<table>
<thead>
<tr>
<th>Title</th>
<th>Ginzburg-Landau theory of solvation in polar fluids: Ion distribution around an interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Onuki, A</td>
</tr>
<tr>
<td>Citation</td>
<td>PHYSICAL REVIEW E (2006), 73(2)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/49914</td>
</tr>
<tr>
<td>Right</td>
<td>Copyright 2006 American Physical Society</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Ginzburg-Landau theory of solvation in polar fluids: Ion distribution around an interface

Akira Onuki

Department of Physics, Kyoto University, Kyoto 606-8502, Japan

(Received 17 October 2005; published 21 February 2006)

We present a Ginzburg-Landau theory of solvation of ions in polar binary mixtures. The solvation free energy arising from the ion-dipole interaction can strongly depend on the composition and the ion species. Most crucial in phase separation is then the difference in the solvation free energy between the two phases, which is the origin of the Galvani potential difference known in electrochemistry. We also take into account an image potential acting on each ion, which arises from inhomogeneity in the dielectric constant and is important close to an interface at very small ion densities. Including these solvation and image interactions, we calculate the ion distributions and the electric potential around an interface with finite thickness. In particular, on approaching the critical point, the ion density difference between the two phases becomes milder. The critical temperature itself is much shifted even by a small amount of ions. We examine the surface tension in the presence of ions in various cases.

DOI: 10.1103/PhysRevE.73.021506

PACS number(s): 82.45.Gj, 61.20.Qg, 64.70.Ja, 68.03.Cd

I. INTRODUCTION

Charge effects have long been discussed extensively in electrolytes, polyelectrolytes, gels, DNA, and so on [1,2]. In most of the physics literature, charged particles interact via the Coulombic potential in a fluid with a homogeneous dielectric constant ε. In the chemistry literature, on the other hand, attention has been paid to the microscopic molecular interactions between an ion and the surrounding solvent molecules [3,4], which give rise to a chemical potential contribution of ions dependent on the solvent density (composition for mixtures) and the temperature T. For a microscopic ion, such as Na$^+$ or Cl$^-$ in a polar fluid, it is the so-called solvation free energy (hydration free energy in water or aqueous solutions) per ion arising from the ion-dipole interaction under the influence of hydrogen bonding [5,6]. In this paper, it will be called the solvation chemical potential and will be written as μ^{i}_{sol} dependent on the ion species i. It is a crucial quantity in understanding the degree of solubility of ions in polar solvents [3,4]. Since μ^{i}_{sol} strongly depends on the solvent density or composition and can much exceed k_BT, it should play various important roles particularly in the formation of inhomogeneous structures, which has been one of the main subjects in soft matter physics.

As a classic example, the Born theory [7] takes into account polarization around an ion using the linear dielectric constant ε and gives the solvation free energy in the form,

$$\mu^{i}_{\text{sol}}_{\text{Born}} = Z^2e^2/2\varepsilon R^{i}_{\text{ion}},$$

where Z is the ion charge and R^{i}_{ion} is the microscopic ion radius (of order 1 Å for Na$^+$) [3,8]. For water, ε is of order 1 in gas and of order 100 in liquid at room temperatures, so its density dependence is very strong [9]. For mixtures of two fluid components, A and B, ε changes from the dielectric constant ε^B of the less polar component to that ε^A of the more polar component with increasing the volume fraction ϕ of the more polar component [4,10]. However, it is well known that the Born formula neglects electrostriction [3,11] and nonlinear dielectric saturation [12–14] in the vicinity of an ion and is in many cases an overestimation. For mixtures, the former effect means that molecules of the more polar component accumulate around an ion to form the solvation shell [3,4]. The latter effect means that the effective dielectric constant in the vicinity of an ion should be smaller than in the bulk. Nevertheless, the Born formula demonstrates strong dependence of μ^{i}_{sol} on the solvent density or composition.

Let a fluid be phase separated into a highly polar phase α and a less polar phase β. Generally, μ^{i}_{sol} takes different values in the two bulk phases and these values depend on the ion species i (Na$^+$ or Cl$^-$, for example), so they are written as $\mu^{i\alpha}_{\text{sol}}$ and $\mu^{i\beta}_{\text{sol}}$. In the electrochemistry literature [15–19], the chemical-potential difference

$$\Delta\mu^{i}_{\alpha\beta} = \mu^{i\beta}_{\text{sol}} - \mu^{i\alpha}_{\text{sol}} \quad (1.2)$$

between the two phases is called the standard Gibbs transfer energy (usually per mole, but per ion in this paper). Using data of $\Delta\mu^{i}_{\alpha\beta}$ on water+nitrobenzene [17] (with α being a water-rich phase), we estimate $\Delta\mu^{i}_{\alpha\beta}/k_BT$ as 13.6 for Na$^+$, 10.6 for K$^+$, 11.3 for Br$^-$, and 7.46 for I$^-$, where we set $T = 300$ K. Notice that if $\Delta\mu^{i}_{\alpha\beta} \gg k_BT$, there arises a large difference in the ion density between the two phases. Furthermore, since $\Delta\mu^{i}_{\alpha\beta}$ depends on the ion species, there can be an electric double layer at the interface, which then leads to an electric potential difference across the interface, called the Galvani potential difference. We also note that $\Delta\mu^{i}_{\alpha\beta}$ is a parameter dramatically influencing the nucleation process when a small amount of ions are doped in a metastable polar fluid [20,21]. Recently, $\Delta\mu^{i}_{\alpha\beta}$ was calculated between gaseous water (phase β) and liquid water (phase α), which is much larger than k_BT far below the critical point [22].

It has also long been known that the surface tension of a water-air interface increases with increasing the salt density [23–30]. The ion density nearly vanishes in the air region, obviously due to very large $\Delta\mu^{i}_{\alpha\beta}/k_BT$. Here, phase α is salty water and phase β is air. It has been argued that ions in water should be repelled away from the interface by the image
charges in air [24,25]. This leads to a depletion of the ion density near the interface and an increase of the surface tension,

$$\Delta \gamma = k_{B}Tn_{\text{salt}}\lambda_{s},$$ \hspace{1cm} (1.3)

where n_{salt} is the salt density in the bulk water and λ_{s} is the effective thickness of the ion-free layer. This is in marked contrast to the role of surfactant molecules, which serve to decrease the surface tension [31]. For example, λ_{s} is about 6 Å for NaCl at room temperatures [29]. The image interaction comes into play in λ_{s} at low salt densities, where $\Delta \gamma$ itself is small, however. Here, we mention microscopic calculations of the ion distributions at a water-air interface [6] (see discussions in Sec. III).

We stress that the strong density or composition dependence of $\mu^{\text{sol}}_{\text{sol}}$ gives rise to a number of unexplored physical effects, particularly in two-phase states. A paper in this direction, we will examine the ion distributions around an interface in the scheme of Ginzburg-Landau theory [22,32,33]. In Sec. II, we will present our scheme accounting for electrostatics with inhomogeneous ε_{s}, solvation effects, and image forces. In Sec. III, we will explain our numerical scheme and show profiles of the electric field in a parallel-plate capacitor. In Sec. IV, we will present a number of general relations and show numerical results of the interface structure. In Appendix A, we will summarize the calculations of the structure factor of the composition fluctuations and the effective interaction potentials among the ions in near-critical one-phase states.

II. GINZBURG-LANDAU THEORY

Let us consider a polar binary mixture with a small amount of salt composed of two species of ions. The volume fraction of the more polar component A as a paper in this direction, we will examine the ion distributions around an interface in the scheme of Ginzburg-Landau theory [22,32,33].

In Sec. II, we will present our scheme accounting for electrostatics with inhomogeneous ε_{s}, solvation effects, and image forces. In Sec. III, we will explain our numerical scheme and show profiles of the electric field in a parallel-plate capacitor. In Sec. IV, we will present a number of general relations and show numerical results of the interface structure. In Appendix A, we will summarize the calculations of the structure factor of the composition fluctuations and the effective interaction potentials among the ions in near-critical one-phase states.

A. Electrostatics

We assume that the dielectric constants ε_{A} and ε_{B} of the two components are significantly different and concentration dependence of the dielectric constant of the mixture may be expressed as [10]

$$\varepsilon(\phi) = \varepsilon_{0} + \varepsilon_{1}\phi,$$ \hspace{1cm} (2.2)

where ε_{0} and ε_{1} are positive constants with [35]

$$\varepsilon_{0} = \varepsilon_{B}, \hspace{0.5cm} \varepsilon_{1} = \varepsilon_{A} - \varepsilon_{B} > 0.$$ \hspace{1cm} (2.3)

Empirically, ε can be expressed roughly as a linear function of the concentration in many mixtures investigated so far [4,10]. Hereafter, $\mathbf{E} = -\nabla\Phi$ is the electric field and $\mathbf{D} = \varepsilon\mathbf{E}$ is the electric induction, where Φ is the electric potential. They satisfy

$$\nabla \cdot \mathbf{D} = -\nabla \cdot \varepsilon(\phi) \nabla \Phi = 4\pi\rho.$$ \hspace{1cm} (2.4)

The charge density $\rho(r)$ is written as

$$\rho = e(\varepsilon_{1}n_{1} - \varepsilon_{2}n_{2}),$$ \hspace{1cm} (2.5)

where e is the elementary charge and the two ion species have charges, $Q_{1} = e\varepsilon_{1}$ and $Q_{2} = -e\varepsilon_{2}$.

