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We consider the splitting mechanism of a multiply charged vortex into singly charged vortices in a Bose-
Einstein condensate confined in a harmonic potential at zero temperature. The Bogoliubov equations support
unstable modes with complex eigenfrequencies(CE modes), which cause the splitting instability without the
influence of thermal atoms. The investigation of the excitation spectra shows that the negative-energy(NE)
mode plays an important role in the appearance of the CE modes. The configuration of vortices in splitting is
determined by the angular momentum of the associated NE mode. This structure has also been confirmed by
the numerical simulation of the time-dependent Gross-Pitaevskii equation.
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I. INTRODUCTION

The discovery of Bose-Einstein condensates(BECs) of
alkali-metal atomic gases enables us to make fundamental
investigations into superfluidity and quantized vortices. Vor-
tices in BECs have been created in three ways: phase im-
printing [1,2], optical spoon stirring[3], and topological
phase engineering[4,5]. By using the third method, multiply
charged singular vortices are created in BECs, which have
not been achieved in other systems such as superfluid3He
and4He [6,7].

Recently, Leanhardtet al. succeeded in imprinting vorti-
ces in Bose-Einstein condensates by using topological phases
[5]. They observed doubly and quadruply quantized vortices
in a nonrotating trap. Although such a multiply charged vor-
tex is expected to be unstable and split into singly charged
vortices, no obvious splitting has been observed in experi-
ment. Unfortunately, since the center of the external potential
changes from a minimum to a saddle in the vortex imprinting
process, the vortex state cannot be trapped. Therefore, the
fate of the vortices has not been revealed in the experiment.

In a nonrotating trap, the energy of a vortex state in-
creases in proportion to the square of the winding number
[8]. When there are some dissipative processes such as scat-
tering with thermal atoms, the multiply charged vortex
should split into singly quantized vortices and escape from
the condensate. The existence of negative-energy eigenval-
ues among the excitation spectra shows that the vortex state
continuously turns into a vortex-free state without any en-
ergy barriers[9–11]. Then what happens in a system in
which all atoms are condensed and scattering with thermal
atoms is negligible? Does the vortex remain in the conden-
sate without splitting?

There is another candidate for the splitting instability. For
a multiply charged vortex in a BEC, the Bogoliubov equa-
tions possess complex eigenfrequencies in certain regions of
the parameter space of the interaction strength[12–14]. This
fact means that there is an eigenmode growing exponentially
and the condensate becomes unstable against infinitesimal

perturbations. Therefore the vortex state is intrinsically un-
stable.

In this paper, we consider the origin of the complex-
eigenfrequency(CE) modes and their effect upon the vortex
splitting process. A vortex with a winding numberL.2 may
split into various states, while a doubly charged vortex
merely splits into a pair of singly charged vortices[14]. We
will treat a quadruply quantized vortex in concrete calcula-
tions in this paper. In Sec. II, we briefly introduce the for-
malisms based on the mean field theory. The orthonormal
conditions for CE modes are constructed there. In Sec. III, a
clear insight into the origin of CE and negative-energy(NE)
modes is provided by the collective excitation spectra of the
Bogoliubov equation. The possible structures of splitting are
also considered in Sec. IV, showing the results of numerical
simulations of the Gross-Pitaevskii equation(GPE).

II. FORMALISM

A. Stationary state with a multiply charged vortex

BECs of weakly interacting atoms are well described by
the GPE given by

i"
] C

] t
= S−

"2

2M
¹2 + Vtrsr d − m + gucu2DC, s1d

whereCsr ,td is the condensate wave function,M is the mass
of the trapped atoms,m is the chemical potential, andg
=4p"2a/M represents the strength of the interparticle inter-
action. We treat repulsively interacting atoms and assume the
s-wave scattering lengtha to be positive. The external trap
potential has an axially symmetrical form with trap frequen-
cies vr and vz as Vtrsr d= 1

2Mvr
2sx2+y2d+ 1

2Mvz
2z2. For sim-

plicity, we assume a pancake-shaped BEC, i.e.,vr !vz, and
fix the z dependence of the order parameter asCsr ,td
;csx,y,tdczszd, whereczszd is the normalized ground state
wave function of a one-dimensional harmonic oscillator.
Then we treat the two-dimensional wave functioncsx,y,td
which is normalized to the total atom numberN.

