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Radion and holographic brane gravity

Sugumi Kanno*
Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan

Jiro Soda†

Department of Fundamental Sciences, FIHS, Kyoto University, Kyoto 606-8501, Japan
~Received 8 July 2002; published 16 October 2002!

The low energy effective theory for the Randall-Sundrum two-brane system is investigated with an emphasis
on the role of the nonlinear radion in the brane world. The equations of motion in the bulk are solved using a
low energy expansion method. This allows us, through the junction conditions, to deduce the effective equa-
tions of motion for gravity on the brane. It is shown that the gravity on the brane world is described by a
quasi-scalar-tensor theory with a specific coupling functionv(C)53C/2(12C) on the positive tension brane
andv(F)523F/2(11F) on the negative tension brane, whereC andF are nonlinear realizations of the
radion on the positive and negative tension branes, respectively. In contrast with the usual scalar-tensor gravity,
the quasi-scalar-tensor gravity couples with two kinds of matter; namely, the matter on both positive and
negative tension branes, with different effective gravitational coupling constants. In particular, the radion
disguised as the scalar fieldsC andF couples with the sum of the traces of the energy-momentum tensor on
both branes. In the course of the derivation, it is revealed that the radion plays an essential role in converting
the nonlocal Einstein gravity with generalized dark radiation to local quasi-scalar-tensor gravity. For complete-
ness, we also derive the effective action for our theory by substituting the bulk solution into the original action.
It is also shown that quasi-scalar-tensor gravity works as a hologram at low energy in the sense that the bulk
geometry can be reconstructed from the solution of quasi-scalar-tensor gravity.
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I. INTRODUCTION

Motivated by the recent development of superstr
theory, the brane world scenario has been studied intensi
In particular, the warped compactification mechanism p
posed by Randall and Sundrum~RS! has given birth to a new
picture of the universe@1#. The single brane model~RS2! has
been well studied so far because of its simplicity and
absence of a stability problem of the radion mode@2–5#. As
for the two-brane model~RS1!, Garriga and Tanaka hav
shown that the gravity on the brane behaves as in Bra
Dicke theory at a linearized level@6#. Thus, the conventiona
linearized Einstein equations do not hold even on sca
large compared with the curvature scalel in the bulk. Char-
mousiset al. have clearly identified the Brans-Dicke field a
the radion mode@7#. Subsequent research has been focu
on the role of the radion in the brane world scenario@8–10#.

However, the above-mentioned works are restricted to
ear theory or to homogeneous cosmological models. I
important to study nonlinear gravity for applications to a
trophysical and cosmological problems. Recently, Wisem
has analyzed a special two-brane system with the nega
tension brane taken to be in vacuum and has shown tha
low energy effective theory becomes a scalar-tensor the
with a specific coupling function@11#. Here, we consider the
general case including matter on the negative tension b
and derive the effective equations of motion for this syst
using a low energy expansion method developed by us@12#.

*Electronic address: kanno@phys.h.kyoto-u.ac.jp
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To further illuminate the role of the radion in the bran
world, let us pose the issue in the following way. In o
previous paper, we derived the low energy effective equa
on the brane as@12# ~see also@13#!

G n
m 5

k2

l
T n

m 2
2

l
x n

m ~xm!, ~1!

where G n
m , k, and T n

m denote the four-dimensional Ein
stein tensor, the five-dimensional gravitational constant,
the energy-momentum tensor on the brane, respectiv
Here, the ‘‘constant of integration’’xmn(x) is transverse and
traceless. When we impose maximal symmetry on the spa
part of the brane world, Eq.~1! reduces to the Friedman
equation with dark radiation:

H25
8pGr

3
1

C
a0

4
~2!

whereH, a0, andr are, respectively, the Hubble paramet
the scale factor, and the total energy density of each br
while C is a constant of integration associated with the m
of a black hole in the bulk. Hence,xmn(x) can be regarded a
a generalization of the dark radiation appearing in Eq.~2!.
The point is that Eq.~1! holds irrespective of the existence o
other branes. The effect of the bulk geometry comes into
brane world only throughxmn .

On the other hand, as we have noted, a scalar-te
theory emerges in the two-brane system. How can we rec
cile these seemingly incompatible pictures? In this paper,
reveal a mechanism to convert the Einstein equations w
generalized dark radiation to quasi-scalar-tensor grav
©2002 The American Physical Society06-1
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Eventually, it turns out that the radion disentangles the n
locality in the nonconventional Einstein equations and le
to local quasi-scalar-tensor gravity.

This paper is organized as follows. In Sec. II, our iterati
scheme to solve the Einstein equations at low energy is
plained. In Sec. III, the background solution is presented
Sec. IV, we derive the brane effective action from the jun
tion conditions at leading order. We see that the effect
theory is described by quasi-scalar-tensor gravity with a s
cific coupling function. The relation to holography is als
discussed. In Sec. V, a systematic method for computing
higher order corrections is discussed. Section VI is devo
to discussion and conclusions. In Appendix A, we explain
physical meaning of our method, especially the relation
the zero mode and Kaluza-Klein modes in linear theory,
using a simple scalar field model. In Appendix B, lineariz
gravity is analyzed in detail using our method.

II. LOW ENERGY APPROXIMATION

A. RS1 model and basic equations

The model is described by the action

S5
1

2k2E d5xA2gS R1
12

l 2 D2 (
i 5A,B

s iE d4xA2gi brane

1 (
i 5A,B

E d4xA2gi braneLmatter
i , ~3!

where R, gmn
ibrane, and k2 are the scalar curvature, the in

duced metric on the branes, and the gravitational consta
five-dimensions, respectively. We consider anS1 /Z2 orbifold
spacetime with the two branes as the fixed points. In the R
model, two flat three-branes are embedded in the fi
dimensional asymptotically anti–de Sitter~AdS! bulk with
curvature radiusl with the brane tensions given bysA
56/(k2l ) andsB526/(k2l ).

For general nonflat branes, we cannot keep both the
branes straight in the Gaussian normal coordinate sys
Hence, we use the following coordinate system to desc
the geometry of the brane model:

ds25e2f(y,xm)dy21gmn~y,xm!dxmdxn. ~4!

We place the branes aty50 (A-brane! andy5 l (B-brane! in
this coordinate system. The proper distance between the
branes with fixedx coordinates can be written as

d~x!5E
0

l

ef(y,x)dy. ~5!

Hence, we callf the radion~see Fig. 1!. In this coordinate
system, the five-dimensional Einstein equations become
08350
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e2f~e2fK n
m ! ,y2~e2fK !~e2fK n

m !1R n
m

~4!

2¹m¹nf2¹mf¹nf

52
4

l 2 dn
m1k2S 1

3
dn

msA1T n
Am 2

1

3
dn

mTADe2fd~y!

1k2S 1

3
dn

msB1T̃ n
Bm 2

1

3
dn

mT̃BDe2fd~y2 l !,

~6!

e2f~e2fK ! ,y2~e2fKab!~e2fKab!

