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Primordial gravitational waves in an inflationary braneworld
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We study primordial gravitational waves from inflation in the Randall-Sundrum braneworld model. The
effect of a small change of the Hubble parameter during inflation is investigated using a toy model given by
connecting two de Sitter branes. We analyze the power spectrum of the final zero-mode gravitons, which is
generated from the vacuum fluctuations of both the initial Kaluza-Klein modes and the zero mode. The
amplitude of fluctuations is confirmed to agree with the four-dimensional one at low energies, whereas it is
enhanced due to the normalization factor of the zero mode at high energies. We show that the five-dimensional
spectrum can be well approximated by applying a simple mapping to the four-dimensional fluctuation ampli-
tude.

DOI: 10.1103/PhysRevD.68.044025 PACS nunifer04.50+h, 11.10.Kk, 98.80.Cq

I. INTRODUCTION Sundrum type as well; sg€0,21].) Although complicated,
the effect on the scalar type perturbations due to the evolu-
Our four-dimensional universe might be embedded as #ion of perturbations in the bulk has been discussed under
three-brane in a higher dimensional spacetime with all thesome assumptiorfd7]. As for the gravitational wave pertur-
standard model particles confined to the brane and with grawbations, the authors of Rdf18] considered a simplified in-
ity allowed to propagate in the extra dimensions. This soflation model in which the de Sitter stage of inflation is in-
called braneworld scenario has opened various possibilitiestantaneously connected to Minkowski space. In this model
A possible solution to the hierarchy problem in particle phys-it is possible to solve the perturbation equations including the
ics was presented by introducing large extra dimensj@hs bulk to some extent. They focused on perturbations with co-
or a new type of compactificatiof2]. Also interesting is a moving scale exceeding the Hubble scale at the end of infla-
new possibility proposed in Ref3] that four-dimensional tion.
gravity is recovered effectively on the brane despite the in- Also in this paper we study gravitational waves from an
finite extension of the extra dimensid#,5]. inflating brane. If the Hubble parameter on the brane is con-
The braneworld scenarios have also had a large impact astant, the power spectrum becomes scale invarjast.
cosmology(for a review of the cosmological aspects of the However, the Hubble parameter usually changes even during
braneworld scenarios, see, el§]). Homogeneous and iso- inflation. The change of the Hubble parameter, i.e., the non-
tropic cosmological models have been b{iflf, and various trivial motion of the brane in the five-dimensional bulk, “dis-
types of inflation models propos¢8-12]. A lot of effort has  turbs” the graviton wave function. As a result, zero-mode
been put forth in searching for new and characteristic feagravitons, which correspond to the four-dimensional gravita-
tures of the braneworld cosmology. For example, cosmologitional waves, are created from vacuum fluctuations in the
cal perturbations and the related physics of the early universaluza-Klein modes as well as in the zero mode. It is also
have attracted great attention in the expectation that thpossible that gravitons initially in the zero mode escape into
braneworld inflation might leave their characteristic prints onthe extra dimension as “dark radiation.” Therefore we ex-
the primordial spectrum of perturbations. pect that the nontrivial motion of the brane may leave char-
Although the cosmological perturbations have been disacteristic features of the braneworld inflation. If so, it is in-
cussed in a number of publicatiofsee, e.9.[6,11-19 and  teresting to search for a signature of the extra dimension left
references therejnthe presence of the extra dimension doeson the primordial spectrum. However, there is a technical
not allow detailed predictions about the cosmological consedlifficulty. When the Hubble parameter is time dependent, the
quences. As the simplest case, the primordial spectra of deibulk equations are no longer separable. Then we have to
sity perturbations and of gravitationékensoj perturbations solve a complicated partial differential equation. To cope
were investigated neglecting the nontrivial evolution of per-with this difficulty, we consider a simple model in which two
turbations in the bulk in a model of slow-roll inflation driven de Sitter branes are joined at a certain time; namely, we
by an inflaton field confined to the braf2—-14. (We must  assume that the Hubble parameter changes discontinuously.
mention that gravitational waves have been considered in thim this model we can calculate the power spectrum almost
context of braneworld models other than the Randall-analytically. This is a milder version of the transition de-
scribed in[18].
This paper is organized as follows. In the next section we

*Electronic address: tsutomu@tap.scphys.kyoto-u.ac.jp describe the setup of our five-dimensional model, and ex-
"Electronic address: kudoh@yukawa.kyoto-u.ac.jp plain the formalism introduced in R€fL8] to solve the mode
*Electronic address: tanaka@yukawa.kyoto-u.ac.jp functions for gravitational wave perturbations. Using this

0556-2821/2003/68)/04402512)/$20.00 68 044025-1 ©2003 The American Physical Society



KOBAYASHI, KUDOH, AND TANAKA PHYSICAL REVIEW D 68, 044025 (2003

formalism, we explicitly evaluate the Bogoliubov coeffi- responds to the action for the canonically normalized scalar
cients in Sec. lll. In Sec. IV we translate the results for thefield. Then, the Einstein equations for the gravitational wave
Bogoliubov coefficients into the power spectrum of gravita-perturbations reduce to the Klein-Gordon equation for a
tional waves, and its properties are discussed. We show thatassless scalar field in A¢dS

the power spectrum for our five-dimensional model can be

reproduced with good accuracy from that for the correspond- U¢=(D,— Dy ¢=0, (2.6

ing four-dimensional model by applying a simple mapping.

