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We use the Lee-Yang cluster expansion method to study quantum-statistical properties of a mixture of
interconvertible atoms and dimers, where the dimers form in a two-body bound state of the atoms. We point out
an infinite series of cluster diagrams whose summation leads to the Bose-Einstein condensation of the dimers
below a critical temperature. Our theory captures some important features of a cold atom-dimer mixture such
as interconversion of atoms and dimers and properties of the mixture at the unitarity limit.
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I. INTRODUCTION

One revolutionary aspect of ultracold alkali-metal gases is
the tunability of interatomic interactions using a Feshbach
resonance �1,2�. Weakly bound dimers have been created on
the positive a side of a Feshbach resonance for both bosons
�3–5� and fermions �6–9�, where a is the s-wave scattering
length. These dimers have bosonic characters and have ex-
perimentally been demonstrated to undergo Bose-Einstein
condensation �BEC� below a critical temperature �10–12�.
Because atoms and dimers are interconvertible due to quan-
tum exchange effects and undergo BEC at different tempera-
tures, the mixture of atoms and dimers offers an interesting
new research arena in quantum-statistical many-body sys-
tems. However, first-principle approach to properties of the
atom-dimer mixture, especially close to the Feshbach reso-
nance, presents a formidable theoretical challenge because of
the divergence of the scattering length.

In this paper we address this problem using the cluster
expansion method of Lee and Yang �13�. This is a quantum-
statistical cumulant expansion method that enables us to sys-
tematically expand the grand partition function in terms clus-
ter integrals. In particular, we find an infinite serise of
clusters whose summation leads to the BEC of dimers. We
also investigate unitary behavior of the atom-dimer mixture
at the limit of a→�.

This paper is organized as follows. In Sec. II, we review
the Lee-Yang cumulant expansion methods for quantum
gases by restricting ourselves to one-particle and two-particle
clusters. In Sec. III, we perform a partial summation of con-
nected diagrams within an s-wave approximation to calculate
grand partition functions of Bose and Fermi systems with
arbitrary spin. In Sec. IV, we show how the BEC of strongly
bounded dimers can be obtained with the present method. In
Sec. V, we investigate the mixture of atoms and dimers in a
high-temperature regime and discuss universal thermody-
namics. In Sec. VI, we consider a possible coexsistence of
the atomic and dimer BECs. In Sec. VII, we summarize the
main results of this paper. Some complicated algebraic ma-
nipulations are relegated to the appendices to avoid disgress-
ing from the main subjects.

II. LEE-YANG CLUSTER EXPANSION

We consider a system of N atoms described by the Hamil-
tonian

HN = �
i=1

N
pi

2

2m
+ �

i�j

V�ri − r j� , �1�

where pi is the momentum of the ith particle and V is the
two-body interaction which is assumed to be independent of
spin variables and have spherical symmetry. According to the
cumulant expansion method, the logarithm of the grand par-
tition function is expanded as a power series of the fugacity
z=e��, where � is the chemical potential and �= �kBT�−1 is
the inverse of the Boltzmann constant kB times the absolute
temperature T. The nth order term in the cumulant expansion
describes the n-body problem of the system.

In a quantum Boltzmann gas, the coefficient of the nth
order term is contributed only from connected clusters of n
particles �14,15�. The first-order term is contributed from the
one-body cluster

U1 = e−�H1 �2�

which describes the noninteracting part of the system, where
H1=p2 /2m is the one-body part of the Hamiltonian. The
higher-order clusters U2 ,U3 , . . . , are defined in terms of the
Boltzmann factor for the Hamiltonian Hn

Wn = e−�Hn �3�

as

�1�,2��W2�1,2� = �1��U1�1��2��U1�2� + �1�,2��U2�1,2� , �4�

�1�,2�,3��W3�1,2,3� = �1��U1�1��2��U1�2��3��U1�3�

+ �1��U1�1��2�,3��U2�2,3� + �2��U1�2�

��1�,3��U2�1,3� + �3��U1�3�

��1�,2��U2�1,2�

+ �1�,2�,3��U3�1,2,3� , �5�

etc.,

where 1 and 1� stand for one-particle states of the first par-
ticle, 2 and 2� stand for those of the second particle, etc.
Thus the n-body cluster, �1� ,2� , . . . ,n� �Un �1,2 , . . . ,n�, rep-
resents the remainder of the Boltzmann factor of the n-body
Hamiltonian, �1� ,2� , . . . ,n� �e−�Hn �1,2 , . . . ,n�, from which

PHYSICAL REVIEW A 73, 063608 �2006�

1050-2947/2006/73�6�/063608�12� ©2006 The American Physical Society063608-1

http://dx.doi.org/10.1103/PhysRevA.73.063608


all separable smaller clusters are removed. We call this re-
mainder the n-particle connected cluster or simply the
n-particle cluster. In terms of Un, the grand partition function
� is given by �see Appendix A for derivation�

ln � = �
n=1

�
zn

n!
Tr�Un� , �6�

where z=e�� is the fugacity and Tr�Un� denotes the trace of
Un.

