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Spectrum of gravitational waves in Randall-Sundrum braneworld cosmology
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We study the generation and evolution of gravitational waves (tensor perturbations) in the context of
Randall-Sundrum braneworld cosmology. We assume that the initial and final stages of the background
cosmological model are given by de Sitter and Minkowski phases, respectively, and they are connected
smoothly by a radiation-dominated phase. This setup allows us to discuss the quantum-mechanical
generation of the perturbations and to see the final amplitude of the well-defined zero mode. Using the
Wronskian formulation, we numerically compute the power spectrum of gravitational waves, and find that
the effect of initial vacuum fluctuations in the Kaluza-Klein modes is subdominant, contributing not more
than 10% of the total power spectrum. Thus it is confirmed that the damping due to the Kaluza-Klein
mode generation and the enhancement due to the modification of the background Friedmann equation are
the two dominant effects, but they cancel each other, leading to the same spectral tilt as the standard four-
dimensional result. Kaluza-Klein gravitons that escape from the brane contribute to the energy density of
the dark radiation at late times. We show that a tiny amount of the dark radiation is generated due to this
process.
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I. INTRODUCTION

Cosmological inflation predicts the gravitational wave
background arising due to quantum fluctuations in the
graviton field. Gravitational wave fluctuations are stretched
beyond the horizon radius by rapid expansion during
inflation, and at a later stage they come back inside the
horizon possibly with rich information on the early uni-
verse and hence on high energy physics. Though yet un-
detected, gravitational waves will provide us with a
powerful tool to probe fundamental physics in near future
[1].

Motivated by string theory, recently braneworld scenar-
ios have attached much attention, in which our four-
dimensional universe is realized as a brane embedded in
a higher dimensional bulk spacetime [2]. Among them, the
Randall-Sundrum model [3,4] is of particular interest be-
cause it includes nontrivial gravitational dynamics despite
rather a simple construction. In the Randall-Sundrum
type II model [4] with a single brane embedded in an
anti–de Sitter (AdS) bulk, although the fifth dimension
extends infinitely, the warped structure of the bulk geome-
try results in the recovery of four-dimensional general
relativity on the brane at scales larger than the bulk curva-
ture scale ‘ or at low energies [5,6]. In order to reveal five-
dimensional effects particular to the braneworld scenario,
we have to focus on the scales smaller than ‘, and for this
purpose cosmological perturbations from inflation [7–21]
will be quite useful for the reason mentioned above.

Gravitational waves from inflation on the brane were
first studied by Langlois et al. [8], under an assumption that
inflation is exactly described by de Sitter spacetime. In this
address: tsutomu@tap.scphys.kyoto-u.ac.jp
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special case, the perturbation equation is separable and
analytically solvable. A toy model called the ‘‘junction
model’’ [9,10] is an extended version of the pure
de Sitter braneworld, which allows a sudden change of
the Hubble parameter H by joining two maximally sym-
metric (i.e., de Sitter or Minkowski) branes at some time.
Later, the junction model is extended to a more general
inflation model with a smooth expansion rate [11]. To
make the cosmological model more realistic, one should
take into account the radiation-dominated phase that fol-
lows after inflation, and, at least in the low energy regime
(‘H� 1), corrections to the evolution of gravitational
waves are shown to be small [12,13] (see also Refs. [14–
17]). In a much more general and interesting case, i.e., in
the high energy (‘H� 1) radiation-dominated phase, the
perturbation equation no longer has a separable form and
hence one cannot even define a ‘‘zero mode’’ and ‘‘Kaluza-
Klein modes’’ without ambiguity. To understand the evo-
lution of gravitational waves in that regime, numerical
studies have been done by Hiramatsu et al. [18,19] and
by Ichiki and Nakamura [20,21]. Their results give us a lot
of implications, for example, on the damping nature of the
gravitational wave amplitude due to the Kaluza-Klein
mode generation, but the initial condition they adopt is
naive, neglecting initial quantum fluctuations in the
Kaluza-Klein modes. Hence, its validity is open to
question.