Section V is devoted to conclusion. where the derivative operators are defined by

& J
Il. de SITTER BRANE AND GRAVITATIONAL D,=7"—— 29—+ p2y?
WAVE PERTURBATIONS an Y
A. Background metric, gravitational wave perturbations,

Jd
and mode functions D= (Slnh§)3&§(smh§) 3(95 2.7

Let us start with the simple case in which the background
is given by a pure de Sitter brane in AgBulk spacetime. We assumeZ, symmetry across the brane. Assuming that
We solve the five-dimensional Einstein equations for gravi-2nisotropic stress is zero on the brane, Israel's junction con-
tational wave perturbations. For this purpose, it is convenienglition gives the boundary condition for the perturbations as
to use a coordinate system in which the position of the brane 9:0| _o o8
becomes a constant coordinate surface. In such a coordinate ¢Ble-,=0. (2.8

system the background metric is written as Since the equation is separable, the mode functions are

02 found in the form ofo,.(7,&) = .(7) x (&), wherey, (7)
—( dn?+8;dxdx)+dg?|, (2.1)  andy,(¢) satisfy

(smhg)
where¢ is the bulk curvature radius, and the de Sitter brane (D + K2+ ¥ (n)=0, 2.9
is placed atté=const=¢g. Note that herey is supposed to
be negative. On the brane, the scale factor is given by 9
a(n)=1/(— n»H) and the Hubble parameter becomes D§+K + X(&€=0, (2.10
H=+¢"sinh¢&g. 2.2 . . .
¢ 22 respectively, and the separation constarft=0) is related to
Note that under the coordinate transformations the Kaluza-Klein massm as m®=(«*+9/4)H?. For
k?=—9/4, we have one discrete mode, which is called the
t=n coshé— 7, coshég, zero mode. The zero-mode wave function is given by
z=— gy sinh§, (2.3

H . [
g”:fl’ZC(H)—e*'pv(ni—), (2.10)
with a constanty,, the metric(2.1) becomes the AdSmet- ‘/% P
ric in the Poincarecoordinates.

The metric with gravitational wave perturbations is writ- which is independent of. The factorC(H) is to be deter-

mined by the normalization conditiongf™ - #5)=*1,

t . . .
enas with respect to the Klein-Gordon inner product
% o
JEEE pe— ISR 2 0 €3d
ds’= (sinh¢)? [ Z L~ A+ (8 +hydxXdx]+de ] (F-G)==—2if ,—iz(Fa,,G*—G*a,?F).
(2.4 ¢ (sinhé)°n
' (2.12
We decompose the transverse-traceless tehbiinto the Then we have
spatial Fourier modes as
-1
V2 . C2(H)=| 2(sinh¢ )Zf dé——— ]
M) = <M5>s/2'(27)3’2f &p d(n.Ep)ePe;, ° (sinh)?
(29 H o
=| 1+ €2H2+ 2H2n| — ——
whereg;; is the polarization tensor, and the summation over 1+ 1+ ¢°H?
different polarizations was suppressdds represents the 2.13

five-dimensional Planck mass, and it is related to the four-
dimensional Planck masklp by €M5 M . The factor  This normalization factor is the same that was introduced in,
J2/(Ms)®? is chosen so that the effective action fprcor-  for example, Refs[19,13, and behaves like
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1 (atlowenergies ¢H<1), Al

2 ~< 3 9
C“(H) 5 (H (athigh energies (H>1). e £ = constant

(2.19 "m0l

The continuous spectrum called Kaluza-KleiikK)
modes starts withk=0. Notice that the mode labeled ky
=0 does not correspond to the zero md8¢ Writing the
positive and the negative frequency modes, respectively, as
¢ =y xcandg(=(4{)* =yl xk , we impose the
conditions

i¢3 N
— Do,y —cc)=1, (2.15
7
FIG. 1. Trajectory of the branéhick solid line in static coor-
_de L / di heddotted li f = &
2| ——x*"x.=8(k—«K"), (2.16 inates. Dasheddotted lines represent surfaces @f=const ¢
¢ (sinhg)3 "~ =const).
so as to satisfy the normalization conditio(t’- 4,’) B. Model with & jump in the Hubble parameter
=+ 6(x—«'). The solutions of Eq(2.9) are given interms  we consider a model in which the Hubble parameter
of the Hankel functions by changes during inflation. As we have explained, in the case

of constant Hubble parameter the brane can be placed at a

P ()= ﬁg—slze— 2| p1324 M (p| 4y, (2.17) constant coordinate plane. Whgn the Hut_)ble parameter var-

K 2 e ies, we need to consider a moving brane in the same coordi-
nates. For simplicity, we consider the situation in which the

The spatial mode functiory,(¢) is given in terms of the Hubble parameter changes discontinuouslyyat 7, from
associated Legendre functions [ii] H, to

XKZCl(sinhg)z[Pj%,zﬂ,((coshg)—CZQ:f,ZHK(cos?g)%é H,=H,— 6H. (2.22

Here 6H/H, is assumed to be small. For later convenience,
where from Eqs(2.8) and(2.16) the constant€; andC, are e define a small quantity,, by

H 2
Cle F(ix) __ CHs L () CHa T (CH)?
T(5/2+i k) y R
i P 21-1/2
A L U 3727 1 SH  2+3(¢Hp? [8H\2
T(52—ix) T(1+ix) | - - o, erethiy gon
Vi+(€H)? Hi o 2(1+(¢H)?)32\ Hy
P 1/..(cOShg) SH\3
2=~ : (2.19 +0 —) 2.2
Q 1/+i.(coshép) H, (2.23

