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Primordial gravitational waves in an inflationary braneworld
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We study primordial gravitational waves from inflation in the Randall-Sundrum braneworld model. The
effect of a small change of the Hubble parameter during inflation is investigated using a toy model given by
connecting two de Sitter branes. We analyze the power spectrum of the final zero-mode gravitons, which is
generated from the vacuum fluctuations of both the initial Kaluza-Klein modes and the zero mode. The
amplitude of fluctuations is confirmed to agree with the four-dimensional one at low energies, whereas it is
enhanced due to the normalization factor of the zero mode at high energies. We show that the five-dimensional
spectrum can be well approximated by applying a simple mapping to the four-dimensional fluctuation ampli-
tude.

DOI: 10.1103/PhysRevD.68.044025 PACS number~s!: 04.50.1h, 11.10.Kk, 98.80.Cq
s
th
ra
so
tie
ys

in

t
he
-

ea
g

er
th
on

is

e
se
de

er
n

t
al

olu-
der
-

n-
del
the
co-
fla-

an
on-

ring
on-
-

de
ita-
the
lso
nto
x-
ar-
n-
left
cal
the
e to
pe
o
we
usly.
ost
e-

we
ex-

is
I. INTRODUCTION

Our four-dimensional universe might be embedded a
three-brane in a higher dimensional spacetime with all
standard model particles confined to the brane and with g
ity allowed to propagate in the extra dimensions. This
called braneworld scenario has opened various possibili
A possible solution to the hierarchy problem in particle ph
ics was presented by introducing large extra dimensions@1#
or a new type of compactification@2#. Also interesting is a
new possibility proposed in Ref.@3# that four-dimensional
gravity is recovered effectively on the brane despite the
finite extension of the extra dimension@4,5#.

The braneworld scenarios have also had a large impac
cosmology~for a review of the cosmological aspects of t
braneworld scenarios, see, e.g.,@6#!. Homogeneous and iso
tropic cosmological models have been built@7#, and various
types of inflation models proposed@8–12#. A lot of effort has
been put forth in searching for new and characteristic f
tures of the braneworld cosmology. For example, cosmolo
cal perturbations and the related physics of the early univ
have attracted great attention in the expectation that
braneworld inflation might leave their characteristic prints
the primordial spectrum of perturbations.

Although the cosmological perturbations have been d
cussed in a number of publications~see, e.g.,@6,11–19# and
references therein!, the presence of the extra dimension do
not allow detailed predictions about the cosmological con
quences. As the simplest case, the primordial spectra of
sity perturbations and of gravitational~tensor! perturbations
were investigated neglecting the nontrivial evolution of p
turbations in the bulk in a model of slow-roll inflation drive
by an inflaton field confined to the brane@12–14#. ~We must
mention that gravitational waves have been considered in
context of braneworld models other than the Rand
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Sundrum type as well; see@20,21#.! Although complicated,
the effect on the scalar type perturbations due to the ev
tion of perturbations in the bulk has been discussed un
some assumptions@17#. As for the gravitational wave pertur
bations, the authors of Ref.@18# considered a simplified in-
flation model in which the de Sitter stage of inflation is i
stantaneously connected to Minkowski space. In this mo
it is possible to solve the perturbation equations including
bulk to some extent. They focused on perturbations with
moving scale exceeding the Hubble scale at the end of in
tion.

Also in this paper we study gravitational waves from
inflating brane. If the Hubble parameter on the brane is c
stant, the power spectrum becomes scale invariant@13#.
However, the Hubble parameter usually changes even du
inflation. The change of the Hubble parameter, i.e., the n
trivial motion of the brane in the five-dimensional bulk, ‘‘dis
turbs’’ the graviton wave function. As a result, zero-mo
gravitons, which correspond to the four-dimensional grav
tional waves, are created from vacuum fluctuations in
Kaluza-Klein modes as well as in the zero mode. It is a
possible that gravitons initially in the zero mode escape i
the extra dimension as ‘‘dark radiation.’’ Therefore we e
pect that the nontrivial motion of the brane may leave ch
acteristic features of the braneworld inflation. If so, it is i
teresting to search for a signature of the extra dimension
on the primordial spectrum. However, there is a techni
difficulty. When the Hubble parameter is time dependent,
bulk equations are no longer separable. Then we hav
solve a complicated partial differential equation. To co
with this difficulty, we consider a simple model in which tw
de Sitter branes are joined at a certain time; namely,
assume that the Hubble parameter changes discontinuo
In this model we can calculate the power spectrum alm
analytically. This is a milder version of the transition d
scribed in@18#.

This paper is organized as follows. In the next section
describe the setup of our five-dimensional model, and
plain the formalism introduced in Ref.@18# to solve the mode
functions for gravitational wave perturbations. Using th
©2003 The American Physical Society25-1
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formalism, we explicitly evaluate the Bogoliubov coeffi
cients in Sec. III. In Sec. IV we translate the results for t
Bogoliubov coefficients into the power spectrum of gravi
tional waves, and its properties are discussed. We show
the power spectrum for our five-dimensional model can
reproduced with good accuracy from that for the correspo
ing four-dimensional model by applying a simple mappin
Section V is devoted to conclusion.

II. de SITTER BRANE AND GRAVITATIONAL
WAVE PERTURBATIONS

A. Background metric, gravitational wave perturbations,
and mode functions

Let us start with the simple case in which the backgrou
is given by a pure de Sitter brane in AdS5 bulk spacetime.
We solve the five-dimensional Einstein equations for gra
tational wave perturbations. For this purpose, it is conven
to use a coordinate system in which the position of the br
becomes a constant coordinate surface. In such a coord
system the background metric is written as

ds25
,2

~sinhj!2 F 1

h2
~2dh21d i j dxidxj !1dj2G , ~2.1!

where, is the bulk curvature radius, and the de Sitter bra
is placed atj5const5jB . Note that hereh is supposed to
be negative. On the brane, the scale factor is given
a(h)51/(2hH) and the Hubble parameter becomes

H5,21sinhjB . ~2.2!

