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Validity of a factorizable metric ansatz in string cosmology
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To support the validity of a factorizable metric ansatz used in string cosmology, we investigate a toy
problem in the Randall-Sundrum I model. For this purpose, we revise the gradient expansion method to
conform to the factorizable metric ansatz. By solving the five-dimensional equations of motion and
substituting the results into the action, we obtain the four-dimensional effective action. It turns out that the
resultant action is equivalent to that obtained by assuming the factorizable metric ansatz. Our analysis
gives the support of the validity of the factorizable metric ansatz.
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I. INTRODUCTION

Results from the Wilkinson Microwave Anisotropy
Probe strongly support the idea of the inflationary
Universe. Hence, it is an urgent matter to construct an
inflaton potential that agrees with observations based on
a fundamental theory such as the string theory. Recent
intense research on inflationary models in string theory
have stemmed from the success in constructing brane
inflation with moduli stabilization [1]. However, almost
all studies computing potentials for moduli in type IIB
string theory suppose a factorizable ansatz for the ten-
dimensional metric:

ds2 � e2!�y�g���x�dx
�dx� � e�2!�y��2u�x�~gab�y�dy

adyb;

(1)

where ~gab�y� is the metric on the internal Calabi-Yau
manifold, !�y� is the warp factor, and u�x� represents the
volume modulus. This ansatz is based on the static solution
[2]

ds2 � e2!�y����dx
�dx� � e�2!�y�~gab�y�dy

adyb: (2)

It should be stressed that, in the presence of the moving
branes, no proof for the factorizable ansatz exists even at
low energy. If this ansatz is not correct, any conclusion
derived using it is not reliable. In fact, recently, this ansatz
was challenged by de Alwis [3]. As this factorizable ansatz
for the metric is crucial in the discussion of the D-brane
inflation, it is important to examine its validity.

In order to investigate the validity of this ansatz, as a
modest step, we focus on the Randall-Sundrum I (RSI)
model [4]. Here we also have a similar problem. In con-
sidering the cosmology, if we follow the factorizable met-
ric ansatz, what we should do is to replace the Minkowski
metric in a static solution

ds2 � a2�y����dx�dx� � dy2; a�y� � e�y=‘; (3)

with a spacetime dependent metric g���x� as
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ds2 � a2�y�g���x�dx
�dx� � Gyy�x�dy

2; (4)

where we also included the modulus field Gyy. The ques-
tion is the validity of this assumption in the context of the
brane cosmology. In this paper, we derive the four-
dimensional low energy effective action on the brane with-
out using this ansatz. Then we compare the result with the
effective action derived using the factorizable ansatz to
examine its validity.

Organization of this paper is as follows. In Sec. II, we
present our strategy to attack the issue. In Sec. III, we solve
the bulk equations of motion using the revised gradient
expansion method. In the Sec. IV, we derive the four-
dimensional effective action and discuss the validity of
the factorizable metric ansatz. The final section is devoted
to the conclusion.
II. HOW TO JUSTIFY THE METRIC ANSATZ?

We consider an S1=Z2 orbifold spacetime with the two
branes as the fixed points. In the RSI model, the two flat 3-
branes are embedded in the five-dimensional asymptoti-
cally anti-de Sitter bulk with the curvature radius ‘ with
brane tensions given by �� � 6=��2‘� and �� �
�6=��2‘�. The model is described by the action

S �
1

2�2
Z
d5x

���������
�G

q �
R�

12

‘2

�
�

6

�2‘

Z
d4x

�����������
�g�

p

�
6

�2‘

Z
d4x

�����������
�g�

p
�

2

�2
Z
d4x

�����������
�g�

p
K�

�
2

�2
Z
d4x

�����������
�g�

p
K�; (5)

where �2 is the five-dimensional gravitational coupling
constant and R is the curvature scalar. We denoted the
induced metric on the positive and negative tension branes
by g��� and g���, respectively. In the last line, we have taken
into account the Gibbons-Hawking boundary terms instead
of introducing delta-function singularities in the curvature.
The factor 2 in the Gibbons-Hawking term comes from the
Z2 symmetry of this spacetime. K� is the trace part of the
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extrinsic curvature of the boundary near each one of the
branes.

