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We study the spectrum of gravitational waves generated from inflation in the Randall-Sundrum
braneworld. Since the inflationary gravitational waves are of quantum-mechanical origin, the initial
configuration of perturbations in the bulk includes Kaluza-Klein quantum fluctuations as well as
fluctuations in the zero mode. We show, however, that the initial fluctuations in Kaluza-Klein modes
have no significant effect on the late time spectrum, irrespective of the energy scale of inflation and the
equation of state parameter in the post-inflationary stage. This is done numerically, using the Wronskian
formulation.
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I. INTRODUCTION

The inflationary scenario predicts the existence of a
gravitational wave background produced quantum me-
chanically [1], in much the same way as the mechanism
of generating density perturbations. Detecting the infla-
tionary gravitational wave background is a grand challenge
for LISA [2], BBO [3], and other missions [4]. It will open
up a new window into the very early Universe, and thus in
principle the possibility of recently proposed braneworld
models [5] can be tested using the inflationary gravitational
waves.

A number of studies have been done aiming at obtaining
a clear picture of the generation and evolution of gravita-
tional waves in the Randall-Sundrum braneworld [6–22].
De Sitter inflation on the brane [6] is a special case where
the perturbation equation is separable and exactly solvable.
It predicts a flat primordial spectrum, as in four-
dimensional general relativity, but the amplitude is en-
hanced at high energies. For more general inflation models,
the tilted primordial spectrum can be calculated from the
corresponding four-dimensional one by a mapping formula
[7,8]. The late time evolution of gravitational wave pertur-
bations at low energies is very close to that in conventional
cosmology [9–11], recovering four-dimensional general
relativity when the relevant length scales are larger than
the bulk curvature scale ‘.

What is much more interesting is the evolution of gravi-
tational waves during the high energy regime, ‘H� 1,
where H is the Hubble parameter. In addition to the rather
trivial effect of the unconventional background expansion
rate, the nontrivial effect of mode mixing may not be
negligible, converting a zero mode into a Kaluza-Klein
(KK) mode and vice versa efficiently at high energies. To
clarify the evolution of subhorizon modes during the high
energy regime, several numerical studies have been done
with different numerical schemes [12–16]. Most of them
concentrated on the radiation-dominated phase after infla-
tion, and very recently Hiramatsu [16] investigated con-

sequences of a different equation of state parameter w. All
of the above papers consider very naive initial conditions,
ignoring initial abundance of KK fluctuations. However,
since the gravitational wave perturbations are of quantum-
mechanical origin, the most plausible initial configuration
of the perturbations during inflation should include vacuum
fluctuations in KK modes. Taking this point into account,
in Refs. [8,17] Kobayashi and Tanaka have developed a
numerical formulation using the Wronskian, by which one
can discuss the quantum-mechanical generation and sub-
sequent evolution of gravitational waves. Following the
previous works [8,17], in the present paper we revisit the
spectrum of inflationary gravitational wave background in
the braneworld, focusing in particular on the effect of
initial abundance of the KK fluctuations.

The paper is organized as follows. In the next section we
describe the background cosmological model, and then in
Sec. III we review the Wronskian formulation to compute
the spectrum of inflationary gravitational waves numeri-
cally. We present our numerical results in Sec. IV. Our
conclusions are drawn in Sec. V.

II. THE BACKGROUND MODEL

We will work in the Randall-Sundrum-type braneworld
[23], and the bulk metric is given by the five-dimensional
anti-de Sitter spacetime

 ds2 �
‘2

z2 ��dt
2 � �ijdxidxj � dz2�; (1)

where ‘ is the bulk curvature scale. A cosmological solu-
tion can be described by a moving brane in the above static
coordinates. The scale factor a�t� can be expressed in terms
of the location of the brane z�t� as a�t� � ‘=z�t�, and it is
governed by the modified Friedmann equation [24]

 H2 �
�

3M2
Pl

�
1�

�
2�

�
; (2)

where � is the matter energy density on the brane and � �
6M2

Pl=‘
2 is the tension of the brane. The matter content is
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 w :�
p
�
: (3)

Since the standard conservation law d�=d� � �3H���
p� holds on the brane, we have � / a�3�1�w� when w is
constant. Using this and Eq. (2) we obtain the scale factor
as a function of the proper time � on the brane.

