PHYSICAL REVIEW D 72, 104023 (2005)

Moduli stabilization in string gas compactification
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We investigate moduli stabilization in string gas compactification. We first present numerical evidence
showing the stability of the radion and the dilaton. To understand this numerical result, we construct the 4-
dimensional effective action by taking into account T-duality. It turns out that the dilaton is actually
marginally stable. When the moduli other than the dilaton is stabilized at the self-dual point, the potential
for the dilaton disappears and then the dilaton is stabilized due to the Hubble damping. In order to
investigate if this mechanism works in more general cases, we analyze the stability of 7, ® T, ® T,
compactification in the context of massless string gas cosmology. We found that the volume moduli, the
shape moduli, and the flux moduli are stabilized at the self-dual point in the moduli space. Thus, it is
proved that this simple compactification model is stable.
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L. INTRODUCTION

It is widely believed that the superstring theory is the
most promising candidate for the quantum theory of grav-
ity. The most attractive feature of the superstring theory is
the existence of the target space duality ( T-duality ) [1]. It
is T-duality that implies the minimal length scale, i.e. the
string length scale €, (we take the unit €; = 1 throughout
this paper). Thus, there is a possibility to avoid the cosmo-
logical initial singularity in the superstring theory. Another
feature of the superstring theory is the presence of extra-
dimensions. Therefore, it is inevitable to study the higher-
dimensional cosmology and explain how 4-dimensional
large external space emerges. Brandenberger and Vafa
proposed an interesting cosmological scenario [2,3] (see
also previous works [4—6]). They argued the avoidance of
the cosmological singularity due to T-duality and proposed
a mechanism how only 3 spatial dimensions become large
through the annihilation of winding modes (see also [7,8]
concerning this point). Recent developments of D-brane
physics stimulates the study of string gas or brane gas
scenario [9-16].

Because this idea is so attractive, it is important to
clarify the issue of moduli stabilization in this scenario.
The purpose of this paper is to reveal to what extent the
moduli can be stabilized in the scenario of Brandenberger
and Vafa.

Historically, Watson and Brandenberger first demon-
strated the stability of the radion but in their work the
dilaton runs logarithmically [17,18]. The 4-dimensional
effective action is also obtained and concluded neither
the dilaton nor the radion can be stabilized except for 5-
dimensional case [19]. The effects of inhomogeneous per-
turbations are investigated and it is shown that they do not
affect the stability of the radion [20]. The importance of the
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massless string modes are recently recognized [21-23].
The effects of D-string gas is also studied [24].

However, previous works on the subject have focused on
the volume modulus for the compact space. It is important
to check if the stabilization mechanism works for shape
and flux moduli. In this paper, we focus on the compacti-
fication manifold 7, ® T, ® T, and argue that a gas of
winding and momentum strings can stabilize the volume,
flux and shape moduli. We also show that the dilaton is not
running logarithmically. The reason why Watson and
Brandenberger have obtained the logarithmic behavior is
simply that they used a string gas of massive string modes.
As we are using a string gas of massless string modes, we
do not have the running dilaton. Moreover, we will clarify
the role of T-duality in the string gas compactification.

The organization of this paper is as follows. In Sec. II,
we review T-duality in the low energy effective action of
string theory. We also present a string gas model as the T-
duality invariant matter. In Sec. III, we present the numeri-
cal calculations of the simplest case which show the stabil-
ity of the radion and the dilaton. In Sec. IV, we obtain the T-
duality invariant 4-dimensional effective action and clarify
why the dilaton is stabilized in our numerical results. In
Sec. V, using the 4-dimensional effective action, we show
the stability of 7, ® T, ® T, compactification. The final
section is devoted to the conclusion.

II. T-DUALITY IN COSMOLOGY

Here, we would like to review T-duality in string theory
with focusing on its relation to cosmology. In the low
energy effective action of string theory, there exists the
0(6, 6, R) symmetry which includes the T-duality symme-
try O(6, 6, Z) as a special case [25-28]. In the full string
theory, O(6, 6, R) symmetry cease to exist. However, the T-
duality symmetry O(6, 6, Z) remains. In fact, in the case of
a string propagating in constant background fields, the T-
duality symmetry O(6, 6, Z) exists in the mass spectrum of
a quantum string. In the cosmological background, we do

© 2005 The American Physical Society


http://dx.doi.org/10.1103/PhysRevD.72.104023

SUGUMI KANNO AND JIRO SODA

not know exact spectrum. Here, we treat the gas of strings
as test objects and take the metric in a self-consistent
manner. It is usual to do so in cosmology.

