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Are black holes overproduced during preheating?
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We provide a simple but robust argument that primordial black hole production generically does not
exceed astrophysical bounds during the resonant preheating phase after inflation. This conclusion is
supported by fully nonlinear lattice simulations of various models in two and three dimensions which
include rescattering but neglect metric perturbations. We examine the degree to which preheating
amplifies density perturbations at the Hubble scale and show that, at the end of the parametric resonance,
power spectra are universal, with no memory of the power spectrum at the end of inflation. In addition, we
show how the probability distribution of density perturbations changes from exponential on very small
scales to Gaussian when smoothed over the Hubble scale—the crucial length for studies of primordial
black hole formation—hence justifying the standard assumption of Gaussianity.
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I. INTRODUCTION

Primordial black holes (PBHs) span a wide range of
mass scales and are typically much smaller than the solar
mass ( � 1033 g) and may be formed in the early universe
[1]. PBHs may form from the gravitational collapse of
large density fluctuations at horizon (i.e., Hubble scale k �
aH) crossing in the radiation dominated universe. A PBH
formed at the Planck time �10�43 sec will have a mass
�1019 GeV, while masses around �1015 g are formed at
�10�23 sec (see, for example, [2]).

The evaporation time for a PBH mass �1015 g is nearly
the present age of the universe, so PBH with smaller
masses than this would have evaporated in the past, un-
loading a potentially vast amount of entropy. The success
of the standard cosmology and the observation of the
cosmic rays severely constrains the abundance of PBHs
for various masses and provides useful constraints on infla-
tionary and early universe physics.

For example, big bang nucleosynthesis limits the PBH
abundance in the mass range 106 � 1013 g, by limiting the
entropy from Hawking radiation or requiring that it does
not modify the cosmological composition of the light
elements [3]. PBH of mass 1015 g evaporating now will
emit particles such as �-rays which are constrained by
observations of the extragalactic �-ray background which
imply �PBH < 10�8 [4]. For>1015 g, the limit on the PBH
abundance is obtained from requiring that �PBH does not
exceed unity.

These observational constraints on PBHs provide a
powerful probe of the primordial fluctuations. The upper
bound on the abundance of PBHs directly leads to that on
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the density fluctuation at horizon crossing when PBH are
formed. Therefore the scales of fluctuations relevant to
PBH formation are much smaller than those associated
with the cosmic microwave background and the large-scale
structure. This makes studying PBHs important. In the
past, for example, constraints on the density perturbation
spectrum were obtained by studying PBH formation [5].
While the requirement that PBHs are not overproduced
yields useful information about the early universe, PBH
can be an interesting dark matter candidate in smaller
abundances [6].

In this paper we will show that typically PBH are not
overproduced during the violent nonequilibrium phase of
preheating that follows the end of many inflationary mod-
els. This follows from three key observations: (i) the peak
of the density perturbation spectrum typically lies at scales
smaller than the Hubble scale. (ii) The peak corresponds to
density contrasts of order unity. (iii) The slope of the
spectrum around the horizon size is three (in 3d). Putting
these together we typically find that, at the horizon scale
relevant for PBH formation, the density contrast is around
an order of magnitude too small to overproduce PBH.
Nevertheless, the density perturbation on the horizon scale
is significantly enhanced by preheating (by several orders
of magnitude) compared with the no-resonance case and,
hence, preheating is important in understanding the poten-
tial astrophysical and cosmological implications of PBH.

In studying the production of PBHs, one usually as-
sumes that the probability distribution of density fluctua-
tions at horizon crossing is Gaussian. This assumption is
critical because the density perturbations which collapse to
black holes are very rare: several � fluctuations (otherwise
PBH will be overproduced in all cases) and therefore
production of PBHs is sensitive to the tail of the distribu-
tion. Indeed Bullock and Primack [7] found that in some
inflation models large perturbations are suppressed relative
to a Gaussian distribution, resulting in a significant change
-1  2005 The American Physical Society
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in a number of PBH. We study the validity of the Gaussian
assumption in a later section.

Among various possible scenarios that might overpro-
duce PBHs, we focus on preheating after inflation.
Preheating is a process in which energy transfer occurs
rapidly from inflaton field to another field due to the non-
perturbative effects during the oscillating phase of the
inflaton [8]. This process significantly differs from the
usual reheating scenario, where an inflaton decays pertur-
batively to another particle, in a sense that in preheating
most energies of the inflaton field convert to created par-
ticles only during the several oscillations of the inflaton
and even the massive particle which is much heavier than
the inflaton can be created. It has been understood that
parametric resonance occurs generically at the first stage of
reheating [9]. The parametric resonance does not last long
because the rapid increase of created particles eventually
affects the motion of the background field and the created
particles scatter off each other, removing the particles from
the resonance band. By these effects, the resonance be-
comes inefficient and the decaying process of the inflaton
is described by usual single-body decay theory which
finally leads to the thermal equilibrium state [10].