Here the question is how to obtain the effective action
for discussing the cosmology. One often takes the metric
ansatz and substitutes the ansatz into the action to get the
four-dimensional effective action. Let us assume that the
metric is factorizable

ds2 � a2�y�g���x�dx
�dx� � Gyy�x�dy

2 (6)

and the branes are located at the fixed coordinate points.
Substituting this metric into the action and integrating out
the result with respect to y, we obtain the four-dimensional
action. However, an inadequate restriction of the functional
space in the variational problem yields the wrong result.
The correct procedure to obtain the four-dimensional ef-
fective action is first to solve the bulk equations of motion
and substitute the results into the original action. To solve
the bulk equations, we can employ the gradient expansion
method [5–8]. Our analysis using the gradient expansion
method shows that the correct metric takes the form [5]:

ds2 � a2
�
y

��������������
Gyy�x�

q �
g���x�dx�dx� �Gyy�x�dy2; (7)

which clearly rejects the factorizable ansatz (6).
However, there is another possibility. One can assume

the following factorizable metric:

ds2 � a2�y�g���x�dx
�dx� � dy2; (8)

and the branes are moving in the above coordinates.
Namely, the positive and negative tension branes are,
respectively, placed at

y � ���x�; y � ���x�; (9)

which are often referred to as the moduli fields. This is
another description of the RSI cosmology and often called
as moduli approximation in the literature [9]. Although two
scalar fields are introduced, one is the extra degree of
freedom as we will see later in Eq. (46). The physical
quantity is the difference of these moduli fields which
corresponds to the radion in our previous work [5]. This
ansatz leads to the action [9]

S �
‘

2�2
Z
d4x

�������
�g

p
�
fa2���� � a2����gR�g�

�
6

‘2
fa2�����@���

2 � a2�����@���
2g

�
: (10)

In this case, we do not have the result to be compared,
because the gradient expansion method is not prepared for
this parametrization of the model. Our aim is to examine
the validity of this ansatz by conforming the gradient
expansion method to the factorizable metric ansatz.
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III. REVISED GRADIENT EXPANSION METHOD

The metric we take in solving the bulk equations of
motion is the one in the Gaussian normal coordinate sys-
tem

ds2 � ����y; x�dx�dx� � dy2; (11)

where the factorized metric is not assumed.
Now we give the basic equations in the bulk. When

solving the bulk equations of motion, it is convenient to
define the extrinsic curvature on the y � constant slicing as
K�� � � 1

2
@
@y ���. Decomposing this extrinsic curvature

into the traceless part and the trace part

K�� � 
�� �
1

4
���K; K � �

@
@y

log
��������
��

p
; (12)

we obtain the basic equations which hold in the bulk:


��;y � K
�� � �

�
R����� �

1

4
��� R���

�
; (13)

3

4
K2 � 
��


�
� � R��� �

12

‘2
; (14)

r�
�
� �

3

4
r�K � 0; (15)

where r� denotes the covariant derivative with respect to
the metric ���, and R����� is the corresponding curvature.

The effective action has to be derived by substituting the
solution of Eqs. (13)–(15) into the action (5) and integrat-
ing out the result over the bulk coordinate y. In reality, it is
difficult to perform this general procedure. However, what
we need is the low energy effective theory. At low energy,
the energy density of the matter, �, on a brane is smaller
than the brane tension, i.e., �=j�j � 1. In this regime, the
four-dimensional curvature can be neglected compared
with the extrinsic curvature. Thus, the anti-Newtonian or
gradient expansion method used in the cosmological con-
text [10] is applicable to our problem.

