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Bulk gravitational field and cosmological perturbations on the brane
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We investigate the effect of the bulk gravitational field on the cosmological perturbations on a brane
embedded in 5D anti–de Sitter~AdS! spacetime. The effective 4D Einstein equations for the scalar cosmo-
logical perturbations on the brane are obtained by solving the perturbations in the bulk. Then the behavior of
the corrections caused by the bulk gravitational field to the conventional 4D Einstein equation is determined.
Two types of correction are found. First we investigate the corrections that become significant at scales below
the AdS curvature scales and in the high energy universe with an energy density larger than the tension of the
brane. The evolution equation for the perturbations on the brane is found and solved. Another type of correc-
tion is induced on the brane if we consider the bulk perturbations, which do not contribute to the metric
perturbations but do contribute to matter perturbations. At low energy, they have an imaginary massm25

2(2/3)k2 in the bulk wherek is the 3D comoving wave number of the perturbations. They diverge at the
horizon of the AdS spacetime. The induced density perturbations behave as sound waves with a sound velocity
of 1/A3 in the low energy universe. At large scales, they are homogeneous perturbations that depend only on
time and decay like radiation. They can be identified as the perturbations of dark radiation. They produce
isocurvature perturbations in the matter dominated era. Their effects can be observed as shifts of the location
and the height of the acoustic peak in the cosmic microwave background spectrum.

DOI: 10.1103/PhysRevD.65.023514 PACS number~s!: 98.80.Cq, 04.50.1h
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I. INTRODUCTION

Recent developments in particle physics revive the
idea that we are living in a 4D brane in higher dimensio
spacetime@1,2#. Since Randall and Sundrum proposed t
fascinating model of the brane world, much work has be
done concerning the consistency of the model with obse
tions @3#. In their model, our three-brane universe is loca
in 5D anti–de Sitter~AdS! spacetime. The essence of th
model is that the spacetime is effectively compactified w
the curvature scalel of the AdS spacetime. Thus, althoug
gravity can propagate in the whole higher dimensio
spacetime, 4D Newtonian gravity is reproduced at sca
larger thanl on the brane.

After their work, the cosmological consequences of
model have been actively investigated@4–15#. The setup of
the model is as follows. The action describing the bra
world picture is given by

S5
1

2k2E d5xA2gS R 51
12

l 2 D 2sE d4xA2gbrane

1E d4xA2gbraneLmatter, ~1!

whereR 5 is the 5D Ricci scalar,l is the curvature radius o
the AdS spacetime, andk258pG5, whereG5 is Newton’s
constant in the 5D spacetime. The brane has a tensions and
the induced metric on the brane is denoted asgbrane. The
tensions of the brane is taken ask2s56/l to ensure that the
brane becomes Minkowski spacetime if there is no matte
the brane. Matter is confined to the 4D brane world and
0556-2821/2001/65~2!/023514~20!/$20.00 65 0235
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described by the LagrangianLmatter. We will assumeZ2

symmetry across the brane. It has been shown that the
tially homogeneous and isotropic universe can also be
bedded in this model. In order to study the consistency of
model with observations, it is necessary to study the beh
ior of the cosmological perturbations@16–18#. The cosmo-
logical perturbations in the brane world provide useful te
for the brane world idea. This is because the perturbation
the brane world interact with the bulk gravitational field; th
is the inherent nature of perturbations in the brane wo
Several formalisms and applications have been develo
@19–29#. In particular, we showed that the evolution of th
perturbations is the same as that obtained in conventiona
theory at low energies when the Hubble horizon of the bra
universe is larger thanl. We also pointed out that the evolu
tion of the perturbations changes significantly at high ene
@19#.

The purpose of this paper is to clarify the difference b
tween the behavior of the perturbations in the brane wo
model and that in the conventional 4D model. For this p
pose, it is desirable to obtain the effective 4D Einstein eq
tions on the brane. There is some work that investigates
effective 4D Einstein equations with a projective approa
@30,31#. The effective 4D Einstein equations are obtained

Gmn1Emn5
k2

l
Tmn1k4Pmn , ~2!

where
©2001 The American Physical Society14-1
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Pmn52
1

4
TmaTn

a1
1

12
Ta

aTmn1
1

24
~3TabTab2~Ta

a!2!gmn ,

~3!

and Emn is the projected 5D Weyl tensor. In@29#, the large
scale cosmological perturbations are analyzed using Eq.~2!.
With a projective approach, the equations are used solel
the brane and the perturbations are not solved in the b
Although significant results can be obtained, this approac
clearly limited because the behavior ofEmn cannot be deter-
mined without solving the bulk perturbations. In a previo
paper@19#, we developed a method to solve the perturbatio
in the bulk. In this paper, using our method, we obtain
effective Einstein equation for the scalar cosmological p
turbations by solving the perturbations in the bulk@see Eqs.
~40! and~41! below#. Then we can determine the behavior
the corrections caused by the bulk gravitational field to
conventional 4D Einstein equations. This is an essential
of the work, predicting the cosmic microwave backgrou
~CMB! anisotropies in the brane world.

We will obtain the effective Einstein equations in tw
ways. First we derive the effective Einstein equations wit
projective approach using the equations solely on the br
as in@29#. We observe the limitations of this approach. Th
we construct the effective Einstein equations again by s
ing the bulk perturbations. The evolution of the perturbatio
on the brane is investigated using the effective Einstein eq
tions. We concentrate our attention on the scalar pertu
tions on a brane in AdS spacetime. A new type of correct
arises if we choose appropriate boundary conditions for
perturbations in the bulk so that they do not contribute to
metric perturbations but do contribute to the matter pertur
tions. They induce density perturbations on the brane, wh
behave as sound waves with sound velocity 1/A3 in the low
energy universe. At large scales, they are homogeneous
turbations that depend only on time and decay like radiat
We will discuss the effects of these perturbations on
CMB spectrum.

The structure of the paper is as follows. In Sec. II, w
construct the effective Einstein equation for the backgrou
spacetime in two ways as an example. In Sec. III, the eff
tive Einstein equations for perturbations are constructed f
the equations on the brane. Two types of correction to
conventional 4D Einstein equations are found. We see th
complete set of effective 4D Einstein equations cannot
derived from equations solely on the brane. In Sec. IV,
effective Einstein equations are obtained again by solving
perturbations in the bulk and imposing the junction con
tions. A complete set of equations is obtained. We find ag
two types of correction, but now they are obtained accord
to the boundary conditions of the perturbations in the bu
In Sec. V, we take the boundary condition that the pertur
tions do not diverge at the horizon of the AdS spacetime,
investigate the modifications of the evolution. In Sec. VI, w
allow the existence of perturbations that do not contribute
the metric perturbations but do contribute to the matter p
turbations. The modifications of the evolution caused
these perturbations are studied. In Sec. VII, we summa
the results. In Appendix A, the equations used in Sec. II
02351
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derived. In Appendix B, we review the formalism needed
solve the perturbations in the bulk and impose the junct
conditions. Then the effective Einstein equations are
tained. In Appendix C, the generation of the primordial flu
tuations is discussed. The Mukhanov equation for the in
ton confined to the brane is obtained.

II. BACKGROUND SPACETIME

It is instructive to consider the background spacetime
an example for constructing the effective Einstein equatio
We take the background metric as

ds25e2b(y,t)~dy22dt2!1e2a(y,t)d i j dxidxj . ~4!

We will denote the power series expansion near the bran

a~y,t !5a0~ t !1a1~ t !uyu1
a2~ t !

2
y21•••. ~5!

The tensions of the brane is taken ask2s56/l and the 5D
energy-momentum tensor of the matter confined to the br
is

TN
M5diag~0,2r,p,p,p!d~y!. ~6!

The calculations that are necessary to obtain the equat
used in the following discussion are performed in Appen
A.

We first employ a projective approach to obtain the effe
tive Friedmann equation. We use the power series expan
of the 5D Einstein equation to obtain the equations solely
the brane. From the junction conditions, the first derivativ
of the metric with respect toy are written by means of the
matter on the brane. Then we can obtain equations that
tain only the variables on the brane from the 5D Einst
equations, which do not contain the second derivatives of
metric with respect toy. From these equations on the bran
we can construct the effective Einstein equations on
brane. The junction conditions are given by

a1~ t !52
1

l
2

k2r~ t !

6
,

b1~ t !52
1

l
1

k2r~ t !

3
1

k2p~ t !

2
, ~7!

where we takeeb0(t)51. The equations fora0 andr can be
obtained from the power series expansion of the 5D Eins
equation near the brane. They0th order of the (y,0) and
(y,y) components is given by

ä012ȧ0
25

k2

2l S r

3
2pD2

k4r~r13p!

36
,

ṙ13ȧ0~r1p!50. ~8!

At low energiesr/s;k22lr!1, the former is identical with
the trace part of the conventional 4D Einstein equations w
4-2
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8pG45k2/ l , ~9!

where G4 is Newton’s constant in the 4D spacetime. T
latter is the usual energy-momentum conservation law for
matter. The integration of the first equation gives the eff
tive Friedmann equation:

ȧ0
25

k2

3l
r1

k4r2

36
1e24a0C0 , ~10!

where C0 is the constant of integration. This is the (t,t)
component of the effective Einstein equations. In conv
tional 4D Einstein theory, the (t,t) component of the Ein-
stein equations gives

ȧ0
25

8pG4

3
r. ~11!