The goal of the present paper is to clarify the late time
power spectrum of gravitational waves in the Randall-
Sundrum brane cosmology, evolving through the
radiation-dominated stage after their generation during
inflation. We closely follow the same line in our previous
work [11], in which, using the Wronskian formulation, we
have formulated a numerical scheme for the braneworld
cosmological perturbations. The initial condition in our
-1 © 2006 The American Physical Society
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analysis is imposed quantum-mechanically, and therefore
we will be able to obtain a true picture of the generation
and evolution of gravitational perturbations in the
braneworld.

This paper is organized as follows. In the next section,
we start with giving the background cosmological model
and summarize basic known results concerning the gravi-
tational wave mode functions in the de Sitter and
Minkowski braneworlds. In Sec. III, we describe the
Wronskian formulation to obtain the power spectrum of
gravitational waves, and then we show our numerical
results in Sec. IV. In Sec. V we discuss an amount of the
dark radiation generated due to excitation of Kaluza-Klein
modes. Finally we conclude in Sec. VI.
de Sitter
rsurface

FIG. 1 (color online). Brane trajectory in static coordinates.

II. PRELIMINARIES

A. The background model

Now we describe a model for the background. We shall
work in the cosmological setting of the Randall-Sundrum
braneworld, and so the bulk is given by a five-dimensional
AdS spacetime. The AdS metric in the Poincoré coordi-
nates is

ds2 �
‘2

z2 ��dt
2 � �ijdx

idxj � dz2�; (1)

where ‘ is the bulk curvature scale and constrained by
table-top experiments as ‘ & 0:1 mm [22]. A cosmologi-
cal brane moves in this static bulk, the trajectory of which
is given by z � z�t�. The scale factor of the universe is
related to the position of the brane as a�t� � ‘=z�t�.

We consider the following cosmological model on the
brane. The initial stage of the model is given by de Sitter
inflation with a constant Hubble parameter H � Hi, which
is smoothly connected to the radiation-dominated phase.
(In order to join the two phases smoothly, the brane is not
exactly de Sitter at the very last stage of inflation.) In the
radiation stage the scale factor evolves subject to the
modified Friedmann equation [23]

H2 �
�r

3M2
Pl

�
1�

�r
2�

�
; (2)

where �r is the radiation energy density and � � 6M2
Pl=‘

2

is the tension of the brane. Since the conventional conser-
vation law holds on the brane, we have �r / a�4. Thus, in
terms of the proper time � on the brane we obtain

a��� � a��1�

��
�
�1

�
2
� 2c

�
�
�1

�
� 2c

�
1=4
; (3)

where �1 is a fiducial time, c :�
����������������������������������
1� ��r��1�=2�	

p
� 1,

and �r��1�=� � ‘2=8�2
1. After a period of time the energy

scale of the universe becomes sufficiently low, and the
radiation-dominated phase is then smoothly connected to
the Minkowski phase. This artificial connection will not
cause any unexpected problems on our final result (i.e.,
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power spectra of gravitational waves) because at the end of
the radiation stage the brane universe is already in the low
energy regime. Just for simplicity we assume that the
Minkowski brane is located at z � ‘. Namely, the scale
factor is normalized so that a � a0 � 1 when the universe
ceases expanding. The motion of the brane is shown in
Fig. 1.

Minkowski and de Sitter braneworlds

Let us consider tensor perturbations in AdS spacetime
bounded by a brane. We can decompose the graviton field
into a zero mode and Kaluza-Klein (KK) modes without
ambiguity when the brane is maximally symmetric. This is
the reason why the initial and final stages of the back-
ground model are given by the de Sitter and Minkowski
phases, respectively.

We write the perturbed metric as

ds2 �
‘2

z2 ��dt
2 � ��ij � hij�dxidxj � dz2	; (4)

where hij is the transverse-traceless metric perturbation.
As usual we decompose it into the spatial Fourier modes as

hij �

���
2
p

�2�M5�
3=2

Z
d3k�keik
xeij: (5)

Here M5 is the fundamental mass scale which is related to
the four-dimensional Planck mass MPl by ‘�M5�

3 � M2
Pl.

The prefactor
���
2
p
=�M5�

3=2 is chosen so that the kinetic term
for �k in the effective action is canonically normalized.
From now on we suppress the subscript k.

