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Wave propagation in a weak gravitational field and the validity of the thin lens approximation
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Wave effects can be important for the gravitational lensing of gravitational waves. In such a case, wave
optics must be used instead of geometric optics. We consider a plane wave entering a lens object and solve
numerically the wave equation for three lens models: the uniform density sphere, the singular isothermal
sphere, and the Hernquist model. By comparing our numerical solutions with the analytical solutions
under the thin lens approximation, we evaluate the error of this approximation. The results show that the
relative error of the thin lens approximation is small if the geometrical thickness of the lens is much
smaller than the distance between the lens and the observer.
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I. INTRODUCTION

Gravitational waves from coalescing compact binaries
composed of neutron stars or black holes are the most
promising targets for ground-based as well as space-based
detectors. By applying the matched filtering technique
which uses our theoretical predictions of wave forms ob-
tained by the post-Newtonian computations, we can extract
the binary parameters such as the masses of each compact
object, distance to the source, spatial positions of the
source, and so on [1].

One possibility which alters the predicted wave forms
calculated with high precision is the gravitational lensing
of gravitational waves. If a massive object lies suitably
between the source and the observer, gravitational lensing
of gravitational waves occurs. One important point is that
since the wavelength of gravitational waves we are inter-
ested in is much larger than that of light, a situation where
the geometrical optics approximation breaks down can be
realized in some cases. As is discussed by many authors
[2–6], if the wavelength is larger than the Schwarzschild
radius of the lens object, the diffraction effect becomes
important and the magnification approaches to unity.
Therefore we must use wave optics rather than the geo-
metric optics for
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whereML is a mass of the lens and f is the frequency of the
gravitational waves. This frequency (mHz) is the case for
the planned detector laser interferometer space antenna
(LISA) [7].

Further because the gravitational waves from a compact
binary are coherent, interference between lensed waves is
important. Note that this situation is not in general realized
in the case of gravitational lensing of electromagnetic
wave such as visible light. Since light is emitted from
microscopic region (usually atomic size) which is much
smaller than the size of the source, each phase of the
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electromagnetic wave emitted from different points has
no correlation and thus interference effect vanishes.

If we assume the coalescence of super massive black
holes (SMBHs) of mass 104 � 107M� as the source of the
gravitational waves, it can be detected even if the sources
are located at the cosmological distance (z > 5). Event rate
of SMBH-SMBH merger for LISA is estimated as 0:1�
102 event=yr [8] and lensing probability becomes several
percent. Hence, some lensing events per year will be
detected by LISA.

Motivated by the fact that wave effects can be detected
for the gravitational lensing of gravitational waves, there
are now growing interests in the wave optics in gravita-
tional lensing [9–16]. However we have to solve wave
equation which is generally partial differential equation
between the source and the observer in order to obtain
the lensed wave form at the observer. Except for a few
special cases, exact solutions of wave equation are not
known at present. Several authors have used thin lens
approximation which reduces wave equation to double
integral for single lens object (for multilens objects, inte-
gration becomes multi-integral, see [14]) and thus makes
the problem easier [15,17]. In geometric optics the trajec-
tory of light ray is obtained by solving geodesic equation,
and it is known that thin lens approximation is valid [17].
However there have been no studies or comments about the
validity of the thin lens approximation in the framework of
wave optics.

In this paper, we develop a formulation to solve the wave
equation for a spherically symmetric lens, where a partial
differential equation reduces to a set of ordinary differen-
tial equations. We also solve those equations for simple
lens models: the uniform density sphere, the singular iso-
thermal sphere, and the Hernquist model and evaluate the
error of the thin lens approximation.