A. T-duality in Low Energy Effective Action

The bosonic part of the low energy effective action of the
superstring theory takes the following form

1

§=_
2k2

f d"0x —Ge’”[“o)R +4(Ve)? — %HZ}
(1

where G5 and ¢ denote the 10-dimensional metric with
A, B=0,1,---,9 and the dilaton, respectively. Here, we
used the notation (V¢)> = 04¢pd,¢ and H = dB is the
field strength of the antisymmetric tensor field B,z. We
also defined the 10-dimensional gravitational coupling
constant K.

We assume the 4-dimensions are selected by the
Brandenberger-Vafa mechanism. Hence, we consider the
cosmological ansatz for the metric:

ds® = g,,,(xF)dxtdx” + vy, (x*)dy“dy”, @)

where g, is the metric of 4-dimensional external space-
time and vy, is the metric of the internal 6-dimensional
compact space. Here, both metric are assumed to depend
only on 4-dimensional coordinates x*. This means the
internal space is flat with respect to y . It is convenient
to define shifted dilaton ¢ by

Jye 2 =720, 3)

Now, we define the 6 X 6 matrix (I'),;, = 7y, in terms of
the internal space components of the metric. We assume
the antisymmetric field B,y exists only in the internal
space defined by the 6 X 6 matrix, (B),, = B, depending
only on 4-dimensional coordinate x*. Then the action can
be set into a more compact form by using the 12 X 12
matrix Q:
r-! -I''B
0 (BF*] F—BF”B) @)
which satisfies a symmetric matrix element of the pseudo-
orthogonal O(6, 6, R) group, since

0" =mn Q'=0, 5)
for any B and I'. Here, 7 consists of the unit 6-dimensional
matrix /,

(VI
= ( - ) ©6)

Using the metric (2) and the variables (3) and (4), the
action can be written as

PHYSICAL REVIEW D 72, 104023 (2005)

Ve
S:F

. - 1
d4xe2¢[R + 4(0¢)* + gTra/’“QaﬂQ’l }
K

)

where V is the coordinate volume of the internal space and
R is the 4-dimensional scalar curvature. Here, (9 ¢)? rep-
resents 9% ¢ d Mqﬁ and Tr denotes the trace of the matrix.
One can see the action is invariant under O(6, 6, R) trans-
formation

Q— 0 =ATQA ®)

where A is the 12 X 12 matrix satisfying ATnA = 7.
Note that the shifted dilaton is invariant under this
0(6, 6, R) transformation ¢ — ¢. The special O(6, 6, R)
transformation represented by A = 7 belongs to T-duality
transformation. More explicitly Eq. (8) gives,

I'=T-By B! )

B=-T7"'B(I' — BI'"!B)"! (10)

When we set B = 0, this corresponds to an inversion of the
internal space matrix, I' =T"". So far, we have seen only
the kinetic part. It is interesting to see if the potential
energy for the moduli can be induced by the string gas. If
yes, because of T-duality, one can expect the moduli in the
internal space are stabilized at the self-dual point, I=r
and B = B. This is the subject of the next subsection.

B. T-duality Invariant String Gas

Let us consider a closed string in the constant back-
ground field g,,,, Y45, Bay- The action for the string with
the position X4 is given by the nonlinear sigma model,

1
§=—-—— f dodt[G ,p0MX"0 0 X8
4qr
+ eMNB g0 X209 A XP]

! /]dO'dT£ (11)

T

where indices {M, N, - - -} are used for tensors on a 2-
dimensional world-sheet which can be described in terms
of two parameters X4(7, o). Defining variables

L _ oL 1 :
5= oo = 3o [GanX? + BupX"L (12)
oL 1 ;
P{=—3a = ~ 3 [GasX"? + BypX]  (13)

where a dot and a prime denote a 7- and a o-derivative,
respectively. Here, we should keep it in mind that each
component is the following: G,, = g4, Gup =
Yap» Gpa = 0and B, = B, = 0, B,;, # 0. The variation
of the action (11) yields the equations of motion
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P+ Py =0 (14)
This can be simplified to
XA — X" =0. (15)

Notice that B,;, does not appear in the equation of motion
of a string. This is because B, becomes a total derivative
in (11). In the case of a closed string, the general solution
can be written as a sum of the left-moving and the right-
moving solutions:

XA, 0) = X1+ o) + XA(7 — o) (16)
where
" . le 1 _
XL(’T + 0') —5 )2 +an(7 + 0')
1 at
+i— _"e—m(7'+zr) 17
2% n (17)
and
A _1 A 1 A
Xg(r— o) = 2% T ﬁao(f - o)
+Z—Z— e~in(r—a), (18)
VH":O n