2¹a¹af2¹af¹af

52
4

l 2 2
k2

3
~24sA1TA!e2fd~y!

2
k2

3
~24sB1T̃B!e2fd~y2 l !, ~7!

¹n~e2fK m
n !2¹m~e2fK !50, ~8!

where R n
m

(4)

is the curvature on the brane,¹m denotes the
covariant derivative with respect to the metricgmn , and we
introduced the tensorKmn52gmn,y/2 for convenience. One
can read off the junction condition from the above equatio
as

e2f@Kn
m2dn

mK#uy505
k2

2
~2sAdn

m1T n
Am !, ~9!

e2f@Kn
m2dn

mK#uy5 l52
k2

2
~2sBdn

m1T̃ n
Bm !, ~10!

whereKn
m5gmaKan and the fact that we are considering aZ2

symmetric spacetime is used. Decompose the extrinsic
vature into the traceless part and the trace part:

FIG. 1. Radion as a distance between two branes.
6-2
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e2fKmn5Smn1
1

4
gmnQ, Q52e2f

]

]y
logA2g.

~11!

Then, off the brane, we obtain the basic equations

e2fS n,y
m 2QS n

m 52FR n
m

~4!

2
1

4
dn

m R
~4!

2¹m¹nf2¹mf¹nf

1
1

4
dn

m~¹a¹af1¹af¹af!G , ~12!

3

4
Q22S b

a S a
b 5F R

~4!G1 12

l 2 , ~13!

e2fQ,y2
1

4
Q22SabSab5¹a¹af1¹af¹af2

4

l 2 ,

~14!

¹lSm
l 2

3

4
¹mQ50. ~15!

The junction conditions are

FSn
m2

3

4
dn

mQGU
y50

5
k2

2
~2sAdn

m1T n
Am !, ~16!

FSn
m2

3

4
dn

mQGU
y5 l

52
k2

2
~2sBdn

m1T̃ n
Bm !. ~17!

The problem now is separated into two parts. First, we m
solve the bulk equations of motion with the Dirichlet boun
ary condition at theA-brane,gmn(y50,xm)5hmn(xm). Then,
the junction condition is imposed at each brane. As the ju
tion conditions constrain the induced metrics on both bran
they naturally give rise to the effective equations of moti
for gravity on the branes.

B. Low energy expansion scheme

Unfortunately, it is a formidable task to solve the fiv
dimensional Einstein equations exactly. However, notice
typically the length scale of the internal space isl !0.1 mm.
On the other hand, the usual astrophysical and cosmolog
phenomena take place at scales much larger than this s
Thus we need only the low energy effective theory to a
lyze a variety of problems, for example, the formation o
black hole, the propagation of gravitational waves, the e
lution of cosmological perturbations, and so on. It should
stressed that low energy does not necessarily implies w
gravity on the branes.

Along the normal coordinatey, the metric varies with the
characteristic length scalel; gmn,y;gmn / l . Denote the char-
acteristic length scale of the curvature on the brane aL.
Then we haveR;gmn /L2. For the reader’s reference, let u
take l 51 mm, for example. Then the relations in the R
model
08350
st
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k2sA5
6

l
,

k2

l
58pGN ~18!

give k2;(108 GeV)23 and us i u;1 TeV4.
In this paper, we will consider the low energy regime

the sense that the energy density of the matter,r i , on a brane
is smaller than the brane tension, i.e.,r i /us i u!1. In this
regime, a simple dimensional analysis

r i

us i u
;

l

k2us i u
k2r i

l
;S l

L D 2

!1 ~19!

implies that the curvature on the brane can be neglec
compared with the extrinsic curvature at low energies. Th
the anti-Newtonian or gradient expansion method used in
cosmological context@14# is applicable to our problem.

Our iteration scheme is to write the metricgmn as a sum
of local tensors built out of the induced metric on the bra
with the number of derivatives increasing with the order
iteration, that is,O„( l /L)2n

…, n50,1,2, . . . . Hence, we seek
the metric as a perturbative series

gmn~y,xm!5a2~y,x!@hmn~xm!1gmn
(1)~y,xm!

1gmn
(2)~y,xm!1•••#, ~20!

gmn
(n)~y50,xm!50, n51,2,3, . . . , ~21!

where the factora2(y,x) is extracted for a reason explaine
later and we use the Dirichlet boundary conditiongmn(y
50,x)5hmn(x) at theA-brane. We do not need to know th
geometry of theB-brane when we focus on the effectiv
equations on theA-brane. In other words, from a viewpoin
on theA-brane, the junction condition at theB-brane simply
gives the boundary condition for the bulk geometry. Oth
quantities are also expanded as

S n
m 5S n

(0)m 1S n
(1)m 1S n

(2)m 1•••. ~22!

In Appendix A, we illustrate our method using a simple sc
lar field example to clarify the relation of the low energ
expansion to the zero mode and Kaluza-Klein modes in
earized theory.

III. BACKGROUND GEOMETRY

As we can ignore the matter at the lowest order, we obt
a vacuum brane; namely, we have an almost flat brane c
pared with the curvature scale of the bulk spacetime. At
zeroth order, we can neglect the curvature term. Then
have

e2fS n,y
(0)m 2Q(0)S n

(0)m 50, ~23!

3

4
Q(0)22S b

(0)a S a
(0)b 5

12

l 2 , ~24!

e2fQ,y
(0)2

1

4
Q(0)22S (0)abSab

(0)52
4

l 2 , ~25!
6-3
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¹lS m
(0)l 2

3

4
¹mQ(0)50. ~26!

The junction condition is

FS n
(0)m 2

3

4
dn

mQ(0)GU
y50

52
k2

2
sAdn

m , ~27!

FS n
(0)m 2

3

4
dn

mQ(0)GU
y5 l

5
k2

2
sBdn

m . ~28!

Using Eq.~11!, Eq. ~23! can be readily integrated,

S n
(0)m 5

C n
m ~xm!

A2g
, C m

m 50, ~29!

whereC n
m is a ‘‘constant’’ of integration. This term is no

allowed to exist because of the junction conditions~27! and
~28!. Thus, it is easy to solve the remaining equations. T
result is

S n
(0)m 50, Q(0)5

4

l
. ~30!

Using the definition

Kmn
(0)52

1

2

]

]y
gmn

(0)5
1

l
efgmn

(0) , ~31!

we get the zeroth order metric as

ds25e2f(y,x)dy21a2~y,x!hmn~xm!dxmdxn,

a~y,x!5expF2
1

l E0

y

dyef(y,x)G , ~32!

where the tensorhmn is the induced metric on the positiv
tension brane. Note that the metric derived by Charmou
et al., ef5112 f (x)e2y/ l / l , is consistent with this solution
@7#. To proceed further, we take the coordinate system to
f(y,x)5f(x). Then we havea(y,x)5exp@2yef/l#. Al-
though this choice of the coordinate system is generally p
sible at least locally, there may be a global obstruction. Ho
ever, as we show below, we can consistently get nontri
solutions. Moreover, we explicitly demonstrate the valid
of our choice at the level of linear theory in Appendix B.