Note that under the coordinate transformations

t5h coshj2h0 coshjB ,

z52h sinhj, ~2.3!

with a constanth0, the metric~2.1! becomes the AdS5 met-
ric in the Poincare´ coordinates.

The metric with gravitational wave perturbations is wr
ten as

ds25
,2

~sinhj!2 H 1

h2
@2dh21~d i j 1hi j

TT!dxidxj #1dj2J .

~2.4!

We decompose the transverse-traceless tensorhi j
TT into the

spatial Fourier modes as

hi j
TT~h,x,j!5

A2

~M5!3/2
•

1

~2p!3/2E d3p f~h,j;p!eip•xei j ,

~2.5!

whereei j is the polarization tensor, and the summation o
different polarizations was suppressed.M5 represents the
five-dimensional Planck mass, and it is related to the fo
dimensional Planck massMPl by ,M5

35MPl
2 . The factor

A2/(M5)3/2 is chosen so that the effective action forf cor-
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responds to the action for the canonically normalized sc
field. Then, the Einstein equations for the gravitational wa
perturbations reduce to the Klein-Gordon equation for
massless scalar field in AdS5,

hf5~Dh2Dj!f50, ~2.6!

where the derivative operators are defined by

Dh5h2
]2

]h2
22h

]

]h
1p2h2,

Dj5~sinhj!3
]

]j
~sinhj!23

]

]j
. ~2.7!

We assumeZ2 symmetry across the brane. Assuming th
anisotropic stress is zero on the brane, Israel’s junction c
dition gives the boundary condition for the perturbations

]jfuj5jB
50. ~2.8!

Since the equation is separable, the mode functions
found in the form offk(h,j)5ck(h)xk(j), whereck(h)
andxk(j) satisfy

S Dh1k21
9

4Dck~h!50, ~2.9!

S Dj1k21
9

4Dxk~j!50, ~2.10!

respectively, and the separation constantk (>0) is related to
the Kaluza-Klein massm as m25(k219/4)H2. For
k2529/4, we have one discrete mode, which is called
zero mode. The zero-mode wave function is given by

f0
(6)5,21/2C~H !

H

A2p
e6 iphS h6

i

pD , ~2.11!

which is independent ofj. The factorC(H) is to be deter-
mined by the normalization condition (f0

(6)
•f0

(6))571,
with respect to the Klein-Gordon inner product

~F•G!ª22i E
jB

` ,3dj

~sinhj!3h2
~F]hG* 2G* ]hF !.

~2.12!

Then we have

C2~H !5F2~sinhjB!2E
jB

`

dj
1

~sinhj!3G21

5FA11,2H21,2H2lnS ,H

11A11,2H2D G21

.

~2.13!

This normalization factor is the same that was introduced
for example, Refs.@19,13#, and behaves like
5-2
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C2~H !;H 1 ~at low energies ,H!1!,

3

2
,H ~at high energies ,H@1!.

~2.14!

The continuous spectrum called Kaluza-Klein~KK !
modes starts withk50. Notice that the mode labeled byk
50 does not correspond to the zero mode@8#. Writing the
positive and the negative frequency modes, respectively
fk

(1)5ck
(1)xk andfk

(2)5(fk
(1))* 5ck

(2)xk* , we impose the
conditions

i ,3

h2
~ck

(1)]hck
(2)2c.c.!51, ~2.15!

2E
jB

` dj

~sinhj!3
xk8

* xk5d~k2k8!, ~2.16!

so as to satisfy the normalization condition (fk
(6)

•fk8
(6))

57d(k2k8). The solutions of Eq.~2.9! are given in terms
of the Hankel functions by

ck
(2)~h!5

Ap

2
,23/2e2pk/2uhu3/2Hik

(1)~puhu!. ~2.17!

The spatial mode functionxk(j) is given in terms of the
associated Legendre functions by@11#

xk5C1~sinhj!2@P21/21 ik
22 ~coshj!2C2Q21/21 ik

22 ~coshj!#,
~2.18!

where from Eqs.~2.8! and~2.16! the constantsC1 andC2 are

C15FU G~ ik!

G~5/21 ik!
U2

1U G~2 ik!

G~5/22 ik!
2pC2

G~ ik23/2!

G~11 ik!
U2G21/2

,

C25
P21/21 ik

21 ~coshjB!

Q21/21 ik
21 ~coshjB!

. ~2.19!

As will be seen, we need to evaluate the value of the w
function at the location of the branexk(jB), and in some
special casesxk(jB) reduces to a rather simple form. Fo
sinhjB!1 and k sinhjB!1, we have

xk~jB!'Ak tanhpk

2
Ak211/4

k219/4
~sinhjB!2, ~2.20!

while, for sinhjB@1 or k sinhjB@1, we have

xk~jB!'
1

Ap
~sinhjB!3/2

k

Ak219/4
. ~2.21!

For the derivation of these two expressions, see Ref.@18#.
04402
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B. Model with a jump in the Hubble parameter

We consider a model in which the Hubble parame
changes during inflation. As we have explained, in the c
of constant Hubble parameter the brane can be placed
constant coordinate plane. When the Hubble parameter
ies, we need to consider a moving brane in the same coo
nates. For simplicity, we consider the situation in which t
Hubble parameter changes discontinuously ath5h0 from
H1 to

H25H12dH. ~2.22!