As a typical experimental geometry, our fluid system is inserted between two parallel metal plates with area S and separation distance L as shown in Fig. 1. We assume $S^{1/2} \gg L$ and neglect the effects of edge fields, for simplicity. The z axis is taken perpendicularly to the plates. The surface charge densities at the upper plate at $z=L$ and the lower plate at $z=0$ are σ_{L} and σ_{0}, respectively. The total charges on the plates are $Q_{L} = S\sigma_{L}$ and $Q_{0} = S\sigma_{0}$, respectively. The charge neutrality condition is written as

$$Q_{L} + Q_{0} + \int d\rho = 0,$$ \hspace{1cm} (2.6)

where the space integral $\int d\rho(\cdots)$ is within the fluid region ($0 < z < L$). In this paper, we fix σ_{L} and σ_{0} and consider the electrostatic free energy dependent on inhomogeneous ε and ρ [33,36],

$$F_{e} = \int d\varepsilon(\phi)\frac{1}{8\pi}\mathbf{E}^{2} = \int d\rho \frac{1}{8\pi}\mathbf{E} \cdot \mathbf{D}.$$ \hspace{1cm} (2.7)

On the plates at $z=0$ and L, Φ takes laterally homogeneous values Φ_{0} and Φ_{L}, and

$$D_{c}(0) = 4\pi\sigma_{0}, \hspace{0.5cm} D_{c}(L) = -4\pi\sigma_{L}.$$ \hspace{1cm} (2.8)

The potential difference $\Phi_{L} - \Phi_{0}$ is a functional of $\varepsilon(r)$ and $\rho(r)$. We next change $\varepsilon(r)$ and $\rho(r)$ infinitesimally by $\delta\varepsilon(r)$ and $\delta\rho(r)$ and use the relation,

$$\delta(\varepsilon\mathbf{E}^{2}) = -\mathbf{E}^{2}\delta\varepsilon + 2\mathbf{E} \cdot \delta\Phi = -\mathbf{E}^{2}\delta\varepsilon - 2\nabla \cdot \left(\Phi \delta\mathbf{D}\right) + 8\pi\Phi \delta\rho.$$ \hspace{1cm} (2.9)

Because δD_{c} should vanish on the boundaries at fixed surface charges, we find

![Diagram](image-url)
\[\Delta \mu_{\text{os}}^i = k_B T g_i \Delta \phi \] with \(\Delta \phi \) being the composition difference between the two phases. The linear dependence here and that in \(\varepsilon(\phi) \) in Eq. (2.2) are adopted to gain the physical consequences in the simplest manner and should not be taken too seriously. We then have the bilinear solvation interaction (\(\varepsilon_0 \langle \delta n_i \rangle \)) in \(F \) among the ions and the composition fluctuations [32,39]. In aqueous solutions, the coupling constants \(g_i \) are positive for hydrophilic ions and can much exceed unity for small ions such as \(\text{Li}^+ \) or \(\text{Na}^+ \), while they should be negative for hydrophobic organic ions [14]. They should be larger for small multivalent ions such as \(\text{Mg}^{2+} \) or \(\text{Al}^{3+} \). As will be summarized in Appendix A, we recently examined the effect of this solvation interaction in near-critical one-phase states [32]. In this work, its effect will be examined in two-phase states. In addition, \(1/\varepsilon(\phi) \) in the Born formula Eq. (1.1) may be expanded in powers of \(\psi \) near the critical point to give [33,40]

\[(g_i)_{\text{Born}} = Z_i e^2 / 2 k_B T e^2 R_{\text{ion}}^i, \]

where \(e \) is the dielectric constant at the critical composition and \(R_{\text{ion}}^i \) is the ion radius of the species \(i \). However, because of the defects of the Born theory, we will treat \(g_i \) as free parameters not using Eq. (2.20).

Hydrophilic ions and several water molecules (those of the more polar component in a mixture) form a complex structure and its effective radius \(R_{\text{shell}}^i \), called the solvation (hydration) shell radius, can be a few angstroms and is larger than the bare ion radius \(R_{\text{ion}}^i \) [3,4]. In a number of experiments, water molecules have been extracted together with hydrophilic ions in a less polar phase with a small water concentration. In nitrobenzene (NB) -water at room temperatures, the number of coextracted water molecules in a NB-rich phase was estimated to be 4 for \(\text{Na}^+ \), 6 for \(\text{Li}^+ \), and 15 for \(\text{Ca}^{2+} \) [14]. For liquid-vapor systems, where ions are absent in vapor, Levin and Flores-Mena [27] argued that ions in liquid cannot approach the interface within the distance of \(R_{\text{shell}}^i \) in the thin interface limit \(\xi \rightarrow 0 \). In our theory, \(R_{\text{shell}}^i \) does not appear explicitly, but ions in the more polar region are strongly repelled from the interface outside the distance of \(\xi \) for large \(g_i \). Therefore, our present treatment is justified in the case \(\xi \approx R_{\text{ion}}^i \).

C. Image interaction

As will be discussed in Appendix B, the last term \(F_{\text{im}} \) arises from a deformation of the self-interaction of ions due to inhomogeneous \(\varepsilon \). It originates from the discrete nature of ions, while the electric field \(\Phi \) in Eq. (2.4) is produced by the smoothly coarse-grained charge density \(\rho \). If an ion is close to an interface, the chemical potential contribution \(\mu_{\text{im}}^i = \delta F_{\text{im}} / \delta n_i \) is the so-called image potential in the previous papers [24–26]. This interaction can be important close to an interface far below the critical point or a boundary wall.

In this paper, assuming weak or moderate spatial variations of \(\varepsilon \), we derive the following integral form,

\[F_{\text{im}} = \int \int d\mathbf{r} d\mathbf{r}' m(\mathbf{r}) \nabla' \phi(\mathbf{r}) \cdot \nabla \phi(\mathbf{r'}), \]

where \(\nabla = \partial / \partial \mathbf{r} \). We define a new variable,
\[m = Z_1^2 n_1 + Z_2^2 n_2, \]
(2.22)

which coincides with the total ion density,
\[n = n_1 + n_2, \]
(2.23)
in the monovalent case \(Z_1 = Z_2 = 1 \). If the boundary effects are neglected, the function \(I(r',r') \) depends only on the difference \(r - r' \) as
\[I(r',r') = \frac{B_0}{|r - r'|^{d - 1}} e^{-\delta (r - r')} \].
(2.24)

Near the critical point, the coefficient \(B_0 \) is given by
\[B_0 = \frac{\varepsilon^2 \varepsilon_r}{8 \pi e^2}, \]
(2.25)
where \(\varepsilon_r = \varepsilon_0 + \varepsilon_i / 2 \) is the dielectric constant at the critical point and \(\kappa \) is the Debye-Hückel wave number. When the ion densities vary significantly in space in a phase-separated state, \(\kappa \) may be taken as the space-dependent local value [see sentences below Eq. (3.8)] [24] or the value in the more polar phase [25].

In our numerical analysis, we will set \(\varepsilon_i = 4 \varepsilon_0 \) or \(\varepsilon_i = 4 \varepsilon_0 / 5 \) for \(\phi = 1 / 2 \). Then \(|\delta \varepsilon| / \varepsilon_r \) is at most 0.4 in strong segregation of composition. Our one-dimensional form of \(F_{im} \) to be presented in Eq. (3.7) below overestimates the usual expression in the case \(\varepsilon_i > \varepsilon_0 \) [25] by a factor of 2 in strong segregation. See Appendix B.

D. Chemical potentials and equilibrium

We calculate the chemical potentials \(\mu_1 = \delta F / \delta n_1 + \mu_{im} \) and \(\mu_2 = \delta F / \delta n_2 \) of the ions and \(h = \delta F / \delta B \). Here \(h = (\mu_A - \mu_B) / v_0 \) in terms of the chemical potentials \(\mu_1 \) and \(\mu_2 \) of the two components of the mixture [37]. Using Eqs. (2.11) and (2.12), we obtain
\[\mu_1 = k_B T \ln(v_0 n_1) + Z_1 e \Phi + \mu_{1im}, \]
(2.26)
\[\mu_2 = k_B T \ln(v_0 n_2) - Z_2 e \Phi + \mu_{2im}. \]
(2.26)

From Eqs. (2.11), (2.13), and (2.19), we find
\[h = f' (\phi) - C \nabla^2 \phi - \frac{\varepsilon_1}{8 \pi} E^2 - k_B T \sum_{i=1,2} g_i n_i + h_{im}, \]
(2.27)
where \(f' = \delta f / \delta \phi \). In these expressions, the last two terms arise from the solvation and interactions, respectively, and we define
\[\mu_{im} = \frac{\delta F_{im}}{\delta n_i}, \quad h_{im} = \frac{\delta F_{im}}{\delta B}. \]
(2.28)

If Eq. (2.24) is used with a constant \(\kappa \), we have
\[\mu_{im}(r) = \mu_{im} / Z_i^2 = \int dr' \nabla' I(r,r') \cdot \nabla' \phi(r'), \]
(2.29)
\[h_{im}(r) = \int dr' \nabla' I(r,r') \cdot \nabla' m(r'). \]
(2.29)

In our numerical analysis, we have used these expressions in Eqs. (2.26) and (2.27) for simplicity [see Eq. (3.7)].