Given the zeroth order solution, junction conditions~27!
and ~28! lead to the well known relations

k2sA5
6

l
, k2sB52

6

l
. ~33!

Note thatf(x) and hmn(x) are arbitrary functions ofx at
zeroth order.
08350
e
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e
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IV. HOLOGRAPHIC QUASI-SCALAR-TENSOR GRAVITY

A. Bulk geometry

The next order solution is obtained by taking into accou
the terms neglected at zeroth order. It is at this order that
effect of matter comes in. At the first order, Eqs.~12!–~15!
become

e2fS n,y
(1)m 2

4

l
S n

(1)m 52@R n
m

~4!

2¹m¹nf

2¹mf¹nf# trace less
(1) , ~34!

6

l
Q(1)5F R

~4! G ~1!

, ~35!

e2fQ,y
(1)2

2

l
Q(1)5@¹a¹af1¹af¹af# (1),

~36!

¹lS m
(1)l 2

3

4
¹mQ(1)50, ~37!

where the subscript ‘‘traceless’’ represents the traceless
of the quantity in square brackets. The junction conditio
are given by

FS n
(1)m 2

3

4
dn

mQ(1)GU
y50

5
k2

2
T n

Am , ~38!

FS n
(1)m 2

3

4
dn

mQ(1)GU
y5 l

52
k2

2
T̃ n

Bm ,

~39!

where the superscript (1) represents the order of the grad
expansion. Here,@R n

(4)m # (1) means the Ricci tensor o
a2hmn . Note that nowa5exp@2yef/l#. It is convenient to
introduce the Ricci tensor ofhmn , denoted byRn

m(h), and
express@R n

(4)m # (1) in terms ofRn
m andf;

FR n
m

~4!

~g!G ~1!

5
1

a2 FR n
m ~h!12

y

l
ef~f un

um 1f umf un!

1dn
my

l
ef~f ua

ua 1f uaf ua!12
y2

l 2e2ff umf un

22dn
my2

l 2 e2ff uaf uaG , ~40!

whereu denotes the covariant derivative with respect tohmn .
Similarly, it is convenient to express the second derivativ
of f as

@¹m¹nf# (1)5
1

a2Ff un
um 12

y

l
eff umf un2

y

l
efdn

mf uaf uaG .
~41!

Substituting the trace of Eq.~40! into the right-hand side
of Eq. ~35!, we obtain
6-4
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Q(1)5
l

a2 F1

6
R~h!1

yef

l
~f ua

ua 1f uaf ua!2
y2e2f

l 2
f uaf uaG .

~42!

Note that Eq.~36! is trivially satisfied now. Hereafter, we
omit the argument of the curvature for simplicity. Substitu
ing Eqs.~40! and ~41! into Eq. ~34! and integrating it, we
obtain the traceless part of the extrinsic curvature as

S n
(1)m 5

l

a2 F1

2 S R n
m 2

1

4
dn

mRD1
yef

l S f un
um 2

1

4
dn

mf ua
ua D

1S y2e2f

l 2
1

yef

l D S f umf un2
1

4
dn

mf uaf uaD G
1

xn
m~x!

a4
, ~43!

wherexn
m is an integration constant with the propertyx m

m

50. And x n
m must be transverse,x num

m 50, in order to sat-
isfy Eq. ~37!. The definition~11! gives

2
1

2
e2fg(0)am

]

]y
gan

(1)5S n
(1)m 1

1

4
dn

mQ(1). ~44!

Integrating Eq.~44!, we obtain the metric in the bulk:

gmn
(1)52

l 2

2 S 1

a2 21D S Rmn2
1

6
hmnRD

1
l 2

2 S 1

a2 212
2yef

l

1

a2D S f umn1
1

2
hmnf uaf uaD

2
y2e2f

a2 S f umf un2
1

2
hmnf uaf uaD2

l

2S 1

a4 21Dxmn ,

~45!

where we have imposed the boundary conditiongmn
(1)(y

50,xm)50. From these results, one can calculate the W
tensor as

Cymyn5
2xmn

la4
. ~46!

Hence, the termxmn is essentially the Weyl tensor at th
order. Note that we have obtained the bulk metric in terms
f(x), hmn(x), andxmn(x).

B. Quasi-scalar-tensor gravity

We shall deduce the equations forf(x),hmn(x), and
xmn(x) from the junction conditions. Using Eqs.~42! and
~43!, one gets the junction conditions. The junction conditi
at theA-brane is written as

l

2
G n

m ~h!1x n
m 5

k2

2
T n

Am . ~47!
08350
-

yl

f

This equation is nothing but the Einstein equation with ge
eralized dark radiationxmn . It should be noted thatxmn is
undetermined at this level, exhibiting the nonlocal nature
Eq. ~47!.

The junction condition at theB-brane is given by

l

2V2 G n
m 1

lef

V2
~f un

um 2dn
mf ua

ua 1f umf un2dn
mf uaf ua!

1
le2f

V2 S f umf un1
1

2
dn

mf uaf uaD1
x n

m

V4
52

k2

2V2 T n
Bm ,

~48!

where V(x)5a(y5 l ,x)5exp@2ef#. Here, the index of
T n

Bm is the energy-momentum tensor with the index rais

by the induced metrichmn on theA-brane, whileT̃ n
Bm is the

one raised by the induced metric on theB-brane. At the
present order, we have the following relations:

Tmn
B 5T̃mn

B , T n
Bm 5V2T̃ n

Bm . ~49!

To reveal the role of the radion field, we must write Eq.~48!
using the induced metric on theB-brane,gmn

Bbrane5V2(hmn

1gmn
(1))[ f mn1V2gmn

(1) . At this order, the Ricci tensorRn
m of

the induced metric on theB-brane is equal to that off mn .
Using this fact, we rewrite Eq.~48! to obtain the effective
equations on theB-brane:

l

2
G n

m ~ f !1
x n

m

V4
52

k2

2
T̃ n

Bm . ~50!

Again, we have the nonconventional~nonlocal! Einstein
equations, as in the case of theA-brane.

Although Eqs.~47! and ~50! are nonlocal individually,
with undeterminedxmn , one can combine the two equation
to reduce them to local equations for each brane. This h
pens to be possible sincexmn appears only algebraically; on
can easily eliminatexmn from Eqs.~47! and~48!. Defining a
new fieldC512V2, we find

G n
m ~h!5

k2

lC
T n

Am 1
k2~12C!

lC
T n

Bm 1
1

C
~C un

um

2dn
mC ua

ua !1
v~C!

C2 S C umC un2
1

2
dn

mC uaC uaD ,

~51!

where the coupling functionv(C) takes the following form:

v~C!5
3

2

C

12C
. ~52!