HeredH/H1 is assumed to be small. For later convenien
we define a small quantityeH by

eH5
,H1A11~,H2!22,H2A11~,H1!2

,H2

5
1

A11~,H1!2

dH

H1
1

213~,H1!2

2~11~,H1!2!3/2S dH

H1
D 2

1OS dH

H1
D 3

. ~2.23!

To describe the motion of the de Sitter brane after tran
tion, it is natural to introduce a new coordinate system (h̃,j̃)
defined by

t5h̃ coshj̃2h̃0 coshj̃B ,

z52h̃ sinhj̃. ~2.24!

Then, the brane expanding with Hubble parameterH2 is
placed atj̃5 j̃B by choosing two constantsj̃B and h̃0 so as
to satisfyH25,21sinhj̃B andh0sinhjB5h̃0sinhj̃B . The tra-
jectory of the brane is shown in Fig. 1. Apparently, mo
functions in this coordinate system take the same form
those in the previous section, but the arguments (j,h) and

FIG. 1. Trajectory of the brane~thick solid line! in static coor-

dinates. Dashed~dotted! lines represent surfaces ofj5const (j̃
5const).
5-3
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the Hubble parameterH1 are replaced by (j̃,h̃) andH2. We
refer to these second set of modes asf̃0 and f̃k . The rela-
tion between (h,j) and (h̃,j̃) is

h̃52Ah212eHh0h coshj1eH
2 h0

2,

tanhj̃5~h coshj1eHh0!21h sinhj. ~2.25!

As explained above, the variation of the Hubble para
eter is assumed to be small. For a technical reason, we
ther impose a weak restriction that the wavelength of
perturbations concerned is larger thandH/H2. These condi-
tions are summarized as follows:

dH

H
!1, ~2.26!

puh0u
dH

H
!1. ~2.27!

C. Method to calculate Bogoliubov coefficients

We consider the graviton wave functionw that becomes
the zero modef̃0

(2) at the infinite futureh̃50. We write the
wave functionw as

w5f̃0
(2)1dw, ~2.28!

where the second termdw arises becausef̃0
(2) does not sat-

isfy the boundary condition fort,0. Writing downf̃0
(2) and

dw at the infinite past,h52`, as a linear combination o
f0

(6) andfk
(6) , we can read the Bogoliubov coefficients.

At h→2` the first termf̃0
(2) is expanded as

f̃0
(2) →

h→2`
(

M50,k
~U0MfM

(2)1V0MfM
(1)!, ~2.29!

where the summation is taken over the zero mode and
KK modes. The coefficientsU0k and V0k are written by
using the inner product as

U0M5 lim
h→2`

~f̃0
(2)

•fM
(2)!,

V0M52 lim
h→2`

~f̃0
(2)

•fM
(1)!. ~2.30!

Evaluation of the inner product ath52` leads to V00
5V0k50 @18#, while

U00'
H2C~H2!

H1C~H1!
e2 i eHph0coshjBF12 i eHph0@C2~H1!

2coshjB#2
1

2
~eHph0!2~sinhjB!2G , ~2.31!
04402
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U0k'eHph0

22ieip/4

k211/4

,H2

~,H1!2
C~H2!xk~jB!. ~2.32!

These expressions are approximately correct as long
puh0udH/H1!1 is satisfied. The derivation of these equ
tions is explained in Appendix B.

The second termdw in Eq. ~2.28! is obtained as follows.
Since bothw andf̃0

(2) satisfy the Klein-Gordon equation in
the bulk~2.6!, dw also obeys the same equation. The boun
ary condition for dw is derived from Eq.~2.8! as ]jdw

52]jf̃0
(2) . Therefore, the solutiondw is given by

dw52E
2`

h0
dh8Gadv~h,j;h8,jB!@]j8f̃0

(2)~h8,j8!#j85jB
,

~2.33!

with the aid of the advanced Green’s function that satisfi

~Dh2Dj!Gadv~h,j;h8,j8!5d~h2h8!d~j2j8!.
~2.34!

The explicit form of the Green’s function is@18#

Gadv~h,j;h8,j8!5(
M

i ,3

~sinhj8!3h84
u~h82h!

3@fM
(1)~h,j!fM

(2)~h8,j8!

2fM
(2)~h,j!fM

(1)~h8,j8!#. ~2.35!

Taking the limit h→2`, we can expanddw in terms of
in-vacuum mode functions,

dw →
h→2`

(
M50,k

@u0MfM
(2)1v0MfM

(1)#, ~2.36!

where the coefficients are given by

u0M522i ,3E
2`

h0 dh

~sinhjB!3h4
fM

(1)~h,jB!

3@]jf̃0
(2)~h,j!#j5jB

, ~2.37!

v0M52i ,3E
2`

h0 dh

~sinhjB!3h4
fM

(2)~h,jB!

3@]jf̃0
(2)~h,j!#j5jB

. ~2.38!

To evaluate these coefficients, we need the source t
]jf̃0

(2)uj5jB
written in terms of the coordinates (h,j), which

is

]jf̃0
(2)uj5jB

52,23/2sinhj B̃

C~H2!

A2p

3 ipeHh0h sinhjBeipAh212eHh0h coshjB1eH
2 h0

2
.

~2.39!
5-4
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From Eqs.~2.29! and ~2.36!, we finally obtain the Bogo-
liubov coefficients relating the initial zero mode or K
modes to the final zero mode,

w5(
M

~a0MfM
(2)1b0MfM

(1)!, ~2.40!

where

a0M5U0M1u0M ,

b0M5v0M . ~2.41!

From these coefficients we can evaluate the number and
power spectrum of the generated gravitons.