In equilibrium, \(\mu_1, \mu_2, \) and \(h \) are constants in space. The ion distributions are written in terms of the potential \(\Phi \) and the order parameter \(\psi = \phi - \frac{1}{2} \) as
\[n_1 = n_1^0 \exp \left[g_1 \psi - \frac{Z_1}{k_B T} (e \Phi + Z_1 \mu_{im}) \right], \]
(2.30)
\[n_2 = n_2^0 \exp \left[g_2 \psi + \frac{Z_2}{k_B T} (e \Phi - Z_2 \mu_{im}) \right], \]
(2.30)
where we have used Eq. (2.19) for \(\mu_{1im} \), Eq. (2.29) for \(\mu_{2im} \). The coefficients \(n_1^0 \) and \(n_2^0 \) are determined from the conditions \(N_1 = \int dr n_1 = \text{const} \) and \(N_2 = \int dr n_2 = \text{const} \).

III. NUMERICAL METHOD AND ONE-DIMENSIONAL PROFILES WITH BOUNDARIES

We consider one-dimensional equilibrium situations in which all the quantities in \(F \) depend only on \(z \). We introduce normalized ion densities by
\[c_1(z) = v_0 n_1(z), \quad c_2(z) = v_0 n_2(z). \]
(3.1)

As typical values, if \(n_1 = 10^{-3} \text{ mole/cm}^3 \) and \(a = 3.1 \text{ Å} \), we obtain \(c_1 = 1.8 \times 10^{-3} \). We simply call \(c_1 \) and \(c_2 \) as concentrations, supposing \(k_B T \sim a \). We also introduce a dimensionless electric potential,
\[U(z) = e \Phi(z) / k_B T. \]
(3.2)

In Appendix C, we will write down the equilibrium equations for \(\psi = \phi - 1 / 2 \), \(c_1, c_2 \), and \(U \). There appears a parameter \(A \) representing the strength of the charges,
\[A = \pi e^2 / 4 a e k_B T = \pi \ell_{Bc} / 4 a, \]
(3.3)
where \(a = v_0^{1/3} \) is the molecular size and
\[\ell_{Bc} = e^2 \varepsilon_r k_B T \]
(3.4)
is the Bjerrum length at the critical dielectric constant.

Our numerical calculations are all in the monovalent case \(Z_1 = Z_2 = 1 \). We integrated the time-dependent equations,
\[\frac{\partial \Phi}{\partial t} = - \frac{\delta F}{\delta \Phi} + \left\langle \frac{\delta F}{\delta \Phi} \right\rangle, \]
(3.5)
\[\frac{\partial U}{\partial t} = \nabla \cdot \varepsilon \nabla U + 4 \pi \rho, \]
(3.6)
until steady solutions were nearly reached, where \(\langle \cdots \rangle \) is the space average. Notice that \(h \) in Eq. (2.27) becomes equal to the space average \(\langle \delta F / \delta B \rangle \) in equilibrium. Thus the steady solutions of Eqs. (3.5) and (3.6) are the equilibrium solutions. We used \(h_{im} \) in Eq. (2.29) as \(\delta F_{im} / \delta \phi \) in \(\delta F / \delta \phi \) and \(n_1 \) and \(n_2 \) in Eq. (2.30) to calculate \(n = n_1 + n_2 \). These equations do not represent the real dynamics, but conveniently give the equilibrium solutions.

In \(\mu_{im}(z) \) and \(h_{im}(z) \) in Eq. (2.29) we replace \(\exp(-2\kappa |r - r'|) \) by \(\exp(-2\kappa |z'|) \) for simplicity and integrate over \(x' \) and \(y' \) to obtain

\[021506-4 \]
number in Eq. 3.9 whose spatial scale is of the order of the screening length $1/H^2$. The surface charges σ_0 and σ_L are screened by a fraction of the ions in the fluid.

IV. PLANAR INTERFACE

From Fig. 2, we can see that the interface is not affected by the surface charges and the wetting layer as long as the distances to the boundaries are much longer than the screening length. We focus our attention to a planar interface separating two phases α and β. The volume fraction ϕ_0 in the phase α is larger than that of ϕ_0 in the phase β, so the dielectric constant is larger in the phase α than in the phase β.

$$e_\alpha = e_\epsilon + e_1 \phi_0 > e_\beta = e_\epsilon + e_1 \phi_0$$

(4.1)

The interface structure is determined by the six dimensionless parameters, $\chi, g_1, g_2, e_\epsilon/e_\epsilon, A$, and the bulk ion concentrations c_{1a} in the phase α. In this paper, we set $e_1/e_\epsilon = 0.8$, but the other parameters are varied.

A. General relations

We assume that there are significant ion densities in the two phases such that the bulk screening lengths $1/\kappa_\alpha$ and $1/\kappa_\beta$ in the two phases are shorter than the cell length L. Here,

$$\kappa^2_K = 4\pi a^2 (Z_1^2 n_{1k} + Z_2^2 n_{2k})/k_BT$$

(4.2)

where A is defined by Eq. (3.3) and $\hat{\epsilon}_K = \epsilon_\epsilon/\epsilon_\epsilon$. Hereafter, the subscript K stands for α or β. The ion densities in the two bulk phases are written as

$$n_{1k} = n_0^{-1} c_{1k}, \quad n_{2k} = n_0^{-1} c_{2k}.$$

(4.3)

Far from the interface, the charge density $\rho(z)$ tends to zero and the electric potential $\Phi(z)$ tends to constants, Φ_α and Φ_β. The charge neutrality conditions far from the interface in the two bulk phases are written as

$$Z_1 n_{1k} = Z_2 n_{2k}.$$

(4.4)

Since μ_{im}^1 vanish far from the interface, the ion densities in the two bulk phases are written as

$$n_{1k} = n_0^0 \exp[-(Z_1 e\Phi_\alpha + \mu_{sol}^{1k})/k_BT],$$

(4.5)

$$n_{2k} = n_0^0 \exp[(Z_2 e\Phi_\beta - \mu_{sol}^{2k})/k_BT].$$

(4.6)

We define the solvation chemical potentials in the bulk,

$$\mu_{sol}^{1K} = \mu_{sol}(\Phi_\alpha), \quad \mu_{sol}^{2K} = \mu_{sol}(\Phi_\beta).$$

(4.7)

The charge neutrality condition (4.4) yields

$$\Phi_\alpha - \Phi_\beta = \frac{1}{(Z_1 + Z_2)e} [\Delta \mu_{sol}^{12} - \Delta \mu_{sol}^{12}] = \frac{k_BT}{(Z_1 + Z_2)e} (g_1 - g_2) \Delta \phi.$$

(4.8)

Use has been made of the definition (1.2). The composition difference is written as
\[\Delta \phi = \phi_a - \phi_B > 0. \] (4.9)

The first line in Eq. (4.8) is the general expression for the potential difference \([15–19]\), while the second line is a simplified expression under the assumption (2.19). This potential difference depends on the ion density only through \(\phi_a\) and \(\phi_B\) [see Eq. (4.38) below]. Notice that the potential difference arises in the asymmetric case \((g_1 \neq g_2)\) only and vanishes in the symmetric case \((g_1 = g_2)\). More strongly in our model, we find \(\Phi(z)=\rho(z)=0\) even around the interface for \(g_1=g_2\).

Furthermore, the charge densities in the phase \(\beta\) are reduced as

\[\frac{n_{1\beta}}{n_{1\alpha}} = \frac{n_{2\beta}}{n_{2\alpha}} = \exp\left(-\frac{\epsilon_r}{k_B T} \right). \] (4.10)

The degree of the ion-density reduction is represented by the energy \(\epsilon_r\), written as

\[\epsilon_r = \frac{Z_1}{Z_1 + Z_2} \Delta \mu_{a\beta} + \frac{Z_2}{Z_1 + Z_2} \Delta \mu_{a\beta} \]
\[= \frac{k_B T}{Z_1 + Z_2} \left(Z_2 g_1 + Z_1 g_2 \right) \Delta \phi. \] (4.11)

The second line holds under Eq. (2.19) as in the second line of Eq. (4.8). For example, if \(\Delta \mu_{a\beta} / k_BT = 10\) and 60, the ion reduction factor becomes \(e^{-10} = 2.4 \times 10^{-4}\) and \(e^{-60} = 6.7 \times 10^{-26}\), respectively, in the monovalent case. In the latter case, the ion density is virtually zero in the phase \(\beta\). The Debye–Hückel wave numbers in Eq. (4.2) satisfy

\[\kappa_\beta \kappa_\alpha = \left(\frac{\epsilon_r}{\kappa_B T} \right)^{1/2} \exp\left(-\frac{\epsilon_r}{2k_B T} \right). \] (4.12)

If \(\epsilon_r/k_BT\) is considerably larger than unity, we have \(n_{1\beta} \ll n_{1\alpha}, n_{2\beta} \ll n_{2\alpha}\), and \(1/\kappa_\beta \gg 1/\kappa_\alpha\). On the other hand, as we approach the critical point, \(\Delta \phi\) and \(\epsilon_r/k_BT\) eventually become small, where the heterogeneity in the ion distributions is weak. If \(g_1\) and \(g_2\) are large, this crossover occurs very close to the critical point.