We can also determinexn
m by eliminatingGn

m from Eqs.~47!
and ~48!. Then,
6-5
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x n
m 52

k2~12C!

2C
~T n

Am 1T n
Bm !2

l

2CF ~C un
um 2dn

mC ua
ua !

1
v~C!

C S C umC un2
1

2
dn

mC uaC uaD G . ~53!

The conditionx m
m 50 gives rise to the field equation forC:

hC5
k2

l

TA1TB

2v13
2

1

2v13

dv

dC
C umC um , ~54!

where we have used the explicit form ofv(C). This equa-
tion tells us that the trace part of the energy-momentum
sor determines the radion field and hence the relative be
ing of the brane, andxmn is determined by the traceless pa
of the right-hand side of Eq.~53!. Remarkably,xmn is now a
secondary entity.

Equations~51! and~54! are the basic equations to be us
in cosmological or astrophysical contexts when the cha
teristic energy density is less thanus i u. Notice that the con-
servation law with respect to the metrichmn reads

T num
Am 50, T num

Bm 5
C um

12C
T n

Bm 2
1

2

C un

12C
TB. ~55!

In contrast to the usual scalar-tensor gravity, this the
couples with two kinds of matter, namely, the matter on b
positive and negative tension branes, with different effect
gravitational coupling constants. For this reason, we call
theory quasi-scalar-tensor gravity. Thus, the~nonlocal! Ein-
stein equation~47! with generalized dark radiation has tran
formed into the~local! quasi-scalar-tensor gravity~51! with
the coupling functionv(C).
c

08350
n-
d-

c-

y
h
e
is

C. Effective action

Let us consider an effective action forhmn(x) andf(x).
If one wants to calculate the quantum fluctuations in
inflationary scenario, for example, one needs the action
determine their magnitude. The action has to be derived fr
the original five-dimensional action by substituting the so
tion of the equations of motion in the bulk and integrati
out over the bulk coordinate. We shall start with the follow
ing action:

S5
1

2k2E d5xA2gFR1
12

l 2 G1
2

k2E d4xA2hQA

2
2

k2E d4xA2 f QB2
6

k2l E d4xA2h1
6

k2l E d4xA2 f

1E d4xA2hL A1E d4xA2 fL B, ~56!

where we have taken into account the boundary term,
so-called Gibbons-Hawking term, instead of introduci
delta-function singularities in the curvature. The factor 2
the Gibbons-Hawking term comes from theZ2 symmetry of
this spacetime. As we substitute the solution of the b
equations of motion, we can use the equationR5220/l 2

which holds in the bulk. It should be stressed that the b
metric is solved without using junction conditions and
expressed in terms off, hmn , andxmn . That is why we can
get the effective action on the brane by simple substitution
the solution. Now, up to first order, we obtain
S52
8

k2l 2E d4xA2hE
0

lef

dza4F11
1

2
hmngmn

(1)G1
2

k2E d4xA2hF4

l
1

l

6
RG2

2

k2E d4xA2hV4F11
1

2
hmngmn

(1)G
3F4

l
1

l

6V2 R1
lef

V2~hf1f uaf ua!2
le2f

V2
f uaf uaG2

6

k2l E d4xA2h1
6

k2l E d4xA2hV4F11
1

2
hmngmn

(1)G
1E d4xA2hL A1E d4xA2hV4L B. ~57!
e

uc-
en-
-

ive
Using Eq. ~45! and the definitionC512V2, we finally
have the action:

S5
l

2k2E d4xA2hFCR2
v~C!

C
C uaC uaG

1E d4xA2hL A1E d4xA2h~12C!2L B. ~58!

This is a complete derivation of the action with the corre
 t

normalization, which is important for quantization of th
theory.

Here, it should be noted thatxn
m , which appeared ingmn

(1) ,
is a nonlocal quantity. In fact, eliminatingC from Eq. ~53!
by solving Eq.~54! yields a nonlocal expression forxn

m . If
we substitute this nonlocal expression into Eq.~47!, we ob-
tain a nonlocal theory. Conversely, one can see that introd
ing the radion disentangles the nonlocality in the nonconv
tional Einstein equation~47! and yields the quasi-scalar
tensor gravity given by Eqs.~51! and ~54!. This important
point is more transparent in the derivation of the effect
6-6
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action. Indeed, the nonlocal partxn
m disappears because o

the traceless nature,xm
m50. A similar mechanism is dis

cussed by Gen and Sasaki@8# in the context of linear theory

D. Holographic brane gravity

We have obtained four-dimensional quasi-scalar-ten
gravity from the five-dimensional action. The bulk metr
corresponding to the four-dimensional effective theory
given by

gmn5~12C!y/ l@hmn~x!1gmn
(1)~hmn ,C,Tmn

A ,Tmn
B ,y!#,

~59!

wherexmn in Eq. ~45! is eliminated by using Eq.~53!. Here,
the y dependence ofgmn

(1) is explicitly known. Thus the bulk
metric is completely determined by the energy-moment
tensors on the two branes, the radion, and the induced m
on theA-brane. Therefore, once the four-dimensional so
tion of quasi-scalar-tensor gravity is given, one can rec
struct the bulk geometry from these data. Quasi-scalar-te
gravity works as a hologram at low energy. In this sense,
can call the quasi-scalar-tensor gravity the holographic br
gravity. Equation~59! gives a holographic picture of th
brane world. Recalling that the radion specifies the posit
of the second brane, the radion can be interpreted as a
of ‘‘phase’’ in the holographic picture of the brane world.

E. Effective theory on B-brane

For completeness, we shall derive the effective equati
of motion on theB-brane. To do so, let us simply reverse t
role of the A-brane and that of theB-brane. Substituting
hmn5V22f mn into the junction conditions yields

l

2
Gn

m~ f !1
xn

m

V4
52

k2

2
Tn

Bm ~60!

and

lV2

2
Gn

m1 lV2S ~ logV! ;n
;m 2dn

m~ logV! ;a
;a

1~ logV! ;m~ logV! ;n1
1

2
dn

m~ logV! ;a~ logV! ;aD1xn
m

5
k2V2

2
Tn

Am , ~61!

where ; denotes the covariant derivative with respect to
metric f mn . Thus, definingF5V2221, we obtain the ef-
fective equation on theB-brane:

G n
m ~ f !5

k2

lF
T n

Bm 1
k2~11F!

lF
T n

Am 1
1

F
~F ;n

;m 2dn
mF ;a

;a !

1
v~F!

F2 S F ;mF ;n2
1

2
dn

mF ;aF ;aD , ~62!

where
08350
or

s

ric
-
-
or
e
e

n
nd

s

e

v~F!52
3

2

F

11F
. ~63!

The equation of motion for the radion becomes

hF5
k2

l

TA1TB

2v13
2

1

2v13

dv

dF
F ;mF ;m . ~64!

Thus, we have shown that the gravity on the negative tens
brane is described by quasi-scalar-tensor gravity with
coupling functionv(F)523F/2(11F).