For the analysis of perturbations from the Minkowski
brane, the above Poincaré coordinate system will be best
suited, and the perturbation equation is�

@2

@t2
� k2 �

@2

@z2 �
3

z
@
@z

�
� � 0; (6)
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subject to the boundary condition

@z�jz�‘ � 0: (7)

Now it is easy to find mode solutions of Eq. (6). Going to
quantum theory, the graviton field can be expanded in
terms of the zero mode and KK modes as

� � Â0’0 � Â
y
0’
�
0 �

Z 1
0
dm�Âm’m � Â

y
m’�m�; (8)

where Ân and Âyn (n � 0; m) are the annihilation and
creation operators, respectively, of their corresponding
modes. The normalized zero mode function is given by

’0�t� �
1��������
2k‘
p e�ikt; (9)

while the normalized KK mode function is

’m�t; z� �
1�����������

2!‘3
p e�i!tum�z�; (10)

with

um�z� :� z2

����
m
2

r
Y1�m‘�J2�mz� � J1�m‘�Y2�mz������������������������������������������������

�Y1�m‘�	
2 � �J1�m‘�	

2
p ; (11)

and

! �
�����������������
k2 �m2

p
: (12)

The normalization here is determined by the Wronskian
conditions

�’0 
 ’0� � ��’
�
0 
 ’

�
0� � 1;

�’m 
 ’m0 � � ��’
�
m 
 ’

�
m0 � � ��m�m0�;

�’0 
 ’m� � �’
�
0 
 ’

�
m� � 0;

�’n 
 ’�n0 � � 0; for n; n0 � 0; m;

(13)

where the Wronskian is defined by [9]

�X 
 Y� :� �2i
Z 1
‘
dz
�
‘
z

�
3
�X@tY� � Y�@tX�: (14)

In the de Sitter braneworld we introduce another set of
coordinates ��; ��, which is related to �t; z� as

t � � cosh�� t0; z � �� sinh�; (15)

where t0 is an arbitrary constant. In ��; �� frame the
de Sitter brane is located at a fixed coordinate position � �
�b � constant, and the Hubble parameter on the brane is
given by Hi � ‘�1 sinh�b. The perturbation equation
again has a separable form
�
@2

@�2 �
2

�
@
@�
� k2 �

sinh3�

�2

@
@�

1

sinh3�

@
@�

�
� � 0;

(16)

subject to the boundary condition
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@��j���b � 0: (17)

Treating � as an operator, the graviton field can be ex-
panded as

� � â0�0 � â
y
0�
�
0 �

Z 1
0
d	�â	�	 � â

y
	��	�; (18)

where ân and âyn (n � 0; 	) are the annihilation and crea-
tion operators of each mode. The explicit form of the
normalized zero mode is

�0��� � C�‘Hi� 

Hi��������
2k‘
p

�
��

i
k

�
e�ik�; (19)

with

C�x� :�
� ��������������

1� x2
p

� x2 ln
�

x

1�
��������������
1� x2
p

��
�1=2

; (20)

and the KK mode functions are found in the form of
�	��; �� �  	���
	���, where

 	��� �

����
�
p

2
‘�3=2e��	=2����3=2H�1�i	 ��k��; (21)


	��� � C1�sinh��2�P�2
�1=2�i	�cosh��

� C2Q�2
�1=2�i	�cosh��	; (22)

with

C1 �

��������� ��i	�
��5=2� i	�

��������
2
�

�������� ���i	�
��5=2� i	�

� �C2
��i	� 3=2�

��1� i	�

��������
2
�
�1=2

; (23)

C2 �
P�1
�1=2�i	�cosh�b�

Q�1
�1=2�i	�cosh�b�

: (24)

Note that the index 	 �� 0� is related to the Kaluza-Klein
mass as

m2 �

�
	2 �

9

4

�
H2
i : (25)

The normalization of the modes is determined by the
Wronskian conditions

��0 
�0� � ���
�
0 
�

�
0� � 1;

��	 
�	0 � � ���
�
	 
�

�
	0 � � ��	� 	0�;

��0 
�	� � ��
�
0 
�

�
	� � 0;

��n 
�
�
n0 � � 0; for n; n0 � 0; 	:

(26)