The initial stage of the background model is assumed to
be described by a de Sitter brane with a constant expansion
rate Hi, and the final stage by a Minkowski brane. The two
stages are connected smoothly by a Friedmann-Robertson-
Walker (FRW) brane with a constant equation of state
parameter w. We dub this phase as the ‘‘FRW phase.’’
The connection to the Minkowski phase is done at suffi-
ciently low energies because we would like to focus on the
possible high energy effects at the early stage of the FRW
phase just after inflation. The construction here allows us to
discuss the quantum-mechanical generation of gravita-
tional waves during inflation and their subsequent evolu-
tion during the FRW phase, and to see the final amplitude
of the well-defined zero mode. In the previous paper [17]
only the radiation-dominated stage (w � 1=3) was consid-
ered, but in the present paper we are interested in other
various values of w as well.

III. FORMULATION

A. Double null coordinates

Let us consider gravitational wave (tensor-type) pertur-
bations. The perturbed metric can be written as

 ds2 �
‘2

z2 ��dt
2 � ��ij � hij�dx

idxj � dz2�; (4)

where hij � hij�t;x; z� is the transverse-traceless metric
perturbation. We decompose it into the spatial Fourier
modes as

 hij �

���
2
p

�2�M5�
3=2

Z
d3k�k�t; z�eik	xeij; (5)

whereM5 is the fundamental mass scale which is related to
the four-dimensional Planck mass MPl by ‘�M5�

3 � M2
Pl.

The linearized Einstein equations give the Klein-Gordon-
type equation for �k:

 

�
@2

@t2
� k2 �

@2

@z2 �
3

z
@
@z

�
�k � 0; (6)

and the junction conditions at the brane read

 na@a�kjbrane � 0; (7)

where na is the unit normal to the brane. From now on we
suppress the subscript k.

Following the previous papers [8,17] we use the
Wronskian formulation to compute the spectrum of gravi-
tational waves. Basic details of the formulation and nu-
merical scheme are explained in Ref. [8], but here we make

a slight improvement. Since double null coordinates are
convenient for numerical studies, our starting point is

 u � t� z; v � t� z: (8)

In this coordinate system, the trajectory of the brane can be
specified arbitrarily by

 v � q�u�: (9)

To simplify this boundary trajectory, we make a coordinate
transformation

 U � u; q�V� � v; (10)

and then the position of the brane is given by

 U � V: (11)

The following further coordinate transformation turns out
to be useful for actual numerical calculations:

 X � �
‘
2

ln
�
�
U
‘

�
; (12)

 T � �
‘
2

ln
�
�
V
‘

�
: (13)

Note that by an appropriate choice of the origin of the time
coordinate t, we can always have U < 0 and V < 0. The
position of the brane is simply given by

 T � X: (14)

We will perform numerical computations with equal grid
spacing � in both T and X directions. The advantage of
using these new coordinates is that it is easier to extend the
computational domain far away from the brane in these
coordinates than in the (U, V) coordinates that were used in
the previous studies. The step size " in the U (V) coordi-
nate increases with increasing jXj (jTj), but we will adjust
� so that the maximum of " is not so different from the step
size used in Ref. [17]. Thanks to this choice of �, the (T,X)
coordinates will not cause any problems in the resolution
of the numerical analysis.

Now the bulk metric is written as

 ds2 � A2�T; X���2e�2X=‘~q0�T�dTdX � �ijdx
idxj�;

(15)

where

 A�T; X� :�
2‘

~q�T� � ‘e�2X=‘
; (16)

 ~q�T� :� q��‘e�2T=‘�; (17)

and a prime stands for a derivative with respect to the
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argument. The proper time � and the scale factor a on the
brane are given, respectively, by

 d� � a 	
��������������
2~q0�T�

q
e�T=‘dT; (18)

 a � A�T; T�; (19)

and hence we have

 ~q 0�T� � 2e�2T=‘�
��������������������
1� ‘2H2

p
� ‘H�2: (20)

Given the Hubble parameter H as a function of �, one can
integrate Eqs. (18) and (20) to obtain ~q as a function of T.