It should be noted that the dynamics on the two branes
not independent. We know the gravity on theB-brane once
we know that on theA-brane, and vice versa. The transfo
mation rules are

F5
C

12C
, ~65!

gmn
B brane5~12C!@hmn1gmn

(1)~hmn ,C,Tmn
A ,Tmn

B ,y5 l !#.
~66!

This relation is useful when we consider concrete appli
tions.

V. KALUZA-KLEIN CORRECTIONS

As explained in Appendix A, our analysis so far to fir
order in the gradient expansion corresponds to the zero m
truncation in the language of a linearized theory. Although
is obscure to use the words ‘‘Kaluza-Klein corrections’’ in
nonlinear theory, we shall call their nonlinear counterp
simply Kaluza-Klein corrections in this paper.

In principle, we can continue our analysis up to a desi
order using the following recursive formulas:

S n
(n)m 52

1

a4E dya4H FR n
m

~4!

2¹m¹nf2¹mf¹nf G
traceless part

~n!

2 (
p51

n21

Q(p)Sn
(n2p)mJ , ~67!

Q(n)5
l

6 (
p51

n21 F2
3

4
Q(p)Q(n2p)1S b

(p)a S a
(n2p)b 1F R

~4!G (n)G ,

~68!

Q,y
(n)2

2

l
Q(n)5 (

p51

n21 H 1

4
Q(p)Q(n2p)1S (p)abSab

(n2p)J
1@¹a¹af1¹af¹af# (n), ~69!

Sm
~n!

ul
l 2

3

4
Qum

(n)1 (
p51

n21

$Gla
(p)aS m

(n2p)l

2Gam
(p)lS l

(n2p)a %50. ~70!
6-7
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These equations give the solution as an infinite sum.
existence of an infinite series is a manifestation of the n
locality of the brane model@15#.

To get the effective equations of motion with second or
corrections using the above formula is straightforward. Ho
ever, carrying out the calculation is laborious and the res
ant expression is too long to write down. As for the line
theory, we will obtain the explicit effective equations of m
tion with Kaluza-Klein corrections in Appendix B. Here, w
will only sketch how the Kaluza-Klein corrections appe
using an easy method.
w

e

c
th
in

rg
e-
in
th

08350
e
-

r
-
t-
r

Although we need the explicity dependence of the bulk to
obtain the action, as long as we are interested only in
effective equations on the brane, we do not have to solve
bulk explicitly. The reason is as follows. We can write dow
the nonlocal Einstein equations corresponding to Eqs.~47!
and~50! without knowing the bulk geometry. Then, since w
know how the nonlocal term, i.e., the generalized dark rad
tion term, behaves in the bulk, we may eliminate it just as
the first order case.

The nonlocal Einstein equations on the branes are@12#
Gmn
(4)~h!52

2

l
~xmn1tmn!1

k2

l
Tmn

A 2
l 2

2
Smn2

l 2

12S RRmn2
1

2
hmnR21

3

4
hmnRb

aRa
bD1

l

2
@x muna

a 1x numa
a 2xmnua

ua#

2 lxmaR n
a 1

l

6
Rxmn2

1

4
hmnxb

axa
b , ~71!

Gmn
(4)~gB brane!52

2

lV4 ~xmn1tmn!2
k2

l
Tmn

B 2 l 2S 11
V2

2 DSmn2
l 2

12
V2S RRmn2

3

2
gmn

B braneRb
aRa

bD1
l

4 S 11
1

V4D @x m;na
a

1x n;ma
a 2xmn;a

;a#2
l

2S 11
1

V4D S xmaRn
a2

1

4
gmn

B branexabRabD1
l

6V4 Rxmn2
3

4
gmn

B braneF l 2

4 S Rb
aRa

b2
2

9
R2D

1
l

2V4 xb
aRa

b2
l

6
xb

aRa
b1

1

3V8 xb
axa

bG , ~72!
o-
hat
lar-

tive
lar-
ith

ta-
ed

nes.
ut-
e

za-
n-

of
ity
ra-
l

us
en,
ec-
wheretmn is an integration constant at second order and
have defined the quantity

S n
m5Ra

mRn
a2

1

3
RRn

m2
1

4
dn

mS R b
a R a

b 2
1

3
R2D

2
1

2 S R una
am 1R n

a
ua

um 2
2

3
R un

um 2hRn
m1

1

6
dn

mhRD .

~73!

Here, ; represents the covariant derivative with respect tof mn

and all the curvatures in Eq.~72! are calculated from
gmn

B brane. What we should do is to eliminatetmn from Eqs.
~71! and ~72! and substitute the relationgmn

B brane5V2@hmn

1gmn
(1)# into the resulting equation. Then we obtain a high

derivative but local theory on the brane.
Noticeably, the same is true for all higher order corre

tions. Thus, one can infer that the radion disentangles
nonlocality in the system to all orders at the expense of
troducing higher derivative terms.

VI. CONCLUSION

We have developed a method to deduce a low ene
effective theory for a two-brane system. The fiv
dimensional equations of motion in the bulk are solved us
a low energy expansion method. This allows us, through
e

r

-
e
-

y

g
e

junction conditions, to deduce the effective equations of m
tion for gravity on the brane. As a result, we have shown t
gravity on the brane world is described by a quasi-sca
tensor theory with a specific coupling functionv(C)
53C/2(12C) on the positive tension brane andv(F)5
23F/2(11F) on the negative tension brane, whereC and
F are Brans-Dicke-like scalars on the positive and nega
tension branes, respectively. In contrast to the usual sca
tensor theory, the quasi-scalar-tensor theory couples w
matter on both branes but with different effective gravi
tional coupling constants. In particular, the radion disguis
as the scalar fieldsC and F couples with the sum of the
traces of the energy-momentum tensors on both bra
Moreover, we have derived the effective action by substit
ing the solution of the bulk equations of motion into th
original action. This direct method determines the normali
tion of the effective action, which is indispensable for qua
tizing the theory.

In the process of derivation of the effective equations
motion, we have clarified how quasi-scalar-tensor grav
emerges from Einstein’s theory with a generalized dark
diation term described byxmn . A brane can feel the nonloca
effect of the bulk geometry only throughxmn , irrespective of
the existence of another brane. This is the picture given to
by Einstein equations with generalized dark radiation. Th
what is the role of the radion? In order to make the conn
tion between the radion andxmn , we have to know the bulk
6-8
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geometry. In the case of a single brane,xmn is determined by
the boundary conditions at the Cauchy horizon. If we requ
that the geometry is asymptotically anti–de Sitter there, t
xmn must vanish@16#. In the two-brane case, we have n
asymptotic region; instead we have the second brane in
bulk. The radion determines the location of the second br
where the junction conditions are imposed. The junction c
ditions givexmn as a function of the energy-momentum te
sor and the radion. The resultant equation is nothing but
holographic quasi-scalar-tensor gravity. Thus, the differe
between the Einstein equations with generalized dark ra
tion and quasi-scalar-tensor gravity is just superficial. T
radion has converted the nonlocal nonconventional Eins
equations to local quasi-scalar-tensor gravity.