We show numerical results in the monovalent case. In Figs. 3–5, we set \(\chi = 2.3, g_1 = 4, g_2 = 2, A = 4\), and \((\psi) = 0\) with \(L = 100a\). At the boundaries at \(z=0\) and \(L\), we impose the conditions

\[\psi' = 0, \quad \Phi' = 0. \] (4.13)

If \(\kappa_B L \gg 1\), we may realize the interface profiles not affected by the boundary effects. Figure 3 displays the ion densities and the charge density for \(c_{1\alpha} = 1.75 \times 10^{-3}\). The charge density changes rather abruptly between the maximum and the minimum on the scale of \(\xi\) [42], but slowly tends to zero outside the interval of them on the scale of \(1/\kappa_\alpha\) or \(1/\kappa_\beta\). We can also see a rounded peak in \(c_1(z)\) in the phase \(\alpha\). The latter is due to the factor \(\exp(-U)\) where \(U = e\Phi/k_BT\) decreases by 0.2 on the left of the interface. This peak tends to disappear for larger \(g_\alpha\). For three values of \(c_{1\alpha}\), Figs. 4 and 5 illustrate the electric potential \(\Phi(z)\) and the composition deviation \(\psi(z)\), respectively. They are consistent with Eq. (4.8). For example, for the case (b) with \(c_{1\alpha} = 0.018\) in Figs. 4 and 5, we numerically obtain \(\psi_\alpha = 0.3374, \quad \psi_\beta = -0.3137,\) and \(\Delta U\)...

\[\phi(z) = \rho(z) = 0 \] for three cases of \(c_{1\alpha} = 1.75 \times 10^{-3}, 0.018, \) and 0.037, where we set \(\Phi(50a) = 0\).
where we introduce

\[
\Phi(z) = \Phi_\alpha - 4\pi \int_{-\infty}^{\infty} dz' \rho(z') \left[\zeta(z) - \zeta(z') \right],
\]

where \(\zeta(z) = \int_{-\infty}^{z} dz' \frac{1}{\epsilon(z')}. \tag{14.15}\)

The right-hand side of Eq. (14.15) is independent of the lower bound \(z_{\text{int}}\) in Eq. (14.16). However, it is convenient to choose \(z_{\text{int}}\) as the interface position in the Gibbs construction [43] [see Eq. (4.42) below]; then, \(\zeta \approx (z - z_{\text{int}})/\epsilon_K\) far from the interface where \(K = \alpha\) or \(\beta\) region. Here \(\int_{-\infty}^{\infty} dz' \rho(z') \approx z \Phi'(z)\) should tend to zero for large \(z\) [since \(\rho(z) \approx e^{-\epsilon_K z^2}\) as \(z \rightarrow \infty\)], we have

\[
\Phi_\alpha - \Phi_\beta = -4\pi \int_{-\infty}^{\infty} dz' \rho(z') \zeta(z'), \tag{14.17}\]

where the upper bound is also pushed to infinity. We are interested in the potential value at the interface position,

\[
\Phi_\alpha - \Phi(z_{\text{int}}) = -4\pi \int_{-\infty}^{z_{\text{int}}} dz' \rho(z') \zeta(z'). \tag{14.18}\]

As can be inferred from the profile of \(c_1 - c_2 = a^3 p/\epsilon\) in Fig. 3, \(\Phi\) should decrease from the maximum to the minimum point of \(\rho\) by a small amount \((\Delta \Phi)_{\text{sol}} \approx n_{1\alpha}\) [42]. For \(g_1 > g_2 \gg 1\) with \(\Delta \phi \sim 1\), it is estimated as

\[
(\Delta \Phi)_{\text{sol}} \sim e n_{1\alpha} a^2 \ln(g_1/g_2)/\epsilon_a. \tag{4.19}\]

If \(\xi \sim a\), we obtain \(\epsilon(\Delta \Phi)_{\text{sol}}/k_B T \sim c_1 a A \ln(g_1/g_2)\).

FIG. 5. Order parameter profile \(\phi(z) = \phi(z) - 1/2\) for three cases of \(c_{10} = 1.9 \times 10^{-4}\) (a), \(0.018\) (b), and \(0.037\) (c). For the smallest \(c_{10}\), \(\phi(z)\) is almost equal to the profile without ions.

In view of the inequality \(|\rho(z)| < 2eZ_{\text{ion}}\) in Eq. (4.8) remains nonvanishing even in the dilute limit of ions. In the low density limit of the ions, therefore, \(\rho\) should change over the screening length outside the interval between the extremal points of \(\rho\). Furthermore, if \(\kappa_\beta \ll \kappa_\alpha\), the typical variation of \(\Phi\) in the \(\alpha\) region should be smaller than that in the \(\beta\) region by the factor \(e_\beta/\epsilon_\beta\) owing to the continuity of \(D(z)\) in Eq. (4.14). In the case \(\kappa_\beta \ll \kappa_\alpha \ll \xi^{-1}\), the potential decrease Eq. (14.18) behaves as

\[
\Phi_\alpha - \Phi(z_{\text{int}}) \equiv (\Delta \Phi)_{\text{sol}} + 2e_\beta \kappa_\beta/k_B T \ln \left(\frac{1}{e_\alpha \kappa_\alpha} \right), \tag{4.20}\]

where \(\Delta U = e(\Phi_\alpha - \Phi_\beta)/k_B T\). See discussions below Eq. (4.56). The electric field on the left-hand side of the maximum point of \(\rho\) in the \(\alpha\) region is negligible in the limit \(n_\beta \rightarrow 0\). In accord with this result, \(\rho = \Phi = 0\) was assumed in the water region in the previous papers [24–27].

C. Grand potential density

We consider the grand potential density in one-dimensional equilibrium situations,

\[
\omega_\rho = f + \frac{C}{2} |\phi'|^2 - h\phi + \frac{\kappa}{8\pi} E^2 + m\mu_\text{im},
\]

\[
+ \sum_{i=1,2} n_i [k_B T (\ln(\nu_i n_i)) - 1] + \mu_\text{im}^i (\phi - \mu_i), \tag{4.21}\]

where \(\mu_\text{im}\) is defined by Eq. (2.29) and \(h\), \(\mu_1\), and \(\mu_2\) are constants (Lagrange multipliers). The grand potential is given by

\[
\Omega = \int d\omega = F - \int dr \left[h\phi + \sum_{i=1,2} \mu_i n_i \right], \tag{4.22}\]

where \(F\) is the Helmholtz free energy (2.1). If we minimize \(\Omega\) as a functional of \(\phi\), \(n_1\), and \(n_2\), we are led to Eqs. (2.26) and (2.27) with Eq. (2.28). To obtain an interface, we impose the boundary condition \(\phi = \phi_K\) \((K = \alpha, \beta)\) with \(\phi_\alpha > \phi_\beta\) far from the interface.

For the interface solution, we can prove the relation,

\[
\frac{d}{dz} \left[\omega - C |\phi'|^2 - m\mu_\text{im} \right] = -n_1^i \mu_\text{im}^i - n_2^i \mu_\text{im}^2 - \phi^i \mu_\text{im}^i, \tag{4.23}\]

where the prime denotes taking the derivative \(d/dz\). We may see that the \(z\) integration of the right-hand side of Eq. (4.23) vanishes. In fact, if we shift \(z\) in \(\phi(z)\), \(n_i(z)\), and \(\Phi(z)\) to \(z + \delta z\), the incremental change of \(F_\text{im}\) is

\[
\delta F_\text{im} = \int d\nu_i n_i |\mu_\text{im}^i + n_1^i \mu_\text{im}^1 + n_2^i \mu_\text{im}^2 + \phi^i \mu_\text{im}^i| \delta z. \tag{4.24}\]

For constant \(\delta z\), we have \(\delta F_\text{im} = 0\) from the translational invariance of the interface position. This is justified if the interface is located very far from the boundary walls. Then
integration of Eq. (4.23) indicates coincidence of the bulk values of \(\omega(z) \)
\[
\omega = f(\phi) - h\phi - k_BTn \nonumber
\]
\[
= f(\phi) + \frac{C}{2}\phi'^2 - h\phi - k_BTn - \frac{\rho}{2}\Phi - \omega \nonumber
\]
\[
\omega_z = f(\phi) + \frac{C}{2}\phi'^2 - h\phi - k_BTn. \tag{4.25}
\]
Here, \(n_a \) and \(n_\beta \) are the bulk values of \(n_1 + n_2 \). We have eliminated \(\mu_1 \) and \(\mu_2 \) with the aid of \(n_i = \mu_i - k_BT \ln n_i - \mu_{i,\text{sol}} \) \(\to 0 \) far from the interface which follows from Eqs. (2.26) and (4.4). The homogeneity of \(h \) in Eq. (2.27) yields
\[
h = f'(\phi) - k_BT(g_1n_1 + g_2n_2) \nonumber
\]
\[
h = f'(\phi) - k_BT(g_1n_1 + g_2n_2). \tag{4.26}
\]
Now Eqs. (4.25) and (4.26) supplemented with Eqs. (2.14) and (4.10) constitute a closed set of equations that determine the equilibrium compositions \(\phi_a \) and \(\phi_\beta \) as will be examined in Sec. IV G.