Thus the constant of integrationC0 should be zero in orde
to match the 4D Einstein theory at low energy. However
nonzeroC0 is not forbidden in the brane world. Indeed, it
known that C0 is related to the mass of the 5D AdS
Schwartzschild black hole. Thus the nonzeroC0 indicates the
effect of the bulk. The lesson is that even if we have a co
plete set of equations~8! for a0 and r which are identical
with those in conventional 4D theory at low energy, the c
rection to the Friedmann equation can exist. Because
term proportional toC0 in Eq. ~10! behaves like radiation, i
is often called dark radiation. The important point is that
cannot determineC0 from the equations on the brane~8!. We
need a different method to determineC0 which describes the
effect of the bulk.

Another way is to solve the 5D Einstein equation in t
bulk. We should impose the boundary conditions~7! on the
brane. The equations forb anda in the bulk are given by

2b̈1b92
1

l 2
e2b50,

2ä1a92
1

l 2
e2b50, ~12!

where we assumed that the bulk is purely AdS spacet
without Schwartzschild mass~see Appendix A!. We can ob-
tain the solution

e2b(y,t)54
f 8~u!g8~v !

@ f ~u!2g~v !#2
, e2a(y,t)5

1

@ f ~u!2g~v !#2
,

~13!

whereu5(t2y)/ l , v5(t1y)/ l , and f (u) andg(v) are ar-
bitrary functions. Thus the matter on the brane is writt
using f andg from the junction conditions~7! as

a15
1

l S f ~ t/ l !81g~ t/ l !8

f ~ t/ l !2g~ t/ l ! D52
1

l
2

k2r

6
. ~14!

Usually, we find the solutions off and g from the junction
condition ~14!. However, it is difficult to find solutions for
02351
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the perturbations in this way. Thus we propose a new wa
find the solutions, namely, transforming the junction con
tion ~14! into the effective 4D Einstein equation. From E
~13!, we obtain

ȧ052
1

l S f ~ t/ l !82g~ t/ l !8

f ~ t/ l !2g~ t/ l ! D ,

e2b054
f ~ t/ l !8g~ t/ l !8

@ f ~ t/ l !2g~ t/ l !#2
51. ~15!

Then the term written usingf andg in Eq. ~14! can be written
using the metrica0. We find a1

25ȧ0
211/l 2. Thus the junc-

tion condition~14! gives the effective Friedmann equation o
the brane:

ȧ0
25

k2

3l
r1

k4r2

36
. ~16!

Comparing this with Eq.~10!, we can determineC050 for
the AdS bulk. We will consider the perturbations on th
background.

III. EFFECTIVE EINSTEIN EQUATIONS FROM
EQUATIONS ON THE BRANE

In this section we will derive the effective 4D Einste
equations for scalar cosmological perturbations with a p
jective approach. The perturbed 5D energy-momentum
sor is taken as

dTN
M5S 0 0 0

0 2dr 2~r1p!ea0v ,i

0 ~r1p!e2a0v ,i dp d i j

D d~y!,

~17!

where we assume that the isotropic stress of the matter
turbations vanishes. The perturbed metric on the bran
taken as

dsbrane52~112F0!dt21e2a0(t)~122C0!d i j dxidxj .
~18!

As we did in the background case, we obtain the equati
on the brane from a power series expansion of the 5D E
stein equations. From the (y,y), (y,0), and (y,i ) compo-
nents of the 5D Einstein equations, we obtain@19#

C̈014ȧ0Ċ01ȧ0Ḟ012~ ä012ȧ0
2!F02

1

3
e22a0~2¹2C0

2¹2F0!5
k2

3 S b1

2
dr2

3a1

2
dpD , ~19!

ḋr5~r1p!~3Ċ01e2a0¹2v !

23ȧ0~dr1dp!, ~20!
4-3
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@~r1p!ea0v#•523ȧ0~r1p!ea0v1dp1~r1p!F0 .
~21!

Equation~19! is the same as the trace of the conventional
Einstein equations at low energy and Eqs.~20! and ~21! are
the usual energy-momentum conservation law for the ma
perturbations. From these equations, we construct the e
tive 4D Einstein equations. The Einstein equation give
relation between the matter perturbations and the metric
turbations. Thus we try to write the matter perturbations
terms of the metric perturbations from Eqs.~19!, ~20!, and
~21!. The equations can be regarded as differential equat
for dr, dp, andv with the source given byF0 andC0. Then
the solutions fordr, dp, andv are given by particular solu
tions written usingF0 and C0 and the homogeneous solu
tions drx ,dpx , and vx which are independent ofF0 and
C0. The homogeneous solutions satisfy

dpx5
1

3 S 11
ä0

a1
2D drx ,

ḋrx5~r1p!e2a0¹2vx23ȧ0~drx1dpx!,

~~r1p!ea0vx!•523ȧ0~r1p!ea0vx1dpx , ~22!

where we used the background equations~A12!. From these
equations, we can construct the second order differen
equation fordr. Putting

drx52
1

a1l
e24a0x, ~23!

and substituting the first equation into the second and t
equations, we get

ẋ5~2a1le2a0!~r1p!ea0¹2vx , ~24!

~~r1p!ea0vx!•523ȧ0~r1p!ea0vx2
1

a1l
e24a0

1

3

3S 11
ä0

a1
2D x. ~25!

Then taking the time derivative of Eq.~24! and using Eq.
~25!, we obtain the equation forx as

ẍ1ȧ0S 12
ä0

a1
2D ẋ2

1

3 S 11
ä0

a1
2D e22a0¹2x50. ~26!

Particular solutions can be obtained perturbatively by ass

ing that ue22a0¹2C/C̈0u!1. The solutions up to orde
¹4C0 including the homogeneous solutions usingx are
given by
02351
er
c-
a
r-

n

ns

al

d

-

2
k2a1

2
dr523~ ȧ0Ċ01ȧ0

2F0!1e22a0¹2C0

2
k2a1

2
dr (4)1

k2

2l
drx ,

2
k2a1

2
dp5C̈01S 3ȧ02

ȧ0ä0

a1
2 D Ċ01ȧ0Ḟ0

1S 2ä02
ȧ0

2ä0

a1
2

13ȧ0
2D F0

1
1

3
e22a0¹2F02

1

3 S 12
ä0

a1
2D

3e22a0¹2C02
k2a1

2
dp(4)1

k2

2l
dpx ,

k2a1

2
~r1p!ea0v5Ċ01ȧ0F01

1

3
a1e23a0

3E dt8ea0a1
21

3F¹2F02S 12
ä0

a1
2D ¹2C0G

2
k2a1

2
~r1p!ea0v (4)1

k2

2l
~r1p!

3ea0vx , ~27!

wheredr (4), dp(4), andv (4) satisfy

ḋr (4)23ȧ0~dr (4)1dp(4)!52
2

3k2
e25a0E dt8ea0a1

21

3F¹4F02S 12
ä0

a1
2D ¹4C0G ,

dp(4)5
1

3 S 11
ä0

a1
2D dr (4),

@~r1p!ea0v (4)#•523ȧ0~r1p!ea0v (4)1dp(4),
~28!

anddrx , dpx , andvx are given by

drx5e24a0x~ t,xi !,

dpx5
1

3 S 11
ä0

a1
2D e24a0x~ t,xi !,

~r1p!ea0¹2vx5e22a0ẋ~ t,xi !, ~29!

wherex satisfies Eq.~26!.
4-4
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Equations~27!, ~28!, and ~29! are the effective 4D Ein-
stein equations in the brane world. The crucial differen
between the background and the perturbations is that we
not have a complete set of equations. In conventional
Einstein theory, in addition to these equations, we have
( iÞ j ) component of the Einstein equation

C02F050. ~30!

Then we have a closed set of equations. In the brane wo
however, the corresponding equation derived from the p
jection of the 5D Einstein equation is

C02F05e2a0E21N0 , ~31!

whereE is the (iÞ j ) component andN is the (y,y) compo-
nent of the metric perturbations@see Eq.~B11! in Appendix
B#. The equation containsE2, so it is not a closed system
The effect of the bulk perturbationE2 andN0 will alter the
relation F05C0. This is because the inhomogeneous flu
tuations on the brane inevitably produce perturbations in
bulk, which give an effective anisotropic stress to the per
bations on the brane. We will see this in detail in Sec. IV. T
important point is that we cannot know the behavior of t
effective anisotropic stress caused by the bulk gravitatio
field, i.e., the right hand side of Eq.~31!, with a projective
approach.

To clarify the deviation from conventional 4D theory, w
consider the perturbations at low energy withr/s!1 and
then take

a1
2@ȧ0

2 , ä0 . ~32!

If we take F05C0, we have a complete set of equatio
with Eqs.~19!, ~20!, and~21!, which are identical with those
obtained in conventional 4D theory. The interesting poin
that, even if we takeC05F0, corrections to the matter pe
turbations can exist. TakingC05F0, we find thatdr (4),
dp(4), and v (4) and the higher order solutions satisfy th
homogeneous equations~22! which do not includeC0 and
F0. Thus they can be absorbed intodrx , dpx , and vx .
Then Eq. ~27! becomes the same as the conventional
Einstein equation except fordrx , dpx , andvx . Thus, even
though we have a complete set of equations for metric p
turbations and matter perturbations that are identical to th
obtained in conventional 4D theory, corrections to the
effective Einstein equation can exist. We have already no
the similar situations in the background spacetime where
nonzero constant of integrationC0 gives a correction to the
Friedmann equation. For the perturbations,x plays the same
role as C0. At low energy, the equation forx @Eq. ~26!#
becomes

x92
1

3
¹2x50, ~33!

where a prime denotes the derivative with respect to the c
formal time h. At large scales and at low energy,drx is
given by
02351
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drx5Ce24a0, ~34!

wherex5C5const. Thusdrx can be regarded as the pe
turbations of the energy density of the dark radiation.
small scales they behave as sound waves with sound velo
1/A3.