There are many works on preheating. The first stage of
preheating, where the backreaction is negligible and the
linear approximation is valid, was studied in detail in [11–
13]. Parametric resonance including metric perturbations
in order to see the behavior on super horizon scales were
studied in [14–20]. As in the case without metric pertur-
bations, there is a crucial difference between the single and
multiple field cases. The analysis of fully nonlinear pre-
heating including gravity is very difficult. Before now,
different approximations such as mean-field approxima-
tion [19–25], lattice simulation [26] without metric per-
turbation, and one-dimensional fully nonlinear
calculations [27–29] have been done for studying the
various effects caused by preheating on the present
universe.

Green and Malik [30] argued that PBHs will be over-
produced due to the amplification of fluctuations during
preheating for many parameter regions in a two-field mas-
sive inflation model based on the results of [31], which
takes into account the second order fluctuation of the 

field. Put simply, their results suggested that the backreac-
tion time scale was smaller than the time scale for the
overproduction of PBH.

Bassett and Tsujikawa [22] studied PBH production in
the two-field massless inflation model including the effect
of backreaction via the Hartree-Fock approximation and
found that PBH overproduction might occur, if the proba-
bility distribution of fluctuation at horizon crossing was
assumed to be chi-squared (which lowers the threshold
mass variance, �). However, they found that PBH were
not overproduced if the distribution was assumed to be
Gaussian and the density field was smoothed on the scale
063507
of the horizon. Nevertheless, that analysis was limited
since it neglected the mode-mode coupling effects of re-
scattering and, hence, there was an open question both as to
the underlying probability distribution of the density fluc-
tuations and the contribution of rescattering to horizon-
scale fluctuations.

We address both of these issues in this paper. We study
PBH production due to preheating via two- and three-
dimensional lattice simulations which automatically in-
clude the effects of backreaction and rescatterings. We
modified the C++ code LATTICEEASY written by Felder
and Tkachev [32]. In lattice simulations, the evolution
equations for the scalar fields (and also the scale factor)
are solved in real (as opposed to Fourier) space (N �
20482 for two-dimensional simulation and N � 1283 for
three-dimensional simulation). Metric perturbations were
not included, so we cannot apply this method to the dy-
namics on super horizon scales. We followed the evolution
of both the scalar fields and the total density perturbation.
We found that PBH are not overproduced and, interest-
ingly, that the power spectrum at the end of preheating has
a universal feature; that is, it is determined by the preheat-
ing dynamics and does not depend on the initial conditions.
We also studied the probability distribution of the density
perturbation at horizon crossing and found that it remained
Gaussian which seems to be valid even in the tail of
distribution.

A brief summary of our paper is as follows. Section II
gives a brief review of calculating the PBH abundance and
preheating models. Sections III and IV show the numerical
results of the lattice simulations. Section V is devoted to
the discussions of the role of metric perturbations.
Section VI is a summary and discussion.
II. PBH FORMATION BY
PARAMETRIC RESONANCE

A. Abundance of PBHs

In this subsection, we briefly review the standard method
to estimate the abundance of PBHs [33]. In the radiation
dominated universe, PBHs will be produced if �H, the
amplitude of density perturbations � smoothed over the
horizon size in the comoving gauge, exceeds a certain
threshold �c [34,35]. From linear analysis, the critical
value of �c is roughly estimated to be 1=3, but it is not
independent of the initial density profile. Numerical study
[36] suggests �c � 0:7 for various initial density profiles
(see also [37]).

Under the assumption that the probability distribution of
density fluctuation at horizon crossing is Gaussian, the
mass fraction of PBHs at the formation time, �, is esti-
mated as

� �
Z 1

�c
d�HP��H� �

��������
2�

p
�c

exp
�
�
�2
c

2�2

�
; (1)
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where �2 is the variance of �H. Since the mass fraction of
PBHs increases in proportion to the scale factor in the
radiation dominated universe, � must be very small in
order to satisfy the astrophysical constraints.

Roughly speaking, � is observationally constrained to
be smaller than about 10�20 for most of the range of PBH
mass except for a small window at M 	 1015 g, which
corresponds to PBHs evaporating now. If we adopt 10�20

as the upper bound on �, the upper bound on � becomes
�0:03 and �0:08 for �c � 0:3 and 0:7, respectively, as-
suming a Gaussian distribution for �. Though there is
uncertainty in �c, it does not affect our conclusions in
the range of values 0.3–0.7. Therefore we adopt the smaller
value 0:03 as the upper bound on � to be conservative.

To estimate the variance of density perturbations at the
horizon scale, we simply use the power spectrum P ��aH�,
where a and H are, respectively, the scale factor and the
Hubble parameter, and P ��k� is defined by

h�k��k0 i �
2�2

k3 P ��k��� ~k� ~k0�: (2)
B. Models of parametric resonance

In this paper, we consider two simple models of
preheating.

1. Conformal models

Conformal models are models composed of two scalar
fields with the potential given by [12]

V��;
� �
�
4
�4 

g2

2
�2
2: (3)

Here � is the inflaton field. We start our simulation at the
time when � drops down to 0:34mpl [12], where m2

pl �

1=G. In the oscillating phase of the inflaton, the universe is
effectively radiation dominated for the potential quartic in
fields when averaged in time.