As will be seen, we need to evaluate the value of the wave To describe the motion of the de Sitter brane after transi-

function at the location of the brang,(ég), and in some tion, it is natural to introduce a new coordinate systep
special caseg ,(ég) reduces to a rather simple form. For defined by

sinh&<<1 and « sinh&<<1, we have
t="5 coshé— 7, coshég,

(&) k tanhmk K2+1/4{ inhéw)?, (2,20
(Es)=1\/ \/ sin , (2. -~
Xid B 2 K2+9/4 0 z=—"sinh. (2.24

while, for sinh&g>1 or « sinh&>1, we have Then, the brane expanding with Hubble parameter is
placed até= ¢z by choosing two constantg and 7, so as

K . 71 . ~. . -~ . -~
~——(sinhés)3?2 _ 29 to satisfyH,= ¢~ “sinh&; and ngsinh&=7,sinh&s . The tra-
Xl £8) \/;( &) JK2+9/4 (2.23 jectory of the brane is shown in Fig. 1. Apparently, mode
functions in this coordinate system take the same form as
For the derivation of these two expressions, see Réj. those in the previous section, but the argumeidts;) and

044025-3



KOBAYASHI, KUDOH, AND TANAKA

the Hubble parametét; are replaced by&, 7) andH,. We
refer to these second set of modesdgsand ¢, . The rela-
tion between @,¢) and (7,€) is

7= — 7"+ 2€pmon cOShE+ ey 75,

tanh&= (5 coshé+ ey 770) ~ L7 sinhé. (2.29

As explained above, the variation of the Hubble param
eter is assumed to be small. For a technical reason, we fu

PHYSICAL REVIEW D 68, 044025 (2003

u “2iel™ H; C(Ho)x(ép). (2.32
K~€ — K . .
0 HP 770 W2+ 1/4 ((H,)? 2)X«(&B

These expressions are approximately correct as long as
p| 7ol SH/H,<1 is satisfied. The derivation of these equa-
tions is explained in Appendix B.

The second termde in Eq. (2.28 is obtained as follows.

Since bothe and%)_) satisfy the Klein-Gordon equation in
the bulk(2.6), §¢ also obeys the same equation. The bound-
ary condition for ¢ is derived from Eq.(2.8) as d.6¢

ther impose a weak restriction that the wavelength of the= —d¢#y . Therefore, the solutiode is given by

perturbations concerned is larger théid/H?. These condi-
tions are summarized as follows:

ot 1 2.2
W< ) (2.26
oH

p| 70| W<l. (2.27

C. Method to calculate Bogoliubov coefficients

We consider the graviton wave functian that becomes

the zero modep ) at the infinite futuren=0. We write the
wave functione as
e=¢5 )+ So, (2.29

where the second teridip arises because) ) does not sat-
isfy the boundary condition fdr<0. Writing downg{ ) and

S¢ at the infinite pastyy= —o, as a linear combination of

#57) and ™), we can read the Bogoliubov coefficients.
At 57— —oo the first term¢{ ) is expanded as

o5 — > (Uomd$ '+ Voudii ), (2.29

7— — o0 M =0,k

Sp=2 f ”d 7' Gaad 1.& 7 E)[ g Bh (7' €)]er -,
(2.33

with the aid of the advanced Green’s function that satisfies

(Dy=Dg)Gaad m.&: 1", )=0(n—7n")6(§-¢&").
(2.39

The explicit form of the Green’s function [48]
Casl m&i7 )= — o

M (sinh¢’)*n"

<[l (&) bl (0" &)

— (n O (7'.£)]. (239

Taking the limit — —o, we can expand¢ in terms of
in-vacuum mode functions,

0(n' —n)

where the summation is taken over the zero mode and the

KK modes. The coefficient¥),, and V,, are written by
using the inner product as

Uow= lim (57447,

n——x

Vow=—lim (57 4{). (2.30

n—

Evaluation of the inner product ay=—< leads toVyg
=V,,=0 [18], while

H.C(H) [
~ —e—lernocosth 1—ie C2 H
00~ {_C(H,) HP70[ C(H1)

1 :
—coshég]— E(EHpﬂO)z(Smth)z}: (2.3

op — _20 [Uomla +vomdy ], (2.36

n——® =Uxk
where the coefficients are given by
70 dn

u =—2i€3f — sy,

oM —OC(Sinth)?’nA'(ﬁM (7,£p)
X[9:h67) (0,6)]e= e, (2.37

0 dny

v =2i€3f ——— (7,

oM %(Smth)g#(f’M (7,é8)
X[ (7,6 ]e=e,- (2.39

To evaluate these coefficients, we need the source term
95| ¢, Written in terms of the coordinatesy(¢), which
is

C(H2)
V2p
X ipr nonsintheip\/”2+25H”0” cosh§B+ear]é.

(2.39

07§?¢‘5g>7)|§:§B: — ¢ *sinh&y
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From Egs.(2.29 and(2.36), we finally obtain the Bogo- 3/ i SH\ 3[8H\? ipny oH
liubov coefficients relating the initial zero mode or KK Qoo™ 1+§ WH_) slH. T2 A,
modes to the final zero mode, 0t ! !
2 2
- ) _(P7m0) (ﬁ) }e—ipnoﬁH/Hl—ipn0(3/2)(5H/H1)2’
<P=%: (aomdm’+ Bomdwm '), (2.40 2 Hy
3.6
where 8
aom=Uom T Uom » B %§ i ﬁ e—2ip770—ipno,sH/Hl—ip7,0(3/2)(5H/H1)2_
%2\ 2pny Hy
Bom=Vom - (2.41 (3.7
From these coefficients we can evaluate the number and thdere we stress that the last two terms in the square brackets
power spectrum of the generated gravitons. of Eq. (3.6), both coming fromU,, are enhanced at| 7|
>1.
IIl. EVALUATION OF BOGOLIUBOV COEFFICIENTS Next, we calculate the Bogoliubov coefficients, and