This paper is organized as follows. In Section II, we
briefly review wave optics in gravitational lensing under
the thin lens approximation. In Section III, we develop a
formulation to solve the scattering problem of gravitational
-1  2005 The American Physical Society
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waves by a lens. In Section IV, we present our numerical
results and discuss the validity of the thin lens approxima-
tion. Section V is a summary. We use unit of c � 1.
II. GRAVITATIONALLY LENSED WAVEFORM
UNDER THE THIN LENS APPROXIMATION

We consider the wave propagation under the gravita-
tional fields of a lens. We assume that the spacetime metric
is a Minkowski spacetime plus a small perturbation due to
the existence of a static lensing object. Then the metric can
be written as

ds2 � g
�dx
dx� � ��1� 2U�dt2 � �1� 2U�d~x2;

(2)

where U is a Newtonian potential of the lensing object. We
consider a propagation of scalar waves �, instead of gravi-
tational waves, since the wave equation for� is the same as
that for gravitational waves [18]. The scalar wave equation,
@
�

�������
�g

p
g
�@��� � 0, with the metric (2) is rewritten as

�4 �!2��� ~x� � 4!2U� ~x��� ~x�; (3)

where we assume that the wave is monochromatic with the
r
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FIG. 1. Lensing configuration. The lens is the origin of coor-
dinate axes, while the observer position is (r, ~�) with �
 1. The
incident wave is a plane wave propagating in the z-direction.

043001
angular frequency !. The above equation was solved by
using the Kirchhoff diffraction integral (see [17], Sec. 4.7
and 7) under the thin lens approximation.

We show lensing configuration in Fig. 1. We choose a
position of the lens as the origin of the polar coordinate
system (r, �, �). The observer position is r and ~� �
�� cos�; � sin�� with �
 1. The incident wave is a plane
wave propagating in the z-direction. Denoting the incident
wave as �0, we have �0 � ei!r cos�.

In this section, we assume the thin lens approximation,
in which the wave is scattered only on the thin lens plane at
z � 0, and the lens is characterized by the surface mass
density ��~s�, where ~s � �x; y�. The two-dimensional po-
tential  �~s� in z � 0 plane is defined as

 � ~s� � 2
Z 1

�1
dzU� ~s; z�: (4)

Here,  is also obtained from the surface density by using
r2
s � ~s� � 8���~s�.
It is useful to define the amplification factor F (which is

called the transmission factor in Ref. [17]) as F � �=�o,
where � is the gravitationally lensed waveform obtained
by solving Eq. (3) and �0 is the incident wave. The
amplification factor at the observer under the thin lens
approximation is given by [17]

Fthin�r; ~�� �
!

2�ir

Z
d2sei�!=2r�jr ~��~sj

2�i! � ~s�: (5)

Here, Fthin is normalized so that Fthin � 1 for  � 0.
III. FORMULATION OF NUMERICAL
CALCULATION

In this section, we develop a formulation to solve the
scattering problem of gravitational waves by lensing object
which is applicable to the case where the lens potential is
spherically symmetric. A situation we will consider is that
plane wave is entering weak gravitational field which is
spherically symmetric. When the lensing object is spheri-
cally symmetric, a scattering problem can be reduced to a
problem of determining so-called phase shift which is used
to probe the nature of nuclear physics and is also useful for
the scattering by black holes (BHs) where the assumption
of weak gravitational field breaks down [19].

We have to solve Eq. (3) in order to evaluate quantities
such as the amplification factor which can be compared
with the one derived under the thin lens approximation. To
solve Eq. (3), we choose a center of the lens as the origin of
coordinate system. Then U becomes a function which
depends only on the radius coordinate r. Now let us expand
� in terms of Legendre function

���; �� �
X1
‘�0

g‘���
�

P‘�cos��; (6)

where � is a dimensionless variable defined by � � r!.
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Then equations for g‘��� are
�
d2

d�2
� 1� 4 ~U��� �

‘�‘� 1�

�2

�
g‘��� � 0; (7)

where we have used ~U instead ofU in order to stress that ~U
is a function of �.

For a point mass lens, i.e. ~U��� � �p=�2��, where p �
2GM! and M is a lens mass, analytic solutions of Eq. (7)
are known as Coulomb wave functions [20]. The solution
which is regular at � � 0 is

F‘��p; �� � e
�
2p
��‘� 1� ip�
��2�‘� 1��

2‘�‘�1ei��i$‘

� F�‘� 1� ip; 2�‘� 1�;�2i��;

$‘ � arg��‘� 1� ip�; (8)

where F is the confluent hypergeometric function. The
solution which is singular at � � 0 is

G‘��p;�� � �‘�12‘e���=2�p��i�2‘�1ei��i$‘

�U�‘� 1� ip; 2�‘� 1�;�2i��� c:c:; (9)

where U is defined as

U�a; b; z� �
1

��a�

Z 1

0
dte�ztta�1�1� t�b�a�1: (10)

The asymptotic form of these functions are

F‘��p; �� !
��1

sin
�
�� p log2��

�
2
‘� $‘

�
;

G‘��p; �� !
��1

cos
�
�� p log2��

�
2
‘� $‘

�
:

(11)

The term p log2� in the phase of trigonometric functions
represents the nature of long range force which is charac-
teristic of Coulomb force.