As a standard, we introduce rescaled fields by

~� � a�=�0; ~
 � a
=�0; (4)

where the scale factor a is normalized to unity at the end of
inflation, (i.e., at the beginning of preheating).

We also introduce the rescaled conformal time ~�, related
to proper time t by

ad~� �
����
�

p
�0dt: (5)

Then, the equations of motion for this model become

~� 00 � ��1� ~� ~�3 
g2

�
~�~
2 �

a00

a
~� � 0; (6)

~
 00 � ��1�~

g2

�
~�2 ~
�

a00

a
~
 � 0; (7)

where 0 denotes the differentiation with respect to ~�. In the
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radiation dominated universe (a / ~�), the last terms in
Eqs. (6) and (7) proportional to a00 vanish, and thus these
equations reduce to the Minkowski ones. This is only
exactly true if � were minimally coupled to the curvature
but since this is a weak effect we neglect it.

The unperturbed background solution for ~� is given by
Jacobi’s elliptic cosine function, cn�~�� [12]. Then, linear-
ized equations obey the so-called Lamé equation [38] with
resonance parameters 3 and g2=� for � and 
, respec-
tively. Hence, the growth rate of the longest wavelength
mode for 
 is solely determined by g2=�, and there is a
strong resonance at the longest wavelengths for g2=� �
2; 8; 18; . . . . Roughly speaking, the largest wave number in
the efficient resonant band is

kmax �

�
g2

�

�
1=4 ����

�
p
�0: (8)

An outstanding feature of conformal models is that the
modes which are amplified by parametric resonance do not
change by cosmic expansion. The Lamé equation for �
also has instability bands, but the growth rate is small
compared with the typical one for 
 and limited to roughly
the Hubble scale [12,39].

In our lattice simulations, the evolution of the scale
factor a is determined self-consistently by solving the
Friedmann equation with the spatially averaged energy
density. In the simulation, � is fixed to 9 � 10�14 appro-
priate to the Cosmic Background Explorer (COBE) nor-
malization. We studied both g2=� � 2 and 50. In both
cases, there is parametric resonance of 
 for the k � 0
mode in the linear regime. In the former, the 
 background
is not strongly suppressed while in the latter case the 

field is heavy and is strongly suppressed during inflation
[18–20].

2. Massive inflaton models

We also considered massive inflaton models with the
potential

V��;
� �
m2

2
�2 

g2

2
�2
2: (9)

When the inflaton field oscillates around the potential
minimum, the equation of state of the inflaton is dust on
average. This means that amplitude of the background
inflaton field decreases as / a�3=2. Therefore it is conve-
nient to introduce rescaled fields as

~� � a3=2�=�0; ~
 � a3=2
=�0; (10)

where �0 � 0:193mpl. Then, until the backreaction due to
parametric resonance becomes efficient, the amplitude of
the background ~� stays almost constant. In terms of re-
scaled fields, the equations of motion are
-3
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�~�� a�2� ~��
3

2
_H ~��

9

4
H2 ~�m2 ~�

g2a�3 ~�~
2 � 0;

�~
� a�2�~
�
3

2
_H ~
�

9

4
H2 ~
 g2a�3 ~�2 ~
 � 0;

(11)

where _ denotes the differentiation with respect to the
proper time. From these equations, in contrast to the con-
formal case, we see that the expansion of the universe
affects the motion of scalar fields: The wavelength of
each comoving mode is redshifted and the effective cou-
pling between ~� and ~
 is decreased.

The linearized equations of (11) was extensively studied
in [11]. The equation for 
 approximately reduces to the
so-called Mathieu equation and the evolution of the 
 field
shows broad resonance for

q :�
g2�2

0

4m2 � 1: (12)

Huge amplification of 
 occurs at each time when ampli-
tude of the inflaton field becomes zero due to violation of
the adiabatic condition _!=!2 < 1 for the 
-field fre-
quency, !.

When the expansion of the universe is taken into ac-
count, the parametric resonance shows stochastic behavior
because the phase of the 
 field is randomized. Despite the
stochastic nature, the amplitude of the 
 field grows ex-
ponentially on average. The maximum wave number in the
resonance band is given by [11]

kmax �mq
1=4: (13)

In our simulations, we adopt m � 10�6mpl indicated by
the COBE normalization, and g � 10�3 as a representative
which realizes strong resonance. With this choice of pa-
rameters, we have q � 104 at the beginning of preheating.

C. Initial conditions

Since the modes that our simulation covers are mostly
on subhorizon scales, the initial conditions for the field
fluctuations after inflation can be determined by the for-
mula for the adiabatic vacuum. For example, for the

-field we have

h
k
�k0 i �
1

2!k
��k� k0�; (14)

where !k �
������������������
m2

  k

2
q

and

m
 :� g�0 (15)

is the effective mass evaluated at the end of inflation.
Recall that we have set a � 1 at that time. Since we
consider the cases with m
=kmax � �g2=��1=4 greater
than unity (for g2=� � 50), the power spectrum of the 

field is given by
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P 
�k� 	
k3

4�g�3
0

; (16)

for wavelengths relevant for parametric resonance.
We also use Eq. (14) as the initial condition for fluctua-

tions of ~�, replacing m
 in !k with

m� :�
������
3�

p
�0 (17)

in the conformal models and m in the massive inflation
models.