Hence we found two types of correction to the mat
perturbations. One type of correction is given by the gradi
of the metric perturbations that arise if the bulk gravitation
field makesF0ÞC0. The other type of correctionsx is in-
dependent of the metric perturbations. At large scales t
behave as dark radiation. Now we face the limitation o
projective approach, that is, the method using equati
solely on the brane. We cannot obtain the relation betw
F0 andC0; thus the corrections given by the gradient of t
metric perturbations cannot be determined. The existenc
the correction given byx also cannot be determined, as th
constant of integrationC0 in the background cannot be de
termined in this approach. So far we have treated only eq
tions that do not involve the second derivative with resp
to y. As we showed in the background case, the evolut
equation for the perturbations in the bulk should be solved
order to know the behavior of the corrections to the ma
perturbations and the relation betweenF0 andC0.

IV. EFFECTIVE EINSTEIN EQUATIONS FROM
BULK GRAVITATIONAL FIELD

In this section, we solve the perturbations in the bulk a
obtain the behavior of the corrections to the matter pertur
tions and the relation betweenC0 andF0. The formalism to
solve the perturbations in the bulk was developed in@19#. In
this section, we show only the results of the calculations. T
detailed calculations are given in Appendix B. In the bu
the perturbations satisfy the wave equation

h913a8h82ḧ23ȧḣ1e22(a2b)¹2h50, ~35!

whereh is the scalar perturbation in the bulk and we used
transverse-traceless gauge. It is difficult to solve this eq
tion. The essence of our method is to a the coordinate tra
formation from Poincare´ coordinates to Gaussian normal c
ordinates. The metric~4!,~13! is obtained by coordinate
transformation from the Poincare´ coordinates of the 5D AdS
spacetime

ds25S l

zD
2

~dz22dt21d i j dxidxj !. ~36!

In these coordinates, the perturbations can be easily sol
Then the perturbations in the metric~4! can be obtained by
performing the coordinate transformation:

z5z~y,t !5 l „f ~u!2g~v !…5 le2a(y,t),

t5t~y,t !5 l „f ~u!1g~v !…. ~37!

The solution of the perturbationsh can be written as
4-5
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h5e22a(y,t)E d3k

~2p!3

3E dmE~m,k!Z2~mle2a(y,t)!e2 ivt(t,y)eik•x, ~38!

whereZ2 is defined as a combination of the Hankel functio
of the first kind and of the second kind:

Z2~mz!5H2
(1)~mz!1a~m!H2

(2)~mz!, ~39!

andv25m21k2. So farE(m,k) anda(m) are arbitrary co-
efficients. We should impose the junction conditions for t
perturbations~38! at the brane. As we showed for the bac
ground case, the junction conditions are nothing but the
fective 4D Einstein equations. In a previous paper@19#, we
gave the matter perturbations in terms ofE(m,k) using the
junction conditions. We also gave the metric perturbations
terms of E(m,k). Thus we have the equations that corr
spond to Eqs.~14! and ~15! in the case of the backgroun
spacetime. The effective Einstein equations can be obta
by combining these equations as is done in Eq.~16!. The
details can be found in Appendix B 2 and the results
given by

2
k2a1

2
dr~k!523~ ȧ0Ċ01ȧ0

2F0!2e22a0k2C0

1
1

3
e24a0E dmE~m,k!k4l 2Z0~mle2a0!

3e2 ivT(t),

2
k2a1

2
dp~k!5C̈01S 3ȧ02

ȧ0ä0

a1
2 D Ċ01ȧ0Ḟ0

1S 2ä02
ȧ0

2ä0

a1
2

13ȧ0
2D F0

2
1

3
e22a0k2F0

1
1

3 S 12
ä0

a1
2D e22a0k2C0

1
1

9 S 11
ä0

a1
2D e24a0

3E dmE~m,k!k4l 2Z0~mle2a0!

3e2 ivT(t),
02351
e

f-

n
-

ed

e

2
k2a1

2
~r1p!ea0v~k!5Ċ01ȧ0F0

1
1

3
e23a0E dmE~m,k!

3@a1ivk2l 3Z0~mle2a0!

2ȧ0mk2l 3Z1~mle2a0!#e2 ivT(t),

~40!

where we considered the Fourier components of the per
bations with respect toxi and denotedt(0,t)5T(t). We can
also obtain the metric perturbations in terms ofE(m,k) as

C0~k!5E dmE~m,k!S mle2a0Z1~mle2a0!

1
1

3
~kle2a0!2Z0~mle2a0! De2 ivT(t),

F0~k!5E dmE~m,k!S mle2a0Z1~mle2a0!

2
1

3
~k213m2!l 2e22a0Z0~mle2a0! De2 ivT(t)

1~ ȧ0l !2E dmE~m,k!@mle2a0Z1~mle2a0!

2~k212m2!l 2e22a0Z0~mle2a0!#e2 ivT(t)

22a1ȧ0l 2E dmE~m,k!

3~ ivml2e22a0!Z1~mle2a0!e2 ivT(t). ~41!

Equation~40! should be compared with Eqs.~27!, ~28!,
and~29!. First let us identify the corrections~29!, drx , dpx ,
and vx . There are two arbitrary coefficientsE(m,k) and
a(m) in the bulk perturbations~38!. They should be deter
mined by the boundary conditions in the bulk. The corre
tions ~29! are independent of the metric perturbations. Th
the perturbations in the bulk should not contribute to t
metric perturbations but only to the matter perturbatio
Then we impose the boundary condition that the metric p
turbations vanish on the brane, i.e.,F05C050. From these
two boundary conditions, the coefficientsE(m,k) anda(m)
are determined. Let us consider the low energy universe w
ȧ0l !1 and construct these perturbations explicitly. We fi
impose the boundary conditionC05F0. It can be imple-
mented by choosingE(m,k) to have a peak at

2k213m250. ~42!

Then the metric perturbations can be written as

C05F05
1

2
E(x)~k!~mkle

2a0!2Z2~mkle
2a0!eikh/A3,

~43!
4-6
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where we usedT52h and Z2(z)5(2/z)Z1(z)2Z0(z). It
should be noted thath is the conformal time@see Eq.~B7! in
Appendix B#. We denotedmk5A2/3ki and

E(x)~k!5E~mk ,k!. ~44!

Next, we impose the boundary condition that the metric p
turbations vanish on the brane by choosing an appropr
coefficient a(m). At low energy, we can neglect the tim
dependence inmkle

2a0 since

~d/dt!~mkle
2a0!

~d/dt!~eivh!
;ȧ0l !1, ~45!

where we useddh/dt5e2a0. The conditionF05C050 can
be implemented by takinga(m)5a(x)(m) where

a(x)~m!52
H2

(1)~mkle
2a0!

H2
(2)~mkle

2a0!
. ~46!

The important point is that these perturbations do contrib
to the matter perturbations. The density perturbationsdr in-
duced by these perturbations are given by

k2

2l
dr5

1

3
e24a0k4l 2E(x)~k!Z0

(x)~mkle
2a0!eikh/A3,

~47!

where Z0
(x)5H0

(1)1a(x)(m)H0
(2) . Because these perturba

tions do not contribute to the metric perturbations, th
should be identified withdrx . Indeed, from Eqs.~23! and
~33!, drx is given by

drx5e24a0x, x91
1

3
k2x50. ~48!

If we neglect the time dependence inmkle
2a0, the density

perturbation~47! satisfies Eq.~48!. Thus we found that the
existence ofdrx depends on the behavior of the bulk pertu
bations. At low energies, they should have imaginary m
mk5A2/3ki and diverge at the horizon of the AdS spacetim
(z5 le2a(y,t)→`) becauseZ2

(x)(mkz) contains H2
(2)(mkz)

which is proportional to exp(A2/3kz) for z→`. Thus if we
restrict our attention to the bulk perturbations with real m
or with regular behavior in the bulk, the corrections fromx
do not exist on the brane.

Therefore the existence of the corrections fromx depends
on the boundary condition for the perturbations~38!. The
general solutions for perturbations in the bulk can be writ
as

h~k!5e22a(y,t)E dm@E(1)~m,k!Z(1)~mle2a(y,t)!

1E(2)~m,k!Z(2)~mle2a(y,t)!#e2 ivt(y,t), ~49!

whereZ(1) andZ(2) are two independent combinations of th
Hankel functions of the first and second kinds.E(1)(m,k)
andE(2)(m,k) are arbitrary coefficients which should be d
termined by the boundary conditions. One of the choice
02351
r-
te

te

y

s

s

n

is

the boundary condition that allows the existence of the c
rections drx . We chooseE(2)(m,k) and Z(2) so that the
perturbations contribute to the matter perturbations and
not contribute to the metric perturbations. For example,
low energies, we can take

Z(1)~mle2a!5H (1)~mle2a!,

Z(2)~mle2a!5Z(x)~mkle
2a!,

E(2)~m,k!5E(x)~k!. ~50!