On the contrary, a solution of Eq. (3) that a plane wave is
entering a point mass lens is well known and is given by
[21]

�p � e��=2�p��1� ip�ei� cos�F�ip; 1; i��1� cos���:

(12)

Because the solution Eq. (12) is regular at � � 0, it is
written as a partial wave sum of regular Coulomb wave
function,

�p �
X1
‘�0

a‘
F‘��p; ��

�
P‘�cos��;

a‘ � i‘�2‘� 1�e�i$‘ :

(13)

For an extended lensing object, analytic solution of
Eq. (3) does not exist usually. However if the lensing object
exists only in a finite region, then the solution of Eq. (3)
outside the lens can be written as a summation of partial
waves which are now a linear combination of two inde-
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pendent Coulomb wave functions. By determining a coef-
ficient of each Coulomb wave function, we can calculate
the wave form � outside the lens. In the aim of only
determining the wave form far from the lensing object,
we do not need to know the expression of� inside the lens.

Now let us write the solution of Eq. (3) as

� � �p ��s: (14)

Thus �s represents the scattered wave which arises due to
the deviation of lens from a point mass. There may be no
incoming scattered wave to the lens from infinity, so we
assume the asymptotic form of �s as

�s��; �� �
X1
‘�0

ei��ip log2��i
�
2‘�i$‘

2i�
s‘P‘�cos��; (15)

where s‘ are undetermined complex numbers, but not
arbitrary. In order that � in Eq. (14) satisfy the wave
equation (3), s‘ must be related to a‘ as

s‘ � a‘�e2i'‘ � 1�; (16)

where '‘ are real numbers. In terms of '‘, � is written as

���; �� �
X1
‘�0

a‘ei'‘
�
cos'‘

F‘��p; ��
�

� sin'‘
G‘��p; ��

�

�
P‘�cos��: (17)

Thus we can calculate wave form outside the lens object by
determining the phase shift '‘. Here, '‘ are determined by
matching a solution of Eq. (7) with Eq. (17) at a radius �0
being outside the lens. Then, we have

tan'‘ �
g‘��o�F0

‘��p; �o� � g0‘��o�F‘��p; �o�

g0‘��o�G‘��p; �o� � g‘��o�G0
‘��p; �o�

; (18)

where g‘ is a solution of Eq. (7) which is to be calculated
numerically. We set the initial condition of Eq. (7) at � � 0
is that g‘ is regular. The range of '‘ is from ��=2 to �=2.
IV. RESULTS

We investigate the validity of the thin lens approxima-
tion for three lens models; the uniform density sphere, the
singular isothermal sphere, and the Hernquist model.

A. Uniform density sphere

We first present the results for uniform density sphere
which has the simplest structure next to the point mass. The
gravitational potential for the uniform density sphere is
given by

U�r� �

8<
:� GM

2R

�
3� r2

R2

�
�r � R�

� GM
r �r � R�;

(19)

where r is the distance from the center of the sphere, R is
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the radius of the sphere, and M is the lens mass. Here we
consider the case that R is larger than the Einstein radius
rE, in which case the effect of the size of the lens object is
expected to be important. For R< rE, the result is almost
the same as for point lens mass and it is known that
amplitude of the amplification factor for the point mass
lens coincides with that in the thin lens approximation [15].
0 100
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GM   =1R=100

ξ0
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ω ω

=200

FIG. 2. '‘ as a function of ‘ for the uniform density sphere.
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The amplification factor in the thin lens approximation
Eq. (5) for the case of uniform density sphere is written as

Fthin�r; �� � �i
!
r
e�i=2�!r�

2
Z 1

0
dssJ0�!s��eiw��s

2=r�� �s��;