i _ Bo., Which relate the initial KK modes to the final zero
Now let us evaluate the expressions for the Bogohubovmode, up to the leading first order #H/H,. Although we
coefficients obtained in the preceding section. We concenyjj| calculate the power spectrum up to second order in
trate on the two limiting cases: the low energy regime sy H, in the next section, the expressions up to first order
(thlh<l) a?fd _hlgth ener%ylgreglmﬁ’_ th>ll)t. Vt\:]e fl-rs.:_elvalu- are sufficient forag, andp,,, in contrast to the case fary,
ate the coefficientag and Bqg, Which relate the initial zero , L () .
mode to the final zero mode. We keep the terms up to seconacq1d Poo- Again, substitutingyeo *(7.£e) into Eq. (2.38,
. ) . we have
order iney (or equivalently in6H/H ;).
Substituting Eq(2.39 into Eq.(2.38, we have L~
_ 3/2 * sinhg
Box=2pt¥C(Ho) xk (d)———
(sinhég)

H2 70 1 i
BoozC(Hl)C(Hz)_EHWOJ dn 5T 3
Hy = '\ 7* py

70 d , —
i 2 7 2 X 5H770f —Z,T/,E(_)(n)elp\/712+26H7;07;cosh§B+5H770.
Xe*lp(ﬂ*\/n +2€H7)o7]COSh§B+eH770). (31) 7
i i i (3.9
Because there is a factey, in front of the integral, we can

neglect the correction oD(ef) in the integrand. Then we  Settinge,, in the integrand to zero, the coefficient reduces to

can carry out the integration to obtain
B \/EC(H W ()2
o~ '\ 5 2)Xk\6B
2 (€Hy)?

e 2ipno—ip noeHcosth_

(3.2

H,
~C(H1)C(Hp) e
Boo~C(H1)C( 2)Hl 2D 70

pl 7o ,
X 5Hp7loe_“/2f 0 dXX—3/2H i(i)(x)elxl (39)
Similarly, we get *

_ where we have introduced the integration variable
)e"”’OEH°°S“§B, Xx=—pn. Similarly, we have

(3.3

H»
aoo~U00+C(H1)C(H2)H—1€H( 1+ 20770

% % ar - €H2
ag,~Ug,— EC(Hz)XK(fs)

whereU g, is given by Eq.(2.31). (€H,)?

At low energies {H;<1), the Bogoliubov coefficients

g and Byo become X €qp70e” wxlzfpn0|dxx3/2H§i)(X)eix,
i H .
~| 1+ —__ |a—ipnmgdHIH, . .
apQ 1 2p770 Hl e y (3 4) (3 1@
. whereU,, is given by Eq.(2.32 and isO(ep).!
B [ ﬁe—Zipﬂo—ipﬂofﬂ"/Hz 35 Now let us discuss the dependenceagf, and 8o, on
0 2p7 Hy ' : ¢H, and 6H/H, in the limiting casestH;<1 and ¢{H,

>1. At low energies, we find, using E¢R.20),
It is worth noting that these expressions are correct up to
second order idH/H 4. This result agrees with the results of
the four-dimensional calculation*® and g“P). The integral including the Hankel function is written in terms of
At high energies {H,>1), the coefficients are generalized hypergeometric functions.
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SH\ 2 [ SH\*
|ﬂok|21|aok|2°‘(€H1)2(H—l ({H1<1), (3.1D tog _/dnlﬂmp/ (E ]
where we have omitted the dependence rorand p| 7. ST
These coefficients are suppressed by the factodHgf and 1 -

6H/H ;. Recall thateg, and By, agree with the standard :
four-dimensional result at low energies. Thus, because of the ’
suppression ofag, and By, at low energies, the four- -3
dimensional result is recovered only by the contribution from 3.5

the initial zero mode.
At high energies, we obtain from ER.21) 2 % 3 8 75— Plml

5 5 2 FIG. 2. Spectra of number density of zero-mode gravitons cre-
| Boul®s ao,l®e T (H>1), (312 ated from vacuum fluctuations in the initial KK modes. Integration
! over k is performed numerically. The solid line represents the low
where we have again omitted the dependencexomnd  €nergy case wittH,=0.1, while the dashed line show; thg high
p|7o|. In contrast to the result in the low energy regime energy case. The Igtter shou_ld be understood as the limiting case
(3.11), this high energy behavior is not associated with anytH1—% since at high energies the number does not depend on
suppression factor. tHy; see Eq(3.12.

Integrating| Bo,|? over the KK continuum, we obtain the o .
total number of zero-mode gravitons created from the initiafiuPble scale and then decreases inside the horizon, and we

KK vacuum. It can be shown that the coefficients behave agonfirmed that the behavior of the number density outside
Box=— e ~(p| 7o) 2 at p| 70| <1, and we have the horizon is well described by E¢3.14).

