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Phase Transitions of Binary Alloys with Elastic Inhomogeneity
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In elastically inhomogeneous alloys, in which the shear modulus depends on the composition, coars-
ening in phase separation can be pinned even without quenched disorder. Here networks in the soft phase
enclose the domains in the hard phase. Highly asymmetric strains in the two regions create large free
energy barriers that prevent further coarsening. Thus a phase transition occurs between the one-phase
and the glassy two-phase states. We numerically obtain the phase diagram and show that this transition
is discontinuous at any composition. Therefore there is no critical point.
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In phase separation of alloys, elastic strains resulting
from a lattice misfit between the two phases can radically
influence the domain morphology [1,2]. As a first ap-
proach Cahn presented a Ginzburg-Landau theory in the
simplest case of isotropic elasticity with constant elastic
moduli [3], where the coexistence curve was shown to be
shifted by a constant temperature after elimination of the
elastic field from the mechanical equilibrium condition.
In the next work on cubic crystals with constant elastic
moduli, he derived a dipolar interaction bilinear with re-
spect to the composition fluctuations [4]. Other authors
subsequently presented more refined or generalized deriva-
tions of the dipolar interaction for anisotropic elasticity
[2]. This interaction is long ranged and angle dependent,
so it is minimized for particular shapes and configura-
tions of precipitates, consistently explaining a number of
experiments [5,6].

Another important ingredient affecting the domain mor-
phology is the difference in the elastic moduli between
the two phases. It has often been observed that harder
cuboids with a larger shear modulus C44 are wrapped by a
softer matrix. A typical example is given by Ni4Mo par-
ticles in Ni-16.3Mo alloys [7], where the mean domain
size r̄�t� initially increased with increasing aging time but
the coarsening virtually stopped with prolonged aging.
Such abnormal slowing down occurs for high solute
contents under strong elastic constraints, while the usual
growth law r̄�t� ~ t1�3 has been observed in many cases
for small volume fractions of precipitates and/or relatively
short aging times [7–10]. One of the present authors pre-
sented a Ginzburg-Landau theory assuming composition-
dependent elastic moduli or elastic inhomogeneity [11].
The resultant dynamic equations can easily be integrated
on the computer [12–14], yielding simulation results in
agreement with the above experiments. Along the same
line Sagui et al. have recently performed large scale simu-
lations of phase separation with elastic inhomogeneity
to find a variety of two-phase structures in two and three
dimensions [15].

However, it has not been well understood how the phase
transition takes place in the presence of elastic inhomo-
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geneity. We start with the free energy density,
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where c�~ c 2 cc� is the appropriately scaled composi-
tion (measured from a critical value) and u is the elastic
field coupled to c via the Vegard law. For simplicity we
assume that the elastic energy density fel�u� is character-
ized by a constant bulk modulus K0 and a composition-
dependent shear modulus given by

m � m0 1 m1c , (2)

within isotropic elasticity. If we assume the mechani-
cal equilibrium condition dF�dui � 0, we obtain u �
2�a�L0�=w 1 O�m1�, where L0 � K0 1 �2 2 2�d�m0
is the longitudinal modulus, and w is determined by

=2w � c 2 M . (3)

The average order parameter �c� is written as M. No ex-
ternally applied anisotropic strain is assumed. Elimination
of u yields the free energy of c in the Landau expansion,
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Here t � a0�T 2 Tc� is a (scaled) reduced temperature,
Tc being the so-called coherent critical temperature [3],
gE � m1a2�kBTL2

0, =i � ≠�≠xi , and d is the space di-
mensionality. The last term in Eq. (4) arises from the com-
position dependence of m and is linear with respect to m1.
It consists of the bilinear term �1 2 1�d�gEM�dc�2, be-
cause

R
dr Q � �1 2 1�d�

R
dr �dc�2, and the third or-

der term gEdcQ. Picking up the bilinear order terms
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in Eq. (4) we obtain the spinodal curve of the one-phase
states,

t 1 3u0M2 1 �2 2 2�d�gEM � 0 . (6)