Then the metric perturbations and the density perturba
induced by these perturbations are given by

k2

2l
dr523~ ȧ0Ċ01ȧ0

2F0!2e22a0k2C0

1
1

3
e24a0E dmE(1)~m,k!k4l 2H0

(1)~mle2a0!eivh

1
k2

2l
drx ,

C0~k!5E dmE(1)~m,k!S mle2a0H1
(1)~mle2a0!

1
1

3
~kle2a0!2H0

(1)~mle2a0! Deivh, ~51!

where

drx5e24a0x,

x5
2l

3k2
@k4l 2E(x)~k!#Z0

(x)~mkle
2a0!eikh/A3.

~52!

Another choice is the boundary condition that the pertur
tions are outgoing at the horizon of the AdS spaceti
@19,28,34#. Then we should take

Z(1)~mle2a!5H (1)~mle2a!,

E(2)~m,k!50. ~53!

Note that for imaginary massm5 imI ,mI.0, this condition
implies that the perturbations do not diverge at the horizon
the AdS spacetime becauseH (1)( imIz)}exp(2mIz) at z
→`. Hence if we take the boundary condition that the p
turbations are outgoing, the corrections given byx are not
allowed:

drx5dpx5vx50. ~54!

The matter perturbations and the metric perturbations
given by Eqs.~40! and ~41! with E(m,k)5E(1)(m,k) and
Z(mle2a0)5H (1)(mle2a0).

It seems difficult to determine what kind of perturbatio
are allowed in the bulk. We will discuss the effects of t
corrections fromx separately according to the choice of th
4-7
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boundary condition in Sec. V. For a while we take the bou
ary condition ~53! and thendrx5dpx5vx50. The terms
containingE(1)(m,k) in the matter perturbations~40! corre-
spond to the corrections written using the gradient of
metric perturbations in Eqs.~27! and~28!. In fact, if we take
k→0, the terms containingE(1)(m,k) in the matter pertur-
bations vanish. Now, from Eqs.~40! and ~41!, we observe
that the bulk perturbations alter the relationC05F0 and
induce corrections to the matter perturbations. In Eq.~49!,
E(1)(m,k) is still an arbitrary coefficient. The coefficien
E(1)(m,k) can be determined once we impose the equa
of state of the matter perturbations, such asdp5cs

2dr where
cs

2 is the sound velocity. However, it is difficult to solve th
equations forE(1)(m,k). In the following section, we try to
obtain the evolution of the perturbations without solvi
E(1)(m,k). The price to pay is that we must make an a
sumption about the contribution from the massive modes
in @19#. Recently Gorbunovet al. have shown that the cre
ation of heavy gravitons is negligible in the inflationa
brane world@31#. Thus we will assume that the modes wi
mle2a0.1 do not contribute to the perturbations in the bu
More precisely, we take

mle2a0→0. ~55!

From the effective Einstein equations~40! and ~41!, we
find that there are two situations in which the deviation fro
conventional 4D theory becomes large. One is given by

kle2a0@1, ~56!

which means that the physical scale of the perturbation
smaller than the curvature scalel. This is reasonable sinc
the gravity behaves like that in 5D spacetime at sca
smaller thanl. The other is given by

ȧ0l @1, ~57!

which means that the energy density of the matter exce
the tension of the brane. In the Friedmann equation~16!, the
term proportional tor2 becomes dominant and the evolutio
of the universe changes significantly.

V. MODIFICATIONS OF THE EVOLUTION

In this section, we take the boundary condition that
perturbations are outgoing at the horizon of the AdS spa
time ~53!. Then we have

drx5dpx5vx50. ~58!

In the following sections, we assume that the matter per
bations are adiabatic.

A. Evolution at superhorizon scales

Let us consider the long-wavelength perturbations.
take

kle2a0→0; ~59!
02351
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e

then the corrections to the matter perturbations in Eq.~40!
written usingE(1)(m,k) vanish. From Eq.~40!, the evolution
equation for the metric perturbations can be obtained by
posingdp2cs

2dr50. The equation can be simplified usin
the Bardeen parameter

z5C02
ȧ0

2

ä0
S 1

ȧ0

Ċ01F0D . ~60!

At superhorizon scaleskȧ0
21e2a0!1, dp2cs

2dr50 can be
written as

ż50, ~61!

where we used

ẇ523ȧ0~11w!~cs
22w!. ~62!

Then the Bardeen parameter is conserved even in the
energy regime, namely,

z5z* 5const. ~63!

We should note that the constancy of the Bardeen param
does not mean that the behavior of the perturbations in
brane world is the same as that obtained in conventional
theory. The Bardeen parameter is written in terms ofF0 and
C0. In conventional 4D theory we have the equationF0
5C0. In the brane world, however, it is modified by th
perturbations in the bulk. An equation that gives the relat
betweenC0 and F0 is needed. From Eq.~41!, the metric
perturbations are given by

C05E dmE(1)~m!mle2a0H1
(1)~mle2a0!e2 imT,

F05@11~ ȧ0l !2#C02@112~ ȧ0l !2#E dmE(1)~m!

3~mle2a0!2H0
(1)~mle2a0!e2 imT

22ia1ȧ0l 2E dmE(1)~m!

3~mle2a0!2H1
(1)~mle2a0!e2 imT. ~64!

As mentioned in the previous section, we should make so
assumption about the contribution from massive modes.
will assume that the modes withmle2a0.1 do not contrib-
ute to the perturbations in the bulk and thus take

mle2a0→0. ~65!

Then using the asymptotic forms of the Hankel functio
H1

(1)(z)}1/z andH0
(1)(z)}const, we obtain

F05@11~ ȧ0l !2#C0 . ~66!

At high energy, we have

F05~ ȧ0l !2C0 ; ~67!
4-8



m

se

ne
to
th
s

n

th
s

n
w

a-
fol-

ally
the
orld

ned
-

wer
the
an

the

the
the
sult
rgy

for

BULK GRAVITATIONAL FIELD AND COSMOLOGICA L . . . PHYSICAL REVIEW D 65 023514
thusF0@C0. From the conservation of the Bardeen para
eter Eqs.~60! and ~63!, we get

F053~11w!z* , C05~ ȧ0l !22F0 ,

dr

r
52F0 , ~68!

for w5const. Note that the curvature perturbation increa
asC0}r22 at high energy.

At low energy,ȧ0l !1, we have

C05F0 . ~69!

Then the metric perturbations are obtained as

F05C05
3~11w!

513w
z* ,

dr

r
522F0 , ~70!

for w5const.
The CMB anisotropies at large scales can be obtai

using the above solutions. At the decoupling of the pho
and baryon, the energy of the universe is lower than
tension of the braneȧ0l !1. The temperature anisotropie
caused by the ordinary Sachs-Wolfe effect are given by

DT

T
5

1

4

dr r

r r
1F05

1

3

dr

r
1F0 , ~71!

wherer r is the density of the radiation anddr r is its pertur-
bation. From Eqs.~40! and ~60!, we can show the Bardee
parameter is given by

z5C02
1

3

dr

r
. ~72!

Then the temperature anisotropies can be evaluated as

DT

T
52z1C01F0 . ~73!

If we neglect the effect of the massive graviton wi
mle2a0.1, we can evaluate the temperature anisotropie

DT

T
5

1

5
z* , ~74!

where we used the solution~70! with w50.
The massive graviton will modify the relation betwee

F0 and C0 and thus the temperature anisotropies. At lo
energy, the metric perturbations are given by
02351
-

s

d
n
e

as

C05E dmE(1)~m!mle2a0H1
(1)~mle2a0!eimh,

F05C02E dmE(1)~m!

3~mle2a0!2H0
(1)~mle2a0!eimh. ~75!

Then at the lowest order corrections inmle2a0 we have

F05C02E dmC0~m!~mle2a0!2GKK~mle2a0!eimh.

~76!

Here C0(m) denotes the Fourier transformation ofC0(h)
with respect toh and

GKK~mle2a0!5 lim
mle2a0→0

S H0
(1)~mle2a0!

mle2a0H1
(1)~mle2a0!

D
5 ln~2ea0!2g1

p

2
i 2 ln~ml!. ~77!

Hereg is the Euler number. The important point is thatGKK
contains a nonanalytic term proportional to lnm. Thus Eq.
~76! becomes nonlocal when we make a Fourier transform
tion to real spacetime. The reason can be understood as
lows. The massive modes withmÞ0 can propagate into the
bulk. These modes affect the metric perturbations nonloc
if they are observed on the brane. Thus the nonlocality of
evolution equation is an essential feature of the brane w
@20#.

The contributions from the massive modes are determi
by E(1)(m), which is determined by the primordial fluctua
tions and later evolution. It is difficult to knowE(1)(m), but
it should be noted that in Eq.~76! m appears in the form
mle2a0. Thus, as the energy of the universe becomes lo
e2a0→0, the mass of the massive modes that can modify
relationF05C0 becomes larger. Then for late times we c
safely use the standard result~74!. The constantz* should be
determined by the primordial fluctuations. We discuss
generation of the primordial fluctuations in Appendix C.