It is convenient to introduce the dimensionless time and
space variablest̃=vrt andsx̃, ỹd=sx,yd /aHO, and the normal-

ized order parameterc̃=aHOc /ÎN, where aHO is the har-*Electronic address: yuki@scphys.kyoto-u.ac.jp
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monic oscillator length:aHO=Î" /2Mvr. Energies are also
scaled by"vr, for example,m̃=m /"vr. Then the GPE is
rewritten in a simple form

i
] c

] t
= S− ¹2 +

1

4
r2 − m + hucu2Dc, s2d

where¹2=]x
2+]y

2,r2=x2+y2,h=8paN, and we omit the tilde
for simplicity.

Assuming an axial symmetry around a vortex line, we
express the condensate wave function with anL-charged vor-
tex in equilibrium as

c0sr,ud = AsrdeiLu, L = 0,1,2, . . . , s3d

whereAsrd is a real function and satisfies the equations

fDsLd + hAsrd2gAsrd = 0, s4d

DsLd ; −
d2

dr2 −
1

r

d

dr
+

L2

r2 +
1

4
r2 − m. s5d

The chemical potentialm is found from the normalization
condition 2pe0

`r drhAsrdj2=1. We assumeL to be positive
without loss of generality. The results of numerical calcula-
tions for L=4 are presented in Secs. III and IV.

B. Collective excitations

To study the collective excitations of a BEC, we add small
fluctuations to the stationary state ascsr ,u ,td=fAsrd
+ fsr ,u ,tdgeiLu, wheref is small and complex. Assuming that
the excitations are periodic inu with period 2p, we expandf
into a Fourier series:

fsr,u,td = o
l=0,1,2,. . .

fulsr,tdeilu + vl
*sr,tde−ilug. s6d

Substitutingcsr ,u ,td in Eq. (2) and linearizing with respect
to f, one obtains the well-known Bogoliubov equation

Ĥlwlsrd = vlŝwlsrd, s7d

where

wlsrd = Sulsrd
vlsrd

D, ŝ = S1 0

0 − 1
D , s8d

andĤl is a symmetrical matrix

Ĥl = SDsL + ld + 2hA2 hA2

hA2 DsL − ld + 2hA2D . s9d

We are interested in the eigenstates ofŝĤl and take the time
dependence of the excitations aswlsr ,td=wlsrdexps−ivltd. It
should be noted here that the Bogoliubov equations with
different l are independent.

Usually, the summation in Eq.(6) is done for both posi-
tive and negativel which correspond to the angular momenta
of excitations, and the normalization conditionkuulu2− uvlu2l
=1 s.0d is imposed, wherek¯l;2pe0

`
¯ r dr. In this

case, however, we remove this normalization condition and

restrict l ù0, since the eigenvalue equation for −l is just the
same as that forl when one replacesul, vl, andvl with v−l,
u−l, and −v−l, respectively. Then we define the angular mo-
mentum lex of excitations by comparing the amplitudes of
components exps±ilud as

lex = l sgnkuulu2 − uvlu2l. s10d

To specify the sign of the angular momenta, we usewl
sud and

wl
svd for the eigenfunctions oflex= l and lex=−l, respectively.

The excitation energy is also defined by

el = vlkuulu2 − uvlu2l, s11d

reflecting the relationvl =−v−l. This is confirmed by expand-
ing the Hamiltonian up to the second order in perturbations.

C. Complex eigenmodes and orthonormality

Equation(7) is allowed to have complex eigenfrequencies
since it is a non-Hermite eigenvalue equation[12]. Here, we
derive the normalization and orthogonality conditions for
eigenmodes including CE modes.