Here the Wronskian is written in ��; �� frame as [9],

�X 
 Y� :� �2i
Z 1
�b
d�

‘3

�2sinh3�
�X@�Y

� � Y�@�X�:

(27)
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III. WRONSKIAN FORMULATION

Because of the presence of an infinite tower of Kaluza-
Klein modes, cosmological perturbations in the brane-
world have infinite degrees of freedom. Instead of solving
an initial value problem for such a system, it would be
better to use the Wronskian formulation in order to take
necessary degrees of freedom out of infinite information. In
the present case, we would like to know the final amplitude
of the zero mode, and therefore in fact what we need to do
is solving the (backward) evolution of a single degree of
freedom [9–11]. Following the same line as our previous
work [11], we now explain how we compute the amplitude
of gravitational waves in the final Minkowski phase using
the Wronskian.

Using double null coordinates

u � t� z; (28)

v � t� z; (29)

which will be convenient for numerical calculations, the
metric (1) can be rewritten in the form of

ds2 �
4‘2

�v� u�2
��dudv� �ijdx

idxj�: (30)

The trajectory of the brane can be specified arbitrarily by

v � q�u�: (31)

By a further coordinate transformation

U � u; (32)

q�V� � v; (33)

we obtain

ds2 �
4‘2

�q�V� �U	2
��q0�V�dUdV � �ijdx

idxj	; (34)

where a prime denotes differentiation with respect to the
argument. Now in the new coordinates the position of the
brane is simply given by

U � V: (35)

We will use this coordinate system for actual numerical
calculations.

The induced metric on the brane is

ds2
b �

4‘2

�q�V� � V	2
��q0�V�dV2 � �ijdx

idxj	; (36)

from which we can read off the scale factor a and the
proper time �, respectively, as

a �
2‘

q�V� � V
; (37)
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d� � a
�����������
q0�V�

q
dV; (38)

and hence the Hubble parameter on the brane is written as

‘H �
1

2
�����������
q0�V�

p �1� q0�V�	; (39)

or equivalently

q0�V� � �
��������������������
1� ‘2H2

p
� ‘H�2: (40)

Given the Hubble parameter as a function of �, one can
integrate Eqs. (38) and (40) with the aid of da=d� � aH to
obtain q as a function of V. If the Hubble parameter on the
brane is constant in time, we have q0 � constant.
Especially, q0 � 1 in the Minkowski phase.

The Klein-Gordon–type equation for a gravitational
wave perturbation � in the �U;V� coordinates reduces to�

4@U@V �
6

q�V� �U
�@V � q0�V�@U� � q0�V�k2

�
� � 0;

(41)

supplemented by the boundary condition

�@U � @V	�jU�V � 0: (42)

The expression for the Wronskian evaluated on a constant
V hypersurface is given by

�X 
 Y� � 2i
Z V

�1
dU

�
2‘

q�V� �U

�
3
�X@UY� � Y�@UX�;

(43)

which is independent of the choice of the hypersurface.
As explained in Sec. II, our cosmological model is

composed of the de Sitter inflationary phase followed by
the radiation-dominated epoch, which is connected
smoothly to the final Minkowski phase. In the initial
de Sitter phase, the graviton field can be expanded as
Eq. (18), while in the final Minkowski phase it can be
expanded as Eq. (8). We assume that initially the gravitons
are in the de Sitter invariant vacuum state annihilated by â0

and â	,

â 0j0i � â	j0i � 0: (44)

The expectation value of the squared amplitude of the zero
mode in the final stage is

h0j�’0Â0 � ’�0Â
y
0 �

2j0i � j’0j
2h0j�1� 2Ây0 Â0�j0i

� oscillating part

’
1

k‘
Nf;

where Nf :� h0jÂy0 Â0j0i is the number of created zero
mode gravitons. Here we used the commutation relation
�Â0; Â

y
0 	 � 1 and assumed that Nf � 1. The final power

spectrum is then given by
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P �k� :�
4�k3

�2��3
2

�M5�
3 


1

k‘
Nf �

k2

�2M2
Pl

Nf: (45)

The operator Â0 can be projected out by making use of the
Wronskian relations. Noting that the Wronskian is constant
in time, we have