Here, x4, x4, af, @} are the expansion coefficients which
become the operators when quantized.
The momentum of the center of mass is given by

21
o= [ aor
0

1
= E[GAB(C_Yg + af) + Byg(al — ab)] (19)
This is a conserved quantity p, = 0. For the compact
internal dimensions, p, is quantized to be an integer.
A closed string may wind around the compact direction.
The winding w“ boundary condition X“(7, o + 27) =
X1, o) + 27w gives the relation

8 — af = \Iw. (20)

Note that w¢ is an integer.
Using Egs. (19) and (20), we can get the zero modes as

ap = J—EGAB[pB — (Bgc + Gpow©l  (21)
1
ah = TGAB[PB (Bpe — Gpe)wC] (22)

The Virasoro operators are written by
_ 1_ A4 _
L 0= 5 ao ao + N LO

where N and N represent the oscillators coming from

1
= Eaéaé + N (23)
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Egs. (17) and (_18). We also have the level matching
condition Ly — Ly = 0 which reads

N —N = p,w" (24)

It is also easy to write down the mass spectrum of a string
as

M? = —ptp, = (afal + agag) + 2(N + N —2)
= Pa¥"" Db — 2Pa ¥ Bpew*
Wa()’ad - Bab’ychcd)wd + 2(N + N — 2) (25)

Let us define

z=(1) 26)

w

then the mass spectrum (25) and the level matching con-
dition (24) can be written as

M2(Q) = ZTQZ + 2(N + N — 2), 27)
N-N= %zTnz. (28)

One can see the mass spectrum and the level matching
condition are invariant under O(6, 6, Z) transformation

0— 0= ATQA, Z—Z=A1Z (29

where A € O(6, 6, Z) is the integer valued 12 X 12 matrix
satisfying ATgpA = 0. As Z is an integer valued vector,
0(6, 6, R) symmetry does not exist.

The basic assumption made in string gas cosmology is
the adiabaticity in the following sense. We assume the
matter action can be represented by the action of the modes
of the string theory on the torus with constant G4z and B,p
replaced by functions of 4-dimensional coordinates as
G,p(x*) and B,g(x*). The resulting action will be invari-
ant under the T-duality transformation. Let us imagine a
gas of string consists of modes which become massless at
the self-dual point. This is legitimate at low energy. The

\e pipj + M*(Q)
where p; is the 3-dimensional external momentum. Hence,
the energy density of the gas becomes

energy of a string can be written as

p= —\/g”pzpj + M*(Q), (30)

where w4 is the comoving number density of a string gas in
4-dimensions and g, denotes the determinant of the spatial
part of the 4-dimensional metric. Finally, the action for the
string gas is given by

Seas = — f d*x/=gp. 31)

It is not apparent this action leads the stability of moduli as
expected. To grasp the feeling, we shall present the nu-
merical results in the next section.
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II1. EVIDENCE OF STABILITY OF DILATON

We consider the simple situation, B,;, = 0 and
ds* = —di* + 205, dx'dx) + €'V ,,dy*dy’, (32)

where A and v represents the scale factor of the 4-
dimensional universe and the radion, respectively. This
system has the symmetry under the T-duality transforma-
tion

v— —v, (33)

which guarantees the stability of the radion of the internal
space. To confirm this, we have solved the following
equations numerically:

A+3A2+60A—21¢ = k2, (34)
v+ 310 +60% — 20 = k2e*?p, (35)

2
b +31¢+60d—242 = %ezd’T (36)
where a dot denotes a t-derivative in this section and 7' =
—p +3p, +6p, is the trace part of the energy-
momentum tensor of the string gas. We consider the string
gas consists of the massless modes at the self-dual point
v=0with N=1,N=0,p,p, =1, ww? =1, p,w =
1 which can be read off from Eqs. (24) and (25). Thus, the
pressure p,, p, due to the string gas are given by

Mg p'pi/3
Pr= . (37)
Mt Je P pip, + (e — ")
—2v 2v
Mg € - €
Py = e = _ SN )
e e Je A pip, + (e — €)
The hamiltonian constraint
Radion
1.8
1.6
1.4
1.2
1
0.8
0 500 1000 1500 2000 2500 3000
FIG. 1. The radion is stabilized at the self-dual radius inde-

pendent from the initial conditions.
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Dilaton
3.5¢
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FIG. 2. The dilaton is stabilized at the value which depends on

the initial conditions.