In the conformal model with g2=� � 2, 
 stays almost
always massless during inflation. In this case, the initial
spectrum on the superhorizon size becomes scale invariant
[19,21]. However, the precise initial power spectrum (i.e.,
after inflation) of scalar fields on subhorizon scales is
rather involved. So here, for simplicity, we approximated
P 
 as

P 
 �
1

4�2 �k
2 H2�; �a � 1�; (18)

which is blue on small scales and flat on large scales,
capturing the key features of the spectrum. We will see
that the precise form has no effect on the final results.

In our simulations, we compute classical dynamics tak-
ing the variance of these initial quantum fluctuations as if it
were statistical variance, as standard [32]. During the early
stage, the evolution is in the linear regime and amplifica-
tion of the 
 occupation number in the quantum picture is
correctly described by the amplification of the perturbation
amplitude in classical dynamics [40]. When the nonline-
arity becomes important, the occupation number of modes
relevant for resonance is far beyond unity. Hence, a clas-
sical treatment is justified at late epoch, too. Moreover, as
we will see later, our final conclusion is quite insensitive to
initial conditions.

III. NUMERICAL RESULTS

In this section, we show the numerical results of the
lattice simulations obtained by using LATTICEEASY [32]
during preheating. In lattice simulations, evolutions of
scalar fields are solved in the Friedman-Robertson-
Walker universe. The expansion rate of the universe is
given by the spatial average of the energy density at each
lattice point, that is,

H2 �
8�

3m2
pl

h!� ~x�i; (19)

where !� ~x� is the total energy density of scalar fields which
includes the gradient energy of scalar fields as well as the
kinetic energy and potential energy.

A. Conformal Models

For the conformal model, the rescaled conformal time ~�
defined in Eq. (5) and the rescaled spatial coordinate ~xpr
-4
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FIG. 1. Evolution of the power spectrum of scalar fields and
the total density perturbation for g2=� � 50. The horizontal axis
is comoving wave number normalized by the (effective) inflaton
mass at the end of inflation m�. Time flows vertically. Lines
labeled as a, b, c, d, e, and f are for times ~� � 0, 50, 60, 70, 80,
and 100, respectively. Thus, during our range of simulation, the
inflaton field oscillates about 100=7:4 � 14 times. An arrow
pointing upward represents a rapid increase of the amplitude
of fluctuations of the inflaton field due to the initial parametric
resonance, and the arrow pointing rightward shows rescattering:
High energy particles are generated by mode-mode coupling and
scattering of low energy particles.
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defined as ~xpr �
����
�

p
�0 ~x are used in the program, where ~x

is the comoving coordinate. We choose Lpr � 200 as the
box size for all cases. The number of lattice points is N �
20482, 1283 for two- and three-dimensional space, respec-
tively. Time step d~� is 0:1. The result does not change for a
smaller value than d~� � 0:1.

1. g2=� � 50 case

Figure 1 shows the time evolution of the power spectra
of the � and 
 fields and density perturbations until the
backreaction shuts off the parametric resonance. Let us
first focus on the power spectra of � and 
 fields. Both
power spectra are proportional to k3 at the beginning. This
is because the mass of each field is larger than the highest
momentum resolved by simulation. In the early stage of
evolution linear perturbation is a good approximation. The
maximal characteristic (Floquet) exponent %max for � is
�0:036, while that for 
 is �0:2. Hence, in this early stage
perturbations of the 
-field grow exponentially, but those
of the�-field almost stay constant. After a few oscillations
of the inflaton field, the perturbations of� suddenly start to
grow. This can be understood as follows. From Eq. (6), the
equation of motion for ~’ :� ~�� h ~�i is

~’00 � ��1� ~’ 3h ~�i2 ~’ 3h ~�i~’2 

~’3 
g2

�
�h ~�i  ~’�~
2 � 0: (20)

As 
 grows exponentially by the parametric resonance, the
last term in Eq. (20), g

2

� h
~�i~
2, exceeds the term 3h ~�i2 ~’. At

this stage, the linear approximation for ~’ breaks and ~’
begins to grow proportional to ~
2, whose characteristic
exponent is �0:4 [11]. This happens when ~
 exceeds a
critical value,

~
 c �
�
g2

3�

�
�1=2

~’1=2: (21)

At the largest wave number in the resonance band of the


-field, the initial amplitude of ~’ is given by 	�������������������������
k3

max=4�
����
�

pq
	 �g2=��3=8

������������
�=4�

p
. Hence ~
c is estimated

as

~
 c 	
�
g2

�

�
�1=16

�1=4 � 10�3: (22)

This rough estimate is consistent with the results of our
lattice simulations.

Exponential amplification due to parametric resonance
still continues until the effect of backreaction becomes
significant. Parametric resonance ends when the second
term in Eq. (3) becomes equal to the first term; that is,
when ~
 is amplified to
063507-5
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~
 b �
�
g2

�

�
�1=4

: (23)

The initial amplitude of ~
 at the shortest resonant mode

given in (8) is 	
������������������
k3

max=m

q

	 �g2=��1=8
����
�

p
.