Bokt at ~O(p| 10| ) ¥ (3.13 IV. POWER SPECTRUM OF GENERATED

. . . GRAVITATIONAL WAVES
Thus the number of gravitons created is proportionapto ) ) o
outside the horizon and is evaluated as So far, we have discussed the Bogoliubov coefficients to

see the number of created gravitons. However, our main in-

5[ 0 2 terest is in the power spectrum of gravitational waves be-
» 0.5%p| 70| (€H ;) H, (€H1<1), cause the meaning of “particle” is obscure at the super
fo | Bo.|2d Kk~ SH\2 Hubble scale.
1 A. Pure de Sitter brane
(3.19

Gravitational waves generated from pure de Sitter infla-
On the other hand, making use of the asymptotic form of theion on a brane have the scale invariant spectrum
Hankel functionH{M(x)~ e/~ @»+ D74 x for x—o0, we

can evaluate the integral in E€B.9) in the p| 70| — o limit 2C%(H) H 2 .1
as 5D MEI 277 y .
plmol @2 1 L . _
Bo ocp|770|f dX——~ —— (p| 70| =), which is defined by the expectation value of the squared
“ s x2 Pl amplitude of the vacuum fluctuation 3| ¢o|?/(277M )3,

(3.15 evaluated at a late time; see H@.11). SinceC?~1 at ¢H

i ) ) <1, this power spectrum agrees at low energies with the
where we have carried out the integration by parts and kep{tandard four-dimensional spectrum

the most dominant term. This shows that the creation of

gravitons is suppressed well inside the horizon. Since the 5 I H\2

assumption of the instantaneous transition tends to overesti- 7;4D:_<_) (4.2)
mate particle production at large[22], the number of par- ME,, 2m

ticles created from the initial zero mode and KK modes is

expeCted to be more Suppressed inside the horizon thaﬁ\l[ h|gh energiesy however, the power Spectr(}hﬂ_) is en-
Eqg. (313 if we consider a realistic situation in which the hanced due to the fact@(H), and is much greater than the
Hubble parameter changes smoothly. Note thaj,  four-dimensional counterpart. This amplification effect was
ocp|n0|ffo| 7ly~2qx is constant fop| 0| — . Therefore, the found in Ref.[13]. These results say that the difference be-
aq, coefficient is dominated by,, at largep, which be-  tween Eq.(4.1) and Eq.(4.2) is absorbed by the transforma-

haves like| @, |2~ U2 (p70)2. tion
An example of numerical calculation is shown in Fig. 2.
The figure shows that the spectrum has a peak around the H—HC(H). (4.3

044025-6



PRIMORDIAL GRAVITATIONAL WAVES IN AN . .. PHYSICAL REVIEW D 68, 044025(2003

B. Model with variation of Hubble parameter malization facto}, and the Kaluza-Klein contributio®ts is

Now let us turn to the case in which the Hubble parametesuppressed by the factofif;)2. On the other hand, when
is not constant. Time variation of the Hubble parameter dur{H; is large, the amplitude of gravitational waves deviates
ing inflation brings a small modification to the spectrum, andfrom the four-dimensional one owing to the amplification of
the resulting spectrum depends on the wavelength. Here wige factorC(H).
consider the amplitude of vacuum fluctuation of the zero We have observed for the pure de Sitter inflation that the
mode in the final state. It will be a relevant observable for thecorrespondence between the five-dimensional power spec-
observers on the brane at a late epoch because the KK motie@m and the four-dimensional one is realized by the map
fluctuations at super Hubble scale rapidly decay in the ex¢4.3). It is interesting to investigate whether the correspon-
panding universe due to its four-dimensional effective massdence can be generalized to the present case. It seems natural
Since the behavior of the zero-mode wave function at théo give the transformation in this case by

infinite future77—>0 is known from Eq.(2.11), we find that

the vacuum fluctuation for zero mode at a late epoch is given h—hC(h), (4.9
by where
im o)~ B30 7+ | el 57 5,6 ) N(p)=Hala*0 10 4.1
70 namely, the rescaled power spectriidp) is defined as
_C’(Hp) H} ,
7 5| leoot Bodl? +f dr| ag.t B 2C?(h)
res( p) 2 277 . (41])
(4.4

We will see that this transformation works well and mostly

Multiplying this by (2/M3)(p*27%) and recalling the rela-  qpcorne” the  difference between the five- and  four-

tion {M3=M2,, we obtain the power spectrum dimensional amplitudes.
We examine the differences between the five-dimensional
— er KK
Psp(P)=Psp1P) + Psp(P), 4.9 spectrum and the rescaled four-dimensional spectrum by ex-
with panding them with respect 8H/H, as
2c? <H2> Pao(p)= P+ P+ PG+ 0 0 +7>5D (4.12
Peplp)= (2 ) | @t Bodl, H
PO 4 pL) 4 p(2) oH)?
KK _2C2(H2) H, 2f°°d ey 46 Pred P) = Prest Prest Pres+ O H (4.13
50(P)= MIZDI 27 Jo K| ot Boul (4.6)

Here the quantity associated with the supersduiptrepre-
The power spectrum in the four-dimensional theory, com-sents the collection of the terms 6¥((6H/H)"). On the
puted in the same way, is given by right hand side of Eq4.12), all the terms except for the last
one come from the initial zero mode. The direct expansion

2 H,\?2 D) (D)2 shows that the leading terms in E¢4.12) and(4.13 exactly
Pap(p) = M > |t D)+ g* 422, (4.7 agree with each other up to the first orderdH/H,

The a iciemti 2C*(Hy) (H,)®

ppearance of the coefficiemtin the power spectrum PO+ Pl =P+ )= -
may look unusual. This is due to our setup, in which the final e Mg 2w
state of the universe is still inflating. In such a case, the
fluctuations that have left the Hubble horizon never reenter w14 sin(2p 7g) C%(H;) &H
it. Outside the horizon, the number of particles created, does P70 1+(CH,)2 Hy

not correspond to the power spectrum.
There are two apparent differences betweRs and (4.14
Psp; the normalization factolC(H) and the contribution

from the KK modesPXK . In the low energy regime, how- These terms contain only the contribution from the initial

ever, the two spectra agree with each other: zero mode. I - .
v WO sp gree wi The contribution from the initial KK mode®ts is of
Psp~Pap (£H1<1). 4.9 order (6H/H,)?, because botl,, and B, are O(sH/H,).