In the (T, X) coordinates the Klein-Gordon-type equa-
tion for � reduces to
 

2@T@X��
3

~q�T� � ‘e�2X=‘
�2e�2X=‘@T � ~q0�T�@X��

� e�2X=‘~q0�T�k2� � 0; (21)

subject to the boundary condition

 �@T � @X��jT�X � 0: (22)

B. Wronskian formulation

Since the system we are considering has infinitely many
degrees of freedom, consisting of a zero mode and a tower
of KK modes, it is not advisable to set up the initial
value problem for the evolution of each perturbation
mode. Instead, we confine our attention to a single degree
of freedom concerning the zero mode in the final
Minkowski phase. The necessary information that deter-
mines the amplitude of the final zero mode can be picked
up by using the Wronskian. Our Wronskian evaluated on a
constant T hypersurface is defined by

 ��1 	�2� :� 2i
Z T

�1
dXA3�T; X���1@X�



2 ��



2@X�1�;

(23)

which is independent of the choice of the hypersurface.
Treating the graviton field� as an operator, in the initial

de Sitter phase we expand it using the annihilation and
creation operators, ân and âyn , as

 �̂ � â0�0 � â
y
0�


0 �

Z 1
0
d��â��� � â

y
��
��; (24)

where �n and its complex conjugate �
n are the mode
functions in the de Sitter phase (n � 0 for the zero mode
and n � � for the KK modes). These mode functions form
a complete orthonormal basis with respect to the
Wronskian:

 

��0 	�0� � ���


0 	�



0� � 1;

��� 	��0 � � ���
� 	�
�0 � � ���� �0�;

��0 	��� � ��
0 	�


�� � 0; ��n 	�
n0 � � 0;

for n; n0 � 0; �:

(25)

The index � is related to the KK mass m as

 m2 �

�
�2 �

9

4

�
H2
i ; (26)

and � � 0.
Similarly, in the final Minkowski phase we expand it as

 �̂ � Â0’0 � Â
y
0’


0 �

Z 1
0
dm�Âm’m � Â

y
m’
m�; (27)

where ’n and ’
n (n � 0; m) are the mode functions in the
Minkowski phase, and Ân and Âyn are the annihilation and
creation operators, respectively, of their corresponding
modes. These mode functions also form a complete ortho-
normal basis with respect to the Wronskian:
 

�’0 	 ’0� � ��’


0 	 ’



0� � 1;

�’m 	 ’m0 � � ��’


m 	 ’



m0 � � ��m�m0�;

�’0 	 ’m� � �’
0 	 ’


m� � 0;

�’n 	 ’
n0 � � 0;

for n; n0 � 0; m:

(28)

The explicit form of the above mode functions is presented
in the appendix.

Using the Wronskian, we now explain how to compute
the spectrum of gravitational waves. We assume that ini-
tially the gravitons are in the de Sitter invariant vacuum
state annihilated by â0 and â�,

 â 0j0i � â�j0i � 0: (29)

The expectation value of the squared amplitude of the zero
mode in the final Minkowski stage is

 h0j�Â0’0 � Â
y
0’


0�

2j0i ’
1

k‘
Nf; (30)

where Nf :� h0jÂy0 Â0j0i is the number of created zero
mode gravitons and we assumed that Nf � 1. In deriving
Eq. (30) we used the commutation relation �Â0; Â

y
0 � � 1

and the expression of the zero mode function (A1). The
final power spectrum is then given by

 P �k� :�
4�k3

�2��3
2

�M5�
3 	

1

k‘
Nf �

k2

�2M2
Pl

Nf: (31)

Note here that by multiplying the factor 2=�M5�
3 we ob-

tained the squared amplitude of the metric fluctuation,
rather than that of the canonically normalized field [see
the definition (5)].
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In fact, particle production is suppressed, Nf & 1, for
k * ki :� aiHi where ai is the scale factor at the end of
inflation. In the present paper we are interested in the
modes that exit the horizon during inflation, so that the
relevant wave number is smaller than ki.