Â 0 � �� 
 ’0�f � �� 
��

� ��0 
��iâ0 �
Z
d	��	 
��iâ	 � h:c:; (46)

where � is a solution of the Klein-Gordon equation (41)
whose final configuration is the zero mode function ’0 in
the Minkowski phase, and subscript f and i denote the
quantities evaluated on the final and initial hypersurfaces,
respectively. Thus we clearly see that final zero mode
gravitons are created from the vacuum fluctuations both
in the initial zero mode and in the KK modes:

Nf � j��
�
0 
��ij

2 �
Z
d	j���	 
��ij

2: (47)

Correspondingly, the power spectrum (45) can be written
as a sum of the two contributions:

P � P 0 � PKK (48)

where

P 0 :�
k2

�2M2
Pl

j���0 
��ij
2; (49)

P KK :�
k2

�2M2
Pl

Z
d	j���	 
��ij

2: (50)
1To be more precise, the scale factor in Eq. (53) should be
replaced by a bit smaller one than a0 � 1, because a0 is defined
as the scale factor in the Minkowski phase (where the Hubble
parameter vanishes). However, as the smooth period connecting
the radiation and Minkowski phases is taken to be very short, this
point is not important.
IV. SPECTRUM OF GRAVITATIONAL WAVES

De Sitter inflation on the brane predicts the flat primor-
dial spectrum [8]

�2
T :�

2C2�‘Hi�

M2
Pl

�
Hi

2�

�
2
: (51)

During inflation the gravitational wave perturbations are
stretched to superhorizon scales, and then they stays con-
stant until horizon reentry, with their amplitude given by
Eq. (51). (� � constant is a growing solution of Eq. (41) in
the limit k2 ! 0.) The primordial spectrum of gravitational
waves from non–de Sitter inflation was studied extensively
in [11], and so in this paper we concentrate on the simple
case where inflation is given by the exact de Sitter model.

For long wavelength modes with k� k�, where

k� :� a�H� � a�=‘ (52)

labels the mode that reenters the horizon when ‘H � 1, the
amplitude will decay as h�	 / a�1 after horizon reentry,
because gravity on the brane is basically described by four-
dimensional general relativity in the low energy regime
044005
(‘H� 1). In fact, it is explicitly shown that leading order
corrections to the cosmological evolution of gravitational
waves are suppressed by ‘2 and ‘2 ln‘ at low energies
[12,13]. In particular, modes with k < k0, where

k0 :� a0H0 � H0; (53)

and H0 is the Hubble parameter evaluated at the end of the
radiation-dominated phase (i.e., just before the Minkowski
phase),1 reenter the ‘‘horizon’’ in the final Minkowski
phase, and then they begin to oscillate (but their amplitude
will not decay). As a result, the mean-square vacuum
fluctuations of such modes become half of the initial value,
leading to

P �
�2
T

2
; for k < k0: (54)

In Ref. [9], the same spectrum was obtained for scales
larger than the AdS and horizon scales by using the ‘‘junc-
tion model,’’ in which an instantaneous transition from a
de Sitter to a Minkowski brane was assumed. For the
reason mentioned above, modes with k0 < k� k� have
the standard spectrum,

P �
�2
T

2

�
k
k0

�
�2
: (55)

Something nontrivial may happen to gravitational waves
with k * k�. If the effects of mode mixing are neglected,
only the modification of the background expansion rate
alters the spectrum for these short wavelength modes to

~P ’
�2
T

2

�
k
k�

�
�2=3

�
k�
k0

�
�2
: (56)

However, this evaluation will not be correct because mode
mixing is expected to be efficient at high energies.

Our procedure to obtain a correct power spectrum is as
follows. We solve the perturbation Eq. (41) with its bound-
ary condition set to be ��U;Vf� � ’0 on the final hyper-
surface. The numerical backward evolution scheme we use
here is the same as that used in our previous work [11], and
the detailed description of the scheme is found there. After
obtaining the configuration on the initial hypersurface, we
evaluate the Wronskian to get the power spectrum.