Consider two eigenmodeswlm,n of Eq. (7) with eigenfre-
quenciesvlm,n. Using the property of the Hermitian operator

Ĥlkwln
T Ĥlwlml=kwlm

T Ĥlwlnl, whereT denotes the transpose,
one obtains the equation

svlm − vlndkwln
T ŝwlml = 0. s12d

When two eigenstates have different eigenfrequencies
svlmÞvlnd, they are orthogonal:kwln

T ŝwlml=0. In particular,
in the case whenwlm is complex with a complex eigenvalue
vlm, its complex conjugatewlm

* is also an eigenstate with
eigenvaluevlm

* . The orthogonality condition forwlm andwlm
*

is written as

kwlm
† ŝwlml = kuulmu2 − uvlmu2l = 0. s13d

According to Eqs.(10) and (11), a CE mode corresponds to
the excitation with zero angular momentum and zero excita-
tion energy.

Equation(12) indicates thatkwln
T ŝwlnl can be normalized.

For a real-eigenfrequency(RE) mode, we choose the phase
so that the eigenfunction is real. Then the normalization con-
stant is defined to be consistent with its angular momentum
as

kwln
sudTŝwln

sudl = 1, kwln
svdTŝwln

svdl = − 1. s14d

For a CE mode, we divide the eigenfunction into two real
functions wsR,Id as wlm=s1/Î2dswsRd+ iwsldd. The phase of
wlm is determined in such a way that the following conditions
are satisfied:

kwsRdTŝwsRdl = 1, kwsIdTŝwsIdl = − 1, s15ad

kwsRdTŝwsIdl = 0. s15bd

With these conditions, the CE mode indeed satisfies Eq.(13)
and the normalization conditionskwlm

T ŝwlml=kswlm
* dTŝwlm

* l
=1. According to Eq.(15a), the functionswsR,Id correspond
to positive- and negative-angular-momentum excitations(not
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eigenstates). We use the expressionsw
lm8
sud andw

ln8
svd instead of

wsR,Id, respectively, and treat them and the other eigenmodes
equally.

In this way, the orthonormal basis setwln
su,vd has been con-

structed with the following conditions:

kwlm
sudTŝwln

sudl = dmn, kwlm
svdTŝwln

svdl = − dmn, s16ad

kwlm
sudTŝwln

svdl = 0. s16bd

III. ENERGY SPECTRUM

A. Collective excitations with h=0

First, we investigate at the noninteracting limitsh=0d.
The equilibrium state satisfiesDsLdAsrd=0. The eigenfunc-
tion Fn

L and eigenvalueEn
L are given analytically by

Fn
Lsrd = Cn

Lr uLuLn
uLusr2/2de−r2/4, s17d

En
L = uLu + 2n + 1, s18d

wheren=0,1,2, . . .denotes the radial quantum number and
Ln

Lsxd is the generalized Laguerre polynomial function. The
coefficient Cn

L is defined by the normalization condition
kFn

Lsrd2l=1. The stationary stateA0srd and its chemical po-
tential m0 are

A0srd = F0
Lsrd, m0 = E0

L = L + 1. s19d

The Bogoliubov equation withh=0 decouples into the
independent equations

DsL + ldUl = VlUl , s20ad

DsL − ldVl = − VlVl , s20bd

where we write eigenfunctions and eigenfrequencies withh
=0 in capital letters. The solutions areUl =Fn

L+l ,Vl =Fn
L−l, i.e.,

the set of eigenmodes is given by

W ln
sud = Fn

L+lsrdS1

0
D, W ln

svd = Fn
L−lsrdS0

1
D , s21d

having eigenfrequenciesVln
sud= uL+ l u+2n−L and Vln

svd=−uL
− l u−2n+L, respectively. According to Eq.(11), the excita-
tion energy ofW ln

svd is Eln
svd=−Vln

svd, while that of W ln
sud is

Eln
sud=Vln

sud. Figure 1 shows the excitation spectra withh=0
with respect to the equilibrium state with a quadruply quan-
tized vortexsL=4d. There are a few negative energies among
the spectra of 1ø l ø2L−1. These NE modes come from the
fact thatc0 is not a ground state. For a noninteracting BEC,
NE modes correspond to the eigenstates in the trap with
lower energies thanc0. The existence of these various NE
modes shows how unfavorable the multiply charged vortex
is.