III. EVALUATION OF BOGOLIUBOV COEFFICIENTS

Now let us evaluate the expressions for the Bogoliub
coefficients obtained in the preceding section. We conc
trate on the two limiting cases: the low energy regim
(,H1!1) and high energy regime (,H1@1). We first evalu-
ate the coefficientsa00 andb00, which relate the initial zero
mode to the final zero mode. We keep the terms up to sec
order ineH ~or equivalently indH/H1).

Substituting Eq.~2.39! into Eq. ~2.38!, we have

b005C~H1!C~H2!
H2

H1
eHh0E

2`

h0
dhS 1

h2
2

i

ph3D
3e2 ip(h2Ah212eHh0h coshjB1eH

2 h0
2). ~3.1!

Because there is a factoreH in front of the integral, we can
neglect the correction ofO(eH

2 ) in the integrand. Then we
can carry out the integration to obtain

b00'C~H1!C~H2!
H2

H1
eH

i

2ph0
e22iph02 iph0eHcoshjB.

~3.2!

Similarly, we get

a00'U001C~H1!C~H2!
H2

H1
eHS 11

i

2ph0
De2 iph0eHcoshjB,

~3.3!

whereU00 is given by Eq.~2.31!.
At low energies (,H1!1), the Bogoliubov coefficients

a00 andb00 become

a00'F11
i

2ph0

dH

H1
Ge2 iph0dH/H2, ~3.4!

b00'
i

2ph0

dH

H1
e22iph02 iph0dH/H2. ~3.5!

It is worth noting that these expressions are correct up
second order indH/H1. This result agrees with the results
the four-dimensional calculation,a (4D) andb (4D).

At high energies (,H1@1), the coefficients are
04402
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a00'F11
3

2 S i

2ph0

dH

H1
D1

3

8 S dH

H1
D 2

2
iph0

2

dH

H1

2
~ph0!2

2 S dH

H1
D 2Ge2 iph0dH/H12 iph0(3/2)(dH/H1)2

,

~3.6!

b00'
3

2 S i

2ph0

dH

H1
De22iph02 iph0dH/H12 iph0(3/2)(dH/H1)2

.

~3.7!

Here we stress that the last two terms in the square brac
of Eq. ~3.6!, both coming fromU00, are enhanced atpuh0u
@1.

Next, we calculate the Bogoliubov coefficientsa0k and
b0k , which relate the initial KK modes to the final zer
mode, up to the leading first order indH/H1. Although we
will calculate the power spectrum up to second order
dH/H1 in the next section, the expressions up to first ord
are sufficient fora0k andb0k , in contrast to the case fora00

and b00. Again, substituting]jf̃0
(2)(h,jB) into Eq. ~2.38!,

we have

b0k5A2p,3/2C~H2!xk* ~jB!
sinhj̃B

~sinhjB!2

3 eHh0E
2`

h0 dh

h3
ck

(2)~h!eipAh212eHh0h coshjB1eH
2 h0

2
.

~3.8!

SettingeH in the integrand to zero, the coefficient reduces

b0k'Ap

2
C~H2!xk* ~jB!

,H2

~,H1!2

3 eHph0e2pk/2Èpuh0u
dxx23/2Hik

(1)~x!eix, ~3.9!

where we have introduced the integration variab
x52ph. Similarly, we have

a0k* 'U0k* 2Ap

2
C~H2!xk* ~jB!

,H2

~,H1!2

3 eHph0e2pk/2Èpuh0u
dxx23/2Hik

(1)~x!e2 ix,

~3.10!

whereU0k is given by Eq.~2.32! and isO(eH).1

Now let us discuss the dependence ofa0k and b0k on
,H1 and dH/H1 in the limiting cases,H1!1 and ,H1
@1. At low energies, we find, using Eq.~2.20!,

1The integral including the Hankel function is written in terms
generalized hypergeometric functions.
5-5
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ub0ku2,ua0ku2}~,H1!2S dH

H1
D 2

~,H1!1!, ~3.11!

where we have omitted the dependence onk and puh0u.
These coefficients are suppressed by the factors of,H1 and
dH/H1. Recall thata00 and b00 agree with the standar
four-dimensional result at low energies. Thus, because of
suppression ofa0k and b0k at low energies, the four
dimensional result is recovered only by the contribution fro
the initial zero mode.

At high energies, we obtain from Eq.~2.21!

ub0ku2, ua0ku2}S dH

H1
D 2

~,H1@1!, ~3.12!

where we have again omitted the dependence onk and
puh0u. In contrast to the result in the low energy regim
~3.11!, this high energy behavior is not associated with a
suppression factor.

Integratingub0ku2 over the KK continuum, we obtain th
total number of zero-mode gravitons created from the ini
KK vacuum. It can be shown that the coefficients behave
b0k'2a0k* ;(puh0u)1/2 at puh0u!1, and we have

b0k1a0k* ;O~puh0u!3/2. ~3.13!

Thus the number of gravitons created is proportional top
outside the horizon and is evaluated as

E
0

`

ub0ku2dk'H 0.53puh0u~,H1!2S dH

H1
D 2

~,H1!1!,

0.33puh0uS dH

H1
D 2

~,H1@1!.

~3.14!

On the other hand, making use of the asymptotic form of
Hankel functionHn

(1)(x);ei (x2(2n11)p/4)/Ax for x→`, we
can evaluate the integral in Eq.~3.9! in the puh0u→` limit
as

b0k}puh0u Èpuh0u
dx

e2ix

x2
;

1

puh0u ~puh0u→`!,

~3.15!

where we have carried out the integration by parts and k
the most dominant term. This shows that the creation
gravitons is suppressed well inside the horizon. Since
assumption of the instantaneous transition tends to over
mate particle production at largep @22#, the number of par-
ticles created from the initial zero mode and KK modes
expected to be more suppressed inside the horizon
Eq. ~3.15! if we consider a realistic situation in which th
Hubble parameter changes smoothly. Note thatu0k

}puh0u*`
puh0ux22dx is constant forpuh0u→`. Therefore, the

a0k coefficient is dominated byU0k at largep, which be-
haves likeua0ku2;uU0ku2}(ph0)2.