We have also given a systematic method to calculate
corrections due to Kaluza-Klein massive modes. It is conj
tured that all of the nonlocality arising from the integration
disentangled by the radion in the two-brane system. We h
also emphasized the holographic aspect of our result. It tu
out that the effect of bulk gravity on low energy physics
the brane world can be described solely in four-dimensio
language. Conversely, the bulk geometry can be rec
structed from knowledge of the four-dimensional data.
this sense, the quasi-scalar-tensor gravity we have foun
this paper works as a hologram and hence can be ca
holographic brane gravity.

Let us discuss some implications of our results. Cosm
ogy is usually formulated on the basis of local field theo
However, superstring theory suggests that nonlocal fi
theories are ubiquitous. Although a nonlocal field theory
not easy to treat properly, the holographic description op
a new possibility for studying cosmology with nonloc
terms. Brane world cosmology can be regarded as a rea
tion of a nonlocal field theoretic approach to cosmology.
the single brane picture, nonlocal terms due to the integra
constant appear@12#. Furthermore, there are infinite series
higher derivative terms in the low energy expansion sche
This is also a manifestation of the nonlocality of brane wo
gravity @12,15#. In the two-brane system, the above tw
types of nonlocality exist also. Intriguingly, the radion dise
tangles the nonlocality of the homogeneous solutions
leads to quasi-scalar-tensor gravity. Hence, the quasi-sc
tensor theory is a nonlocal theory disguised as a local the
In fact, integrating out the scalar field yields a nonlocal fie
theory. In addition, the nonlocality due to Kaluza-Klein typ
corrections remains as an infinite series in the low ene
08350
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expansion even in the two-brane system. Cosmology w
nonlocal fields from this point of view deserves further i
vestigation.

As we have succeeded in obtaining the effective action
nonlinear brane gravity, various problems can now be inv
tigated. Two-brane inflation is under investigation using o
method@17#. Astrophysical applications such as gravitation
waves from binary stars are also intriguing. Extension of o
formalism to more general models that include bulk scal
or vector fields might be interesting.
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APPENDIX A: SCALAR FIELD EXAMPLE

In order to illustrate the method used in the main text,
examine a toy model in this appendix. Let us conside
massless scalar fieldf in the background

ds25dy21expF22
y

l Ghmndxmdxn, ~A1!

where the branes are located aty50 andy5d. The equation
of motion for f with a source on the branes becomes

h (5)f5e4y/ l]y@e24y/ l]yf#1e2y/ lhf

5JA~x!d~y!1JB~x!d~y2d!. ~A2!

From this equation, one can deduce the junction conditio

]yfuy505
1

2
JA~x!, ~A3!

]yfuy5d52
1

2
JB~x!. ~A4!

Let us focus on theA-brane aty50 and put

f~y50,x!5f0~x!. ~A5!

The Green’s function with the Neumann boundary condit
is easily calculated as
D5~0,x;0,x8!5E d4p

~2p!4 exp@ ip•~x2x8!#
1

q

J1~qled/ l !H2
(1)~ql !2J2~ql !H1

(1)~qled/ l !

J1~qled/ l !H1
(1)~ql !2J1~ql !H1

(1)~qled/ l !

5E d4p

~2p!4exp@ ip•~x2x8!#
2

q2l ~12e22d/ l !
F11q2l 2S 3

8
2

1

8
e22d/ l2

1

2~12e22d/ l !

d

l D 1•••G , ~A6!

and
6-9
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D5~0,x;d,x8!52
2ied/ l

p l E d4p

~2p!4 exp@ ip•~x2x8!#
1

q2

1

J1~qled/ l !H1
(1)~ql !2J1~ql !H1

(1)~qled/ l !

5E d4p

~2p!4exp@ ip•~x2x8!#
2

q2l ~12e22d/ l !
F11q2l 2S 1

8
1

1

8
e2d/ l2

1

2~12e22d/ l !

d

l D 1•••G ,

~A7!

whereq252hmnpmpn. Thus, the standard Green’s function method gives the solution for Eq.~A2! as

f0~x!5
1

2E d4x8D5~0,x;0,x8!JA~x8!1
1

2E d4x8e24d/ lD5~0,x;d,x8!JB~x8!. ~A8!

This gives

hf0~x!5
1

2E d4x8hD5~0,x;0,x8!JA~x8!1
1

2E d4x8e24d/ lhD5~0,x;d,x8!JB~x8!

5
1

l ~12e22d/ l !
JA~x!1

e24d/ l

l ~12e22d/ l !
e24d/ lJB~x!1

1

l ~12e22d/ l !

3F3

8
2

1

8
e22d/ l2

1

2~12e22d/ l !

d

l G l 2hJA~x!1
e24d/ l

l ~12e22d/ l !
e24d/ l

3F1

8
1

1

8
e2d/ l2

1

2~12e22d/ l !

d

l G l 2hJB~x!1•••. ~A9!
n
ar

w

rd

on

tion
ined
Note that the first two terms come from the zero mode a
the rest are Kaluza-Klein corrections. Now we shall comp
the above result Eq.~A9!,with our method.

1. Zeroth order

At zeroth order, we ignore gradients on the brane; thus
get

e4y/ l]y@e24y/ l]yf
(0)#50. ~A10!

The solution of Eq.~A10! is given by

f (0)5f01e4y/ lc0 . ~A11!

However, as we are regarding the source terms as first o
quantities, the junction conditions~A3! and ~A4! imply c0
50. Hence, we simply obtainf (0)5f0.

2. First order

At first order, we must solve

e4y/ l]y@e24y/ l]yf
(1)#52e2y/ lhf0~x!. ~A12!

The result is

f (1)5
l 2

4
e2y/ lhf01

l

4
e4y/ lC~x!1D~x! ~A13!
08350
d
e

e

er

where C and D are homogeneous solutions. The juncti
conditions~A3! and ~A4! become

]yfuy505
l

2
hf01C5

1

2
JA~x!, ~A14!

]yfuy5d5
l

2
e2d/ lhf01Ce4d/ l52

1

2
JB~x!.

~A15!

Eliminating C from these equations, we obtain

hf05
1

l ~12e22d/ l !
JA1

e24d/ l

l ~12e22d/ l !
JB. ~A16!

This agrees with the zero mode part of Eq.~A9!. Thus our
method to first order corresponds to the zero mode trunca
when linearized. The homogeneous part is also determ
as

C~x!5
1

2~12e2d/ l !
@JA1e22d/ lJB#. ~A17!

3. Second order

At the second order, we have

e4y/ l]y@e24y/ l]yf
(2)#52e2y/ lhf (1)~x!. ~A18!