In the case of a nonisolated system, the energy of the
condensate does not need to be conserved. It decreases
through the growth of NE modes, leading to the vortex de-
cay. In an isolated system, however, the energy must be con-

served and the excitation which can cause the vortex decay is
not a NE mode but a CE mode, as we will show in the
following.

B. h dependence of energy levels

To calculate the energy spectrum forh.0, we expand the
eigenmodeswl in W ln

su,vd as

wl = o
n=0

N

sanW ln
sud + bnW ln

svdd . s22d

Substituting Eq.(22) into Eq.(7), we rewrite the Bogoliubov
equation as eigenvalue equations forsa0,b0, . . . ,aN,bNd:

ho
m=0

N

f2kFn
L+lA2Fm

L+llam + kFn
L+lA2Fm

L−llbmg

+ sEn
L+l − m − vldan = 0, s23ad

ho
m=0

N

fkFn
L−lA2Fm

L+llam + 2kFn
L−lA2Fm

L−llbmg

+ sEn
L−l − m + vldbn = 0, s23bd

wheren=0,1, . . . ,N andAsrd ,m are the numerical solutions
of Eq. (4).

We have numerically solved Eq.(23) for L=4 and 0ø l
ø8 in the range of 0øhø4000. The number of terms
summed in Eq.(23) is N=50. The NE modes exist for 1
ø l ø7 as expected from the result forh=0. The CE modes
appear for 2ø l ø6. The imaginary parts of the complex
eigenfrequencies are shown in Fig. 2, which agrees well with
the results for doubly and triply charged vortices[12].

The origin of the CE modes is made clear by plotting
them as functions ofh. Figure 3 shows the excitation spectra
with l =2. Each eigenstate is identified by a radial quantum
numbern=0,1,2, . . . and thesign of the angular momentum
u ,v. The solid lines in Figs. 3(a) and 3(b) represente2n

sud and
e2n

svd, respectively. There is a NE modew20
svd, and −e20

svd s.0d is
plotted with a broken line in both figures. We also plot the

FIG. 1. Excitation spectra of a quadruply charged vortex state at
the noninteracting limit. The symbols+ and 3 representEln

sud and
Eln

svd, respectively.

SPLITTING INSTABILITY OF A MULTIPLY CHARGED… PHYSICAL REVIEW A 70, 043610(2004)

043610-3



real parts of the complex frequencies with dotted lines. It is
clear from Fig. 3 that a conjugate pair of CE modes appears
instead of two RE modesw2n

sud andw20
svd in the regions where

e2n
sud+e20

svd=0. As we mentioned in Sec. II, a CE mode corre-
sponds to an excitation with zero excitation energy and zero
angular momentum, which are made up of two excitations
such ass1/Î2dsw2n

sud± iw20
svdd. The real and imaginary parts,

which are divided so as to satisfy orthonormality, have a
physical meaning: they correspond to positive- and negative-

angular-momentum excitations, which continuously change
to RE modes ash changes.

The second quantized description simplifies this picture

[12,15]. A boson field operator is defined asĉsr d=c0sr d
+f̂sr d, where thec-number functionc0sr d denotes the con-

densate wave function andf̂sr d is the fluctuation part. We

decomposef̂sr d as f̂sr d=eiLuol,l,nfuln
sldsrdeilualln+vln

sldsrd
3e−ilualln

† g. Here, alln
† is the creation operator associated

with a fluctuationwln
sld. Let us fix the interaction strength, for

example, toh=200 where a pair of the CE modess1/Î2d
3sw20

sud± iw20
svdd exists. Then the Bogoliubov Hamiltonian is

written as

K̂B = o
l=u,v

o
sl,ndÞs2,0d

eln
l alln

† alln + Revcsau20
† au20 − av20

† av20d

+ Im vcsau20
† av20

† + au20av20d, s24d

wherevc is the complex eigenfrequency, and we have used
the relations

Re vc = kw20
sudTĤ2w20

sudl = − kw20
svdTĤ2w20

svdl, s25ad

Im vc = kw20
sudTĤ2w20

svdl. s25bd

Equation(24) clearly shows that the two excitationsw20
su,vd

are coupled to each other and should be created or annihi-
lated together.