D. Surface tension

In terms of the grand potential density in Eq. (4.21), the surface tension is written as
\[
\gamma = \int dz [\omega(z) - \omega_z], \tag{4.27}
\]
where the integrand tends to zero away from the interface owing to Eq. (4.25). We eliminate \(\mu_1 \) and \(\mu_2 \) in \(\omega(z) \) using Eq. (2.29) to have a simpler expression,
\[
\omega(z) = f + \frac{C}{2}\phi'^2 - h\phi - k_BTn + \frac{\rho}{8\pi}E^2 - \rho\Phi. \tag{4.28}
\]
Use of Eq. (4.4) gives
\[
\gamma = \int dz \left[f(\phi) + \frac{C}{2}\phi'^2 - h\phi - k_BTn - \frac{\rho}{2}\Phi - \omega \right]. \tag{4.29}
\]
On the other hand, the surface tension without ions is expressed as
\[
\gamma_0 = \int dz \left[f(\phi_0) + \frac{C}{2}\phi_0'^2 - f_0 \right], \tag{4.30}
\]
where \(\phi_0(z) \) is the interface solution without ions, tending to \(\phi_{0a} \) and \(\phi_{0\beta} \) as \(z \to \mp \infty \), respectively. It satisfies [37]
\[
f'(\phi_0) - C\phi_0' = 0
\]
\[
f(\phi_0) - \frac{1}{2}C\phi_0'^2 = f_0 = \text{const.} \tag{4.31}
\]
at any \(z \) so that \(f_0 = f(\phi_{0a}) = f(\phi_{0\beta}) \). For the special form of \(f \) in Eq. (2.14), we have \(h = 0 \) (in the zeroth order) and \(\phi_{0a} + \phi_{0\beta} = 1 \) [48].

Let us consider the excess surface tension,
\[
\Delta \gamma = \gamma - \gamma_0. \tag{4.32}
\]
In Fig. 6, we show the normalized excess surface tension \(a^2\Delta \gamma/k_BT \) versus \(c_{1a} \) at \(A = 4 \) for \(\chi = 3 \), 2.3, and 2.05, for which \(a^2\gamma_0/k_BT = 0.498, 0.103, \) and 0.0773, respectively. Here \(\gamma_0 \) are very different for these values of \(\chi \). We set \(g_1 = 4 \) and \(g_2 = 2 \) for the curves (a), (b), and (c) (solid lines), while \(g_1 = 10 \) and \(g_2 = 5 \) for the curves (d), (e), and (f) (broken lines). We generally find that \(\Delta \gamma \) increases with increasing \(g_2 \). The linear dependence \(\Delta \gamma \propto c_{1a} \) roughly holds at relatively large \(c_{1a} \), but the curves depend on the various parameters in a rather complicated manner at smaller \(c_{1a} \). The characteristic length \(\lambda_s \) defined by Eq. (1.3) is obtained from \(\lambda_s/a = (a^2\Delta \gamma/k_BT)/c_{1a} \). Then we can see that \(\lambda_s/a \sim 2 \) for the curves in Fig. 6.

E. Approximations in dilute electrolytes

When \(n_1 \) and \(n_2 \) are very small, we set
\[
\phi(z) = \phi_0(z) + \delta\phi(z), \tag{4.33}
\]
where the deviation \(\delta\phi(z) \) is assumed to be small. From Eq. (4.31) and the relation \(f'(\phi_{0K}) = 0 \) the deviations
\[
f(\phi_K) - f_0 = \frac{1}{2}k_BT\phi_K - \phi_{0K}^2 + \cdots \tag{4.34}
\]
at \(z = \pm \infty \) are of second order in \(\delta\phi \), where
\[
r_K = f''(\phi_{0K})/k_BT. \tag{4.35}
\]
For our \(f \) in Eq. (2.14), we have \(r_a = r_\beta \), as can be seen from Eq. (A2). Now Eq. (4.25) gives
\[
h = -k_RT\Delta n/\Delta \phi, \tag{4.36}
\]
where \(\Delta n \) is the ion-density difference,
\[
\Delta n = n_a - n_\beta = n_{\text{sol}}[1 - \exp(-\epsilon/k_BT)]. \tag{4.37}
\]
From Eq. (4.26), the composition deviations far from the interface are written as
The contributions from the integral $-\int \rho \Phi/2 = -\int dz \beta E^2/8\pi$ in Eq. (4.29) are at most a few percent of the total contribution in all the calculations. (ii) In the right-hand sides of Eqs. (4.29) and (4.40), we have used the same ϕ and n_{1K} for finite ion densities.

F. Repulsion of ions from an interface

It is convenient to define the interface position z_{int} by

$$\phi_{\alpha} z_{\text{int}} + \phi_{\beta} (L - z_{\text{int}}) = \int_0^L dz \phi(z),$$

which is the Gibbs construction of the interface position [33]. We use the boundary condition (4.13), which allows the neglecting of the wetting layer. When the distances z_{int} and $L - z_{\text{int}}$ are much longer than the interface thickness and the screening length, Eq. (4.40) may be expressed as

$$\frac{\Delta \gamma}{k_B T} \equiv \int_{-\infty}^{z_{\text{int}}} dz [n_{\alpha} - n(z)] + \int_{z_{\text{int}}}^\infty dz [n_\beta - n(z)],$$

where the lower and upper bounds are pushed to infinity. Here, the first term is positive and the second term is negative, with the sum being positive, in our calculations. The second term becomes negligible for small $n(z)$ in the β region $z > z_{\text{int}}$. This occurs in strong ion segregation with considerably large g_1 and g_2. The characteristic length λ, in Eq. (1.3) is then the thickness of the effective ion-depletion layer in the α region $z < z_{\text{int}}$. In the previous literature, only the first term in Eq. (4.43) has been considered in the thin interface limit $\xi \to 0$.

We illustrate how the two terms in Eq. (4.43) can be interpreted graphically. In Figs. 8–10, we display the normalized ion density $n(z)/n_{\alpha}$, composition $\phi(z)$, and image factor $F_{\text{im}(z)}$ for $\chi = 2.3$, $g_1 = 4$, $g_2 = 2$, and $c_{1\alpha} = 10^{-3}$. The gray regions correspond to the two terms in Eq. (4.45).
For these parameters, the role of the image factor on the ion density and the negative of the second term in Eq. (4.43) is increased and \(n/\kappa = 13.3 \) is rather long. The first term of Eq. (4.43) is 103.5% of the total second term \(a^2 \Delta \gamma / k_B T = 7.32 c_{1\alpha} \) and the role of the image factor is much intensified.

We discuss the relation between our theory and the Onsager-Samaras theory [25]. For \(z_{\text{int}} - z > \xi \), the image factor behaves as

\[
F_{\text{ima}}(z) \approx \exp \left[-D_I e^{-2c_{1\alpha}} |z - z_{\text{int}}| / \left(z_{\text{int}} - z \right) \right],
\]

where \(D_I = a \gamma \Delta \phi / \pi \xi e \) in our approximation. The image interaction can be important in the \(\alpha \) region for \(D_I \gg \xi / a \) or

\[
A \gamma \Delta \phi / \pi e \approx \xi / a,
\]

under which \(F_{\text{ima}}(z) \) is considerably smaller than unity at \(z_{\text{int}} - z > \xi \). If \(e_1 / e_c \), \(\Delta \phi \), and \(\xi / a \) are of order unity away from the critical point, this condition becomes \(A \gamma / k_B T \approx 1 \). Moreover, if \(D_I \kappa_a \ll 1 \) in the dilute limit, the integral of \(n_a - n(z) \) in the region \(D_I < z_{\text{int}} - z < 1 / \kappa_a \) becomes \(n_a D_I \ln (1 / D_I \kappa_a) \) and that in the region \(\xi < z_{\text{int}} - z < D_I \) is of order \(n_a D_I \). Thus,

\[
\Delta \gamma / k_B T = n_a D_I \left[\ln (1 / D_I \kappa_a) + E_I \right],
\]

where \(E_I \) is a dimensionless constant of order unity. If \(D_I \) is set equal to the classical value \(e^2 / 4 e_k k_B T \gamma \) in the case \(\kappa_a \gg \xi / a \), the above result reduces to that by Onsager and Samaras (see Appendix C).