The operator Â0 can be projected out by making use of
the Wronskian relations. Noting that the Wronskian is
constant in time, we have

 Â 0 � ��̂ 	 ’0�f � ��̂ 	��

� ��0 	��iâ0 �
Z
d���� 	��iâ� � H:c:; (32)

where � is a solution of the Klein-Gordon equation (21)
whose final configuration is the zero mode function ’0 in
the Minkowski phase, and subscript f and i denote the
quantities on the final and initial hypersurfaces, respec-
tively. It is clear that final zero mode gravitons are created
from the vacuum fluctuations both in the initial zero mode
and in the KK modes:

 Nf � j��
0 	��ij
2 �

Z
d�j��
� 	��ij

2: (33)

Correspondingly, the power spectrum (31) can be written
as a sum of the two contributions:

 P � P 0 � PKK; (34)

where

 P 0 :�
k2

�2M2
Pl

j��
0 	��ij
2; (35)

 P KK :�
k2

�2M2
Pl

Z
d�j��
� 	��ij

2: (36)

Thus what we need to do is to solve the backward evolution
of the field � and to evaluate the Wronskian on the initial
hypersurface in the de Sitter phase, which can be done
numerically [8,17].

IV. INFLATIONARY GRAVITATIONAL WAVES
WITH INITIAL KK FLUCTUATIONS

Let �T be the primordial amplitude of gravitational
waves from de Sitter inflation, which is given by [6]

 �2
T �

2C2�‘Hi�

M2
Pl

�
Hi

2�

�
2
; (37)

where Hi is the Hubble parameter during inflation and the
function C�‘Hi� is related to the normalization of the zero
mode (see the appendix). After the end of inflation the
brane universe is dominated by a perfect fluid whose
equation of state parameter is w, and the FRW phase is
connected to the Minkowski phase when the energy scale
of the universe becomes sufficiently low: H � H0 � ‘�1.
For the modes that reenter the horizon during the low

energy regime, namely, for the long wavelength modes
with k� k
 where

 k
 :� a
H
 � a
=‘; (38)

corrections to their evolution are very small, suppressed by
‘2 and ‘2 ln‘ [9,11]; the mode mixing effect is inefficient
and gravity on the brane is basically described by four-
dimensional general relativity. Hence, for such modes the
spectrum of gravitational waves is expected to have the
same spectrum as the four-dimensional one:

 P �
�2
T

2

�
k
k0

�
n4D

; �k0 < k� k
�; (39)

with

 n4D � �
4

1� 3w
; (40)

where k0 is the wave number associated with the horizon
scale at the end of the FRW phase: k0 :� a0H0. For the
relatively short wavelength modes with k * k
, three non-
trivial things should be considered: (i) the modified back-
ground expansion rate [Eq. (2)], (ii) the excitation of KK
modes relevant at high energies, and (iii) the initial quan-
tum fluctuations in KK modes PKK. If the gravitational
waves propagating in the bulk are neglected, namely, if the
effects (ii) and (iii) are neglected, one would obtain an
enhanced spectrum for k * k
,

 P " ’
�2
T

2

�
k

k0

�
�2
�
k
k


�
n"
; (41)

with

 n" � �
2

2� 3w
: (42)

However, this evaluation will not be correct because of
efficient mode mixing at high energies.1 The true spectrum
will be somewhat different from the four-dimensional one
and differed also from Eqs. (41) and (42). We would like to
investigate how the balance of the above three things
affects the spectrum.

In Refs. [13,15,16] the effects of (i) the modified
Friedmann equation and (ii) the KK mode excitation
have been addressed using the numerical formulations
very different from ours.2 The authors of Refs. [13,15,16]
focused on the classical evolution of perturbations, while
the initial conditions they adopt are naive, neglecting the
initial abundance of KK fluctuations. In our Wronskian

1There are also braneworld models where one arrives at an
interesting conclusion about cosmological gravitational waves
without mode mixing [25,26].