In the above discussion, the NE mode is important for the
appearance of CE modes. In the case ofl =2, there exists
only one NE mode,w20

svd. Therefore, all CE modes withl
=2 are found by tracinge20

svd. We also present the spectra for
l =4 in Fig. 4, where the solid lines represente4n

sud. There exist
two negative-energy eigenvaluese40

svd ande41
svd which are plot-

ted by broken lines. We have confirmed that the NE mode

FIG. 2. Imaginary parts of eigenfrequencies for(a) l =5,6 and
(b) l =2,3,4 asfunctions of the interaction strengthh. The result
for l =6 is magnified 100 times. The CE mode atP differs from
others withl =4 as to the associated NE mode(see text).

FIG. 3. Excitation spectra forl =2. The solid lines correspond to
excitation energies with(a) positive angular momenta and(b) nega-
tive angular momenta. In both figures, the negative-energy eigen-
values and the real part of the complex eigenfrequency are plotted
by broken and dotted lines, respectively.

FIG. 4. Excitation spectra forl =4. The description of lines is in
Fig. 3(a). There are two NE modes and both turn into CE excita-
tions. The pointP corresponds toP in Fig. 2 (see text).
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w41
svd, as well asw40

svd, turns into CE modes in the region where
e40

sud+e41
svd=0 is satisfied[at pointP in Figs. 2(b) and 4]. We

have obtained all of the CE modes by inspecting the behav-
iors of NE modes(see Fig. 2).

The h dependence of negative-energy eigenvalues is also
important in this mechanism. Since their dependence differs
from that of positive energies, many CE modes appear[Figs.
3(a) and 4]. The qualitative account for theh dependence
can be given by introducing the effective potential

Veffsl,rd =
1

4
r2 +

sL − ld2

r2 + 2hAsrd2 − m, s26d

which is easily derived from the Bogoliubov equation for
negative-angular-momentums−ld excitations. When the
equilibrium state contains a vortex, theA2 term produces a
potential well centered at the vortex core[10]. On the other
hand, the second term represents the centrifugal potential
depending upon the angular momentum of the fluctuation.
This term makes the well narrower asuL− l u increases. A NE
mode corresponds to a bound state of the well, and therefore
shows differenth dependence from the others.

There are two effects on the negative-energy eigenvalues
associated with the change ofh. By increasingh, (i) the
chemical potentialm increases as well, leading to a deeper
well and smaller energy eigenvalues and(ii ) the coherence
length(i.e., vortex core size) decreases, leading to a narrower
well and larger energy eigenvalues. In the case ofl =4 s=Ld,
the negative-energy eigenvalues decrease rapidly ash in-
creases by(i). In contrast, thel =1 negative energy eigen-
value increases due to(ii ). Therefore, the conditione1n

sud

+e10
svd=0 cannot be satisfied with any eigenmodesw1n

sud, and
no CE mode appears.

IV. PATTERNS OF VORTEX SPLITTING

So far our discussion has been based on the spectrum
analysis. We have found that the CE mode corresponds to a
zero-energy excitation and should grow in an isolated sys-
tem. In this section we consider the possible patterns of vor-
tex splitting.

