (which are isotropic on large scajes Q 8uy= CyySuy+ Cyydly,
(vi) The dimensionless parameterin Eq. (2.23 is re-
lated to Poisson’s rati@ as in Eq.(3.2) and the dislocation Qéuy=C,,6u,+Cyduy, (A1)

energy depends on. Our choiceKy/up=A=1 orv=0 is

rather unusual, sinck, is usually considerably larger than Where

Mo in high density systems. The appropriateness of the other

choicesny =1 in Eq.(2.26) and €;,=0.1 in Sec. IV should

also be examined in future. _ _The frequencyw is expressed in terms @@ at smallk as
(vii) As another aspect, we mention the effect of elastic

interaction among dislocations. In our case slips are more w==(Qp)Y%k+i(n0/2p)k*+O(K). (A3)

easily created around preexisting ones, as already reported in

Ref. [18]. In the insets of Figs. 15 and 20 we can see alhe first term is the oscillation frequency fo¥>0 and the

tendency of aggregation of dislocation cores. In real 3D cryssecond term viscous damping. The coefficie@ts; are ex-

tals a tangle of dislocations often appears as a characteristiressed in terms of the coefficients,; in Eq. (2.7) as

Q=pw?kK?>—inyw. (A2)
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CXX: ( K0+ q)zz) n)2(+ 2¢)23nxny+ @33”3 y
ny:(K0+ @22)”5_2®23nxny+ (I)ggn)z(, (A4)

Cxy= (Kg= @t P3z)n,ny+ P p(nf— ni).
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Qmin= %((I)22+ O \/A2+ BZ.

Notice that() ., is the smaller of the two eigenvalues of the
matrix {® ,z}. We may draw two conclusions.

(i) As the instability point is approache€l,,, tends to
zero with softening of the sound speefl {,/p)*? of the

(A8)

Heren=k ™k is the unit vector representing the direction of corresponding acoustic mode.

the wave vectok. From Eq.(Al) it follows the relation
(2=Cy)(Q=Cyy)=C5,. (A5)

Let the angle oh be ¢+ 7/2 with respect to the axis; then,

ny=—sing, n,=CoSe. (AB)
After some calculations EqA5) is solved to give
Q=3(Ko+ @yt Pg5)
+ \J1K2+ A2+ B2+ Ko( A cos o+ B sin 4e),
(AT)

whereA=(®,,— P 35)/2 andB= P 5. As a function ofp the
slowest mode is obtained if the combinatiohcos 4p
+Bsin 4p takes the maximumAZ?+ B?)*2, The correspond-
ing minimum of () is given by

(i) If the approximate expressid2.9) is used, we have
A=2G"(e’—y?) andB=4G" ey so that

Acosdp+Bsindp=Ccogde+2a), (A9)

where C=2|G"|(?*+ y?) and « is defined by Eq.(3.15.
Thus the minimum condition fof) yielding Eq. (A8) is
given by 4p+2a=2n7 and is equivalent to Eq(3.14).
That is, the slowest mode, which undergoes softening at the
instability point, has a wave vector perpendicular to the fa-
vorable slip orientations given by E€B.14). This is the case
even far below the instability point. In addition, for the slow-
est mode, Eq(Al) gives

AUy 18Uy = (Qin— Cyx)/Cyy=COtp, (A10)

if « is eliminated using Eq3.14). Thus the deviatiodu is
perpendicular to the wave vectkror the slowest mode is a
transverse sound.
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