However, the third order term is a highly nontrivial, non-
local interaction. It is relevant in the sense that it becomes
increasingly important for small t and M. In fact, the ratio
of this third order term to the first bilinear term �~ t� in
Eq. (4) is represented by the dimensionless strength,

g�
E � gE�ju0tj1�2, (7)

where we set c � jt�u0j
1�2. If g�

E * 1, we are in a new
regime of strong elastic inhomogeneity, where even the
thermal fluctuations on the scale of the correlation length
are distinctly soft or hard. In terms of observable quanti-
ties, this condition is also expressed as y0h2jm1j�kBT *

jT�Tc 2 1j1�2. Here y0 is the volume of a unit cell and
h � �da�dc��a�~ a�K0� is the lattice expansion parame-
ter with a � a�c� being the alloy lattice constant, where
the coefficients in the free energy are estimated in the
Bragg-Williams theory. Alternatively, we may introduce
a characteristic reduced temperature and average order pa-
rameter by

tE � g2
E�u0, ME � gE�u0 . (8)

In the strongly inhomogeneous regime we require jtj , tE

and jMj , ME . The solid is in the regime of weak elastic
inhomogeneity for jMj ¿ ME even at t � 0.

We numerically solve the diffusive equation,

≠

≠t
c � l0=2 d

dc

F
kBT

, (9)

in two dimensions without thermal noise. In previous nu-
merical work we studied only the weakly inhomogeneous
case (t , 0 and g�

E � 0.1 [13]). There the initial do-
main growth is isotropic and obeys the Lifshitz-Slyozov
law R�t� ~ t1�3, but in very late stages the elastic inhomo-
geneity gives rise to asymmetry between the two phases,
resulting in extreme slowing down of the coarsening. The
pinning occurs when the surface energy (�sRd21, s be-
ing the surface tension) and the elastic inhomogeneity free
energy [�kBTgE�Dc�3Rd] per domain are of the same or-
der. Then the characteristic size RE of domains is given by

RE � s�jkBTgE�Dc�3j � u
1�2
0 �gE � j�g�

E . (10)

We note that j � jtj21�2 and RE are the two characteristic
lengths involved in the free energy (4). We then consider
the free energy barrier per domain preventing coarsening.
It is estimated as

�DF�E � sRd21
E � kBT �jtj22d�2�u0���g�

E�d21. (11)

As long as g�
E & 1, we have �DF�E ¿ kBT for

jtj22d�2 ¿ u0 (the Ginzburg criterion) where the mean
field theory holds. This means that pinning should occur
even if the thermal noise is included in the simulation.
Although not attained in numerical work, we believe that
true equilibrium two-phase states are periodic in space,
in which dropletlike hard domains are wrapped by perco-
lating soft regions.

In this Letter we show that pinning occurs rapidly in the
strongly inhomogeneous case. Figure 1 shows the inverse
perimeter length for quenches with various g�

E at M � 0.
The inset indicates that the domain size in pinned states is
roughly inversely proportional to g�

E . Thus, in the strongly
inhomogeneous case g�

E * 1, phase transitions occur be-
tween one-phase states and pinned two-phase states with-
out much growth of the domains. In Fig. 2 we plot the
free energy density difference Df � F�V 2 tM2�2 2

u0M4�4 relative to the value in the homogeneous phase as
a function of t�tE at M�ME � 20.21, which is close to
the maximum point M�ME � 21�6 of the spinodal curve
(6) in two dimensions. The two-phase states with Df , 0
should be stable against thermal agitations in the presence
of the thermal noise. Hence the point at which Df � 0
on the two-phase branch may be treated as a first order
phase transition point. At M�ME � 20.21, the transi-
tion point thus determined is 0.265tE , while the spinodal
points are 0.53tE for the two-phase states and 20.89tE

for the one-phase states. As shown in Fig. 3, this hys-
teretic behavior persists at any M. Therefore, no critical
point exists under elastic inhomogeneity. Around this first
order phase transition we have t � tE , c � ME , and j �
t

21�2
E � RE . Then the free energy barrier per domain is

estimated as

�DF�E � kBT �t22d�2
E �u0� ¿ kBT (12)

in the mean field regime. In the asymptotic critical region,
if it can be reached, the barrier is weakened, suggesting
appearance of periodic two-phase states in equilibrium.

FIG. 1. The domain size R�t� obtained as the inverse of the
perimeter length density (in units of j) vs time (in units of
1�l0t

2) at M � 0 for various g�
E within isotropic elasticity in a

248 3 248 system. Pinning occurs at early times for larger g�
E .

In the inset the relation R ~ 1�g�
E is shown to hold in pinned

states.
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FIG. 2. The difference in the free energy density between one-
phase and pinned two-phase states (in units of kBTg4

E�u3
0) as a

function of t�tE at M�ME � 20.21. It vanishes at t�tE �
0.265 on the two-phase branch, where a first order phase transi-
tion is expected. The two-phase states are unstable for t�tE .
0.53, while the one-phase states are unstable for t�tE , 20.89
as predicted by Eq. (6) (not shown here).