An example of numerical calculation is shown in Fig.
The figure shows that the spectrum has a peak around
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Hubble scale and then decreases inside the horizon, an
confirmed that the behavior of the number density outs
the horizon is well described by Eq.~3.14!.

IV. POWER SPECTRUM OF GENERATED
GRAVITATIONAL WAVES

So far, we have discussed the Bogoliubov coefficients
see the number of created gravitons. However, our main
terest is in the power spectrum of gravitational waves
cause the meaning of ‘‘particle’’ is obscure at the sup
Hubble scale.

A. Pure de Sitter brane

Gravitational waves generated from pure de Sitter in
tion on a brane have the scale invariant spectrum

P5D5
2C2~H !

MPl
2 S H

2p D 2

, ~4.1!

which is defined by the expectation value of the squa
amplitude of the vacuum fluctuation, 8pp3uf0u2/(2pM5)3,
evaluated at a late time; see Eq.~2.11!. SinceC2;1 at ,H
!1, this power spectrum agrees at low energies with
standard four-dimensional spectrum

P4D5
2

MPl
2 S H

2p D 2

. ~4.2!

At high energies, however, the power spectrum~4.1! is en-
hanced due to the factorC(H), and is much greater than th
four-dimensional counterpart. This amplification effect w
found in Ref.@13#. These results say that the difference b
tween Eq.~4.1! and Eq.~4.2! is absorbed by the transforma
tion

H°HC~H !. ~4.3!

FIG. 2. Spectra of number density of zero-mode gravitons c
ated from vacuum fluctuations in the initial KK modes. Integrati
over k is performed numerically. The solid line represents the l
energy case with,H150.1, while the dashed line shows the hig
energy case. The latter should be understood as the limiting
,H1→` since at high energies the number does not depend
,H1; see Eq.~3.12!.
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B. Model with variation of Hubble parameter

Now let us turn to the case in which the Hubble parame
is not constant. Time variation of the Hubble parameter d
ing inflation brings a small modification to the spectrum, a
the resulting spectrum depends on the wavelength. Here
consider the amplitude of vacuum fluctuation of the ze
mode in the final state. It will be a relevant observable for
observers on the brane at a late epoch because the KK m
fluctuations at super Hubble scale rapidly decay in the
panding universe due to its four-dimensional effective ma
Since the behavior of the zero-mode wave function at
infinite future h̃→0 is known from Eq.~2.11!, we find that
the vacuum fluctuation for zero mode at a late epoch is gi
by

lim
h̃→0

ua00f̃0
(1)2b00* f̃0

(2)u21E dkua0kf̃0
(1)2b0k* f̃0

(2)u2

5
C2~H2!

,

H2
2

2p3 S ua001b00* u21E dkua0k1b0k* u2D .

~4.4!

Multiplying this by (2/M5
3)(p3/2p2) and recalling the rela-

tion ,M5
35MPl

2 , we obtain the power spectrum

P5D~p!5P5D
zero~p!1P5D

KK~p!, ~4.5!

with

P5D
zero~p!5

2C2~H2!

MPl
2 S H2

2p D 2

ua001b00* u2,

P5D
KK~p!5

2C2~H2!

MPl
2 S H2

2p D 2E
0

`

dkua0k1b0k* u2. ~4.6!

The power spectrum in the four-dimensional theory, co
puted in the same way, is given by

P4D~p!5
2

MPl
2 S H2

2p D 2

ua (4D)1b* (4D)u2. ~4.7!

The appearance of the coefficienta in the power spectrum
may look unusual. This is due to our setup, in which the fi
state of the universe is still inflating. In such a case,
fluctuations that have left the Hubble horizon never reen
it. Outside the horizon, the number of particles created, d
not correspond to the power spectrum.

There are two apparent differences betweenP5D and
P4D ; the normalization factorC(H) and the contribution
from the KK modesP5D

KK . In the low energy regime, how
ever, the two spectra agree with each other:

P5D'P4D ~,H1!1!. ~4.8!

This is because, as seen from the discussion about the B
liubov coefficients in the preceding section, the zero-mo
contributionP5D

zero is exactly the same asP4D ~up to the nor-
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malization factor!, and the Kaluza-Klein contributionP5D
KK is

suppressed by the factor (,H1)2. On the other hand, when
,H1 is large, the amplitude of gravitational waves devia
from the four-dimensional one owing to the amplification
the factorC(H).

We have observed for the pure de Sitter inflation that
correspondence between the five-dimensional power s
trum and the four-dimensional one is realized by the m
~4.3!. It is interesting to investigate whether the correspo
dence can be generalized to the present case. It seems n
to give the transformation in this case by

h°hC~h!, ~4.9!

where

h~p!5H2ua (4D)1b* (4D)u; ~4.10!

namely, the rescaled power spectrumPres(p) is defined as

Pres~p!5
2C2~h!

MPl
2 S h

2p D 2

. ~4.11!

We will see that this transformation works well and mos
absorbs the difference between the five- and fo
dimensional amplitudes.

We examine the differences between the five-dimensio
spectrum and the rescaled four-dimensional spectrum by
panding them with respect todH/H1 as

P5D~p!5P5D
(0)1P5D

(1)1P5D
(2)1OS dH

H D 3

1P5D
KK , ~4.12!

Pres~p!5Pres
(0)1Pres

(1)1Pres
(2)1OS dH

H D 3

. ~4.13!