A. Zeroth order

At zeroth order, we can neglect the curvature term in
Eqs. (13)–(15). Moreover, the tension term induces only
the isotropic bending of the brane. Thus, an anisotropic

term vanishes at this order, 
��
�0�

� 0. As the result, we
obtain

K
�0�

�
4

‘
or K��

�0�

�
1

‘
��� : (16)

Using the definition of the extrinsic curvature

K��
�0�

� �
1

2

@
@y
���
�0�

; (17)

we get the zeroth order metric as

ds2�dy2�a2�y�g���x�dx�dx�; a�y��e�y=‘; (18)
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where the tensor g�� is the constant of integration which
weakly depends on the brane coordinates x�.

B. First order

Our iteration scheme is to write the metric ��� as a sum
of local tensors built out of g��, with the number of
derivatives increasing with the order of iteration, that is,
O
�‘=L�2n�, n � 0; 1; 2; � � � . Here L represents the char-
acteristic length scale of the four-dimensional curvature.
Hence, we seek the metric as a perturbative series

����y; x� � a2�y�
g���x� � f���y; x� � � � ��: (19)

The effective action can be constructed with the knowledge
of the leading order metric f���y; x�. Other quantities can
also be expanded as

K�� �
1

‘
��� � K��

�1�

� K��
�2�

� � � � ;


�� � 0�
��
�1�

�
��
�2�
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(20)

The first order solutions are obtained by taking into
account the terms neglected at zeroth order. At first order,
Eqs. (13)–(15) become


��;y
�1�
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4
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‘
K
�1�
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R�����1�; (22)


�
�
j�

�1�

�
3

4
K
�1�

j� � 0; (23)

where the superscript �1� represents the order of the de-
rivative expansion and j denotes the covariant derivative
with respect to the metric g��. Here 
R�������1� means that
the curvature is approximated by taking the Ricci tensor of
a2�y�g���x� in place of R�����. It is also convenient to
write it in terms of the Ricci tensor of g��, denoted by
R���g�.

Substituting the zeroth order metric into R���, we can
write Eq. (22) as

K
�1�

�
‘

6a2
R�g�: (24)

Hereafter, we omit the argument of the curvature for
simplicity. Simple integration of Eq. (21) also gives the
traceless part of the extrinsic curvature as


��
�1�

�
‘

2a2

�
R�� �

1

4
��� R

�
�
$���x�

a4
; (25)

where $�� is the constant of integration which satisfies

$�� � 0; $��j� � 0: (26)

Here the latter condition came from Eq. (23). In our
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previous work [5,6], we find this term corresponds to the
dark radiation at this order. Because of the traceless prop-
erty, $�� is not relevant to the derivation of the effective
action.

From Eqs. (24) and (25), the correction to the metric g��
at this order can be obtained as

f���y;x����
‘2

2a2

�
R���

1

6
g��R

�
�
‘

2a4
$���C���x�;

(27)

whereC�� is the constant of integration which will be fixed
later in Eq. (45).
IV. EFFECTIVE ACTION

Now, up to the first order, we have

g���y; x� � a2�y�
g���x� � f���y; x��: (28)

In the following, we will calculate the bulk action Sbulk, the
actions for each brane S�, and the Gibbons-Hawking term
SGH separately. After that, we collect all of them and obtain
the four-dimensional effective action.

In order to calculate the bulk action, we need the deter-
minant of the bulk metric
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�
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where we neglected the second order quantities. Then the
bulk action becomes

Sbulk �
1
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Z
d5x
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2����gR
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1�
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2

�
; (30)

where we have used the equation R � �20=‘2 which
holds in the bulk. Notice that the Ricci scalar came from
trf�� in

���������
�G

p
.