We performed numerical calculations for three different
values of the inflationary Hubble parameter, ‘Hi � 10, 42,
and 100. The radiation-dominated phase is terminated
when the Hubble parameter decreases down to H ’
0:03=‘ �: H0, and then it is connected smoothly to the
Minkowski phase, so that we can see the amplitude of the
-5
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well-defined zero mode. The numbers of grids are 90 000
in the U direction and 12 000 in the V direction, and the
grid separation is chosen to be 0:005� ‘. Integration
over the KK index 	 is performed up to 	 � 25 with an
equal grid spacing of 0:05.

The power spectra of gravitational waves are shown in
Fig. 2. Assuming that the power spectrum is of the form

P � A
�
k
k0

�
n
; (57)
FIG. 2 (color online). Power spectra of gravitational waves
from inflation with ‘Hi � 10 (a), 42 (b), and 100 (c), normalized
by �2

T=2. The total power spectrum is shown by red circles, while
blue crosses represent the contribution only from the initial zero
mode. Green squires indicate results from basically four-
dimensional calculations, only including the effect of the modi-
fication of the background expansion rate.

FIG. 3 (color online). Contribution of initial Kaluza-Klein
fluctuations, rKK, for the model with ‘Hi � 100.

044005
we find that irrespective of the inflationary energy scale,
the parameters are approximately given by

A ’
�2
T

2
; (58)

n ’ �2: (59)

Namely, we have the same spectrum as the standard one
[Eq. (55)] even for short wavelength modes with k * k�.
As is shown in Fig. 3, the contribution of the vacuum
fluctuations in the initial KK modes to the final spectrum,

rKK�k� :�
PKK

P 0 � PKK
; (60)

never exceeds 10% so far as the present calculations are
concerned, and hence it gives a subdominant effect. On the
other hand, the excitation of KK modes suppresses the
amplitude of the gravitational waves relative to Eq. (56),
and our result implies that the effect of the modification of
the background Friedmann equation compensate this sup-
pression, leading to approximately the same spectral tilt as
that in conventional four-dimensional cosmology. This is
consistent with the numerical study by Hiramatsu et al.
[19], in which they assume the initial configuration in the
bulk to be a de Sitter zero mode and obtain P 0 / k

�2.
FIG. 4. rKK for ‘Hi � 100 and k � 13:3� k�, versus the
number of grids in the U direction.
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Unfortunately, due to the limited number of grids in the
U direction, it is difficult to evaluate accurate values of
rKK; the convergence is not so good (Fig. 4). However,
since rKK decreases with an increasing number of grids, it
is strongly expected that the effect of the initial KK fluc-
tuations is negligibly small. To obtain a more accurate
evaluation of the contribution of the initial KK modes,
we need an improved numerical formulation, though it
seems quite unlikely that rKK turns to increase at a much
larger number of grids. (We confirmed that the conver-
gence of the zero mode part P 0 is sufficiently good.)
V. GENERATION OF DARK RADIATION

So far we have concentrated on final zero mode grav-
itons created from initial vacuum fluctuations. In this sec-
tion we shall discuss the generation of KK gravitons. In
particular, we are interested in the KK mode gravitons
created from initial fluctuations in the zero mode, because
from the five-dimensional point of view they are inter-
preted as gravitons that escape from the brane. At suffi-
ciently late times, all the emitted gravitons fall deep into
the bulk, and then the bulk spacetime is described as an
AdS-Schwarzschild black hole, the mass of which divided
by a4 is viewed as the ‘‘dark radiation’’ from a brane
observer [24–27].

Before going to the estimation of the energy density of
final KK mode gravitons, first let us take a look at the
energy density of zero mode gravitons �GW. Since at low
energies gravitational waves evolve in a standard manner,
their energy density behaves as �GW / a

�4. Therefore the
ratio �GW=�r is an invariant quantity in the low energy
regime, irrespective of the cosmic expansion. Evaluating it
at the end of the radiation stage, we have

�GW

�r
�
�GW;0

�r;0
’ ln

�
ki
k0

�


�2
T

6
 �2

T: (61)

Note that �T < 10�5. In deriving the estimate (61), we
used the formula

�GW;0 � M2
Pl

Z ki

k0

d lnkk2P �k�; (62)

and substituted the numerical result obtained in the pre-
vious section, P ’ ��2

T=2��k=k0�
�2, where k0 can be elim-

inated in favor of �r;0 by using the Friedmann equation at
low energies k2

0 � H2
0 ’ �r;0=�3M

2
Pl�. The upper limit of

the integral may be given by the inverse horizon scale at the
end of inflation,

ki :� aiHi; (63)

because the particle production is exponentially sup-
pressed on subhorizon scales.