Here the quantity associated with the superscript~n! repre-
sents the collection of the terms ofO„(dH/H)n

…. On the
right hand side of Eq.~4.12!, all the terms except for the las
one come from the initial zero mode. The direct expans
shows that the leading terms in Eqs.~4.12! and~4.13! exactly
agree with each other up to the first order indH/H1,

P5D
(0)1P5D

(1)5Pres
(0)1Pres

(1)5
2C2~H1!

MPl
2 S H1

2p D 2

3H 11Fsin~2ph0!

ph0
22G C2~H1!

A11~,H1!2

dH

H1
J .

~4.14!

These terms contain only the contribution from the init
zero mode.

The contribution from the initial KK modesP5D
KK is of

order (dH/H1)2, because botha0k andb0k areO(dH/H1).
Thus, to examine whether the agreement of the spect
continues to hold even after including the KK modes, w
investigate the second order part of the spectrum. The sec
order termsP5D

(2) andPres
(2) are given by
5-7
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P5D
(2)~p!5

2C2~H1!

MPl
2 S H1

2p D 2F ~ph0!2S C22~H1!1C2~H1!

A11~,H1!2
22D 1cos~ph0!S C2~H1!

A11~,H1!2
11D 1

sin2~ph0!

~ph0!2

C2~H1!

A11~,H1!2

1
sin~2ph0!

2ph0
S 213~,H1!2

11~,H1!2
2

6C2~H1!

A11~,H1!2D 1
4C2~H1!

A11~,H1!2
2

314~,H1!2

11~,H1!2 G C2~H1!

A11~,H1!2 S dH

H1
D 2

, ~4.15!

Pres
(2)~p!5

2C2~H1!

MPl
2 S H1

2p D 2F2 cos~ph0!1
sin2~ph0!

~ph0!2
1

sin~2ph0!

ph0
S 213~,H1!2

11~,H1!2
2

4C2~H1!

A11~,H1!2D
2

sin2~2ph0!

~2ph0!2 S 415~,H1!2

11~,H1!2
2

4C2~H1!

A11~,H1!2D 1
4C2~H1!

A11~,H1!2
2

314~,H1!2

11~,H1!2 G C2~H1!

A11~,H1!2 S dH

H1
D 2

. ~4.16!
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From these equations, we notice thatPres
(2) and P5D

(2) do not
agree with each other. We see that the difference is enha
in particular atpuh0u@1. However, as we mentioned earlie
the KK mode contribution also gives a correction of t
same order, and in fact we show that approximate agreem
is recovered even in this order by adding the KK mode c
tribution.

First we observe the power spectrum atpuh0u!1. Ex-
pandingP5D

(2) andPres
(2) with respect topuh0u, we have

P5D
(2)~p!

P (0) ,
Pres

(2)~p!

P (0) ;~ph0!2S dH

H1
D 2

. ~4.17!

On the other hand, Eq.~3.13! leads to

P5D
KK~p!

P (0) ;~puh0u!3S dH

H1
D 2

. ~4.18!

Therefore the difference is small outside the horizon as

UP5D
(2)1P5D

KK2Pres
(2)

P (0) U;~ph0!2S dH

H1
D 2

~puh0u!1!,

~4.19!

although the cancellation betweenP5D
(2)(p) andPres

(2)(p) does
not happen. By a similar argument, atpuh0u&1, we have

UP5D
(2)1P5D

KK2Pres
(2)

P (0) U;S dH

H1
D 2

~puh0u&1!. ~4.20!

The situation is more interesting when we consider
spectrum inside the Hubble horizon. There is a term prop
tional to (ph0)2 in P5D

(2) , which is dominant atpuh0u@1,
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while there is no corresponding term inPres
(2) . Hence, the

difference betweenP5D
(2) andPres

(2) is

P5D
(2)2Pres

(2)

P (0) '2~ph0!2S 22
C22~H1!1C2~H1!

A11~,H1!2 D
3

C2~H1!

A11~,H1!2 S dH

H1
D 2

. ~4.21!

Our approximation is valid forpuh0udH/H1&1 @Eq. ~2.27!#.
Hence, within the region of validity, this difference can be
large asP (0). We also note that the terms proportional
(puh0u)2 come froma00, while the contribution fromb00 is
suppressed atpuh0u@1. On the other hand, the contributio
from initial KK modes, P5D

KK(p), is dominated bya0k at
puh0u@1: P5D

KK}*dkua0k1b0k* u2;*dkua0ku2. This means
that, although the creation of zero-mode gravitons from
initial KK modes is negligible inside the horizon, a part
the amplitude of the final zero mode comes from the init

FIG. 3. Five-dimensional power spectrum of gravitation
wavesP5D(p) and the four-dimensional oneP4D(p) at low energies
(,H151022) with dH/H151023. These two agree with eac
other. In this case the initial KK modes give a negligible contrib
tion.
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KK modes losing their KK momenta. Since the coefficie
a0k is proportional topuh0u at largepuh0u, P5D

KK behaves as

P5D
KK~p!

P (0) ;1~ph0!2S dH

H1
D 2

. ~4.22!

This KK mode contribution cancelsP 5
(2)D. The cancellation

can be proved by looking at the property of the Bogoliub
coefficients
.

t b
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t
ua00u22ub00u21E dk~ ua0ku22ub0ku2!51. ~4.23!