Figure 3 also shows that the soft regions form a thin net-
work at relatively small volume fractions of the soft com-
ponent. For such domain structures the space dependence
is mostly along the interface normal n except for the junc-
tion regions. Then we may set =i=jw 	 ninj�c 2 M� to
obtain the approximate free energy density,

1
kBT

feff �
1
2

tc2 1
1
4

u0c4 1 ḡEc�c 2 M�2,

(13)

where ḡE � �1 2 1�d�gE . For this free energy density
phase separation can occur for

teff � t 2 4MḡE 2 3ḡ2
E�u0 , 0 , (14)

and the interface thickness is given by j � jteffj
21�2. In

the resultant two phases we have c � c1 and c2 with
c6 � 2ḡE�u0 6 jteff�u0j

1�2, so that

M � 2ḡE�u0 1 jteff�u0j
1�2�1 2 2fs� , (15)

where fs is the volume fraction of the soft regions. The
network at small fs should dissolve when the layer thick-
ness becomes of the order of j. However, we cannot de-
termine the network mesh size �net from the quasi-1D free
energy density (13) only. In our simulation �net is about
10 times longer than j on the points of first order phase
transition at small fs in Fig. 3. Indeed, these points are
nearly on the theoretical curve of fs � 0.1 in Eq. (15).

Next we consider cubic solids characterized by three
elastic moduli, C11, C12, and C44. The degree of anisotropy
is represented by ja � �C11 2 C12 2 2C44��C44. In the
simplest case of weak elastic anisotropy jjaj ø 1, the
454
FIG. 3. The phase diagram in the t-M (temperature-
composition) plane under elastic inhomogeneity within iso-
tropic elasticity calculated in two dimensions. The meanings
of the data are as follows: 1, first order transition points; �,
instability points of one-phase states; 3, instability points of
pinned two-phase states. The points � are on the theoretical
spinodal curve (6). The dotted line is obtained from (15) at
fs � 0.1. Domain patterns in pinned states are also shown,
where the soft regions are written in black.

bilinear dipolar interaction is expressed in terms of w in
Eq. (3) as

1
kBT

Fcub �
1
4

tcub

Z
dr

X
ifij

j=i=jwj2, (16)

where tcub � 22a2jaC44�kBTC2
11. If tcub . 0, the soft-

est directions are [01] and [10] and the domains tend to
be rectangular stripes aligned in [10] or [01]. The role
of this interaction is simply to orientate the interfaces in
these preferred directions [16]. The above form has been
used in computer simulations. The total free energy is
now the sum of F in Eq. (4) and Fcub in Eq. (16). By
setting tcub�tE � 0.71, we examine the phase transition
between one-phase states and pinned two-phase states.
Figure 4 shows the phase diagram in the t-M plane. We
can see that the interface orientation is strongly influenced
by the elastic anisotropy, but the hysteretic behavior per-
sists at any M. Therefore, there is no critical point in the
cubic case.

In summary, we have revealed unique phase transition
behavior in elastically inhomogeneous alloys, where there
is no continuous phase transition and glassy two-phase
states are realized even without quenched disorder [17].
We believe that these results hold in both two and three di-
mensions. In three dimensions they have been confirmed
only for M � 0 in our simulations (not presented here).
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FIG. 4. The phase diagram in the t-M plane for elastically
inhomogeneous cubic solids. The meanings of the data points
are the same as in Fig. 3. Also in this case, there is no critical
point.

However, when the volume fraction of the hard component
is small, it remains unsettled how the elastic inhomogene-
ity affects the late stage coarsening. In such cases, shape
changes of hard domains will occur when their sizes ex-
ceed RE in Eq. (10). But no theory is available on the
subsequent phase separation behavior. Finally, we also
comment on the effect of elastic inhomogeneity on the
phase transition behavior in symmetrical tricritical sys-
tems. We assume that the lattice constant and the shear
modulus linearly depend on c2, where c is the order pa-
rameter [18]. Then the elastic inhomogeneity interaction
is of the order of c6 and is marginal in the tricritical re-
gion. Along the first order transition line RE is of the order
of j�gE and �DF�E�kBT � �RE�j�2 from Eqs. (10) and
(11). Thus, for sufficiently small gE , the tricritical point
and the critical line do not disappear and glassy two-phase
states are realized in unstable regions with domain sizes of
the order of RE�¿j�.
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