Let ~�GW be the energy density of gravitational waves
obtained by neglecting the mode mixing effect. More
precisely, ~�GW is the energy density of gravitational waves
044005
h�	 where h�	 is a solution of the conventional perturba-
tion equation �@2

� � 3H@� � k2=a2�h�	 � 0 with the cos-
mic expansion given by a solution of the modified
Friedmann equation. This would be much greater than
�GW. Then, �� :� ~�GW � �GW ’ ~�GW is the energy den-
sity that leaks from the brane, and by definition �� is
proportional to a�4 as long as it is evaluated in the low
energy regime. Thus, ��=�r is an invariant quantity. Now
��;0 can be calculated from the spectrum of the form (56),
and we have an estimate

��
�r
�

��;0
�r;0

’
�2
T

8
� ‘Hi; (64)

where we used a4�r � a4
�� � �r;0 and the Friedmann

equation at high energies, H2 ’ �2=6M2
Pl�. The estimate

(64) implies that a large amount of energy (compared to
�GW) is lost from the brane. Is the escaped energy ��
directly transferred to the final bulk gravitons? To discuss
this point, we compare it with the energy density of the
generated dark radiation.

Since KK modes are excited dominantly at high energies
but not at low energies, the dark radiation, as is deduced
from its name, behaves like a radiation component, �DR /
a�4, at late times. Hence, we shall see the ratio �DR=�r but
it may be evaluated at the end of the radiation stage.

The total number of the created bulk gravitons is given
again by the Wronskian as

Z
dmh0jÂymÂmj0i �

Z
dm

�
j���0 
�m�ij

2

�
Z
d	j���	 
�m�ij

2

�
;

where �m is a solution of the Klein-Gordon equation (41)
whose final configuration is a KK mode function ’m in the
Minkowski phase. Concentrating on the first part, j���0 

�m�j

2dm is identified as the number of KK gravitons
coming from the initial zero mode fluctuations, with their
mass between m and m� dm. Thus the energy density is
expressed as

�DR;0 :�
Z d3k

�2��3
Z
dm!j���0 
�m�ij

2

�
Z
d lnk

Z
d lnm

mk3!

2�2 j��
�
0 
�m�ij

2: (65)

As a side remark, in the junction model of Ref. [9], the
second part, i.e., the number of KK gravitons created from
the initial fluctuations in KK modes, is suppressed com-
pared to the first one.

We numerically calculated the Wronskian j���0 
�m�j
2

in a similar manner to the previous section. The Hubble
parameter during inflation is chosen to be ‘Hi � 42. In this
case, the number of grids are 150 000 in theU direction and
20 000 in the V direction, and the grid separation is about
0:0036� ‘.
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FIG. 5 (color online). Energy of bulk gravitons multiplied by
the phase space factor.
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The integrand

Z
d lnm

mk3!

2�2 j��
�
0 
�m�ij

2

is plotted in Fig. 5. For each k, integration over m is
performed up to m 2=‘ with a grid spacing of � lnm ’
0:17. Performing the integration over k, we obtain

�DR;0 � 0:04� ‘�4; (66)

where one should note that contributions from modes with
k < k� are suppressed. The radiation energy density can be
written as

�r;0 � a4
i �r;i ’ a

4
i �6M

2
Pl��

1=2Hi ’
9

2�2

1

�2
T

�aiHi�
4; (67)

which can be obtained by using the modified Friedmann
equation and noting that �2

T ’ 3‘H3
i =4�2M2

Pl for ‘Hi � 1.
From Eqs. (66) and (67) we have an estimate

�DR

�r
<O�1� � �2

T: (68)

This result indicates that the energy density of the gener-
ated dark radiation is not larger than that of zero mode
gravitons [Eq. (61)]. Of course, this is a completely harm-
less amount of an extra radiation component [28]. The
scattering of particles on the brane in the early universe,
discussed in [24–27], can be a more efficient way to
produce bulk gravitons.