2The formulation by Hiramatsu et al. [13] is based on the
Poincaré coordinates, while Ichiki and Nakamura [15] used a
single null coordinate. The two results do not agree with each
other for some unclear reason. However, the Wronskian ap-
proach [17] gives the result consistent with Ref. [13].
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formulation, the initial conditions are set quantum me-
chanically and hence are the most plausible. It has been
(incompletely) shown that the effect of the initial quantum
fluctuations in the KK modes is subdominant relative to the
other two effects in the radiation-dominated phase (w �
1=3) [17]. In that case, however, the dominant two effects
cancel each other and consequently we have the same
spectrum as in the conventional four-dimensional universe.

In the previous paper [17] the authors failed in the
precise evaluation of the fraction coming from the initial
KK modes,

 rKK�k� :�
PKK

P 0 � PKK
; (43)

due to the limited number of grids in the extra direction.
Now using the new coordinates T and X, we are able to
obtain much more precise values of rKK. Our refined result
is shown in Fig. 1. This is different from the previous
estimate by a factor of 2 or so.

To make it clear how the spectrum behaves in a more
general situation, let us move on to the models with the
equation of state parameter other than 1=3. We have per-
formed numerical calculations for three different cases:
w � 0, 2=3, and 1. The results are shown in Figs. 2– 4.
We find that in all the cases the modification to the expan-
sion rate and the KK mode excitation are the dominant
effects, and the initial abundance of KK fluctuations gives a
subdominant contribution. In contrast to the radiation-
dominated model, the two dominant effects do not cancel
each other, yielding the spectrum different from the four-
dimensional one for short wavelength modes. Assuming
that the spectrum has the form

 P / kn; k > �k
; (44)

where we take � 3, we obtain

FIG. 1 (color online). Contribution of initial Kaluza-Klein
fluctuations. The equation of state parameter is w � 1=3 and
the inflationary energy scale is given by ‘Hi � 100 (lower line).
rKK is plotted also for ‘Hi � 10 (upper line). (The previous
estimate in Ref. [17] should be compared with the lower line.)

FIG. 3 (color online). Same as Fig. 2, but w � 2=3.

FIG. 2 (color online). Spectrum of gravitational waves from
inflation with ‘Hi � 100, followed by a FRW phase with w � 0.
The total power spectrum is shown by circles, while crosses
represent the contribution only from the initial zero mode.
Dashed line indicates the four-dimensional result.

FIG. 4 (color online). Same as Fig. 2, but w � 1.
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 n ’

8<
:
�2:6; �w � 0�
�1:8; �w � 2=3�
�1:6; �w � 1�:

(45)

From this result and the previous one (n ’ �2 for w �
1=3), we may deduce that the spectral tilt for short wave-
length modes is given generally by

 n ’ �
5� 3w
2� 3w

: (46)

This agrees with the recent numerical result by Hiramatsu
[16] because of the insensitivity of the final result to the
initial KK mode contamination. For the modes with k &

k
, we can confirm that the spectrum is approximately
given by the four-dimensional one in all the three cases.

Now we take a closer look at the contribution from the
initial KK fluctuations. The fraction rKK is plotted for
various values of the inflationary Hubble parameter Hi in
Figs. 5 and 6 (and also in Fig. 1). While the equation of
state parameter is different (w � 0 for Fig. 5 andw � 1 for
Fig. 6), the plots share the same feature. For fixed k, rKK

increases with decreasing ‘Hi, but, interestingly, the maxi-
mum of rKK is given by 0:1 irrespective of the infla-
tionary energy scale ‘Hi. We find that this behavior can be
summarized in the following universal relation:

 rKK�k� ’ rmax

�
k
ki

�
	
; (47)

with

 rmax <O�1�; (48)

 	 � 3; (49)

and note that ki is given by

 ki � aiHi ’ �‘Hi�
�2�3w�=�3�3w� � k
: (50)

Our numerical analysis indicates that the formula (47)
holds as long as the inflationary stage lies in the high
energy regime. For low energy inflation (‘Hi � 1) rKK

is further suppressed, and we confirmed that by computing
rKK for a model with ‘Hi � 0:2 and w � 1=3, showing
that rKK  10�3 at k aiHi.