Thus, to examine whether the agreement of the spectrum
This is because, as seen from the discussion about the Bogoentinues to hold even after including the KK modes, we
liubov coefficients in the preceding section, the zero-modénvestigate the second order part of the spectrum. The second
contributionPZ5° is exactly the same aB,p (up to the nor-  order termsP{2) and P2 are given by
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2C2(Hl) H, 2
PR(py=——~— | _=
5p(P) MIZDI (277)

C ?(Hy)+C?(Hy)

V14 (€H)?

P70) —2 | +cogpnop)

C2(Hy) . )+5in2(p770) C2(Hy)
V1+(€Hy)? (P70)® V1+(€Hy)?

. sin2p7o) 2+3(¢Hy)?  6C*(Hy) ) 4C*(Hy)  3+4(¢Hy?| C*(Hy) (5_H)2 .15
2pnq 1+(¢H)?2  J1+(€H)?) Vi+(¢Hp)Z  1+(€H)? [V1+(¢H)2 He) ' ’
2C2(H, )( 1>2 SifP(pno)  sin(2p7g) [ 2+3(¢H.)?  4C%(Hy) )
2) I 2 _
PP =y o (2 e Ty Vir G,
_sin2(2p770)(4+5(€H1)2 4C?(H,) )+ 4C%(Hy)  3+4(¢Hp?| C¥(Hy (ﬁ)z .16
(2pno)? | 1+(€H)?  Ji+(€Hy)? \/1+(€H1)2 1+(¢H,)? |1+ (€Hy)2\ Hy ’

From these equations, we notice tHaf) and P2) do not  while there is no corresponding term #HZ). Hence, the
agree with each other. We see that the difference is enhanceifference betwee®?) and P2 is

in particular atp| 7,|>1. However, as we mentioned earlier,

the KK mode contribution also gives a correction of the

same order, and in fact we show that approximate agreement P& — p(2) ) “2(H;)+C%(H,)
is recovered even in this order by adding the KK mode con- ——= =~ (Pmno) —
tribution. P 1+(¢Hy
First we observe the power spectrummty,|<1. Ex- C%(H,) [&H\2
pandingPt) and P& with respect top| 70|, we have x—(—) . 4.2
res 0 1+(€H1)2 H1 ( :D

PR(p)  PRAP) 5H| 2
pO . TpO) P70)? (4.17)
On the other hand, Eq3.13 leads to
Pso(P) 3( 5H>2
~ — . 4.1
NN (pl70]) H, (4.18

Therefore the difference is small outside the horizon as

PR+ PSS )
73(55

SH\?
N(F”?o)z(H—l> (plmol<1),
(4.19

although the cancellation betweé?ézg(p) andpﬁg(p) does
not happen. By a similar argument, @to| <1, we have

2) , KK _ pf2
PR+ Pyp— Plas
PO

SH\?
(3 wimd=1. @20
1

Our approximation is valid fop| 70| SH/H;=<1 [Eq. (2.27)].
Hence, within the region of validity, this difference can be as
large asP(®). We also note that the terms proportional to
(p| 70])2 come fromagy, while the contribution fromByg is
suppressed gi| 79|>1. On the other hand, the contribution
from initial KK modes, Pss(p), is dominated bya,, at
plmo|>1: PESo fd|ag+ BE,|>~ [dk|ag,/? This means
that, although the creation of zero-mode gravitons from the
initial KK modes is negligible inside the horizon, a part of
the amplitude of the final zero mode comes from the initial

Pw) / 2C2(H,) h::

0.998

0.996

1 2 5 10 20 P|770|

FIG. 3. Five-dimensional power spectrum of gravitational
wavesPsp(p) and the four-dimensional orfe,p(p) at low energies

The situation is more interesting when we consider thq¢H,=10"2) with SH/H,=103. These two agree with each
spectrum inside the Hubble horizon. There is a term proporother. In this case the initial KK modes give a negligible contribu-

tional to (p70)? in P2), which is dominant ap|7|>1,

tion.
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KK modes losing their KK momenta. Since the coefficient ) ) ) )
o, is proportional top| 7| at largep| 7|, Pss behaves as | @od *— | Bod +J dr(|aod®—|Bod?)=1. (4.23

KK
P—;’DD((@Q~ +(p7)? (4.22  spectrum cannot significantly deviate fra@f(H,)H3/2¢p3
in the region where3yy and By, are negligibly small. We
can also demonstrate the cancellation by explicit calculation
This KK mode contribution cancet@gz)D. The cancellation in the low and high energy limits. Fags|7,/>1, we have
can be proved by looking at the property of the Bogoliubovay, ~Ug,. Then from Egs.(2.20, (2.21), and (2.32 we

coefficients obtain

SH\ 2 This relation together with Eq4.4) implies that the power
H_) '

fx 2k tani7mk)dk
0 (k2+1/4)(k>+914)