6A2 + 3002 — 124 ¢ 4360 A —240 p +4d* = ¢*¢p
(39)

is used to set the initial conditions. Here, the energy density
of the massless string is given by

—2A v

I i - )2

= ——1/e i F(e™7 —e). 40
p=3 Aefw\/ p'pi +( ) (40)

The results seen in Fig. 1 and 2 show the stability of the
radion and the dilaton. It is useful to rewrite the equation of

motion for the dilaton (36) as
d’ 24 . d —2¢ . d —2¢ 2
ﬁ(e )+3AE(6 )+6VE(€ )+ k*T=0
(41)

From Egs. (35) and (38), one can understand the damped
oscillation of the radion in Fig. 1. In this stabilization
process, the last two terms in Eq. (41) approaches zero
because the energy-momentum tensor of the string gas is
traceless 7T = 0 at the self-dual radius v = 0. Thus, the
Hubble damping term becomes dominant in Eq. (41).
Although the dilaton also shows the damped oscillation
as one can see in Fig. 2, this is because the effect of the
radion oscillation gives the small modulation to the time
variation of the dilaton through the third term in Eq. (41).

IV. T-DUALITY INVARIANT EFFECTIVE ACTION

In order to understand the result of numerical calcula-
tion, we shall construct the T-duality invariant 4-
dimensional effective action. In the previous effective ac-
tion approach [19], as the shifted dilaton is not used, the
procedure of the dimensional reduction is complicated.
Moreover, T-duality symmetry is not manifest. Hence,
we use the shifted dilaton and keep the T-duality symmetry
manifest to circumvent these problems.

In order to see the stability of the moduli, we need to
move on to the Einstein frame. Performing the conformal
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0

FIG. 3. The shape of the torus is specified by ¢ and 7. Both
ends are understood to be identified.

transformation, g,,, = e & uv» to the action (7), we obtain

Ve
§=_6
2k32

d4x\/—_g[R —2(a¢p) + éTraﬂQaMQ*‘ }
(42)

Thus, the shifted dilaton ¢ and the matrix Q are separated.
The action for the string gas is transformed to

Sy = — [ dxJ=Fp 43)

which can be interpreted as the effective potential:

p = gipip; + PPMAQ) = V(3. §. Q). (44)
V&5

Notice that the effective potential V. depends on the

shifted dilaton only through ¢ .

Suppose the moduli Q are stabilized at the self-dual
point. As the mass of a string M?(Q) vanishes at the self-
dual point by assumption, the potential of the shifted
dilaton disappears. As there exists no potential, the hubble
expansion prevents the shifted dilaton from running along
the flat direction. Thus, the shifted dilaton is marginally
stable. Then, the question is if the moduli Q are really
stabilized or not. To investigate this issue, we need to
specify the concrete compactification model. This is dis-
cussed in the next section.

V.STABILITYOF T, ® T, ® T,
COMPACTIFICATION

We shall consider a torus compactification. The similar
but less general problem is analyzed using a different
method in [29]. The shape moduli of the torus are com-
pletely characterized by the complex number 7 = & + in
(see Fig. 3). The metric of the torus with unit volume is
described by the metric

1
ds? = —|dy' + rdy?|?, 45
Storus ImTI y' + 1dy?| (45)
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where the periodic boundary conditions y! ~ y! + 1, y> ~
y?> + 1 are assumed and | - - - | denotes the absolute value of
the complex number. The internal space we are considering
is the direct product of the torus, 7, ® T, ® T,. Hence, the
10-dimensional metric to be consider is

3 b%

ds* = g, dxtdx” + ldy?~! + 7,dy* |, (46)
a=1

Imr~,
where we have defined three scale factor b, and the modu-
lus 7, for each torus with coordinates y?*~!, y2¢. We would
like to analyze the stability of 7, ® T, ® T, compacifica-
tion. Fortunately, as the internal space is the direct product
of torus, it is enough to investigate the simple 6-
dimensional spacetime with one torus as the internal space.
Now, we shall take the metric

b2
ds? = g, dxtdx” + —[(dy' + &€dy*)* + n*(dy*)?]
U]

(47)

where g,, is the 4-dimensional metric in the Einstein
frame and b represents the scale factor of the torus, i.e.
volume moduli. The antisymmetric tensor field in 2-
dimensions has only one component

5-(2 8) a

We call B the flux moduli, hereafter. The 4-dimensional
effective action in the Einstein frame becomes

S = % jd“x\/:TE[R —2(d¢)* — 2(0 logh)?