A. Vortex structure with elementary excitations

Here, we analyze the structure of BEC with fluctuations.
The wave function perturbed by an eigenmodewl is written
as c=fAsrd+dsule

ilu+vl
*e−iludgeiLu, where d is a small and

real constant.
The structure of the vortex core in equilibrium can be

described with an asymptotic formAsrd, rLsr →0d. The
eigenmode at the center also behaves asul , r uL+l u and vl
, r uL−l u. Then the perturbed wave function is written in the
lowest order ofr asc,dr uL−l ueisL−ldu, i.e., ansL− ld-charged
vortex exists at the center. One also finds that the condensate
hasl-fold symmetry by linearizing the density with respect to
d:

ucsr,udu2 = A2 + 2AdfResul + vldcosslud− Imsul + vldsinsludg.

s27d

Assuming the conservation of the total angular momentum,
splitting of an L-charged vortex obeys the rules(i) an sL
− ld-charged vortex stays at the trap center, and(ii ) l singly
quantized vortices are arranged inl-fold symmetry.

Although the above rules are applicable to both RE and
CE modes, only the latter can grow exponentially and cause
large changes of the condensate with a small perturbation. In
the following, we investigate the effect of CE modes on the
time development of a vortex state.

B. Projection to elementary excitations

We solve the GPE numerically and simulate the time de-
velopment of splitting process. Regarding the time evolution
of a condensate as individual developments of elementary
excitations, we again expand the time-dependent wave func-
tion as

csr,u,td = g0stdAsrdeiLu + o
l

fulsr,tdeilu + vl
*sr,tde−ilugeiLu.

s28d

Conversely,ul andvl are written by usingcsr ,u ,td as

ulsr,td =E
0

2p du

2p
csr,u,tde−isL+ldu, s29ad

vlsr,td =E
0

2p du

2p
c*sr,u,tdeisL−ldu. s29bd

We expandwlsr ,td in eigenmodes of the Bogoliubov equa-
tion as

wlsr,td = o
l=u,v

o
n=0,1,2,. . .

gln
sldstdwln

sldsrd. s30d

By using the orthonormal conditions(16), the coefficient is
given by gln

su,vdstd= ± kwln
su,vdsrdŝwlsr ,tdl, where the upper

(lower) sign is for the superscriptu svd.
In the extent of the linear approximation,gln

su,vd for a RE
mode oscillates with the eigenfrequencyvln

su,vd as gln
su,vd

~exps−ivln
su,vdtd. Then the amplitude is constant. For a con-

jugate pair of CE modess1/Î2dsw
ln8
sud± iw

lm8
svd d with eigenfre-

quencies vc and vc
* , the time dependence is given by

s1/Î2dsg
ln8
sud± ig

lm8
svd d~expf−isRe vcdt7 sIm vcdtg, one of

which is growing and the other is diminishing.

C. Time development of vortex structures

The solution of Eq.(4) remains stationary without any
perturbations. We distort the trap potential in thelv-fold sym-
metrical form asVtrsr ,ud= 1

4r2f1+d cosslvudg during a short
period. By choosing the symmetry of the distortion, the
eigenmodes ofl = lv are selectively excited.

The distortion is small enough not to cause distinguish-
able splitting of the multiply charged vortex. When all of the
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excited modes have real eigenfrequencies, the configuration
of cores does not change in time. In our simulation, no ob-
vious splitting occurs ath=500 where no CE mode exists.

We have investigated how CE modes affect the configu-
ration of vortices. We have simulated ath=730 where there
exists a pair of CE modess1/Î2dsw33

sud± iw30
svdd, and distorted

with lv=3. Figure 5 shows the time dependence ofg3n,
which is the typical behavior of excitations including CE
modes. While the amplitudes of eigenmodes are small, their
time dependence agrees well with the linear approximation
as shown in Fig. 5(a): the amplitude of one of the CE modes
(plus mode) increases as expsIm vctd, that of the other CE
mode(minus mode) decreases as exps−Im vctd, and those of

the RE modes are constant. Further time development is
shown in Fig. 5(b). When the plus mode increases beyond
the linear approximation, it stops growing, and the minus
mode starts growing instead. They interact with each other
and begin to oscillate. Other excitations are also enlarged
more and more through a nonlinear process. Here, the RE
modes ofl = lv are selectively enlarged.(In the case oflv=2,
we found that the RE modes ofl =4 are also excited through
this nonlinear process.)