Here is a point we should emphasize. At high energy,
Hubble scale itself is smaller than the curvature scale of
AdS spacetime. Thus we should be careful in using the re
kle2a0→0 even at superhorizon scales in the high ene
universe.

B. Evolution at subhorizon scales

In this section we investigate the corrections that arise

kle2a0Þ0. ~78!

We will assume the universe is in the low energy eraȧ0l
!1 and take

mle2a0→0. ~79!
4-9
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At subhorizon scaleskȧ0
21e2a0@1, the density perturbation

~40! is given by

k2

2l
e2a0dr52k2C01

1

3
e22a0

3E dmE(1)~m,k!k4l 2H0
(1)~mle2a0!eivh

52E dmE(1)~m,k!k2mle2a0H1
(1)~mle0

2a!eivh.

~80!

On the other hand the metric perturbations~41! are given by

k2F05E dmE(1)~m,k!k2S mle2a0H1
(1)~mle2a0!

2
1

3
~k213m2!l 2e22a0H0

(1)~mle2a0! Deivh.

~81!

For mle2a0!1 we can rewrite Eq.~81! into the effective
Poisson equation:

k2F052
k2

2l
e2a0dr1

k2l

6
e22a0E dm~k213m2!

3GKK~mle2a0!@e2a0dr#~m,k!, ~82!

whereGKK is given by Eq.~77! and@e2a0dr#(m,k) denotes
the Fourier transformation ofe2a0dr with respect toh and
xi . For kle2a0→0, Eq. ~82! is the usual Poisson equatio
The evolution equation fordr can be derived from the con
servation laws of the matter perturbations~20! and~21!. For
example, in the matter dominated eraw50, we get

D91a08D82
3

2
a08

2D1
k2l

6
e22a0E dm~k213m2!

3GKK~mle2a0!@e2a0dr#~m,k!e2 ivh50, ~83!

where the prime denotes the derivative with respect toh and
D5dr/r. The last term represents the correction from
bulk perturbations. Note that forkle2a0Þ0 a nonlocal term
arises even if we takemle2a0→0. This is because the grav
ton can easily propagate into the bulk at scales smaller
l (kle2a0.1). Thus the bulk gravitational field affects th
evolution of the density perturbation nonlocally.

It is well known that in the Minkowski brane Newton’
law is modified due to the 5D graviton@3,32–34# This modi-
fication can be derived from the effective Poisson equat
Let us consider the situation whereea051. We assume tha
the source is staticv25m21k250, and derive the lowes
order corrections in (kl )2,1. Taking the nonanalytic term
the metric perturbations are written as
02351
e

an

n.

C0~k!52
k2

2l S k222
1

3
l 2 ln~ml! D dr~k!,

F0~k!52
k2

2l S k222
2

3
l 2 ln~ml! D dr~k!.

~84!

To compare the result with the one obtained in@31–33#, we
consider a spherically symmetric source and derive the m
ric perturbations far away from the source. We obtain
metric perturbations by Fourier transformation as

C0~r !52
G4M

r S 11
l 2

3r 2D ,

F0~r !52
G4M

r S 11
2l 2

3r 2D , ~85!

where 8pG45k2/ l , M5*dx3dr(x), and the source is lo-
cated atr 50. This result completely agrees with the on
obtained in@31–33#.

VI. CORRECTIONS FROM PERTURBATIONS
OF DARK RADIATION

In this section we choose the boundary condition so t
the correctionsdrx , dpx , andvx are induced on the brane
Then we investigate the effects of the corrections on
evolution of the perturbations.

A. Evolution at superhorizon scales

Let us consider the long-wavelength perturbations w
kle2a0→0. The corrections to the matter perturbations giv
by E(1)(m,k) vanish. At superhorizon scaleskȧ0

21e2a0!1,
the density perturbation and the pressure perturbation are
tained from Eqs.~29! and ~40! as

2
k2a1

2
dr523~ ȧ0Ċ01ȧ0

2F0!1
k2

2l
Ce24a0,

2
k2a1

2
dp5C̈01S 3ȧ02

ȧ0ä0

a1
2 D Ċ01ȧ0Ḟ0

1S 2ä02
ȧ0

2ä0

a1
2

13ȧ0
2D F0

1
k2

2l
Ce24a0

1

3 S 11
ä0

a1
2D , ~86!

where we putx5C5const, which can be deduced from E
~26!. Then, using the Bardeen parameter~60!, dp2cs

2dr
50 can be written as

ż5
k2

2l
Ce24a0

ȧ0

ä0
F1

3 S 11
ä0

a1
2D 2cs

2G . ~87!

We see that the term proportional toC breaks the constanc
of the Bardeen parameter. The results can be understoo
follows. The density perturbationsdrx induce isocurvature
4-10
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perturbations on the brane. In 4D theory, it is well know
that the isocurvature perturbations break the constancy o
Bardeen parameter. In fact, if we consider the perturbati
in the radiation dominated era at low energy

cs
25

1

3
, a1@ȧ0 , ~88!

then ż50. This is reasonable sincedrx behaves as radiatio
@dpx5(1/3)drx# at low energies, so there are no isocurv
ture perturbations. The equation can be integrated using
background equations~A12! and ~62!. We get

z5z* 2
k2

2l

Ce24a0

3ä0

5z* 2
1

3~11w!

1

la1
S r r

r DC* , ~89!

where we defined

C* 5C
e24a0

r r
5const. ~90!

Using the expression for the Bardeen parameter in term
the metric perturbations~60!, we can obtain the solutions fo
the metric perturbations.

At high energy, using

C05
1

~ ȧ0l !2
F0!F0 , ~91!

we get

F053~11w!z* 1
1

ȧ0l
S r r

r DC* ~92!

for w5const. Note that the contribution fromC* is sup-
pressed by the factor (ȧ0l )21.

At low energy, using

C05F0 , ~93!

we get

F05
3~11w!

513w
z* 1

1

3~113w! S r r

r DC* ~94!

for w5const.
The CMB anisotropies~73! caused by the ordinary Sach

Wolfe effect in the matter dominated era are given by

DT

T
52z12F0

5
1

5
z* 1

1

3 S r r

r DC* . ~95!
02351
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From the observations, the magnitude of the anisotropie
known asDT/T;1025 and the fraction of the radiation com
ponent in the total density isr r /r;0.1 at decoupling. Then
the constraint onC* is obtained as@29#

C* ,1024. ~96!

B. Evolution at subhorizon scales

Now consider the evolution of the perturbations at su
horizon scaleskȧ0

21e2a0@1. For simplicity, we consider the
low energy regime. We also assume that the length scal
the perturbations is larger thanl (kle2a0!1). Then the cor-
rections due toE(1)(m,k) can be neglected. In order to de
scribe the evolution of the density perturbation, it is conv
nient to introduce the gauge invariant variable defined by

rD5dr13ȧ0~r1p!ea0v. ~97!

From Eqs.~40! and ~29! the Poisson equation is given by

k2F052
3

2
a08

2D1e22a0
k2

2l
~x23a08k

22x8!. ~98!

Equations~20! and ~21! become

D823wa08D52~11w!k2v1
3k2

2l
~11w!e22a0k22x8,

v81a08v5F01
cs

2

11w
D, ~99!

where we used the formula~62!. Then the evolution equation
for D can be obtained as

D92@3~2w2cs
2!21#a08D813S 3

2
w224w2

1

2
13cs

2Da08
2D

1cs
2k2D52

k2

l
~11w!e22a0x. ~100!

The initial condition forD can be set in the radiation dom
nated era. In the radiation dominated era,w5cs

251/3 and
ea05h, the evolution equation~100! becomes

D92
2

h2
D1

1

3
k2D52

4k2

3l

1

h2
x. ~101!

Then we can easily find the solution as

D5AUG~h!1BUD~h!1
2k2

3l
x, ~102!

where

UG52cos~ksh!1S 1

ksh
D sin~ksh!,
4-11
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FIG. 1. D(k) at r r /rm50.1 with C* 50,
2z* , 4z* , 22z* , 24z* where we takez*
51. The horizontal coordinate is the valueke f f

5ȧ0
21e2a0k at r r /rm51. The perturbation with

ke f f51 crosses the horizon atr r /rm51. The ini-
tial conditions are set atr r /rm5100.
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UD52sin~ksh!2S 1

ksh
D cos~ksh!, ~103!

A and B are constants of integration, andks5k/A3. Note
that for kh→0, UG and UD behave asUG5k2h2/9 and
UD}h21. ThenUG matches the growing mode solution
superhorizon scales. From Eq.~98!, the metric perturbation
is given by

F052
1

k2h2 F3

2
~AUG1BUD!1

k2

2l S x1
3

h
k22x8D G .

~104!

From Eq.~48!, the solution forx is given by

x5C cos~ksh!1D sin~ksh!, ~105!

whereD is an arbitrary constant. ThenF0 becomes

F052
1

k2h2 F S 3

2
A2

k2

2l
CDUG1S 3

2
B2

k2

2l
D DUDG .

~106!

We take only the growing mode solution; thenB5D50. In
the radiation dominated era, we obtain

a08
2e22a05

k2

3l
r r , ~107!

andea05h. Then Eq.~90! becomes

C* 5
k2

3l
C. ~108!

At superhorizon scales, usingUG5k2h2/9, we get

F052
A

6
1

1

6
C* . ~109!

Comparing the solution Eq.~109! with ~94!, we find A5
24z* . Thus, we can set the initial condition forD in the
radiation dominated era as
02351
D524z* UG12C* cos~ksh!. ~110!