1 1
— g ln? + 087 — 55 0B |

— My fd4x\/_§oo gipip; + APM2(B, b, 1, &),
(49)

where the mass is given by
1
M(Bb.m &) = (i€ = pa = BOVE+ WP
b2
2 (pr = wBP + (WP )
n

+ nb2(W?)? +4(N — 1)

= 2(pyw' + pyw?). (50)
Using Eq. (48) and
_br ¢
F_?<§: §2+772> (51)

which one can read off from the metric (47). We see the
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above action has the T-duality symmetry (9) and (10):

§i = n g _ _ ¢
Ve e
) (52)
- b y B
b= BT T
b*+ B b*+ B
From Eq. (52), it is easy to find the self-dual point
b=1, n=1 £=0, B=0. (53

One may expect this self-dual point is a stable minimum
of the effective potential. In order to verify this, we should
examine where is the minimum of M?(B, b, , £) in the
potential in the action (49). First, let us consider the string
gas consisting of modes N =1, p, = w! =1, p, = w? =
0 which becomes massless at the self-dual point. For this
gas, we have

1 b?
M= GE—BPpe -2 (Y

In this case, there exists flat directions b> = 7, £ = B in
contrast to the naive expectation. However, we only con-
sidered one kind of string gas which winds around one
specific cycle. Apparently, we have the other cycle for the
torus. Hence, we consider another string gas consisting of
modes N=1,p, =w!'=0,p,=w?>=1 which be-
comes massless at the self-dual point. In this case, we
obtain
1 2 b2 2

M3 ZWO +ﬁ§)2+"b—€+7+ nb* —2. (55)
Now, we also have flat directions 82 = (b*£2)/(9?), 1 +
BE& = mb?. We find these two flat directions intersect at the
self-dual point b =1,n=1,¢ =0, 8 =0. Hence, by
taking into account both type of string gas, the self-dual
point would be stable minimum. The stability can be
explicitly verified by expanding the potential around this
extrema as

gipip; 1 e
V = pay[F o+ A28 b m £) (56)
&s V& [&7Pip;

where we have used the fact that M? =~ 0 near the self-dual
point. Let us linearize the scale factor b and the modulus 7
asb =1+ 6band n =1 + &7. Other variables & and B
are already linear because the background values of these
variables are zero. Hence, we have

SMi = (€ — B)* + (6n — 28b)° (57

and

SM3 = (£ + B)* + (80 + 26Db)>. (58)
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Here, we can see each potential has flat directions.
However, by adding up both contributions, we get

SM? = SM? + SM2 = 2£% + 282 + 25m2 + 85D>
(59)

where flat directions disappear. Thus, we have proved the
stability of all of the moduli of the torus. Even if we add
other massless modes, the result does not change. The
dilaton is also stabilized due to the reason explained in
the previous section. This concludes the stability of 7, ®
T, ® T, compacification as we expected.

We note that the field has to have a sufficiently large
mass in order to evade fifth force tests. This gives the
constraint on the number density of the string gas w4 [22].

VI. CONCLUSION

We have analyzed the stability of 7, ® T, ® T, compac-
tification in the context of massless string gas cosmology.
We emphasized the importance of the T-duality and mass-
less modes in a string. We have first performed the numeri-
cal calculations and then shown the stability of the dilaton.
To understand this numerical result we have constructed
the 4-dimensional effective action by taking into account
the T-duality. It turned out that the dilaton is marginally
stable. We performed the stability analysis of the volume
moduli, the shape moduli and the flux moduli. We have
found that all of these moduli are stabilized at the self-dual
point in the moduli space.

Of course, what we have shown is the stability of moduli
during the string gas dominated stage. After the string gas
dominated stage, the ordinally matter come to dominate
the universe. Then, the dilaton will start to run. Therefore,
we need to find a mechanism to stabilize the dilaton in
these periods. One possibility is the nonperturbative string
correction

2k?

s— L f d'x7/=G[B,($)R + 4B,(d)(9h)

1 2
12Ba(¢)H Il (60)

where we have taken into accounts the loop corrections
Bi(¢p) = e 2 + c;e®® + die*® + - - -. (61)

There may be a possibility to stabilize all of the moduli in
the whole history of the universe in this context [30,31].
This possibility deserve further investigations. It is also
interesting to investigate the possibility to combine the
string gas approach with other ones [32,33].

More importantly, we need a mechanism to explain the
present large scale structure of the universe in the context
of the string gas scenario. In the string gas model, it is
difficult to realize the inflationary scenario. We might have
to seek a completely different one from the inflationary
generation mechanism of primordial fluctuations [34].
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