This relation together with Eq.~4.4! implies that the power
spectrum cannot significantly deviate fromC2(H2)H2

2/2,p3

in the region whereb00 and b0k are negligibly small. We
can also demonstrate the cancellation by explicit calcula
in the low and high energy limits. Forpuh0u@1, we have
a0k'U0k . Then from Eqs.~2.20!, ~2.21!, and ~2.32! we
obtain
E dkua0ku2'5 E
0

` 2k tanh~pk!dk

~k211/4!~k219/4!
3~ph0!2~,H1!2S dH

H1
D 2

~,H1!1!,

6

pE0

` k2dk

~k211/4!2~k219/4!
3~ph0!2S dH

H1
D 2

~,H1@1!,

~4.24!
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which gives (ph0)2(,H1)2(dH/H1)2 in the low energy re-
gime and (3/4)(ph0)2(dH/H1)2 in the high energy regime
Comparing these with Eq.~4.21!, we see thatP5D

KK(p) can-
celsP5D

(2)(p).2

To summarize, we have observed that the agreemen
tween the rescaled spectrumPres(p) and the five-
dimensional spectrumP5D(p) is exact up to first order in
dH/H1. The agreement is not exact at second order, but
found that the correction is not enhanced at any wavelen
irrespective of the value of,H1. Just for illustrative purpose
we show the results of numerical calculations in Fig. 3 a
Fig. 4.

V. DISCUSSION

In this paper we investigated the generation of primord
gravitational waves and its power spectrum in the inflatio
ary braneworld model, focusing on the effects of the var
tion of the Hubble parameter during inflation. For this pu
pose, we considered a model in which the Hubble param
changes discontinuously.

In the case of de Sitter inflation with constant Hubb
parameterH, the spectrum is known to be given by Eq.~4.1!
@13#. It agrees with the standard four-dimensional one@Eq.
~4.2!# at low energies,H!1, but at high energies,H@1 it
significantly deviates from Eq.~4.2! due to the amplification
effect of the zero-mode normalization factorC(H). One can
say, however, that the five-dimensional spectrum is obtai
from the four-dimensional one by the mapH°HC(H).

In a model with variable Hubble parameter, gravitation
wave perturbations are expected to be generated not
from the ‘‘in vacuum’’ of the zero mode but also from that
the Kaluza-Klein modes. Hence, it is not clear whether th

2The small,H expansionC2(H)'12(,H)2@1/21 ln(,H/2)# is
used here to investigate the low energy case.
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is a simple relation between the five-dimensional spectr
and the four-dimensional counterpart. Analyzing the mo
with a discontinuous jump in the Hubble parameter, we ha
shown that this is indeed approximately the case. More p
cisely, if the squared amplitude of four-dimensional fluctu
tions is given by (h/2pMPl)

2, we transform (h/2pMPl)
2 into

C2(h)(h/2pMPl)
2, then the resulting rescaled spectrum e

actly agrees with the five-dimensional spectrumP5D(p) up
to first order in dH/H1. At second orderO(dH/H)2 the
agreement is not exact, but the difference is not enhance
any wavelength irrespective of the value of,H1. Hence, in
total, the agreement is not significantly disturbed by the m
match at second order. As a nontrivial point, we also fou
that the initial KK mode vacuum fluctuations can give
non-negligible contribution to the final zero-mode states
second order.

One may expect that the power spectrum of gravitatio
waves in the braneworld model would reflect the charac

FIG. 4. Power spectra of gravitational waves at high energ
(,H15103) with dH/H151023. Five-dimensional spectrum
P5D

zero(p)1P5D
KK(p) and the rescaled four-dimensional onePres(p)

agree well with each other~solid lines!, while only the zero-mode
contributionP5D

zero(p) gives a reduced fluctuation amplitude insid
the horizon~dotted line!.
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istic length scale corresponding to the curvature~or ‘‘com-
pactification’’! scale of the extra dimension,. However, our
analysis showed that the resultant power spectrum does
depend on the ratio of the wavelength of gravitational wa
to the bulk curvature scale,puh0u,H.

Here we should mention the result of Ref.@18# that is
summarized in Appendix A. Their setup is the most viole
version of the transitionH1→H250. If the wavelength of
the gravitational waves is much longer than both the Hub
scale and the bulk curvature scale, the power spectrum
given by Eq. ~A4! and obviously it is obtained from th
four-dimensional counterpart by the mapH°HC(H). How-
ever, if the wavelength is longer than the Hubble scale
much smaller than the bulk curvature radius, the amplitud
highly damped as is seen from Eq.~A7! and the map
H°HC(H) does not work at all. This damping of the am
plitude can be understood in the following way. In the hi
energy regime,H@1, the motion of the brane with respe
to the static bulk is ultrarelativistic. At the moment of tra
sition to the Minkowski phase, the brane abruptly sto
Zero-mode gravitons with wavelength smaller than the b
curvature scale can be interpreted as ‘‘particles’’ traveling
five dimensions. These gravitons make a ‘‘hard hit’’ with t
brane at the moment of this transition, and get large m
menta in the fifth direction relative to the static brane. As
result, these gravitons escape into the bulk as KK gravito
and thus the amplitude~A7! is damped. On the other hand,
our model the change of the Hubble parameter is assume
be small, and hence such violent emission of KK gravito
does not happen. If this interpretation is correct, the mapp
rule h°hC(h) will generally give a rather good estimate fo
the prediction of inflationary braneworld models as long
the time variation of the Hubble parameter is smooth. If
can confirm the validity of this prescription in more gene
cases, the analysis of gravitational wave perturbations wil
simplified a lot. We would like to return to this issue o
generalization in a future publication.
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APPENDIX A: PARTICLE CREATION WHEN
CONNECTED TO MINKOWSKI BRANE

Here for comparison with our results we briefly summ
rize the results obtained by Gorbunovet al. @18# focusing on
the power spectrum of gravitational waves. Their method
basically the same as that we already explained in the m
text. They considered the situation that de Sitter inflation
the brane with constant Hubble parameterH suddenly termi-
nates at a conformal timeh5h0, and is followed by a
Minkowski phase. The power spectrum of gravitation
waves is expressed in terms of the Bogoliubov coefficient
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P5D~p!5
2

MPl
2 S H

2p D 2

~ph0!2S 112ub00u212E dkub0ku2D ,

~A1!

whereub00u2 and ub0ku2 are the number of zero-mode grav
tons created from initial zero-mode and KK modes, resp
tively. At super Hubble scale (puh0u!1) we can neglect the
first term in the parentheses, which corresponds to
vacuum fluctuations in Minkowski space.