In the radiation dominated era, the perturbations are cons
D;2C* at superhorizon scales and then oscillate as a co
function once they enter the horizon. Thus, at subhoriz
scales, the density perturbation behaves like the usual a
batic perturbations in 4D theory. However, as the matter
comes dominant, isocurvature perturbations are genera
This is because, while the frequency ofUG changes fromks ,
x always oscillates with frequencyks . Thus there is a pos
sibility that the amplitude and phase of the oscillations ofD
change from the adiabatic cosine mode. These deviations
be directly observed as the shifts of the location and he
of the peak of the acoustic oscillation in the CMB spectru
We solved Eq.~100! numerically with the initial condition
given by Eq.~110!. In Fig. 1, the density perturbationD(k)
at the timer r /rm50.1 is shown with various wave numbe
k. Here rm is the density of matter. ForC* 50, D(k) is
given by a cosine function. If we include the effect ofC* ,
the location and height of the peak of the oscillations cha
as expected. Thus, if we include the effect of the correcti
drx , dpx , and vx , the effects from the bulk can be ob
served even in the low energy universe.

VII. CONCLUSION

In this paper we obtained the effective 4D Einstein eq
tions ~40! and~41! that describe the scalar cosmological pe
turbations on the brane. Then we investigated the effec
the bulk gravitational field on the evolution of the cosm
logical perturbations on the brane.

We first used the equations on the brane obtained fro
power series expansion of the 5D Einstein equations. F
the equations on the brane, we obtained the effective Eins
equations~27!, ~28!, and ~29!. It should be mentioned tha
we cannot derive the equation that contains only the v
ables on the brane and gives the relation between the m
perturbationsF0 andC0. Two types of correction are found
One is given by the gradient of the metric perturbations. T
other is independent of the metric perturbations~29! and
induces density perturbations, which behave like sou
4-12
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waves with the sound velocity 1/A3 at low energy. At large
scales, they are homogeneous perturbations that depend
on time and decay like radiation. We identified them with t
perturbations of the dark radiation.

Then we derived the effective Einstein equations again
another way by solving the perturbations in the bulk a
imposing the junction conditions~40! and~41!. We obtained
an equation that gives the relation betweenF0 andC0. We
identified the perturbations in the bulk that induce pertur
tions of the dark radiation. These perturbations do not c
tribute to the metric perturbations but do contribute to
matter perturbations on the brane. At low energy, they h
imaginary mass 2k213m250 in the bulk and diverge at th
horizon of the AdS spacetime. Their existence in the b
depends on the boundary conditions of the perturbations.
should impose two boundary conditions to completely de
mine the perturbations in the bulk. One is given by the eq
tion of state of the matter on the brane. The other choice
boundary condition at the horizon determines the existe
of the perturbations of the dark radiation.

If we take the boundary condition that the perturbatio
do not diverge at the horizon of the AdS spacetime, the p
turbations of the dark radiation do not appear. The ot
corrections are suppressed bykle2a0. Thus they correspond
to correction terms given by the gradient of the metric p
turbations. Corrections also arise in the relation betweenF0
andC0. The corrections become large at scales smaller t
the curvature scales of the AdS spacetime (kle2a0@1) and
in the high energy universe with energy density larger th
the tension of the brane (ȧ0l @1). In particular, at high en-
ergy ȧ0l @1, the potential perturbationF0 becomes domi-
nant over the curvature perturbationC0. We discuss the evo
lution of the adiabatic perturbations including the
corrections. The interesting point is that at sufficiently lar
scales (kle2a0→0) the Bardeen parameter is constant ev
at high energies. Then the potential perturbationsF0 are al-
ways constant if the barotropic parameter of the matterw is
constant. On the contrary, at scales belowl, the correction
becomes large. In order to illustrate how these correcti
modify the evolution of the density perturbations, we o
tained the effective Poisson equation in the low energy u
verse at subhorizon scales. Using the effective Poisson e
tion, the evolution equation for the matter perturbations w
given. The important point is that the evolution equation b
comes nonlocal once we incorporate the effect of the per
bations in the bulk. This is the essential feature of the p
turbations at scales belowl. We emphasized that one shou
be careful to use the resultkle2a0→0 in the high energy
universe even at superhorizon scales. This is because at
energy the horizon scale of the universe itself is smaller t
the curvature scalel.

We should comment on our limitation in obtaining th
evolution of the perturbations using the effective Einst
equations. It is in general difficult to obtain the spectru
E(1)(m,k) of the perturbations in the bulk by imposing th
equation of state of the matter perturbations. As a result,
should make an assumption about the contribution of
massive perturbations. We used the assumption that
02351
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modes withmle2a0.1 do not contribute to the perturba
tions in the bulk; thus we takemle2a0→0. At low energy
e2a0→0, the assumption seems to be valid. The coeffici
E(1)(m,k) is determined by the primordial fluctuations an
later evolution @31,36,37#. Further studies are needed
know the exact form ofE(1)(m,k).

If we choose appropriate boundary conditions in the b
~50!, perturbations of the dark radiation arise. They indu
isocurvature perturbations in the dust dominated unive
Their key feature is that they can play a role even in the l
energy universe at scales larger thanl where the previous
corrections are suppressed. We gave an evolution equa
for the density perturbation including the corrections fro
them. The large scale CMB anisotropies were estimated
the constraint on the amplitude was derived. At subhoriz
scales, they act as an extra force on the acoustic oscillat
of the density perturbation. In the matter dominated era,
location and the height of the acoustic peak are shifted du
the extra force~see Fig. 1!. These shifts can be directly ob
served by CMB anisotropies. Recently, much work has b
done to test the correlation between adiabatic and isocu
ture perturbations using the CMB spectrum@35#. Detailed
analysis of the CMB spectrum will reveal the existence
the dark sound waves.
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APPENDIX A: BACKGROUND EQUATIONS

In this Appendix, we derive the equations used in Sec.
The 5D Einstein equations are given by

GN
M5

6

l 2
dN

M1k2
A2gbrane

A2g
TN

M

5
6

l 2
dN

M1e2bk2TN
M ~M ,N5y,t,xi !. ~A1!

We take the energy-momentum tensor in the 5D spacetim

TN
M5S 2

6

k2l
diag~0,1,1,1,1!1diag~0,2r,p,p,p!D d~y!.

~A2!

The Einstein tensor is given by

G0
0523e22b~ȧ21ȧḃ2a922a821a8b8!,

Gy
y53e22b~2ä22ȧ21ȧḃ1a821a8b8!,

Gy
0523e22b~b8ȧ1a8ḃ2ȧ82ȧa8!,

Gj
i 5d j

i e22b~22ä23ȧ22b̈12a913a821b9!.
~A3!

In the (0,0) and (i , j ) components of the Einstein equation
the jump of the first derivative ofa(y,t) and b(y,t) gives
4-13
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the d(y) function. This should be equated with thed(y)
function of the matter. Thus we obtain the junction con
tions ~7!

a1~ t !52
1

l
2

k2r~ t !

6
,

b1~ t !52
1

l
1

k2r~ t !

3
1

k2p~ t !

2
, ~A4!

where we takeeb051. They0th order of the (y,y) and (y,0)
components of the Einstein equations gives

2ä022ȧ0
21a1

21a1b15
2

l 2
,

b1ȧ02ȧ12ȧ0a150. ~A5!

Using the junction condition~A4!, we get Eq.~8!.
Next let us derive the wave equations forb anda in the

bulk. The (0,0) and (i , j ) components of the 5D Einstei
equations in the bulk can be rewritten usingu5(t2y)/ l and
v5(t1y)/ l as

a ,uv13a ,ua ,v1e2b50,

b ,uv23a ,ua ,v2
1

2
e2b50. ~A6!

We assume that the bulk is AdS spacetime, so we t
CMyNy50 whereCMNKL is the Weyl tensor. This condition
is given by

a ,uv2b ,uv50. ~A7!

Then the wave equations fora andb become

b ,uv1
1

4
e2b50,

a ,uv1
1

4
e2b50. ~A8!

Thus we derived Eq.~12! in Sec. II. Instead of solving the
wave equations directly, it is convenient to rewrite the eq
tion for a using Eq.~A6! as

a ,uv2a ,ua ,v50. ~A9!

The solution can be found easily as

ea5
1

f ~u!2g~v !
, ~A10!

where f (u) andg(v) are arbitrary functions. Thenb can be
obtained from Eq.~A6! as
02351
-

e

-

e2b52a ,uv23a ,ua ,v

54
f 8~u!g8~v !

@ f ~u!2g~v !#2
. ~A11!

Finally, we show some background equations that
used in the calculations of the perturbations. From the ju
tion conditions~A4! and equations on the brane~8!, we can
deduce the following equations:

ä05
k2a1

2
~r1p!5a1~b12a1!,

a1
25

1

l 2
1ȧ0

2 ,

b1

a1
511

ä0

a1
2

,

ȧ15
ȧ0ä0

a1
5ȧ0~b12a1!. ~A12!

To calculate the perturbations, we needa2 andb2. From the
y0th order of the (0,0) and (i , j ) components of the Einstein
equations, we can writea2 andb2 in terms ofa0 , a1, and
b1:

a25ȧ0
222a1

21a1b11
2

l 2
,

b25ȧ0
212ä01a1

222a1b11
2

l 2
. ~A13!