V. CONCLUSIONS

In this paper, we have investigated the spectrum of
gravitational waves generated from inflation on the brane.
Our analysis generalized the previous work [17] in that the
present background cosmological model allows for the
post-inflationary stage characterized by the equation of
state parameter w other than 1=3. We have paid particular
attention to the effect of the initial condition: the configu-
ration of the perturbations during inflation includes vac-
uum fluctuations in Kaluza-Klein modes. This was made
possible by the use of the Wronskian formulation [8,17],
which is a distinctive point compared to the other related
works.

Our numerical analysis for the various inflationary en-
ergy scale and equation of state parameter showed that the
contribution of the initial KK fluctuations rKK�k�, defined
in Eq. (43), always behaves as Eq. (47), implying that the
initial KK fluctuations give rise to the subdominant effect
on the spectrum. This is the main conclusion of the paper,
being true in the more general setup than the previous work
[17]. The present calculation covers the limited range of
the inflationary energy scale (up to ‘Hi � 100), but we
believe the results to be sufficient for concluding that also
for higher energy scales, rKK is smaller than order of unity
even at the smallest wavelength concerned (k ki). While
the effect of the initial KK fluctuations can be safely
neglected, the enhancement effect due to the modified
Friedmann equation and the damping effect due to the
excitation of KK modes are dominantly work, yielding
the spectral tilt n ’ ��5� 3w�=�2� 3w� for short wave-
length modes. This can be an observational signature of the
braneworld model with nonstandard (i.e., w � 1=3) cos-
mological history.

FIG. 5 (color online). Fraction rKK for different inflationary
energy scales, showing (from top to bottom) ‘Hi � 10, 50, and
100. The equation of state parameter is given by w � 0.

FIG. 6 (color online). Same as Fig. 5, but w � 1.
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All the results in this paper are given numerically, but
surely they will be great help for understanding the evolu-
tion of gravitational wave perturbations in the braneworld.
Now the clues are in order: the spectral index is given by
Eq. (46) and it is insensitive to the contamination of the
initial KK fluctuations, with their effect expressed in detail
by Eqs. (47)–(49). We will hopefully provide some ana-
lytic arguments complementary to the present numerical
results in a future publication.
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APPENDIX: MODE FUNCTIONS

In this appendix, we present an explicit form of the mode
functions in the Minkowski and de Sitter braneworlds.

In the Minkowski braneworld, the normalized zero
mode function is given by

 ’0�t� �
1��������
2k‘
p e�ikt; (A1)

while the normalized KK mode function is

 ’m�t; z� �
1�����������

2!‘3
p e�i!tum�z�; (A2)

with

 um�z� :� z2

����
m
2

r
Y1�m‘�J2�mz� � J1�m‘�Y2�mz������������������������������������������������

�Y1�m‘��
2 � �J1�m‘��

2
p ; (A3)

and

 ! �
�����������������
k2 �m2

p
: (A4)

In the de Sitter braneworld we introduce new coordi-
nates (
, �), which are related to (t, z) as

 t � 
 cosh�� t0; z � �
 sinh�; (A5)

where t0 is an arbitrary constant. In (
, �) frame the de
Sitter brane is located at a fixed coordinate position � �
�b � constant, and the Hubble parameter on the brane is
given by Hi � ‘�1 sinh�b. The normalized zero mode is

 �0�
� � C�‘Hi� 	
Hi��������
2k‘
p

�

�

i
k

�
e�ik
; (A6)

with

 C�x� :�
� ��������������

1� x2
p

� x2 ln
�

x

1�
��������������
1� x2
p

��
�1=2

; (A7)

and the KK mode functions are found in the form of
���
; �� �  ��
������, where

  ��
� �

����
�
p

2
‘�3=2e���=2��
�3=2H�1�i� ��k
�; (A8)

 ����� � C1�sinh��2�P�2
�1=2�i��cosh��

� C2Q�2
�1=2�i��cosh���; (A9)

with

 C1 �

��������� ��i��
��5=2� i��

��������
2
�

�������� ���i��
��5=2� i��

� �C2
��i�� 3=2�

��1� i��

��������
2
�
�1=2

; (A10)

 C2 �
P�1
�1=2�i��cosh�b�

Q�1
�1=2�i��cosh�b�

: (A11)
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