Approximating the evolution of ~
 as ~
 / e%~�, the time
at which parametric resonance ends, ~�f, is estimated by

e%~�f �

�
g2

�

�
�3=8

��1=2: (24)

Solving Eq. (24), we have ~�f � 70. This estimate is con-
sistent with the result ~�f � 80 read from Fig. 1. Since ~�f
depends on the initial amplitude of ~
 logarithmically, ~�f
does not depend so much on the parameter g2=� as long as
models associated with strong resonance are concerned
[11].

By the time when the backreaction becomes important,
the amplitude on smaller scales also increases due to the
effect of rescattering.

In three dimensions, at the time when the simulation
ends, the shortest wavelength modes have the largest am-
plitude in the simulation. However, this seems to be an
artifact due to lack of resolution. In the corresponding two-
dimensional simulations shown in Fig. 2, we can also see
the rescattering effect. In this case perturbations do not pile
up near the shortest wavelength but peak at a finite value of
k. This is indeed consistent with the picture that 
 particles
with very large kinetic energy k! 1 are not produced.

Let us now focus on the power spectrum of density
perturbations. The energy density ! is given by
- 1.5 - 1 - 0.5 0 0.5 1

- 12

- 10

- 8

- 6

- 4

- 2

log(k/mφ)

lo
g
 P
δ

FIG. 2. The power spectrum of density perturbation after pre-
heating for two-dimensional space. We see that the slope of the
power spectrum for small k is two, as expected.
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a4��1! �
1

2
� ~�0 � ~H ~��2 

1

2
�~
0 � ~H ~
�2 

1

2�
� ~r ~��2


1

2�
� ~r ~
�2 

1

4
~�4 

g2

2�
~�2 ~
2; (25)

where ~H :� @~� loga. From this equation, the density
perturbations to first order are

a4��1�! 	 �h ~�i0 � ~H h ~�i��’0 � ~H’�  h ~�i3’: (26)

As we have already mentioned, amplitude of ’ is almost
constant in the linear perturbation regime. Therefore in this
regime amplitude of density perturbations does not grow.
This behavior of �! can be observed in Fig. 1. When the
amplitude of ~
 reaches ~
c, the terms second order in field
perturbations start to contribute to �!. Then, density per-
turbations begin to grow rapidly. After the exponential
increase of �!, the amplification of density perturbations
stops when the growth of field perturbations terminates due
to backreaction to the oscillation of h ~�i.

From Fig. 1, we find that the slopes of power spectrum of
resultant density perturbations on large scales are all equal
to three.

As we shall see below, this result does not change even if
we artificially amplify the initial fluctuations of fields on
large scales, which leads to the rule of thumb that after
preheating correlation of perturbations on large scales dis-
appears rather independently of the initial power spectrum.

We can give a simple interpretation to this result. What
we assume is that the resultant density perturbations have a
typical scale r, and correlations on larger length scales are
strongly suppressed. In such a situation, the integral

1

kD
P ��k� /

Z
dDxh��0��� ~x�iei ~k ~x (27)

is dominated by a small region with j ~xj & r, whereD is the
number of spatial dimensions, which is three in our simu-
lation. For long wavelength modes with k� r�1, ei ~k ~x can
be approximated by unity. Thus, we have

P ��k� / kD: (28)

We also performed two-dimensional lattice simulations,
and found the power spectrum proportional to k2 on large
scales as predicted; see Fig. 2.

One may think that we have obtained this result because
of the initial blue spectrum of the 
-field. Since the char-
acteristic exponent of the parametric amplification is al-
most the same for all modes with k=m� < �g2=��1=4, the
parametric resonance will end due to the backreaction from
the mode of the shortest resonance scale, at which the
initial amplitude is the largest among the modes in reso-
nance. At that time, perturbations of the 
-field still remain
small on large scales (where by large scale we here mean
around the horizon size and larger).
-6
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Here we show that the initial blue spectrum is not a
necessary condition for suppression on large scales. For
this purpose, we performed the same simulation but with
the scale-invariant initial spectrum (P 
 � const, where the
power spectrum is initially amplified on large scales).
Figure 3 shows P � after preheating in this case.

From this figure, we see that at the end of preheating
perturbations on horizon scales are suppressed with slope
3, which is the same as in the case with the initial blue
spectrum. This result indicates that in general parametric
resonance causes loss of correlation between density fluc-
tuations beyond a typical length scale and energy is effi-
ciently cascaded to shorter wavelengths by rescattering.

In order to estimate the production rate of PBHs, we
have to compute �!=! smoothed over the horizon size.
The horizon size when parametric resonance ends corre-
sponds to k � aH 	 5 � 10�3m�, which is not covered in
our three-dimensional simulations.