1
6Jw k’dk X )2( 5H)2 (eH,>1)
mJo (k2+1/4)%(k?+9/4) P70 Hi e

2
X(pno)z(le)z(Z—H) (€H1<1),

f dx|ag,|?~ (4.249

which gives 070)?(¢H;)?(8H/H,)? in the low energy re- is a simple relation between the five-dimensional spectrum
gime and (3/4)70)%(6H/H,)? in the high energy regime. and the four-dimensional counterpart. Analyzing the model
Comparing these with Eq4.21), we see thaPss(p) can-  With a discontinuous jump in the Hubble parameter, we have
celspgzg(p).z shown that this is indeed approximately the case. More pre-
To Summarize1 we have observed that the agreement béLSEly, if the Squared amplitude of four-dimensional fluctua-
tween the rescaled spectrur®.(p) and the five- tionsis given by b/2mMp)?, we transform (i/27Mp)? into
dimensional spectrurPsp(p) is exact up to first order in  C*(h)(h/2mMp)?, then the resulting rescaled spectrum ex-
SH/H;. The agreement is not exact at second order, but wactly agrees with the five-dimensional spectrih(p) up
found that the correction is not enhanced at any wavelengttp first order in SH/H;. At second orderO(sH/H)? the
irrespective of the value afH,. Just for illustrative purpose agreement is not exact, but the difference is not enhanced at
we show the results of numerical calculations in Fig. 3 ancRny wavelength irrespective of the valuefdfi;. Hence, in
Fig. 4. total, the agreement is not significantly disturbed by the mis-
match at second order. As a nontrivial point, we also found
that the initial KK mode vacuum fluctuations can give a
V. DISCUSSION non-negligible contribution to the final zero-mode states at

In this paper we investigated the generation of primordialse(z;)nd order.  that th ¢ ¢ itational
gravitational waves and its power spectrum in the inflation- ne may expect that the power spectrum o gravitationa

ary braneworld model, focusing on the effects of the variaWaves in the braneworld model would reflect the character-

tion of the Hubble parameter during inflation. For this pur-

pose, we considered a model in which the Hubble parameter 2CP(H,) (H\ 2

changes discontinuously. Pe) oM (ﬂ)
In the case of de Sitter inflation with constant Hubble 1

parameteH, the spectrum is known to be given by E4.1)

[13]. It agrees with the standard four-dimensional ¢&e.

(4.2)] at low energie¥H<1, but at high energie6H>1 it

significantly deviates from Ed4.2) due to the amplification 0.997

effect of the zero-mode normalization facto(H). One can

say, however, that the five-dimensional spectrum is obtained

from the four-dimensional one by the map—>HC(H). 0.995
In a model with variable Hubble parameter, gravitational 2|n0l

wave perturbations are expected to be generated not only ooz 5 120

from the “in vacuum” of the zero mode but also from that of £ 4. Power spectra of gravitational waves at high energies

the Kaluza-Klein modes. Hence, it is not clear whether therg¢H,=10% with SH/H,=10"3. Five-dimensional spectrum

269 p) + P (p) and the rescaled four-dimensional ofe.dp)
agree well with each othdsolid lineg, while only the zero-mode
°The small¢H expansionC?(H)~1—(¢H)?[1/2+In(¢H/2)] is contribution PZ34p) gives a reduced fluctuation amplitude inside
used here to investigate the low energy case. the horizon(dotted ling.

0.999
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istic length scale corresponding to the curvat(e “com- 2 [ H\2
pactification”) scale of the extra dimensigh However, our ~ Psp(p)= —2(Z> (pno)z( 1+2|,800|2+Zf dK|,80K|2)y
analysis showed that the resultant power spectrum does not M,

depend on the ratio of the wavelength of gravitational waves (A1)

to the bulk curvature scal@) 7| €H. where| Bqg? and|B,,|? are the number of zero-mode gravi-

Here we ;hould mer]tion the. result O.f RE18] that .is tons created from initial zero-mode and KK modes, respec-
summanzed in Appqu|x A. Their setup is the most V'°|emtively. At super Hubble scalep( 70| <1) we can neglect the
version of the transitiord, —H,=0. If the wavelength of = fist"term in the parentheses, which corresponds to the
the gravitational waves is much longer than both the Hubbl&,5c,um fluctuations in Minkowski space.
scale and the bulk curvature scale, the power spectrum is aAccording to[18], when p|7,/¢H<1 [i.e., the wave-
given by Eq.(A4) and obviously it is obtained from the |ength of the gravitational wavep(a) ~* is much larger than

four-dimensional counterpart by the meip>HC(H). How-  the bulk curvature scalé] and p|7,|<1, the coefficients
ever, if the wavelength is longer than the Hubble scale bugre given by
much smaller than the bulk curvature radius, the amplitude is

highly damped as is seen from E@A7) and the map C?(H)

H—HC(H) does not work at all. This damping of the am- | Bool*~ > (A2)
plitude can be understood in the following way. In the high 4(P70)

energy regimgH>1, the motion of the brane with respect 5

to the static bulk is ultrarelativistic. At the moment of tran- J L |2~[ plmol(€H)?  (CH<1), (A3)
sition to the Minkowski phase, the brane abruptly stops. Ox plmol€H  (€H>1).