Next, let us calculate the action for the brane tension.
The induced metric on each brane is written by

g������; x� � a2g���x� � a
2f�����; x� � @���@���:

(31)

The determinant of the induced metric can be calculated as
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where �@���
2 means @���@���. Thus, the action for

each brane becomes

S� � �
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�
: (33)

Note that the Ricci scalar came from trf�� in
�����������
�g�

p
.

In order to calculate the Gibbons-Hawking term, we
need the extrinsic curvature defined by

K �� � nA

�
@2xA

@'�@'�

�
� �ABD

@xB

@'�
@xD

@'�
; (34)

where xA is the coordinate of the brane, '� � x� is the one
on the brane, and nA is the normal vector to the brane. Note
that K�� is different from K�� in Eq. (12). The Christoffel
symbols we need are

�y�� �
1

‘
a2�g�� � f��� �

1

2
a2f��;y; (35)

��y� � �
1

‘
��� �

1

2
g��f��;y: (36)

The tangent basis on the brane are given by

@xA

@'�
� ����; @����: (37)

Thus, the normal vector takes the form

nA � ��ny@���; ny�: (38)

From the normalization condition nAnA � 1, we have

ny �
1��������������������������������������

1� �1=a2��@���
2

p : (39)

Then the extrinsic curvature is calculated as
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‘
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‘
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�
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‘
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�
: (40)

The trace part of extrinsic curvature on each brane is
044031
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Therefore, the Gibbons-Hawking term is obtained as
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Note that the Ricci scalar came from trf�� in
�����������
�g�

p
and

trf��;y in K�.
Substituting the results Eqs. (30), (33), and (42) into the

five-dimensional action Eq. (5), we get the four-
dimensional effective action

S � Sbulk � S� � S� � SGH

�
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d4x

�������
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�
: (43)

Here C�� is the first order quantity, so we can ignore this
term at leading order. We see that this effective action (43)
is indistinguishable from Eq. (10) obtained by assuming
the factorizable metric. Thus, we have shown that the
action obtained from the factorizable ansatz is correct at
the leading order.

Here it should be stressed that the Einstein-Hilbert term
is originated from the contributions of f�� in each Sbulk,
S�, and SGH, so the correction f�� to the metric g�� plays
an important role.

Note that the induced metric on the positive tension
brane is

g������; x� � a2����g���x�; (44)

where we have chosen the constant of integration C�� to be

f�����; x� � �
1

a2����
@���@���: (45)

We see that the induced metric on the positive tension
brane is different from the factorized metric g��. Using a
conformal transformation g�� � 
1=a2�����g

�
�� to re-

write the effective action in terms of the induced metric,
we finally get
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a����

a����
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�
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1
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��� ����

�
: (47)
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Two moduli fields appear only in the form of the differ-
ence, which corresponds to the radion field. In the physical
frame, the extra degree of freedom disappears.

V. CONCLUSION

To support the validity of the factorizable metric ansatz
used in string cosmology, we investigated a toy problem in
the RSI model. For this purpose, we have revised the
gradient expansion method to conform to the factorizable
metric ansatz. We have solved the five-dimensional equa-
tions of motion and substituted the results into the action.
Consequently, we have obtained the four-dimensional ef-
fective action which is equivalent to that obtained by
assuming the factorizable metric ansatz. Hence, our calcu-
lation supports the factorizable metric ansatz.

In the higher order analysis including Kaluza-Klein
corrections, the factorizable metric ansatz cannot be cor-
rect anymore [8]. However, in string cosmology, what we
want is the leading order action. Then the factorizable
044031
metric ansatz becomes a useful method when discussing
the cosmology without solving the bulk equations of mo-
tion at least at the leading order.

Finally, we should mention the limitation of our ap-
proach. Although we have shown the validity of the factor-
izable ansatz in five dimensions, the issue is still unclear in
the case of higher codimension. This is because the higher
codimension objects is difficult to treat in a relativistic
manner. To give a more strong support of the factorizable
metric ansatz, we need to settle this issue.
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