(20)

where J0 is the 0th Bessel function and  is given by
 �s� �

8<
: 4M log�1�

�����������������������
1� �s=R�2

p
� � 4M

3 �4� �s=R�2�
�����������������������
1� �s=R�2

p
�s � R�

4M log�s=R� �s � R�:
(21)
Next let us calculate F numerically by using the method
developed in the previous section. We first show '‘ as a
function of ‘ in Fig. 2. We see that '‘ decreases as ‘
increases. In particular, above around ‘ � 90, '‘ rapidly
approaches zero. This is because the ‘th partial wave can
be interpreted as an incident particle with impact parameter
‘=!. Partial waves of ‘ * !R pass through the lens po-
tential outside the lens object and the gravitational effects
on these partial waves are the same as point mass, which
implies '‘ becomes zero.

Figure 3 shows the error of the amplification factor for
the uniform density sphere as a function of lens parameters
!R, !r, GM!, and �, respectively. The vertical axis is the
error ! defined as, !2 � �jFj � jFthinj�

2=jFthinj
2. The nor-

malized Einstein radius is !rE � 2!
�����������
GMr

p
�

200�GM!=1�1=2�!r=104�1=2. The radius of sphere !R��
100� is comparable to the Einstein radius.

The top left and right panels show ! as a function of!R
and!r, respectively. We find that averaged in R or r over a
period of oscillation, ! is proportional to R=r. Also we find
that ! remains smaller than R=r which is much smaller
than unity. (The dashed lines denote the ratio of the radius
to distance R=r.) This suggests that geometrical thickness
of lens R=r is a suitable measure of the validity of thin lens
approximation in wave optics.

The bottom left panel shows dependence of ! on GM!.
We find that ! has a peak around GM! � 10 and de-
creases as GM! increases for GM!> 10. This result
shows that the thin lens approximation is valid for the
wavelength where we can use geometric optics instead of
wave optics. The reason why thin lens approximation
becomes valid in the geometric optics is that the deflection
angle can be evaluated by using the thin lens potential if the
distance between lens and observer is much larger than the
lens size (see Ref. [17], p. 124). For this panel too, !
remains smaller than R=r in all range of frequencies of
calculation.

The bottom right panel shows dependence of ! on �. We
find that ! becomes maximum at close to � � 0 and
decreases as � becomes larger. This is because for large
� such that r� * R (� * 0:01 for a case of Fig. 3), the size
effect of lens becomes negligible and the lensed waveform
becomes the same as for the point mass lens for which it is
known that thin lens approximation is valid. Except for a
small region of � around where ! takes maximum value, !
is smaller than R=r.

To summarize, for the uniform density sphere, the rela-
tive error of the amplification factor in the thin lens ap-
proximation is suppressed within the ratio of its radius to
distance R=r, which is much smaller than unity in a real-
istic astrophysical situation and is the largest for -�GM
(- is the wavelength).

B. Singular Isothermal Sphere (SIS) model

We also calculated ! for singular isothermal sphere
which is a model of galaxies, dark matter haloes, and star
clusters. The density profile of SIS model is .�r� �
v2=�2�r2� where v is the velocity dispersion. For numeri-
cal calculation, we have to introduce cutoff radius rc
because gravitational potential does not approach to /
r�1 far from the lens without cutoff. Thus we here assume
-4
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that the density vanishes for r > rc. Newton potential
becomes

U�r� �

8<
:
GM
rc

�
ln rrc � 1

�
�r � rc�

� GM
r �r � rc�;

(22)

where M is the mass inside the cutoff radius rc: M �
2v2rc.
Fthin is given by Eq. (20), and  �s� is given by

 �s��

8><
>:
�8GM

rc

��������������
r2c�s2

p
� 4GM

rc
sarctan

����������
r2c�s2

p

s

�4GM ln�1�
����������������������
1��s=rs�

2
p

� �s� rc�
8GM ln�s=rc� �s� rc�:

(23)

Figure 4 presents dependence of ! on parameters, !rc,
!r, !GM, and �. We find that the qualitative behavior is
the same as the case of uniform density sphere. We see
from the top left panel and the top right panel that thin lens
approximation becomes worse as cutoff approaches to
observer’s distance r from the center of SIS.
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∆
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FIG. 3. Error of the amplification factor for the uniform density sp
!r (top right), the mass 2GM!�� p� (bottom left), and the angle
distance R=r.
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C. Hernquist model