Equation~A18! can be integrated as
6-10
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]yf
(2)52

l 2

4 S ye4y/ l1
l

2
e2y/ l Dh2f0

2
l 2

8
~e6y/ l1e2y/ l !hC~x!1e4y/ lD~x!.

~A19!

Hence, the junction conditions~A3! and ~A4! yield

l

2
hf01C~x!2

l 3

8
h2f02

l 2

4
hC~x!1D~x!5

1

2
JA~x!,

~A20!

l

2
e2y/ lhf01C~x!e4y/ l2

l 2

4 S de4y/ l1
l

2
e2y/ l Dh2f0

2
l 2

8
~e6y/ l1e2y/ l !hC~x!1e4y/ lD~x!52

1

2
JB~x!.

~A21!

Combining both Eqs.~A20! and ~A21!, we get
co
-
ic
o-

te

08350
hf05
1

l ~12e22d/ l !
@JA1e24d/ lJB#

1F l 2

4
2

ld

2

1

~12e22d/ l !
Gh2f0

2
l

4
e2d/ l@12e22d/ l #hC. ~A22!

Substituting Eqs.~A16! and~A17! into the right-hand side of
Eq. ~A22! yields Eq. ~A9!. Thus, we have shown that th
second order equations in our method correspond to ta
into account the Kaluza-Klein corrections when the eq
tions are linearized.

APPENDIX B: LINEARIZED GRAVITY

Let us now turn to our case of interest, that is, lineariz
gravity. In linearized gravity, following the method in@5#, the
solution is explicitly given in terms of the scalar Neuma
Green’s functionD5 in Eqs.~A6! and ~A7!:
h̄mn
A ~xm!52k2E d4x8D5~0,xm;0,xm8!FTmn

A ~x8!2
1

6
hmnTA~x8!G2

1

3

k2

l
hmnE d4x8D4~xm,xm8!TA~x8!

2k2E d4x8e22d/ lD5~0,xm;d,xm8!FTmn
B ~x8!2

1

6
hmnTB~x8!G , ~B1!

whereh̄mn
A is the small fluctuation in the metric on theA-brane. Applyingh to this equation and expandingD5 as Eqs.~A6!

and ~A7!, we obtain

hh̄mn
A 52

2k2

l

1

12e22d/ l
S Tmn

A

1e22d/ lTmn

B D1
1

3

k2

l

e22d/ l

12e22d/ l
hmn

S T
A

1T
B D22

k2

l

1

12e22d/ l F3

8
2

1

8
e22d/ l

2
d/ l

2~12e22d/ l !
G l 2hS Tmn

A

2
1

6
hmnT

A D 22
k2

l

e22d/ l

12e22d/ l F1

8
1

1

8
e2d/ l2

d/ l

2~12e22d/ l !
G l 2hS Tmn

B

2
1

6
hmnT

B D . ~B2!
s,
This may be regarded as the effective Einstein equation
rected toO„( l /L)4

…. Now we demonstrate that our low en
ergy expansion scheme leads to linearized quasi-Brans-D
gravity. Then we will show that our method correctly repr
duces Eq.~B2!.

Our solution for the bulk metric is

ds25e2f(y,x)dy21expF2
2

l E dyef(y,x)Ghmn~xm!dxmdxn.

~B3!

Here, two branes are located aty50 and y5 l . We will
assume thatf(y,xm)[f(xm) for simplicity. After some ob-
vious changes of variables and rescalings of coordina
small fluctuations in the metric can be represented as
r-

ke

s,

ds25~112df!dy2

1e2(2/l )yS hmn1hmn~xm!2
2y

l
hmndf~xm! Ddxmdxn;

~B4!

thus

dgmn

~0!

~x,y!5a2Fhmn~x!2
2y

l
hmndf~x!G , a5e2y/ l ,

~B5!

wherehmn and df represent tensor and scalar fluctuation
respectively. Now the two branes are located aty50 andy
5d, because of the relationef5d/ l . Decomposing the ex-
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trinsic curvature into the traceless part and the trace part
small fluctuations of each part are

Sn
m5dSn

m , Q5
4

l
1dQ. ~B6!

Here we used our results in Eq.~30!. The equations off the
brane, Eqs.~12!–~15!, are linearized to become

dSn,y
m 2

4

l
dSn

m52FRn
m2

1

4
dn

mR2¹m¹ndf

1
1

4
dn

m¹a¹adfG , ~B7!

dQ5
l

6
@R#, ~B8!

dQ,y2
2

l
dQ5¹a¹adf, ~B9!

¹ldSm
l 2

3

4
¹mdQ50. ~B10!

The junction conditions become

FdS n
m 2

3

4
dn

mdQGU
y50

5
k2

2
T n

m
A

, ~B11!

FdS n
m 2

3

4
dn

mdQGU
y5d

52
k2

2
T̃ n

m

B

. ~B12!

We now work with our low energy iteration scheme. T
goal is to construct the metric fluctuation as

dgmn~x,y!5a2Fhmn~x!2
2y

l
hmndf~x!1dgmn

~1!

~x,y!

1dgmn

~2!

~x,y!1•••G . ~B13!

1. First order

The solution at the first order is

dQ
~1!

5
l

6a2
R~h!1

y

a2
hdf, ~B14!

dS n
m

~1!

5
l

2a2 S Rn
m2

1

4
dn

mRD1
y

a2 S df un
um 2

1

4
dn

mhdf D
1

x n
m

a4
, x m

m 50, ~B15!
08350
he
dK n

m
~1!

5
l

2a2 S Rn
m2

1

6
d n

m RD1
y

a2
df un

um 1
x n

m

a4
,

~B16!

dgmn

~1!

52
l 2

2 S 1

a2
21D S Rmn2

1

6
hmnRD

2S ly

a2
2

l 2

2a2
1

l 2

2 D df umn2
l

2 S 1

a4
21D xmn .

~B17!

From Eq.~B10!, we obtain the constraintx num
m 50 for the

homogeneous solution. The junction conditions are

FdS n
m

~1!

2
3

4
dn

mdQ
~1! GU

y50

5
l

2
G n

m 1x n
m 5

k2

2
T n

m
A

,

~B18!

FdS n
m

~1!

2
3

4
dn

mdQ
~1! GU

y5d

5
l

2V2
G n

m 1
l

V2
~df un

um

2dn
mhdf!1

x n
m

V4

52
k2

2V2
T n

m
B

. ~B19!

Here, we used the relation~49! betweenT̃ n
m
B

and T n
m
B

. The
homogeneous solutionx n

m can be eliminated from Eqs
~B18! and ~B19! to yield

G n
m 5

k2

l

1

12V2
S T n

m
A

1V2T n
m
B D1

2V2

12V2
~df un

um

2dn
mhdf!. ~B20!

We now introduce a linearized version of the fieldC in-
troduced in Eq.~51! by C5(12V2)12V2df[C01dC.
The linearized effective equations can then be written as

G n
m 5

k2

lC0

S T n
m
A

1~12C0!T n
m
B D1

1

C0
~dC un

um 2dn
mhdC!.