G. Approaching criticality in two-phase states

We are interested in the coexistence curve in the presence of ions in the \(\phi - T(\phi - \chi) \) plane [44–46]. We assume the stability of the system against formation of a mesoscopic phase or \(\gamma_c < 1 \) (see Appendix A) [32,39]. We seek the solution of Eqs. (4.25) and (4.26) supplemented with Eq. (4.10) to calculate \(\beta_a = n_{1a} - 1 / 2 \) and \(\beta_c = n_{1c} - 1 / 2 \). As a parameter representing the amount of the doped ions, there can be many choices. It is convenient to introduce an ion density [50],

\[
\bar{n} = (n_{1a} n_{1\beta})^{1/2}.
\]

In the monovalent case, we have \(u / v_0 = 2(c_{1\alpha} c_{1\beta})^{1/2} \) in the dimensionless form so that \(n_{1a} = \exp (e_1 / 2 k_B T) n / 2 \) and \(n_{1\beta} = \exp (-e_1 / 2 k_B T) n / 2 \). We treat \(\bar{n} \) and \(2 - \chi \) as small control parameters characterizing two-phase states with a macroscopic planar interface. If the system is close to the critical point, we may use the Landau expansion \(f(k_B T) = \tau \phi / 2 + \mu \phi^2 / 4 \) const., where our free energy density Eq. (2.14) gives

\[
\tau = (4 - 2 \chi) / v_0, \quad u = 16 / 3 v_0.
\]

We also expand the ion reduction factor in Eq. (4.10) in powers of \(e_1 / k_B T = \Delta \phi = \beta_a - \beta_c \). Some calculations show that the critical condition \(\Delta \phi = 0 \) is attained at \(\tau = \tau_c^{\text{ion}} \) with

\[
\tau_c^{\text{ion}} = \left[(g z_2 + g_2 Z_1) / (Z_1 + Z_2) \right]^2 \bar{n}.
\]

Here, \(\tau_c^{\text{ion}} = 2 - \tau_c^{\text{ion}} v_0 / 2 \) and \(\bar{n} = \langle n \rangle \) (space average) at the critical point, so the above relation is consistent with Eq. (A5). If \(\tau \) is slightly smaller than \(\tau_c^{\text{ion}} \), \(\tau - \tau_c^{\text{ion}} \) represents the reduced temperature at fixed \(\bar{n} \) and that \(\beta_a \) and \(\beta_c \) behave as
GINZBURG-LANDAU THEORY OF SOLVATION IN WATER

FIG. 12. Normalized ion density $c_1(z)$ and normalized charge density $c_1(z) - c_2(z)$ (multiplied by 100) with varying χ with the same parameter values as in Fig. 11.

$$c_{1a} = 5 \times 10^{-4} \text{ with } \chi = 2.3, g_1 = 10, g_2 = 5, \text{ and } A = 4. \text{ We use the boundary conditions in Eq. (4.13) with } L = 200a. \text{ Since } \phi_a = 0.800 \text{ and } \phi_B = 0.203, \text{ the ion reduction factor in Eq. (4.10) is } 0.012, \text{ and } c_{1B} = 5.9 \times 10^{-5}, \text{ resulting in } 1/\kappa_a = 5.07a \text{ and } 1/\kappa_B = 40.0a. \text{ In the } \beta \text{ region not close to the interface } (z = z_{\text{int}}), \text{ the composition deviation } \psi(z) - \psi_B \text{ may be neglected and the normalized potential obeys}

$$U''(z) = \kappa_B^2 F_{\text{ima}}(z) \sinh(U(z) - U_B),$$

where $U'' = \partial^2 U/\partial z^2$ and $U_B = e\Phi_B/k_B T$. The image factor defined in Eq. (4.44) behaves as

FIG. 13. Normalized electric potential $U(z) = e\Phi(z)/k_B T$ (solid line) at small ion density $c_{1a} = 5 \times 10^{-4}$ with $\chi = 2.3, g_1 = 10, g_2 = 5, \text{ and } A = 4. \text{ Here } c_{1B} = 5.9 \times 10^{-5} \text{ and } \kappa_B = 2.5 \times 10^{-2}. \text{ It is compared with the Poisson-Boltzmann solution, Eqs. (4.55) and (4.56), without the image interaction. Also shown are composition profile } \phi(z) \text{ and the scaled charge density } 10^3[c_1(z) - c_2(z)].$

H. Slow decay of electric potential at small κ_B

When the ion density is very small in the phase β, the potential $\Phi(z)$ slowly changes over the distance of $1/\kappa_B$ in the region $z > z_{\text{int}}$. Figure 13 displays $U(z) = e\Phi(z)/k_B T$ at

FIG. 11. Composition profiles with varying χ for $g_1 = 4, g_2 = 2, A = 4, \text{ and } v_0/\bar{n} = 0.02, \text{ for which } \chi_{\text{on}} = 1.91.

$$\psi_a + \psi_B \equiv \left[(g_1Z_2 + g_2Z_1)/(Z_1 + Z_2)\right] \bar{n}/3u,$$

and

$$\Delta \phi = \psi_a - \psi_B \equiv 2[(\tau_{\text{ion}}/e)/u]^{1/2}.$$
where $D_t = a_1 e_1 \Delta \phi \mu / \kappa_\beta$, as in Eq. (4.45), and $D_2 = 0.61 \alpha$ in Fig. 13. For example, this factor is equal to 1.038 at $z - z_{\text{int}} = 10 \alpha$ in Fig. 13. If the image factor is set equal to unity, Eq. (4.53) becomes the well-known Poisson-Boltzmann equation which neglects the solvation and image interactions. Its solution, written as U_{PB}, is obtained in the α region, which is written as U_{PB}. We require the continuity of the electric potential and the electric induction, $U_{\text{PB}} = U_{\text{PB}}$ and $\varepsilon e U_{\text{PB}}/dz = \varepsilon e U_{\text{PB}}/dz$, at $z = z_{\text{int}}$. We then connect the two one-sided solutions,

$$U_{\text{PB}}(z) = U_{\text{PB}}(z)$$

$$= U_{\text{PB}}(z)$$

$$= U_{\text{PB}}(z)$$

which decreases from U_α at $z = z_{\text{int}}$ to U_β at $z = z_{\text{int}}$ by $A U = e(\Phi_\alpha - \Phi_\beta)/k_B T$. In Fig. 13, we plot U_{PB} thus obtained with $d_2 = 0.328$. If $e_2 \kappa_\beta / e_\alpha \kappa_\alpha \approx 1$, d_2 and $U_\alpha - U_{\text{PB}}(z_{\text{int}})$ are given by sinh($\Delta U/4$) (close to the above value) and the first term on the right-hand side of Eq. (4.20) multiplied by $k_B T/e$, respectively.

Comparing U and U_{PB}, we recognize the following. (i) In the β region, U relaxes to U_{PB} slightly faster than U_{PB} due to the image factor in Eq. (4.54). (ii) The curve of U is shifted into the α region, as compared to U_{PB}, and the decrease of U in the α region $U_\alpha - U_{\text{PB}}(z_{\text{int}})$ is considerably larger than that of U_{PB} in Eq. (4.56). These are due to the charge density created by the asymmetric solvation interaction near the interface. [see Eqs. (4.19) and (4.20)]. (iii) Nevertheless, the small negative tail of the charge density $\rho(z) = -e \phi \Phi^*/4\pi$ in the β region (at least for $z - z_{\text{int}} \approx 1 / \kappa_\beta$) is correctly described by the Poisson-Boltzmann theory.

In Fig. 14, we plot the potential reduction ratio $R_\beta = [\Phi_\alpha - \Phi_{\text{PB}}(z_{\text{int}})]/[\Phi_\alpha - \Phi_{\text{PB}}(z_{\text{int}})] / \Delta U$ in the α region as a function of $c_{1\alpha}$ with $A = 4$ for three cases. It is around 0.4 for weak ion segregation at $\chi = 2.3$, $g_1 = 4$, and $g_2 = 2$ on the curve (a). However, it decreases with decreasing $c_{1\alpha}$ for strong ion segregation with $g_1 = 10$ and $g_2 = 5$ on the curves (b) and (c).

I. Hydrophilic and hydrophobic ions

If hydrophilic and hydrophobic ions are in aqueous solutions, we have $\Delta \mu_\alpha > 0$ and $\Delta \mu_\beta < 0$ [14,17] or $g_1 > 0$ and $g_2 < 0$ under Eq. (2.19). With decreasing g_2, the potential difference (4.8) becomes larger and ε_2 in Eq. (4.10) can even change its sign for this case. In Fig. 15, we set $g_1 = 4$ and $g_2 = -4$ with $c_{1\alpha} = 10^{-3}$, where $\varepsilon_2 = 0$ and the bulk ion densities far from the interface coincide. We can see that c_1 exhibits a maximum in the α region and a minimum in the β region, while c_2 has extremums in the reverse regions. Thus the relative charge density $(c_1 - c_2)/c_{1\alpha}$ is more intensified than

$F_{\text{lin}}(z) = \exp[D_t e^{2\kappa_\beta z_{\text{int}}}(z - z_{\text{int}})]$, (4.54)

in the region $z > z_{\text{int}}$. If β is changed to α in Eq. (4.55), the Poisson-Boltzmann solution is also obtained in the α region, which is written as U_{PB}. We require the continuity of the electric potential and the electric induction, $U_{\text{PB}} = U_{\text{PB}}$ and $\varepsilon e U_{\text{PB}}/dz = \varepsilon e U_{\text{PB}}/dz$, at $z = z_{\text{int}}$. The curve of U_{PB} is shifted to U_α at $z = z_{\text{int}}$ by $A U = \varepsilon e \Phi^*/k_B T$ (U_{PB} is given by sinh($\Delta U/4$)) (close to the above value) and the first term on the right-hand side of Eq. (4.20) multiplied by $k_B T/e$, respectively.

FIG. 14. Potential reduction ratio in the α region $R_\beta = [\Phi_\alpha - \Phi(0)]/[\Phi_\alpha - \Phi_{\text{PB}}]$ versus $c_{1\alpha}$, where $\chi = 2.3$, $g_1 = 4$, and $g_2 = 2$ (a), $\chi = 2.3$, $g_1 = 10$, and $g_2 = 5$ (b), and $\chi = 3$, $g_1 = 10$, and $g_2 = 5$ (c).

in the case of $g_1 > g_2 > 0$. Interestingly, the integral of the deviation $c_1 + c_2 - 2c_{1\alpha}$ is positive due to the image interaction in the β region in this case. That is, the ions are absorbed onto the interface on the average and λ, in Eq. (1.3) becomes -3.54α.