We also calculated ! for Hernquist model [22], which
fits well the luminosity distribution of many elliptical
galaxies and bulges. Its density profile is given by

.�r� �
.s

�r=rs��1� r=rs�
3 ; (24)

where rs is a scale length and .s is a characteristic density.
For numerical calculation, we introduce cutoff radius rc for
the same reason as SIS. For r < rc the density is given in
Eq. (24), while for r > rc the density vanishes. Then,
Newton potential becomes

U�r� �

8<
:� GM

r�rs

�
rs�rc
rc

�
2
� rs

rc
GM �r � rc�

� GM
r �r � rc�;

(25)

where M is the mass inside the cutoff radius rc: M �
2�.sr3s�rc=�rs � rc��2.
Fthin is given by Eq. (20), and  �s� is given by
103 104 105 10610−6
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0 0.05 0.110−6
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θ=0 R=100ω GM   =1ω
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r=104ω R=100ω GM   =1ω

here. The horizontal axis is the radius !R (top left), the distance
� (bottom right). The dashed lines denote the ratio of radius to
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FIG. 4. Same as Fig. 3, but for the SIS model. The dashed lines denote the ratio of cutoff radius to distance rc=r.

SUYAMA, TAKAHASHI, AND MICHIKOSHI PHYSICAL REVIEW D 72, 043001 (2005)
 �s� �

8>>><
>>>:
�4M r2s�2rsrc

r2c
arccosh rss � 4M lns� 4 rs

r2c
M

���������������
r2s � s2

p
� 4Mrs�rs�rc�2

r2c
����������
r2s�s2

p arctanh
� �����������������������

�r2s�s2��r2c�s2�
p

s2�rcrs

�
�s � rs�

�4M r2s�2rsrc
r2c

arccosh rss � 4M lns� 4 rs
r2c
M

���������������
r2s � s2

p
� 4Mrs�rs�rc�2

r2c
����������
s2�r2s

p arctan
� �����������������������

�s2�r2s ��r2c�s2�
p

s2�rcrs

�
�rs � s � rc�

4M lns �r � rc�:

(26)
Figure 5 shows ! for Hernquist model. We see that the
behavior of ! is almost the same as SIS.

V. SUMMARY

In this paper we discussed the validity of the thin lens
approximation in the framework of wave optics.

In Sec. III, we developed a formalism to solve the wave
equation for the spherically symmetric potential. In this
case, the partial differential equation can be reduced to a
set of ordinary differential equations. The method we used
is to determine the so-called phase shift which represents
the difference of scattered waves between the point mass
lens and an arbitrary spherically symmetric potential. This
formalism is only applicable to the spherically symmetric
lens whose size is finite. For lens models such as the SIS
profile which extends to infinity, we have to introduce
cutoff to make the total mass finite.
043001
We also solved the wave equation numerically for
the spherically symmetric potential. By numerical
calculations, we found that the error of the thin lens ap-
proximation for the simple lens models is the same as or
smaller than the geometric thickness of the lens, s=r, where
s is the size of the lens and r is the distance between the
lens and the observer. The error is the largest for the
wavelength comparable to the Schwarzschild radius of
the lens.

Finally, we discuss implications of our results for LISA.
We take the SMBHs mergers as the sources for which
the signal-to-noise ratio (SNR) is very high, SNR� 103.
In the matched filtering analysis, the waveform (the
amplitude and the phase) can be measured to an accuracy
approximately equal to �SNR��1 � 0:1% [1]. But, the
ratio s=r (the lens size to the distance) is much smaller
than this value for lensing by galaxies or galaxy clusters.
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FIG. 5. Same as Fig. 3, but for the Hernquist model. The dashed lines denote the ratio of cutoff radius to distance rc=r.
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Hence the thickness of lens cannot be measured and the
thin-lens approximation is valid in real observational
situation. If lensed signal is detected with high SNR, the
three lens models can be distinguished from lensing ob-
servables such as magnification, time delay, and image
numbers.
043001
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