However, since there is no typical length scale before the
horizon scale, it will be natural to expect that one can
extrapolate the power spectrum to horizon size assuming
the slope of the power spectrum of density perturbations is
D. The result of two-dimensional simulations (Fig. 2) also
- 1.5 - 1 - 0.5 0

- 5

- 4

- 3

- 2

- 1

0

log(k/mφ)

lo
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δ
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FIG. 3. Power spectrum of the total density perturbation after
preheating for three cases in three dimensions. Lines labeled as
a, b, and c correspond to g2=� � 50, g2=� � 50 with scale-
invariant power spectrum, and g2=� � 2, respectively. We see
that the slope of the power spectrum for small k is universal with
a value of three. The dashed line has k3 power and crosses the
threshold at the horizon scale. All three lines lie significantly
under the dashed line, showing that PBHs are not overproduced
in these cases. The peak of the spectrum and subsequent decay
are not resolved by our three-dimensional simulations but are
resolved in two dimensions.
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supports this extrapolation. With the aid of this extrapola-
tion, the amplitude of density contrast at the horizon size
�H can be estimated from Fig. 1 as

�H � 3 � 10�4; (29)

which is an order of magnitude smaller than the threshold
for PBH overproduction (0.03). Therefore we conclude it is
unlikely that PBHs are overproduced by the parametric
resonance in the case with g2=� � 50.

2. g2=� � 2 case

We also performed lattice simulations for g2=� � 2. In
this case, the power spectrum of 
 at the end of inflation is
flat for k < H0, where H0 is the Hubble parameter at the
end of inflation. Therefore, the modes whose wavelength is
much larger than the horizon size are not suppressed in this
case, which is different from case 1 g2=�� 1 [19]. Taking
into account the fact that there is a strong resonance at
small k for g2=� � 2, there is a possibility of PBH over-
production in this case [22,30].
P � for g2=� � 2 is shown in Fig. 3. As before, the

power spectrum of � after parametric resonance is sup-
pressed and its slope is 3 around the horizon scale, imply-
ing that large-scale perturbations are uncorrelated.
Therefore, in the same way as discussed in the case with
g2=� � 50, production of PBHs caused by parametric
resonance will not be efficient enough to exceed the as-
trophysical bounds.

B. Massive inflaton models

For the massive model, program time ~t and program
spatial coordinate ~xpr are given by ~t � mt, ~xpr � m~x,
where t and ~x are the cosmological time and comoving
coordinate, respectively. The box size and time step are
chosen as Lbox � 5 and d~t � 5 � 10�3 in program units.
We adopt m � 10�6mpl and g � 10�3. The number of
lattice points is 1283.

Figure 4 shows the evolution of the power spectrum
during preheating for a massive inflaton model. From this
figure we find that the power spectrum after preheating is
/ k3 on horizon scales as in the case of conformal models.

Here we cannot directly use the criterion for the PBH
production discussed in Sec. II, because the universe is not
radiation dominated but dust on average. Because of the
difference of the equation of state, the condition that
density perturbations collapse to form a black hole differs
from the one in the radiation dominated universe. In [33],
the critical density �c for the equation of state,

P � -!; (30)

depends on -. Here we assume that the instability of the
density perturbation of scalar fields in massive inflaton
models is similar to the fluid case with the same effective
equation of state.
-7
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We see that - after preheating is about 3 � 10�2, i.e., the total
system behaves approximated as dust.0.5 1 1.5 2
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FIG. 4. Evolution of the power spectrum of � for the massive
inflaton model. Lines labeled as a, b, c, d, e, and f correspond to
mt � 0, 50, 60, 70, 100, and 120, respectively. The dashed line
represents the threshold for PBH overproduction which lies well
above any of the curves.
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The energy density and pressure in massive inflaton
models are

! � T U; P � T �U; (31)

with

T �
1

2
_�2 

1

2
_
2;

U �
1

2

�
1

a
~r�

�
2


1

2

�
1

a
~r


�
2

m2

2
�2 

g2

2
�2
2:

(32)

Using the equations of motion for the scalar fields, we can
show the relation,

hTi � hUi 
g2

2
h�2
2i; (33)

where h� � �i denotes a long time average with the weight
a3dt. Hence, we can estimate - by

- 	
g2

2
h�2
2i=h!i: (34)

Figure 5 shows the time evolution of this quantity during
preheating.

At the end of preheating - becomes as large as �3 �
10�2. Therefore the ratio of pressure to energy density after
preheating in a massive inflaton model is 10 times smaller
than that of the radiation dominated universe. Hence, the
upper limit on � in the case of massive inflaton model will
be reduced to about 3 � 10�3. On the other hand, from
Fig. 4, the value of the power spectrum of the density
perturbation at horizon size (k 	 1 � 10�1 m) can be esti-
063507
mated as

�H � 5 � 10�4; (35)

where we have used the simulations to conclude that the
power spectrum is proportional to k3 for small k. This is
smaller than the threshold �3 � 10�3 again by about 1
order of magnitude. Therefore we conclude that PBHs will
not be overproduced in the massive inflaton model, either,
despite the fact that � is significantly enhanced by reso-
nance on horizon scales.