APPENDIX B: DERIVATION OF THE EFFECTIVE
EINSTEIN EQUATIONS „40… AND „41…

In this Appendix we review the formalism used to sol
the perturbations in the bulk and impose the junction con
tions developed in@11#. Using the formalism, we obtain th
effective Einstein equations~40! and ~41!.

1. Review of the formalism

First let us review the formalism for obtaining the pertu
bations in the bulk. We start with the perturbed AdS spa
time in Poincare´ coordinates:

ds25S l

zD
2

$dz22~112f!dt212b,idxidt

1@~122Ĉ!d i j 12Ê,i j #dxidxj%. ~B1!

Heref, b, Ĉ, andÊ are given by

h5S z

l D
2E d3k

~2p!3E dm h~m,k!Z2~mz!e2 ivteik•x

~h5f,b,Ĉ,Ê!, ~B2!
4-14
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where Z2 is a combination of the Hankel functions of th
first and second kinds of the second rank,Z2(mz)
5H2

(1)(mz)1a(m)H2
(2)(mz). Here we used the transvers

traceless gauge conditions

f23Ĉ1¹2Ê50,

2
df

dt
1¹2b50,

db

dt
12Ĉ22¹2Ê50. ~B3!

Thus the coefficientsh(m,k) satisfy

f~m,k!5
2k4

3m2
l 2E~m,k!,

b~m,k!524i
Ak21m2k2l 2

3m2
E~m,k!,

Ĉ~m,k!52
k2l 2

3
E~m,k!,

Ê~m,k!5
2k213m2

3m2
l 2E~m,k!,

~B4!

whereE(m,k) is an arbitrary coefficient.
The perturbation in the metric~4! is obtained by the co-

ordinate transformation

z5z~y,t !5 le2a(y,t), t5t~y,t !. ~B5!

The Jacobian of the transformation is given by

]t

]y
5 l ȧe2a,

]z

]y
52 la8e2a,

]t

]t
5 la8e2a,

]z

]t
52 l ȧe2a. ~B6!

Note that at late times

dT

dt
5 la1e2a052e2a0. ~B7!

Thus we obtainT5t(0,t)52h, whereh is the conformal
time. After the coordinate transformation, the resulting m
ric is given by

ds25e2b(y,t)@~112N̂!dy22~112F̂!dt212Âdt dy#

1e2a(y,t)$@~122Ĉ!d i j 12Ê,i j #dxidxj12B̂,idxidt

12Ĝ,idxidy%, ~B8!

where
02351
-

F̂5~ la8!2e22bf,

B̂5~ la8!e2ab,

N̂52~ l ȧ !2e22bf,

Â522~ l 2ȧa8!e22bf,

Ĝ5~ l ȧ !e2ab. ~B9!

There are three degrees of freedom in the gauge transfo
tions:

xM→xM1jM, jM5~jy,j t,j ,i !. ~B10!

After this gauge transformation, the perturbed metric is giv
by

ds25e2b(y,t)@~112N!dy22~112F!dt212Adt dy#

1e2a(y,t)$@~122C!d i j 12E,i j #dxidxj12B,idxidt

12G,idxidy%, ~B11!

where

F5F̂1 j̇ t1b8jy1ḃj t,

C5Ĉ2ȧj t2a8jy,

E5Ê1j,

B5B̂1 j̇2e2(b2a)j t,

A5Â1 j̇y2j t8,

G5Ĝ1e2(b2a)jy1j8,

N5N̂1jy81ḃj t1b8jy. ~B12!

Using these degrees of freedom, we perform the gauge tr
formation to the Gaussian normal~GN! coordinates in which
the junction conditions will be imposed. In the GN coord
nates, the transverse components of the metric vanishG
5A50) and the brane is located aty50. The former con-
ditions are achieved byj andj t. We can also take the gaug
E05B050 using the residual gauge transformations inj and
j t. Thenj andj t are determined in terms ofjy as

j t5E
0

y

dy~Â1 j̇y!1T̂0 , T̂05e2a0~B̂02 Ė̂0!,

j52E
0

y

dy~Ĝ1e2(b2a)jy!2Ê0 . ~B13!

The condition that the brane is located aty50 is achieved by
jy which will be determined by the matter perturbations
the brane.

The metric perturbations on the brane are obtained as
4-15
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F05F̂01b1j0
y1 Ṫ̂0 ,

C05Ĉ02a1j0
y2ȧ0T̂0 ,

N05N̂01j1
y1b1j0

y , ~B14!

and the first derivatives of the metric perturbations are gi
by

F15 j̈0
y1b1j1

y1b2j0
y1F̂11 Ȧ̂01ḃ1T̂0 ,

C152a1j1
y2ȧ0j̇0

y2a2j0
y1Ĉ12ȧ0Â02ȧ1T̂0 ,

N15j2
y1b1j1

y1b2j0
y1N̂11ḃ1T̂0 ,

B15e22a0~22j̇0
y12ȧ0j0

y22~b12a1!T̂02Â0

1e2a0B̂12e2a0Ġ̂0!,

E15Ê12e22a0j0
y2Ĝ0 . ~B15!

Combining Eq.~B15! with the junction conditions@19#

C152a1N01
1

6
k2dr,

F15b1N01k2S dr

3
1

dp

2 D ,

B1522~b12a1!e2a0v,

E150, ~B16!

we can write the matter perturbations in terms ofj0
y and

E(m,k):

k2dr526@ȧ0j̇0
y1~a22a1b1!j0

y2Ĉ11ȧ0Â01ȧ1T̂0

2a1N̂0#,

k2dp52@ j̈0
y12ȧ0j̇0

y1~2a21b22b1
222a1b1!j0

y1F̂1

22Ĉ11 Ȧ̂012ȧ0Â01~ ḃ112ȧ1!T̂0

2~b112a1!N̂0#,

k2~r1p!ea0v

52j̇0
y22ȧ0j0

y2e2a0B̂112~b12a1!T̂01e2a0Ġ̂0

1Â0 ,

0522e22a0j0
y12Ê122Ĝ0 , ~B17!

where T̂05e2a0(B̂02 Ė̂0). From the last equation in~B17!,
j0

y is written usingE(m,k). Thus the matter perturbations a
written in terms of the perturbations in the bulk~B2! and
02351
n

~B4!. These equations correspond to Eq.~14! in the back-
ground spacetime. The solutions for the perturbations
obtained by determiningE(m,k) anda(m) by imposing the
equations of state of the matter perturbations such asdp
5cs

2dr and the appropriate boundary conditions in the bu
In @11#, E(m,k) is obtained for perturbations at superhoriz
scales in the low energy universe with a constant barotro
parameter. The boundary condition was taken so that
perturbations are outgoing at the horizon of the AdS spa
time. In general, however, it is rather difficult to obtain th
solution for E(m,k). Thus we use the method described
Sec. II. We rewrite Eq.~B17! as the effective Einstein equa
tions. To do so, we should rewrite the right-hand side of E
~B17! in terms of the metric perturbationsF0 andC0.

2. Derivation of the equations„40… and „41…

We rewrite the right-hand side of Eqs.~B17! by using
metric perturbationsF0 andC0 to derive Eqs.~40! and~41!.

We will write F̂, B̂, N̂, Â, andĜ in terms off andb using
Eq. ~B9!. First let us consider the density perturbationdr.
From Eq.~B17!, dr is given by

k2dr526S ȧ0j̇0
y2ȧ0

2j0
y2ȧ0

2a1l 2f01ȧ0ä0ea0lb0

2
ȧ0ä0

a1
e2a0Ė̂02Ĉ1D , ~B18!

where we used Eq.~A13! to write a22a1b152ȧ0
2 and

ȧ15ȧ0ä0 /a1. The strategy is to writej0
y usingC0 andF0.

From Eq. ~B14!, the metric perturbationsC0 and F0 are
given by

C05Ĉ02a1j0
y1ȧ0e2a0Ė̂02ȧ0a1ea0b0 ,

F05a1
2l 2f01S 11

ä0

a1
2D a1j0

y2e2a0Ë̂0

22ȧ0e2a0Ė̂01~a1ȧ01ȧ1!lea0b0

1a1ea0l ḃ0 , ~B19!

where we used Eq.~A12! to write b15(11ä0 /a1
2)a1. From

Eq. ~B19!, we can show that

ȧ0Ċ01ȧ0
2F052a1S ȧ0j̇0

y2ȧ0
2j0

y2ȧ0
2a1l 2f0

1ȧ0ä0ea0lb02
ȧ0ä0

a1
e2a0Ė̂0D 1ȧ0Ċ̂0 .

~B20!

Thus the terms written usingj0
y in Eq. ~B18! can be rewritten

usingF0 andC0. We obtain
4-16
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2
a1k2

2
dr523~ ȧ0Ċ01ȧ0

2F01a1Ĉ12ȧ0Ĉ
˙

0!.

~B21!

The remaining task is to rewrite the terms written in terms
Ĉ in terms ofC0. First, using the solution of the perturba
tions ~B2! and ~B4!, we rewrite C0 in terms of E(m,k).
From Eq.~B17!, j0

y is given by

j0
y5e2a0Ê12ȧ0ea0lb0 . ~B22!