~B21!

Equations~B11! and ~B12! determine the homogeneous s
lution x n

m as

xn
m52

k2

2

12C0

C0

S T n
m
A

1T n
m
B D2

l

2C0
~dC un

um 2dn
mhdC!.

~B22!

The traceless condition ofxn
m leads to
6-12
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hdC5
k2

l

T
A

1T
B

2v13
. ~B23!

Thus we found that linearizing our method leads to ‘‘linea
ized quasi-Brans-Dicke gravity’’ with the Brans-Dicke p
rameter

v5
3

2 S 1

V2
21D 5

3

2
~e2d/ l21!. ~B24!

By linearizingG n
m in Eq. ~B20! and defining

h̄mn5hmn2
1

2
hmnh, ~B25!

one gets

1

2
~ h̄ una

am 1h̄ n
a

ua
um 2hh̄ n

m 2dn
mh̄ uab

ab !

5
2V2

12V2
~df un

um 2dn
mhdf!1

k2

l

1

12V2

3 S T n
m
A

1V2T n
m
B D . ~B26!

Note thath n
m (x) is the fluctuation of the induced metric o

theA-brane located aty50. The gauge freedom can be us
to set

h̄ ua
am 5

2V2

12V2
df um, ~B27!

and then Eq.~B26! becomes

hh̄n
m52

2k2

l

1

12V2
S T n

m
A

1V2T n
m
B D

1
k2

3l

V2

12V2
dn

mS T
A

1T
B D . ~B28!

This is in agreement with the leading order term in Eq.~B2!
and of course is the same as the one derived by Garriga
Tanaka@6#.

2. Second order

Next we compute the second order solution. The ba
equations become

dS n,y
m

~2!

2
4

l
dS n

m
~2!

52FR n
m 2

1

4
dn

mRG (2)

, ~B29!

dQ
~2!

5
l

6
@R# (2), ~B30!
08350
-

nd

ic

dQ,y

~2!

2
2

l
dQ
~2!

50, ~B31!

¹ldS m
l

~2!

2
3

4
¹mdQ

~2!

50. ~B32!

The junction conditions are

FdS n
m

~2!

2
3

4
dn

mdQ
~2! GU

y50

5
k2

2
T n

m
A~2!

, ~B33!

FdS n
m

~2!

2
3

4
dn

mdQ
~2! GU

y5d

52
k2

2V2
T n

m
B~2!

.

~B34!

From Eqs.~B29! and ~B30!, the solution is

dQ
~2!

50 ~B35!

and

dS n
m

~2!

5
l 2

4 S y

a4
1

l

2a2D S n
m 2

l 2

8 S 1

a6
1

1

a2D hx n
m 1

C n
m

a4
,

C m
m 50. ~B36!

Here we have introduced the tensorS n
m ,

S n
m 5

1

3
R un

um 2hRn
m1

1

6
d n

m hR, ~B37!

with the propertiesS num
m 5S m

m 50.

Equation~B31! is trivially satisfied bydQ
(2)

in Eq. ~B35!.

To satisfy Eq.~B32!, the homogeneous solution indSn
m

(2)

is
constrained asC num

m 50. The junction conditions~B33! and
~B34! then give

l 3

8
S n

m 2
l 2

4
hx n

m 1C n
m 5

k2

2
T n

m
A~2!

, ~B38!

l 2

4 S d

V4
1

l

2V2D S n
m 2

l 2

8 S 1

V6
1

1

V2D hx n
m

1
C n

m

V4
52

k2

2V2
T n

m
B~2!

. ~B39!

By combining Eqs.~B38! and ~B39! with the junction con-
ditions at first order, we obtain the following equations:

l

2
G n

m 1x n
m 1

l 3

8
S n

m 2
l 2

4
hx n

m 1C n
m 5

k2

2
T n

m
A

,

~B40!
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l

2
G n

m 1
x n

m

V2
1

l 2

4 S d

V2
1

l

2D S n
m 2

l 2

8 S 1

V4
11D hx n

m

1 l ~df un
um 2dn

mhdf!1
C n

m

V2
52

k2

2
T n

m
B

. ~B41!

EliminatingC n
m from the above two equations, we obta

the effective four-dimensional theory of gravity with corre
tion terms:

G n
m 5

k2

l

1

12V2
S T n

m
A

1V2T n
m
B D1

2V2

12V2
~df un

um

2dn
mhdf!1

l 2

2~12V2!
S d

l
2

12V2

2 DS n
m

2
l

4

12V2

V2
hx n

m . ~B42!
08350
If we rewrite this equation usingC, we get

G n
m 5

k2

lC0

S T n
m
A

1~12C0!T n
m
B D1

1

C0
~dC un

um 2dn
mhdC!

1
l 2

2C0
S d

l
2

C0

2 DS n
m 2

l

4

C0

12C0
hx n

m . ~B43!

Note thatxn
m , given by the traceless part of Eq.~B22!, sat-

isfies the transverse-traceless condition. Thus we have
tained the linearized quasi-Brans-Dicke theory with Kaluz

Klein corrections. Usingh̄mn defined by Eq.~B25!, Eq.
~B42! leads to
1

2
~ h̄ una

am 1h̄ n
a

ua
um 2hh̄ n

m 2dn
mh̄ uab

ab !5
k2

l

1

12V2
S T n

m
A

1V2T n
m
B D1

2V2

12V2
~df un

um 2dn
mhdf!

1
l 2

2~12V2!
S d

l
2

12V2

2 D S 1

3
h̄ uab

ab
un

um 1
1

6
hh̄ un

um 2
1

2
hh̄ una

ma 2
1

2
hh̄ n

a
ua

um

1
1

2
h2h̄ n

m 1
1

6
dn

mhh̄ab
uab2

1

6
dn

mh2h̄D
1

l

4

12V2

V2 F lV2

12V2
~hdf un

um 2dn
mh2df!2

k2

2

V2

12V2
h~T n

m
A

1T n
m

B

!G .

~B44!

Imposing the gauge condition

h̄ ua
am 5

2V2

12V2
df um2F4l 2

3

V2

12V2 S d/ l

2~12V2!
2

1

4D 2
l 2

4 Ghdf um1
l 2

6 F d/ l

2~12V2!
2

1

4Ghh̄um, ~B45!

we get the following equation:

hh̄ n
m 52

2k2

l

1

12V2
S T n

m
A

1V2T n
m
B D1

k2

3l

V2

12V2
dn

mS T
A

1T
B D2

2lk2

12V2 F3

8
2

1

8
V22

d/ l

2~12V2!
GhS T n

m
A

2
1

6
dn

mT
A D

2
2lk2V2

12V2 F1

8
1

1

8

1

V2
2

d/ l

2~12V2!
GhS T n

m
B

2
1

6
dn

mT
B D . ~B46!

This result coincides with the result of the standard linear theory given in Eq.~B2!.
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