IV. GAUSSIANITY

In this section, we discuss the probability distribution of
the amplitude of density perturbations at the end of pre-
heating. In the preceding sections, we estimated the abun-
dance of PBHs by assuming that the probability
distribution of density perturbations at the horizon size is
Gaussian. If the tale of distribution, which is relevant for
PBH formation, had a non-Gaussian tail, the resultant
astrophysical constraints would be significantly altered
and, hence, it is a crucial assumption to test. Further, since
rescattering ( / �
2) is crucial, one might expect chi-
squared corrections to be important.

We first show the distribution of density fluctuation
smoothed over the shortest resonant scale in a conformal
model. The result is shown in Fig. 6 (below). We can see
that the distribution does not trace a Gaussian distribution
at the end of preheating, while it does at the initial stage. In
particular, the probability of a large amplitude of perturba-
tions is enhanced through preheating. Interestingly, the late
time distribution looks like exponential.

These results can be understood as follows. At the initial
stage where the linear approximation is valid, density
perturbation is just a superposition of Gaussian distribu-
tions. Hence, the probability distribution is Gaussian. As
perturbations grow, the terms quadratic in field perturba-
tions start to contribute to !. The probability distribution in
-8
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FIG. 7. The probability distribution of density fluctuation
smoothed over the scale 50 �m� in the conformal model. The
dotted line is the distribution at the initial time and the solid one
is at the end of preheating. Contrary to Fig. 6, the distribution is
still Gaussian even at the end of preheating. Hence, on the
horizon scale relevant to PBH production the Gaussian assump-
tion is a good approximation.
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FIG. 6. The probability distribution of density fluctuations
smoothed over the scale m� (the Compton wavelength of the
inflaton) in the conformal model. The dotted line is the spectrum
at initial time and the solid line is the spectrum at the end of
preheating. The dashed line is an appropriately scaled Gaussian
distribution. At the end of preheating, the distribution of large
fluctuations is significantly more amplified than the Gaussian
prediction.
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such situation will be mimicked by a product of two
Gaussian random variables x and y. The probability distri-
bution of z � xy is given by

P�z� �
1

2��1�2

Z dx
x
e��x2=2���z2=�2�2

1�
2
2���1=x

2�

�
1

2
��������������������
2��1�2z

p e��z=��1�2��; (36)

where �2
x and �2

y are variances x and y, respectively. Here
in the last step we used the steepest decent method assum-
ing z is much larger than �1�2. In this manner, one can
reproduce a pure exponential distribution for large values
of z.

Next, we show the distribution of density perturbations
averaged over a large scale. The result is shown in Fig. 7. In
this case the distribution is almost Gaussian even at the end
of preheating. This result can be interpreted as follows. As
we discussed in Sec. V, the density perturbations lose
correlation on scales much larger than the shortest wave-
length in the resonance band. Hence, the average over a
large length scale L behaves as a sum of a large number of
independent random variables of O��Lkmax=a�3�.
Therefore its distribution is guaranteed to be close to
Gaussian by the central limit theorem, which is consistent
with the numerical results. Significant deviations from
Gaussianity are not expected unless the amplitude is about
�Lkmax=a�3 times larger than the standard deviation. Since
the horizon size at the end of preheating is much larger than
the shortest wavelength in the resonance band, the required
063507
amplitude is extremely large, and hence the probability of
finding it is completely negligible.

Hence, non-Gaussianity cannot affect the estimate of the
PBH formation rate.
V. THE EFFECT OF METRIC PERTURBATIONS

Finally, we briefly discuss the role of gravitational in-
teractions (metric perturbations) which might have effects
on PBH formation. We have neglected them throughout
this paper but there is a good reason why one expects that
this is a good approximation. The time scale for gravita-
tional collapse is at most free fall time. Unless density
perturbations significantly exceed O�1�, this time scale is
identical to the Hubble time scale. On the other hand,
parametric resonance undergoes with the time scale deter-
mined by the effective mass of the inflation, which is in
general shorter than the Hubble time scale. Moreover, in
the expanding universe gravitational instability does not
grow exponentially, while parametric resonance drives ex-
ponential growth of perturbations. Hence, we expect gravi-
tational interactions play a subdominant role at the stage of
preheating, although later on a longer time scale gravita-
tional collapse may proceed in cases where the effective
pressure happens to be very small (such as in the massive
model).

In the treatment neglecting the gravitational interaction,
there arises another subtlety related to the gauge. We
discussed the amplitude of density perturbations at the
horizon size, but it is a gauge dependent quantity. Hence,
strictly speaking, it is incorrect to quote the criterion for the
-9
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PBH formation stated in terms of density perturbations in
comoving gauge. Moreover, it is more suitable to use the
amplitude of metric perturbations rather than density con-
trast [36,37].

In the present context, this is mainly because the power
spectrum of density perturbation has a strong
k-dependence, / k3, which means that probability of
PBH formation is very sensitive to the choice of the
horizon size [22]. In contrast, since the metric perturba-
tions well inside the horizon are characterized by the
Newton potential, the power spectrum of metric perturba-
tions will be proportional to k�1. On the other hand, it was
shown in [41] that the curvature perturbation on the con-
stant energy density hypersurfaces 3 (Bardeen parameter)
behaves like / k3 on super horizon scales after preheating
by using the separate universe approach [14,42–45].