V. SUMMARY AND REMARKS

We have introduced the solvation effects at low ion densities into electrolyte theory in the simplest manner, neglecting ion association [2]. We have then examined the ion distributions, the electric potential, and the composition profile around an interface in polar binary mixtures in the Ginzburg-Landau scheme. We have derived a number of general relations. They are worth experimental investigation particularly near the critical point. Numerical calculations have been performed.

FIG. 15. Normalized ion densities c_1 and c_2 around an interface, where $g_1 = 4$, $g_2 = -4$, $\chi = 2.3$, and $A = 4$. The first species is hydrophilic and the second one is hydrophobic. Also shown are $c_1 - c_2 \approx a^3 \rho / e$ and $c_1 + c_2 \approx a^2 n$. A marked electric double layer is formed here.
formed in one dimension and in the monovalent case only.

The ingredients of our theory are as follows.

(i) The dielectric constant in Eq. (2.4) is dependent on the composition and is inhomogeneous. Though we have treated a moderate case of $\varepsilon_1/\varepsilon_0 = 4/3$, the ratio $\varepsilon_i/\varepsilon_0$ can be of order 80 in aqueous solutions. Such very strong composition dependence should lead to various effects not well recognized so far. We mention a paper pointing out its relevance in first-order swelling transition of charged gels [51].

(ii) The swelling transitions are taken into account in Eq. (2.13) with the composition-dependent solvation chemical potentials in Eq. (2.19). The resultant interaction in the free energy F is bilinear and characterized by dimensionless parameters g_i dependent on the ion species i. A shift of the coexistence curve of the composition follows from this coupling [32]. Intriguing is the asymmetric case $g_1 \neq g_2$, where a potential difference arises at an interface. In one-phase states, this asymmetry can lead to a peak in the structure factor of the composition fluctuations at an intermediate wave number, as summarized in Appendix A. There can even be a mesoscopic phase [39], which can possibly occur in the case of strongly asymmetric salt with large $g_1 - g_2$ (say, salt composed of small cations and relatively large anions with distinctly different solvation powers) [32]. Notice that g_i can be negative for hydrophobic ions. Also we stress that the critical fluctuations give rise to attractive interactions among the ions as shown in Eqs. (A7) and (A8), whose physical consequences should be examined in future.

(iii) The image interaction is shown to arise from general inhomogeneous dielectric constant and is expressed in the integral form in Eq. (2.21) or Eq. (3.7), though our expression can be used only for weak or moderate inhomogeneity. As discussed in Sec. III, it can dominate over the solvation interaction for $A \gg 1$, at very small ion densities, and far below the critical point.

The charge effects become very complex with these new ingredients and our present results are still fragmentary. We mention related problems.

(i) There can be an electric double layer and a potential difference at an interface in general charged systems, including low-molecular-weight fluids (as in this paper), complex fluids, gels, and even liquid metals. In particular, solvation effects in microemulsion systems and charged colloidal systems are of great interest.

(ii) Wetting transitions should be greatly influenced by ions [52,53]. If the wetting layer is more polar than the outer fluid, ions can even be confined in the layer for $\Delta \mu_{iAB} \approx k_B T$ [see Eq. (1.2)].

(iii) We mention dynamical problems. Time evolution of the ion distributions is a slow process due to slow ion diffusion [19]. Phase-separation processes should also be influenced by ions which are more strongly segregated than the solvent composition for large g_i. We already examined the effect of a very small amount of ions on nucleation in a metastable fluid in a less polar phase. There, the nucleation barrier is decreased by $\Delta \mu_{iB}$ in Eq. (1.2) for shallow quenching [22]. Ion-induced nucleation plays a decisive role in atmospheric phenomena.

(iv) Recently, we examined solvation effects of charged particles in liquid crystals [33,54]. In nematic states, the dielectric tensor is anisotropically dependent on the director orientation and, as a result, the electric field of ions distorts the orientation over long distances and sometimes create nanometer scale defects.

ACKNOWLEDGMENTS

We would like to thank K. Orzechowski, M. Doi, K. Kitamura, K. Yoshikawa, H. Seto, and J. F. Joanny for valuable discussions. This work was supported by Grants in Aid for Scientific Research and for the 21st Century COE “Center for Diversity and Universality in Physics” from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

APPENDIX A: FLUCTUATIONS IN ONE-PHASE STATES

We consider small plane-wave fluctuations in a near-critical one-phase state, where the inhomogeneity in the dielectric constant can be neglected ($\varepsilon = \varepsilon_c$) to leading order. Retaining the Fourier components with wave numbers much larger than the inverse system size $1/L$, we first write the fluctuation contributions to F in the bilinear order as [32]

$$\delta F = \int q \left[\frac{1}{2} (f''+C q^2) |q_0|^2 + \frac{2\pi}{\varepsilon_c q^2} |q_0|^2 + k_B T \right] \times \sum_{i=1,2} \left(\frac{|q_0|^2}{2 n_i} (g_i - Z_i^2 q^2) q_0^* \right),$$

(A1)

where $f_0 \cdots = (2\pi)^{-3} \int dq_1 \cdots$ denotes the integration over the wave vector q and

$$f'' = \frac{\partial^2 f}{\partial \phi^2} = \frac{k_B T}{v_0} \left(1 - \phi(1-\phi) - 2\chi \right)$$

(A2)

in our model. The correlation length is given by $\xi = (C f'^n)^{1/2}$ for the case without ions. The ϕ_0, $n_i q_0$, and ρ_0 are the Fourier transformations of $\phi(r)$, $n_i(r)$, and $\rho(r)$, respectively. The n_i in the last term of Eq. (A1) are the average ion densities satisfying $Z_1 n_1 = Z_2 n_2$ from the charge neutrality. The terms proportional to ϕ_i arise from the image interaction, where Eq. (2.24) yields

$$I_0 = (4\pi B_0 k_B T) q \tan^{-1}(q/2\kappa),$$

(A3)

so that $I_0 \approx q^2$ for $q \ll \kappa$. The terms from the image interaction are negligible at any q in one-phase states, so they will be omitted hereafter.

Elimination of the ion-density fluctuations yields the composition structure factor in the mean-field theory,

$$\frac{k_B T}{S(q)} = f'' - \Delta r_{ion} + C q^2 \left[1 - \frac{\gamma^2 \kappa^2}{\kappa^2 + q^2} \right],$$

(A4)

where κ is the Debye-Hückel wave number and Δr_{ion} is the ion-induced shift,

$$\Delta r_{ion} = k_B T (Z_2 g_1 + Z_1 g_2) n/(Z_1 + Z_2).$$

(A5)

The shift becomes significant for large g_i, even for small $n = n_1 + n_2$. This is consistent with the experimental fact that
even a small amount of salt greatly shifts the liquid-liquid coexistence curve [44–47]. The dimensionless parameter γ_p represents the asymmetry of the solvation in the two components,

$$
\gamma_p = \frac{\log g_1}{4\log(1+Z_i+Z_j)}
$$

where we have used Eqs. (2.18) and (3.3) in the second line. For $\gamma_p > 1$, $S(q)$ is maximum at an intermediate wave number and formation of a mesoscopic phase can be predicted below the transition point [32,33,39]. For $\gamma_p < 1$, $S(q)$ is maximum at $q=0$ and the usual critical point still exists.

We may also eliminate the critical fluctuations in F by setting $f'' + Cq^2 = k_BT\sum_{i=1}^{2\beta}g_i\phi_i$. The resultant free energy F for the ions only is expressed in the real space as

$$
F_{\text{ion}} = k_BT \int dr \sum_{ij} n_i \ln(v_{ij}n_j) - 1 + \frac{1}{2} \int dr \int dr' \sum_{ij} V_{ij}(r-r')n_i(r)n_j(r'),
$$

where the first entropic terms are not expanded with respect to the ion-density deviations and $V_{ij}(r)$ are the interaction potentials,

$$
V_{ij}(r) = Q_iQ_j e^{-r_{ij}^2/4\pi C_i e_i r} \left(\frac{k_BT}{4\pi C} \right)^2 e^{-r_{ij}^2/4\pi C_i e_i r},
$$

with $Q_i=Z_i e$ and $Q_j=-Z_2 e$. The second term in Eq. (A8) is the effective interaction mediated by the critical fluctuations. Among the ions of the same species $(i=j)$ it is attractive and dominates over the first Coulomb repulsive term in the intermediate range $a \leq r \leq \xi$ if

$$
\frac{g_i^2}{Z_i^2} > 4\pi C Z_i^2 e_i^2 e_\lambda(k_BT)^2 - 4\pi Z_2^2 e_\lambda a.
$$

Under the above strong solvation condition, there should be a tendency of aggregation even among ions of the same species. This effect might explain a number of observations of microheterogeneities in near-critical binary mixtures containing salt [47].