Figures 6(a)–6(c) are the images of condensates at the
pointsA, B, andC in Fig. 5, respectively. The initial distor-
tion causes little change of the distribution[Fig. 6(a)]. As the
complex mode grows, the vortex split into four singly quan-
tized vortices arranged in threefold symmetry[Fig. 6(b)].
The interaction of the CE modes results in the oscillation of
distances among the cores. The divided cores in Fig. 6(b)
move toward the center again as shown in Fig. 6(c) and
oscillate between these two states. In the oscillation, singly
charged vortices never return to the quadruply charged vor-
tex. Their average distance becomes larger and larger. Simul-
taneously, the center core begins to vibrate and the conden-
sate becomes more and more distorted. The energy of the
multiply charged vortex is gradually transferred to the exci-
tation energies of RE modes.

We have also investigated the coexistence region of sev-
eral CE modes. We have simulated ath=340 where CE
modes ofl =2, 3, and 4 exist. Figures 7(a)–7(c) are images
of splitting after distortion withlv=2, 3, and 4, respectively.
The vortices in each image are arranged inlv-fold symmetry.
This fact means that the splitting patterns can be controlled
by the initial distortion.

As we have mentioned before, the symmetry of the con-
figuration of vortices agrees withlv, i.e., the angular momen-
tum of excited states. At the center of the trap, however, a
doubly quantized vortex, which appears inl =2 splitting,
seems unstable and soon decays into two singly charged vor-
tices [Fig. 7(a)].

V. CONCLUSION

We have calculated the collective excitation spectra of a
BEC with a quadruply charged vortex, and discussed the

FIG. 6. Contour plots of density profiles at the pointsA, B, and
C in Fig. 5. (a) A multiply charged vortex just after the distortion.
(b), (c) Vortices arranged in threefold symmetry. Vortex cores move
outward(b) and into the center(c) in the oscillation.

FIG. 7. Images of splitting patterns ath=340 after trap distor-
tion with (a) lv=2, (b) lv=3, and (c) lv=4. The top panels are
density profiles and the bottom panels are the corresponding phase
profiles. Three CE modes are selectively excited by choosinglv.

FIG. 5. Time development of elementary excitations.(a) Initial
changes. The broken lines correspond to the amplitude of the CE
modes(plus and minus modes), which coincide with the solid lines
corresponding to the functions exps±Im vctd. The amplitudes of
other modes plotted with the dotted lines are constant.(b) Further
time development. The plus and minus modes(the solid and broken
lines, respectively) interact with each other and oscillate. The am-
plitudes of other modes(dotted lines) are also affected by the os-
cillation and increase more and more.

Y. KAWAGUCHI AND T. OHMI PHYSICAL REVIEW A 70, 043610(2004)

043610-6



origin of CE modes. A CE mode is decomposed into two
excitations, whose total energy and angular momentum are
equal to zero. This fact allows the CE mode to grow without
any dissipative processes. To satisfy energy conservation,
one of the elements must be a NE mode. Itsh dependence
affects the appearance of the CE mode. We have found all of
the CE modes existing in the region 0øhø4000 (Fig. 2).

The possible patterns of vortex splitting are classified by
the angular momenta of fluctuations. These structures have
been confirmed by the numerical simulations of splitting.
Moreover, the selection of the patterns has been found to be
possible by manipulation of the trap symmetry. The intrinsic
splitting is caused by a CE mode, and if one chooses theh
(i.e., the number of trapped atoms) so that a CE mode exits,
the splitting corresponding to the CE mode occurs. The CE
mode is efficiently excited by controlling the symmetry of

the trap, even in the case when several CE modes coexist.
In this paper, we have assumed a pancake-shaped BEC

and taken a two-dimensional approach. In a cigarette-shaped
BEC as in the experiments, three-dimensional simulation
shows that the splitting cannot be recognized by time of
flight because of the excitation along a vortex line[14].
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