Although a large amount of energy is lost from the brane
via excitation of KK modes in the high energy regime, the
final energy density of the dark radiation is much smaller
than that, without an enhancement factor like ‘Hi in
Eq. (64). This discrepancy is explained as follows
[24,26]. In the high energy regime, the motion of the brane
is so relativistic (in the frame defined by the static bulk
coordinates) that emitted gravitons run almost parallel to
the brane trajectory. These gravitons stay in the vicinity of
the brane and bounce off it many times during the high
energy stage, until eventually they are reflected by the
nonrelativistic brane to fall off into the bulk. During this
044005
process, the gravitons lose a large portion of their momen-
tum transverse to the brane because they repeatedly hit the
retreating brane. This qualitatively accounts for the small-
ness of the final energy density of the dark radiation. To
justify the above interpretation quantitatively, a more rig-
orous analysis will be needed in the direction of
Refs. [26,29], which includes calculating the pressure to
the brane due to the effective energy-momentum tensor of
the bulk gravitational waves.

Here we should comment on the result of the junction
model obtained by Gorbunov et al. [9]. In terms of the
power spectrum, their result is summarized as

P �

8><
>:
�2
T

2 ; �k� k��;
�2
T

2
4

�k=k��2
; �k� � k� ki�;

(69)

where k� � a�=‘, ki � aiHi, and a� � ai�� 1� because a
de Sitter inflationary stage is directly joined to a
Minkowski phase in the junction model (see also
Appendix A of Ref. [10]). From this we can estimate the
energy density that leaks from the brane as

�� � M2
PlH

2
i �

2
T � �e:i:�

2
T � ‘Hi; (70)

where �e:i: is the energy density at the ‘‘end of inflation.’’
On the other hand, according to Appendix D of Ref. [9], the
energy density of created KK gravitons is given by

�DR � H4
i � �e:i:�

2
T:

Thus, we find that �� �DR � ‘Hi, which is consistent
with our present result. [Note that in the junction model the
energy density of final zero mode gravitons is estimated as
�GW  �M

2
Pl=‘

2��2
T and hence �GW � �e:i:�

2
T  �DR.]
VI. SUMMARY

We have examined the power spectrum of the gravita-
tional wave background in the cosmological scenario of the
Randall-Sundrum braneworld. There are three possible
ingredients which may lead the power spectrum to a non-
standard one: the unconventional background expansion
rate due to the �2 term in the Friedmann equation, the
excitation of KK modes during the radiation-dominated
stage at high energies, and the effect of initial vacuum
fluctuations in KK modes. Previous estimates are based
on a rather simple toy model [9] or numerical studies about
the classical evolution of perturbations, neglecting the
initial KK fluctuations [18,19]. In the present analysis,
initial conditions are set in a quantum-mechanical manner
and hence the effect of the initial KK fluctuations is
included. Along the same line in Ref. [11], we make use
of the Wronskian formulation to obtain the final amplitude
of the zero mode gravitational waves numerically. We have
found that the effect of initial KK vacuum fluctuations are
subdominant: rKK < 0:1. Our result confirms that the
damping of the amplitude due to the KK mode excitation
-8
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and the enhancement due to the modification of the back-
ground expansion rate mainly work, but almost cancel each
other. Consequently, the power spectrum is basically the
same as the standard one obtained in conventional four-
dimensional cosmology. We believe that the cancellation
between the two effects is a phenomenon peculiar to the
radiation-dominated phase. To make the particularity of
the radiation stage clear, it would be interesting to inves-
tigate consequences of a different equation of state pa-
rameter w �� p=�� after the inflationary stage. This is
the next issue we plan to report in a future publication.

Because of the limitation of our numerical computation,
we have not been able to give a detailed evaluation of how
much the initial KK fluctuations contribute to the final
power spectrum. Although it is strongly indicated that the
initial KK effect never becomes larger than the present
evaluation, to show that it is indeed true, we need to
044005
improve the numerical formulation. We will also report
on this issue in a forthcoming paper.

We have also estimated the energy density of the gen-
erated dark radiation numerically, and shown that only a
tiny amount is generated. It is smaller than the energy
density of zero mode gravitational waves.
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