Therefore, for instance, the curvature perturbation 3 will
have a peak near the horizon size, and we will be able to
obtain an unambiguous upper limit on the abundance of
PBHs produced by preheating. From the above considera-
tion, including metric perturbation in the evolution of
scalar fields is an interesting issue which we leave for
future work.
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FIG. 8. Time evolution of
�������
P �

p
at k � kmax � q1=4m. From

this, we see that backreaction terminates the parametric ampli-
fication at around mt � 70.
VI. SUMMARY AND DISCUSSION

We have studied the formation of black holes during
preheating after inflation. Preheating provides a challeng-
ing framework to elucidate various complex physical pro-
cesses such as nonequilibrium, nonperturbative field theory
in expanding backgrounds. In addition, since preheating is
generic in some regions of parameter space for many
inflationary models, the issue of whether primordial black
holes (PBH) are overproduced is an important one.

To address this, we have performed two- and three-
dimensional lattice simulations of several different inflaton
potentials (conformal and massive) and parameter regions.
These simulations automatically incorporate all nonlinear
effects such as backreaction and rescattering of fields. We
found no evidence for overproduction of PBH, in contrast
to earlier expectations. In addition we found that, although
highly non-Gaussian on very small scale, the spectrum of
density perturbations is effectively Gaussian on the horizon
(i.e., Hubble) scale.

Our results can be understood simply. For all cases, we
found that, when the amplitude of density perturbations at
about the shortest wavelength in the resonant band be-
comes of order unity, the growth due to parametric reso-
nance terminates due to backreaction. At the end of
preheating, the final density spectrum is universal, with a
blue power spectrum, / kD (D � 2; 3) on horizon scales,
depending on whether the simulation was two (D � 2) or
three (D � 3) dimensional. Since the peak of the spectrum
scales significantly shorter than the horizon scale, the
amplitude of the density perturbation at the horizon scale
063507
extrapolated from the peak is typically about an order of
magnitude below the threshold for PBH overproduction.

We gave an explanation of this universality in the slope
of the final power spectrum on large scales as a result of
loss of coherence due to parametric resonance.

These results argue for the view that generically PBHs
will not be produced so much as to violate astrophysical
constraints, even in the case of strong preheating. This
result also applies to the cases with other models and
parameter regions if our interpretation of the power spec-
trum on large scales is universally correct.

The result obtained in this paper is different from the
claim by Green and Malik [30], where they found that
PBHs are likely to be overproduced. They estimated the
time when backreaction becomes significant as well as the
time when the amplitude of density perturbations exceeds
the threshold separately based on linear approximation.
Comparison of these two times was used to give a criteria
for PBH formation. However, for example, in Ref. [11] the
time when the backreaction becomes significant in the case
with m � 10�6mpl and g � 10�3 is estimated to be �90,
which is slightly later than our numerical result (see
Fig. 8). Since the growth of perturbation amplitude is
exponential, a small error in the backreaction time can
lead to wrong conclusions. In calculating the abundance
of produced PBHs, only �10–20 percent error of back-
reaction time can lead to the opposite conclusion. By
contrast, our conclusion is based on self-consistent simu-
lations and rather robust qualitative observations. There is
no delicate comparison of different time scales.

In this paper, we considered standard slow roll inflation.
In such cases, preheating occurs at rather high energies.
Therefore the mass of PBHs formed in the present context
is too small to avoid evaporation before the big bang
nucleosynthesis. Hence, those PBHs are not subject to
any observational constraint even if PBHs are produced
abundantly, unless PBHs leave Planck mass relics [46].
-10
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(Hence, we have assumed that PBH will leave a Planck
mass relic throughout this paper.) Even if relics are formed,
the constraint on the mass fraction of produced black holes
is �< 10�20 [47], we can therefore conclude that produc-
tion of PBHs by preheating does not give a serious con-
straint on such simple models of preheating as discussed in
this paper.

However, our qualitative results will also apply for
preheating at lower energies. Let us consider the possibility
of making more massive black holes by preheating, for
instance, in the case of massive inflaton models. Now we
consider varying the inflaton mass m and the value of the
�-field at the beginning of preheating �0 within �0 &

mpl. (As an example of realizing a small value of �0, we
can consider the hybrid inflation model [48].) The key
quantity is the ratio of kmax given in (13) to the Hubble
parameter, which is estimated as

kmax

H
�
mpl
�
q1=4: (39)

This ratio is independent of m and is the smallest for � 	

mpl. Then the same estimate given in (36) applies as an
063507
upper bound for �H. On the other hand, lowering � down
to 10�30 only changes the upper bound on � from 0.031 to
0.026. Thus, we can say that overproduction of more
massive PBHs due to parametric resonance is also unlikely.

We have also confirmed Gaussianity of the probability
distribution of density perturbations at the horizon scale,
which is assumed in the estimate of the production rate of
PBHs. The appearance of Gaussianity is in accordance
with the interpretation of the spectrum on large scales. If
perturbations become uncorrelated beyond the shortest
resonant scale, perturbations at the horizon scale are given
by the average of many statistically independent random
variables. Thus, Gaussianity naturally follows from the
central limit theorem.
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