Zero-mode gravitons with wavelength smaller than the bulk

curvature scale can be interpreted as “particles” traveling inOne can see that the contribution from initial KK modes is

five dimensions. These gravitons make a “hard hit” with the suppressed irrespective of the expansion fale Therefore

brane at the moment of this transition, and get large mothe power spectrum is evaluated as

menta in the fifth direction relative to the static brane. As a

result, these gravitons escape into the bulk as KK gravitons, C3(H)[ H

and thus the amplitud@\7) is damped. On the other hand, in Psp~ > <—
. M 2@

our model the change of the Hubble parameter is assumed to Pl

be small, and hence such violent emission of KK gravitonsg

d th . If this int tation i t, th i .
0€s nol happen IS IMETpretation IS correct, tne mappin rane[Eq. (4.1)], and this result can be understood as fol-

rule h—hC(h) will generally give a rather good estimate for ! ;
the prediction of inflationary braneworld models as long aso"/>: The amplitude of fluctuations at t_he super Hubble sc_ale
b y 9 stays constant. After the sudden transition from the de Sitter

the time variation of the Hubble parameter is smooth. If we . i
can confirm the validity of this prescription in more general _phase to the Minkowski phase, the Hubble scale becomes

cases, the analysis of gravitational wave perturbations will bﬁflnge.bglherr]efqre, thOSdetEUCtléatI(_)ntmOdE_Tl ?re :OW |nS|o|Ite
simplified a lot. We would like to return to this issue of the ubble horizon, an ﬂeyt e%m gosu aer.] IfS aftrﬁsq ’
generalization in a future publication. e mean-square vacuum fluctuation becomes half of the ini-

tial value.

On the other hand, whep|7y|¢H>1 and p|7|<1
(these conditions requiréH>1), the Bogoliubov coeffi-
cients are given by

H.K. is supported by the JSPS. To complete this work, the

2

(Ad)

quation(A4) is half of the power spectrum on the de Sitter
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dk|Bol?~———. (A6)
2
APPENDIX A: PARTICLE CREATION WHEN (pmotH)

CONNECTED TO MINKOWSKI BRANE
As before, the contribution from the initial KK modes is

Here for comparison with our results we briefly SUMMa-pegligible and that fromBy2 dominates the power spec-
rize the results obtained by Gorbunewal.[18] focusing on 1 m

the power spectrum of gravitational waves. Their method is

basically the same as that we already explained in the main C2(H) [ H |2 4
text. They considered the situation that de Sitter inflation on Psp~ (_) - (A7)
the brane with constant Hubble paramdtesuddenly termi- M%l 27) (ppotH)?

nates at a conformal timey=7,, and is followed by a
Minkowski phase. The power spectrum of gravitationalOne can see that the spectrum is suppressed by the factor
waves is expressed in terms of the Bogoliubov coefficients ad/(p 7o¢H)?.
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APPENDIX B: CALCULATIONS which reduce to the following forms at the infinite pas (
OF THE INNER PRODUCT — —0):

We derive Egs(2.31) and(2.32 by calculating the inner

roduct (2.30. Expanding Eq.(2.25 in terms of ey, we ~
Eave P 9= : 7~ 1= €470 COShE, (B3)

=7+ €nmo coshé — e mp(sinhd)?/ (27 + - - -, 3
(B1) E—¢=0. (B4)

E=¢— ey mosinhgl + € 3 coshg sinhé&l 72+ - - -,
(B2)  Then,Ug is evaluated aty= —x as

N % —ie h
U°°:_2i€3f o (Eé)ﬁméﬂ—sbé”an%))mw:&C(Hl)C(Hz)-zszif il
fo7°(sinhé)” Ha g (sinhg)®

H,C(Hy) . , * , 1
~ e ieHP70 COsNes. D p2H2C2(H e'EHp”OC"SthJ d {1—|e coshé—= (e 2(cosh 2},
H.C(H,) 1C°(Hy) & % (sinhe)?® HP 70 §— 5 (enP70)“(coshe)
(BS)
where we expanded the integrand with respect,tan the last line. Integrating each term, we finally obtain
HC(Hy) . 1 .
oo*me 'eHPmo Coshég 1_'€Hp770(C2(H1)_COSh§B)_E(GHDUO)Z(Smhfs)Z . (B6)

Note that the conditior,p| 70| coshég(~p| 7| SH/H)<1 is required in order to justify the expansion of the exponent. Because
the integral is saturated &t &5, we do not have to worry about the validity of the expansion for large &osh
The explicit form ofU, is needed up to the first order &y . A similar calculation leads to

s dé ~ - . B H, ¢°32(= d¢
Ug.=—2 €3 _— (=) (+) _ 4 (+) (-) =—2 €3€ 1/2C H .
0=~ 4 Lanz(sinhS)s(d)o AR S | ( 2)\/Zp J2p LB nz(sinh§)3XK(§)

% ';'7_I_)eip;y.(_1_ipn)eipn+i7r/4_(_%)eipnﬂﬂ-m.(_ipn)eip’;y}
p
n——x
- s e*ifHPﬂo coshég
=—2e'”€HCHfd—K : B7
2C(Hz) |, dE— s xul®) (B7)

The integral in the last line, which we cdllcan be calculated as follows. Again, expanding the integrand in terms,ofve
have

= XelE)
|~
fsdg(sinhg)?’

(1—ieypmgcoshé). (B8)

Let us consider the first term in the parentheses. The spatial wave fungtjorsatisfies (sink) 3y,.=—(x
+9/4)*1ﬁ§[(sinh§)*3&§)(,(] [Eg. (2.10] with the boundary conditio,y,(ég) =0. Therefore, together with the behavior at
infinity, (sinh&) 3.y, ~(sinh& ~33sinh&*?—0, we find that the integral of the first term vanishes. Then, using integration
by parts twice, we have
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., 9 P
K n N K
(sinhg)® 9EX

2 (&)

o0 d
| ~i dé coshé—
EHPWOLB & fag{

Y VO SV S
=—l€eqpno o g(sinhg)z GEX* &

. X«(é8) . = —2cosh¢
- A SB dé——>=
IEHpﬂO(Sinhgs)z+IEHp770LB 3 (sinh)? X(€)
. XK(gB)
~ e B9
'€Hp7lo(€Hl)2+ (B9)

from which we can evaluatd,, . Note that the approximation is valid whehzo| SH/H,<1.
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