APPENDIX B: IMAGE POTENTIAL AND GENERALIZATION

(i) First, let two fluid phases α and β with dielectric constants e_α and e_β be separated by a planar interface with the phase α in the region $z<0$. Here $e_\alpha > e_\beta$ and the thin interface limit is taken. We place an ion with charge Q at a position $r_0=(x_0,y_0,z_0)$ in the phase $\alpha (z_0<0)$. The resultant electric potential Ψ should satisfy the surface condition,

$$
e_\alpha \Psi'(-0) = e_\beta \Psi'(0),
$$

where $\Psi'=d\Psi/dz$. Then, Ψ in the phase $\alpha (z<0)$ is written as [49]

$$
\Psi(r,r_0) = \frac{Q}{4\pi e_c r} + \frac{e_\alpha - e_\beta}{e_\alpha + e_\beta} \frac{Q}{e_\alpha e_\beta |r-r_0|},
$$

where $r_0=(x_0,y_0,-z_0)$ is the image position in the phase β. The second term is produced by the polarization of the dielectric medium. As $r \to r_0$, it follows the repulsive potential of the ion dependent on $z_0(<0)$,

$$
\Phi_a(z_0) = \frac{e_\alpha - e_\beta}{2(e_\alpha + e_\beta) e_\alpha} \frac{Q^2}{|z_0|},
$$

which tends to $Q^2/(4e_\alpha |z_0|)$ in the case $e_\alpha \gg e_\beta$. For the electrolyte, Onsager and Samaras [25] argued that the other ions give rise to a decaying factor $\exp(-2\kappa |z_0|)$, where κ is the Debye-Hückel wave number in the bulk phase α and the image potential should be changed to

$$
\Phi_a(z_0) = \frac{e_\alpha - e_\beta}{2(e_\alpha + e_\beta) e_\alpha} \frac{Q^2}{|z_0|} e^{-2\kappa |z_0|}.
$$

(ii) Second, we place a change in the less polar phase $\beta (z_0>0)$. This situation is relevant when there are appreciable ions in the phase β or for not very small ion reduction factor in Eq. (4.10). Exchange of α and β in Eq. (B4) gives the image potential in the phase β,

$$
\Phi_\beta(z_0) = -\frac{e_\alpha - e_\beta}{2(e_\alpha + e_\beta) e_\beta} \frac{Q^2}{|z_0|},
$$

which is attractive to the interface and tends to $Q^2/(4e_\beta |z_0|)$ in the case $e_\alpha \gg e_\beta$. The coefficient in Eq. (B5) is larger than that in Eq. (B4) by the factor e_α/e_β, which can be very large. However, Eq. (B5) should be much reduced in the presence of a solvation shell composed of polar molecules of the species A [12–14]. See the discussion below Eq. (2.20) for the background of this picture. In electrostatics [49], a polar spherical layer enclosing a charge weakens the electric field on the charge by the factor $3e_\beta/(2e_\beta + e_\lambda)$, leading to

$$
\Phi_\beta(z_0) = -\frac{e_\alpha - e_\beta}{2(e_\alpha + e_\beta) e_\beta} \frac{3e_\beta}{e_\alpha + e_\lambda} \frac{Q^2}{|z_0|},
$$

where $e_\lambda (\sim e_\lambda)$ is the effective dielectric constant in the layer. The coefficient in Eq. (B6) is of the same order as that in Eq. (B3) in the case $e_\alpha \sim e_\lambda \sim e_\lambda > e_\beta$.

(iii) Third, we should recognize that an image potential Φ_I arises generally when the dielectric constant e varies in space. We demonstrate it near the critical point, where the deviation $\delta e = e - e_c$ from its critical value e_c is small. Neglecting the boundary effect, we solve $\nabla \cdot \Psi = \Psi = 4\pi Q \delta \epsilon(r-r_0)$ in powers of $\delta \epsilon$. The deviation $\delta \epsilon = \Psi - Q / 4\pi e_c |r-r_0|$ reads

$$
\delta \epsilon (r, r_0) = Q \int_{|r-r'| < |r-r_0|} \frac{d^2r'}{|r-r'|} \cdot \frac{1}{|r'-r_0|},
$$

to linear order in $\delta \epsilon$. Taking the limit $r \to r_0$, we find the image potential,

$$
\Phi_{I}(r_0) = \frac{Q^2}{8\pi e_c} \int_{|r'-r_0| < |r-r_0|} \frac{d^2r'}{|r'-r_0|^2}.
$$

In particular, if a planar interface with thickness ξ is located at $z=0$, $\epsilon(z)$ depends only on z and the integrations over x' and y' are performed to give
\[\Phi_{i}(z_{0}) = \frac{Q^{2}}{4e_{c}} \int dx^2 \frac{1}{z_{0} - z} \frac{d}{dz'} \delta \epsilon(z'), \]

where we use \(\int dx dy(x^2 + y^2 + z^2)^{-2} = \pi/c^2 \). For \(|z_{0}| \gg \xi \), the above expression becomes

\[\Phi_{i}(z_{0}) = -\frac{e_{a} - e_{b}}{4e_{c}} \frac{Q^{2}}{z_{0}}, \]

where \(e_{a} \) and \(e_{b} \) respectively, resulting in Eq. \(9255 \). Let \(z \) be replaced by \(z/\xi \) satisfying \(k_{0} r = z/\xi \). The right-hand side of Eq. \(9260 \) can be expressed in terms of the Green’s function \(G(z, z'; s) \) with \(s = (r - r', y, y') \). Its Fourier transformation \(G_{k}(z, z') = \int dz G(z, z'; s) e^{ikr} \) is calculated as

\[G_{k}(z, z') = \frac{2\pi}{k} e^{ik|z|} + \frac{4\pi}{k(\sigma^{2} - 1)} [\cosh[k(z - z')] + \sigma \cosh[k(z' + L)]], \]

where \(\sigma = e^{ik\epsilon_{L}} \). It is obvious that \(1/|r' - r_{0}|^{2} \) in Eq. \(9258 \) should be replaced by \(G(r', r_{0})^{2} \).

Appendix C: Dimensionless Equations

We write down the dimensionless equilibrium equations in one-dimensional cases. Here, the \(z \) coordinate is measured in units of \(a \). Using Eq. \(9264 \), we rewrite Eq. \(9270 \) as

\[\psi_{\nu} / k_{B} T = \ln \left[\frac{1 + 2\psi}{1 - 2\psi} - \frac{2\psi}{\epsilon_{1} U''} - \frac{\epsilon_{2}}{32A} - (g_{1} c_{1} + g_{2} c_{2}) \right] + A \epsilon_{1} I_{c}. \]

(C1)

For \(Z_{1} = Z_{2} = 1 \), Eq. \(9271 \) becomes

\[c_{1} = c_{1}^{0} \exp[g_{1} \psi_{i} U - A \epsilon_{1} I_{c}], \]

\[c_{2} = c_{2}^{0} \exp[g_{2} \psi_{i} U - A \epsilon_{1} I_{c}], \]

(C2)

where \(\psi_{i} = e_{i} / e_{c} \), \(A \) is defined by Eq. \(9272 \), \(\psi'' = d^{2}\psi/dz'^{2} \), and \(U'' = dU/dz \). The \(\nu \psi_{i} / k_{B} T \), \(c_{1}^{0} \), and \(c_{2}^{0} \) are constants in equilibrium. Here, \(I_{c} \) is the linear operator arising from the following interaction

\[(\hat{I}_{c}(\psi_{i})) = \int dz' e^{-2\sigma |z'-z|} d\psi_{c}(z'), \]

(C3)

From Eq. \(9261 \), we obtain the equation for \(U \),

\[-\frac{d}{dz}[1 + \epsilon_{1} \psi_{i} \frac{d}{dz}] U = 16A(c_{1} - c_{2}). \]

(C4)

References

[7] M. Born, Z. Phys. 1, 45 (1920). The right-hand side of Eq. (1.1) is simply the integration of the electrostatic energy \(se^{2}/2r \pi \) in the region \(R_{m} < r < \infty \), where \(e^{2} = Z_{m} \epsilon_{m} r \) is the electric field at distance \(r \) from the ion center.

[11] The free energy needed for electrostriction decreases with increasing the background composition of the more polar component. This fact is particularly important in ion-induced nucleation, see Ref. [22].

[22] H. Kitamura and A. Onuki, J. Chem. Phys. 123, 124513 (2005). One of the main results in this work is that the solvent density in the vicinity of a small ion can be of the order of a liquid density in a gaseous polar one-component fluid. In this situation, the Born formula using the dielectric constant of gas is a poor approximation.

[40] Here $\langle g_i \rangle$ can be replaced by $\langle g_i \rangle = Z_i^2 \ell_B \xi / R_e^2 \xi$ in terms of ℓ_B in Eq. (3.4), so $\langle g_i \rangle$ can even be of order 100.
[42] If $g_1 > g_2 \sim 1/\Delta \phi$, the distance of the maximum (minimum) point from the interface position (in the Gibbs sense) is of order $\xi \ln(\xi / \Delta \phi) \approx \xi / \Delta \phi \exp[2(\xi - \xi_0) / \xi] - 1$.
[48] We may set $\mu_0 f' = 0$ in the zeroth order without loss of generality if we redefine $f = \mu_0 \phi$ as f.
[50] We may choose n_α as the control parameter. Then, if \tilde{a} is replaced by a_α, Eqs. (4.51) and (4.52) still hold asymptotically. But they are applicable only much closer to the critical point, where $a_\alpha \geq n_\lambda \beta$.