Then we can rewriteC0 as

C05Ĉ02a1e2a0Ê11ȧ0e2a0Ė̂0 . ~B23!

Using the Jacobian of the transformation~B6! and

d

dz
@z2Z2~mz!#5mz2Z1~mz!, ~B24!

we can get the following equations:

a1e2a0Ê1~k!52E dmÊ~m,k!@a1
2mle2a0Z1~mle2a0!

1ȧ0a1iv le2a0Z2~mle2a0!#e2 ivT,

ȧ0e2a0Ė̂0~k!52E dmÊ~m,k!@ȧ0
2mle2a0Z1~mle2a0!

1ȧ0a1iv le2a0Z2~mle2a0!#e2 ivT. ~B25!

Thus we find

2a1e2a0Ê11ȧ0e2a0Ė̂05E dmE~m,k!S 2k213m2

3m
le2a0D

3Z1~mle2a0!e2 ivT, ~B26!

where we used Eq.~B4! anda1
251/l 21ȧ0

2 @Eq. ~A12!#. Ĉ0

is given by

Ĉ0~k!5e22a0E dmĈ0~m,k!Z2~mle2a0!e2 ivT

52E dmE~m,k!S 2k2

3m
le2a0Z1~mle2a0!

2
1

3
~kle2a0!2Z0~mle2a0! De2 ivT, ~B27!

where we used Eq.~B4! and Z2(mz)5(2/mz)Z1(mz)
2Z0(mz). Then we can writeC0 in terms ofE(m,k) as

C0~k!5E dmE~m,k!S mle2a0Z1~mle2a0!

1
1

3
~kle2a0!2Z0~mle2a0! De2 ivT(t). ~B28!
02351
f

On the other hand, the same calculation as for Eq.~B26!
yields

a1Ĉ1~k!2ȧ0Ĉ
˙

0~k!5
1

3E dmE~m,k!k2mle23a0

3Z1~mle2a0!e2 ivT(t). ~B29!

Thus Eq.~B21! becomes

2
k2a1

2
dr~k!523~ ȧ0Ċ01ȧ0

2F0!2e22a0k2C0

1
1

3
e24a0E dmE~m,k!k4l 2Z0~mle2a0!

3e2 ivT(t). ~B30!

The other quantitiesdp and v can be calculated in the
same way. The calculations are straightforward but leng
It is easier to derivedp and v using the equations on th
brane~19!, ~20!, and~21!. The pressure perturbationsdp can
be obtained from Eq.~19! as

2
k2a1

2
dp~k!5C̈014ȧ0Ċ01ȧ0Ḟ012~ ä012ȧ0

2!F0

1
1

3
e22a0~2k2C02k2F0!2

k2b1

6
dr~k!.

~B31!

Substituting Eq.~B30! into Eq. ~B31!, we getdp as

2
k2a1

2
dp~k!5C̈01S 3ȧ02

ȧ0ä0

a1
2 D Ċ01ȧ0Ḟ0

1S 2ä02
ȧ0

2ä0

a1
2

13ȧ0
2D F02

1

3
e22a0k2F0

1
1

3 S 12
ä0

a1
2D e22a0k2C0

1
1

9 S 11
ä0

a1
2D e24a0

3E dmE~m,k!k4l 2Z0~mle2a0!

3e2 ivT(t). ~B32!

The velocity perturbationv is also obtained from the equa
tion on the brane~21!:

~r1p!ea0v5k22e2a0@2 ḋr13~r1p!Ċ0

23ȧ0~dr1dp!#. ~B33!

Substituting Eqs.~B30! and ~B32! into Eq. ~B33!, we can
show thatv is given by
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2
k2a1

2
~r1p!ea0v~k!5Ċ01ȧ0F01Dv, ~B34!

whereDv is given by

Dv52k22e22a0
d

dt F1

3E dmE~m,k!k4l 2Z0~mle2a0!

3e2 ivT(t)G

5
1

3
e23a0E dmE~m,k!@a1ivk2l 3Z0~mle2a0!

2ȧ0mk2l 3Z1~mle2a0!#e2 ivT(t). ~B35!

Finally, let us rewrite the metric perturbationsF0 in terms
of E(m,k) to derive Eq.~41!. From Eqs.~B19! and ~B22!,
F0 is given by

F05a1
2l 2f01a1ea0l ḃ01S 11

ä0

a1
2D a1e2a0Ê122ȧ0e2a0Ė̂0

2e2a0Ë̂0 . ~B36!

From Eq.~B25!,

S 11
ä0

a1
2D a1e2a0Ê122ȧ0e2a0Ė̂02e2a0Ë̂0

5E dmE~m,k!S ~a1l !2
2k21m2

m
le2a0Z1~mle2a0!

2~v2a1
21m2ȧ0

2!l 4e22a0Z0~mle2a0!

22~a1ȧ0l 2!ivml2e22a0Z1~mle2a0! D
3

2k213m2

3m2
e2 ivT, ~B37!

where we usedd@zZ1(mz)#/dz5mzZ0(mz). In addition, we
can show that

a1
2l 2f05~a1l !2E dmE~m,k!S 4k4

3m3
le2a0Z1~mle2a0!

2
2k4

3m2
l 2e22a0Z0~mle2a0!D e2 ivT, ~B38!
02351
a1ea0l ḃ05E dmE~m,k!S 2~a1l !2
8v2k2

3m3
le2a0

3Z1~mle2a0!1~a1l !2
4v2k2

3m2
l 2e22a0

3Z0~mle2a0!1~a1ȧ0l 2!
4ivk2

3m
l 2e22a0

3Z1~mle2a0!D e2 ivT, ~B39!

where we usedZ2(mz)5(2/mz)Z1(mz)2Z0(mz). ThenF0
can be written usingE(m,k) as

F0~k!5E dmE~m,k!S mle2a0Z1~mle2a0!

2
1

3
~k213m2!l 2e22a0Z0~mle2a0! De2 ivT(t)

1~ ȧ0l !2E dmE~m,k!@mle2a0Z1~mle2a0!

2~k212m2!l 2e22a0Z0~mle2a0!#e2 ivT(t)

22a1ȧ0l 2E dmE~m,k!

3~ ivml2e22a0!Z1~mle2a0!e2 ivT(t), ~B40!

where we used (a1l )2511(ȧ0l )2.

APPENDIX C: PRIMORDIAL FLUCTUATIONS

The CMB anisotropies at large scales are determined
z* which should be determined by the primordial fluctu
tions. We consider the inflatonf confined to the brane with
potentialV(f) @38#. The background equations are given

f̈13ȧ0ḟ52
dV~f!

df
,

k2a1

2
ḟ25ä0 . ~C1!

The perturbed energy-momentum tensor of the inflaton
given by

dr52ḟ2F01ḟḋf1V8~f!df,

dp52ḟ2F01ḟdḟ2V8~f!df,

~r1p!ea0v5ḟdf, ~C2!

wheredf are the fluctuations of the inflaton. It is useful
use the Mukhanov variable to describe the evolution of
perturbations:
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Q5df1
ḟ

ȧ0

C0 . ~C3!

Combining Eqs.~C2! and ~40! and the equation of motion
for df,

d̈f13ȧ0ḋf1e22a0k2df1V9~f!df

53ḟĊ01ḟḞ022V8~f!F0 , ~C4!

we can obtain the evolution equation forQ as

Q̈13ȧ0Q̇1e22a0k2Q1S ȧ̈0

ȧ0

22
ä0

ȧ0

V8~f!

ḟ
22S ä0

ȧ0
D 2

1V9~f!D Q5J, ~C5!

where

J5
ḟ0

ȧ0
F S 2ȧ̈0

ä0

2
ä0

ȧ0

D Dv1
1

3
e22a0k2F02

1

3 S 12
ä0

a1
2D

3e22a0k2C01
1

3 S 2

3
2

1

3

ä0

a1
2D e24a0

3E dmE~m,k!k4l 2Z0~mle2a0!e2 ivT(t)G , ~C6!

andDv is given by Eq.~B35!. We take the boundary cond
tion so thatdrx5dpx5vx50. At large scales the sourc
term J goes to zero. Then we can find the solution forQ as
s-

s.

02351
Q5
ḟ

ȧ0
S AQ1BQE t

dt8
ȧ0

2

e3a0ḟ2D , ~C7!

whereAQ andBQ are constants of integration. The amplitud
AQ of the growing mode solution is determined onceQ is
quantized. Denoting the power spectrum ofAQ as PAQ

, we
get

PAQ
5

ȧ0

ḟ
PQU

large scales

, ~C8!

where the right-hand side is the power spectrum of the qu
tized Q evaluated at large scales. The important point is t
Q is related to the Bardeen parameter by Eqs.~C2!, ~40!, and
~60! as

Q5
ḟ

ȧ0
S z2

ȧ0

ä0

Dv D . ~C9!

Thus at large scalesAQ5z* and

Pz
*
5PQu large scales. ~C10!

The problem is how to quantize the system of~C5!. As in the
evolution equation for the density perturbations, the equa
becomes nonlocal at scales belowl (kle2a0.0). In particu-
lar, at high energies, the Hubble horizon is smaller than
curvature scalel. Thus even at the horizon scale the corre
tions are significant. One way is to construct the effect
action that gives Eq.~C5! and do path-integral quantizatio
as is done in@28#. Further investigations are needed to obta
the spectrum ofz .
*

ys.
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