According to @18#, when puh0u,H!1 @i.e., the wave-
length of the gravitational wave (p/a)21 is much larger than
the bulk curvature scale,] and puh0u!1, the coefficients
are given by

ub00u2'
C2~H !

4~ph0!2
, ~A2!

E dkub0ku2;H puh0u~,H !2 ~,H!1!,

puh0u,H ~,H@1!.
~A3!

One can see that the contribution from initial KK modes
suppressed irrespective of the expansion rate,H. Therefore
the power spectrum is evaluated as

P5D'
C2~H !

MPl
2 S H

2p D 2

. ~A4!

Equation~A4! is half of the power spectrum on the de Sitt
brane@Eq. ~4.1!#, and this result can be understood as f
lows. The amplitude of fluctuations at the super Hubble sc
stays constant. After the sudden transition from the de S
phase to the Minkowski phase, the Hubble scale beco
infinite. Therefore, those fluctuation modes are now ins
the Hubble horizon, and they begin to oscillate. As a res
the mean-square vacuum fluctuation becomes half of the
tial value.

On the other hand, whenpuh0u,H@1 and puh0u!1
~these conditions require,H@1), the Bogoliubov coeffi-
cients are given by

ub00u2'
C2~H !

~ph0!2

1

~ph0,H !2
, ~A5!

E dkub0ku2;
1

~ph0,H !2
. ~A6!

As before, the contribution from the initial KK modes
negligible and that fromub00u2 dominates the power spec
trum,

P5D'
C2~H !

MPl
2 S H

2p D 2 4

~ph0,H !2
. ~A7!

One can see that the spectrum is suppressed by the f
4/(ph0,H)2.
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APPENDIX B: CALCULATIONS
OF THE INNER PRODUCT

We derive Eqs.~2.31! and~2.32! by calculating the inner
product ~2.30!. Expanding Eq.~2.25! in terms of eH , we
have

h̃5h1eHh0 coshj2eH
2 h0

2~sinhj!2/~2h!1•••,
~B1!

j̃5j2eHh0sinhj/h1eH
2 h0

2 coshj sinhj/h21•••,
~B2!
04402
which reduce to the following forms at the infinite past (h
→2`):

h̃2h5eHh0 coshj, ~B3!

j̃2j50. ~B4!

Then,U00 is evaluated ath52` as
use

at
tion
U00522i ,3E
jB

` dj

h2~sinhj!3
~f̃0

(2)]hf0
(1)2f0

(1)]hf̃0
(2)!uh→2`5

H2

H1
C~H1!C~H2!•2,2H1

2E
jB

`

dj
e2 i eHph0 coshj

~sinhj!3

'
H2C~H2!

H1C~H1!
e2 i eHph0 coshjB

•2,2H1
2C2~H1!ei eHph0 coshjBE

jB

`

dj
1

~sinhj!3 F12 i eHph0 coshj2
1

2
~eHph0!2~coshj!2G ,

~B5!

where we expanded the integrand with respect toeH in the last line. Integrating each term, we finally obtain

U00'
H2C~H2!

H1C~H1!
e2 i eHph0 coshjBF12 i eHph0~C2~H1!2coshjB!2

1

2
~eHph0!2~sinhjB!2G . ~B6!

Note that the conditioneHpuh0ucoshjB('puh0udH/H)!1 is required in order to justify the expansion of the exponent. Beca
the integral is saturated atj'jB , we do not have to worry about the validity of the expansion for large coshj.

The explicit form ofU0k is needed up to the first order ineH . A similar calculation leads to

U0k522i ,3E
jB

` dj

h2~sinhj!3
~f̃0

(2)]hfk
(1)2fk

(1)]hf̃0
(2)!U

h→2`

522i ,3
•,21/2C~H2!

H2

A2p
•

,23/2

A2p
E

jB

` dj

h2~sinhj!3
xk~j!

3F S h̃2
i

pDe2 iph̃
•~212 iph!eiph1 ip/42~2h̃ !eiph1 ip/4

•~2 iph!e2 iph̃GU
h→2`

522eip/4,H2C~H2!E
jB

`

dj
e2 i eHph0 coshjB

~sinhj!3
xk~j!. ~B7!

The integral in the last line, which we callI, can be calculated as follows. Again, expanding the integrand in terms ofeH , we
have

I'E
jB

`

dj
xk~j!

~sinhj!3
~12 i eHph0 coshj!. ~B8!

Let us consider the first term in the parentheses. The spatial wave functionxk satisfies (sinhj)23xk52(k2

19/4)21]j@(sinhj)23]jxk# @Eq. ~2.10!# with the boundary condition]jxk(jB)50. Therefore, together with the behavior
infinity, (sinhj)23]jxk;(sinhj)23]j(sinhj)3/2→0, we find that the integral of the first term vanishes. Then, using integra
by parts twice, we have
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S k21
9

4D I' i eHph0E
jB

`

dj coshj
]

]j F 1

~sinhj!3

]

]j
xk~j!G

52 i eHph0E
jB

`

dj
1

~sinhj!2

]

]j
xk~j!

5 i eHph0

xk~jB!

~sinhjB!2
1 i eHph0E

jB

`

dj
22 coshj

~sinhj!3
xk~j!

' i eHph0

xk~jB!

~,H1!2
12I , ~B9!

from which we can evaluateU0k . Note that the approximation is valid whenpuh0udH/H1!1.
tt
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