In quantum statistical mechanics, in contrast, the nth order
coefficient involves not only n-particle connected clusters
but also smaller clusters that are entangled due to symmetri-
zation or antisymmetrization of identical bosons or fermions
�13�. For bosons, symmetrization is carried out through sum-
mation over all permutations of the particle configuration
1� ,2� , . . . ,n�. Then we get the restricted Boltzmann factor as

�1�, . . . ,n��Wn
S�1, . . . ,n� = �

P

�P�1��, . . . ,P�n���Wn�1, . . . ,n� ,

�7�

where P�1�� , . . . ,P�n�� is a permutation of 1� , . . . ,n� and
the sum runs over all possible permutations. For fermions,
antisymmetrization is carried out as

�1�, . . . ,n��Wn
A�1, . . . ,n� = �

P

sgn P�P�1��, . . . ,P�n��

��Wn�1, . . . ,n� , �8�

where sgn P=1 if P is an even permutation and sgn P

=−1 if P is an odd permutation. In terms of the restricted
Boltzmann factors Wn

S,A, we define Lee-Yang clusters Un
S,A as

�1��W1
S,A�1� = �1��U1

S,A�1� , �9�

�1�,2��W2
S,A�1,2� = �1��U1

S,A�1��2��U1
S,A�2� + �1�,2��U2

S,A�1,2� ,

�10�

�1�,2�,3��W3
S,A�1,2,3� = �1��U1

S,A�1��2��U1
S,A�2��3��U1

S,A�3�

+ �1��U1
S,A�1��2�,3��U2

S,A�2,3�

+ �2��U1
S,A�2��1�,3��U2

S,A�1,3�

+ �3��U1
S,A�3��1�,2��U2

S,A�1,2�

+ �1�,2�,3��U3
S,A�1,2,3� , �11�

etc.

Because of �anti�symmetrization, Lee-Yang clusters Un
S,A

with n�2, in general, do not vanish even for ideal bosons
�fermions�. For the case of n=2, for example, we have
�1� ,2� �U2

S,A �1,2�= ± �2� �U1
S,A �1��1� �U1

S,A �2�, where the
plus �minus� sign applies to bosons �fermions�.

In terms of Un
S,A, the grand partition function � is written

as

ln � = V�
n=1

�

bnzn, �12�

where V is the volume of the system and

bn =
1

Vn!
Tr�Un

S,A� �13�

is the Lee-Yang cluster integral. Once ln � is obtained, the
equation of state and the average number density are given
by

�p = lim
V→�

ln �

V
�14�

and

FIG. 1. Schematic diagrams of cluster expansions. �a� One-
particle connected diagram, where each dot represents U1 which
describes the quantum exchange effect. �b� An example of the con-
nected diagrams of two-particle clusters, where each dot represents
U2 which describes the exact two-body scattering but not the quan-
tum exchange effect. We distinguish U1 and U2 by the number of
the incoming and outgoing lines. �c� A thick line represents the sum
of all one-particle connected diagrams. A mathematical expression
of this replacement is given in Eq. �27�. �d� Corrections to the
two-body clusters due to the quantum exchange effect. Such correc-
tions can be taken into account through the replacement of thin
lines by thick ones.
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	 = lim
V→�

1

V

� ln �

� ln z
, �15�

respectively, where p is the pressure and 	 is the number
density of the system. Examples of the Lee-Yang diagrams
are schematically illustrated in Fig. 1.

For noninteracting bosons or fermions, the grand partition
function ��1� is written as

1

V
ln ��1� = �

n=1

�

bn
�1�zn, �16�

where bn
�1� is the cluster integral which is represented in

terms of wave vector k and spin 
 as

bn
�1� =

Pn−1�n − 1�!
Vn! �

k,

�k,
�U1

n�k,
� . �17�

In Eq. �17�, U1 represents the one-particle cluster and the
factor �n−1�! is the number of topologically distinct configu-
rations of n particles that give the same contribution. The
sign function P takes on +1 for bosons and −1 for fermions.

Each dot in Fig. 1�a� represents the one-particle cluster U1
which is connected with one incoming line corresponding to
a ket vector and one outgoing line corresponding to a bra-

vector. To be explicit, we rewrite the coefficient bn
�1� in Eq.

�17� by inserting the resolution of unity 1=�k,
 �k ,
��k ,
�
between the U1 operators, with the following result:

bn
�1� =

Pn−1�n − 1�!
Vn! �

	ki
i

�k1,
1�U1�kn,
n� ¯ �k3,
3�U1�k2,
2�

��k2,
2�U1�k1,
1� , �18�

where �k j ,
 j �U1 �ki ,
i� is the transition amplitude from the
ith particle state to the jth one and thus describes the effect
of the quantum exchange between identical particles. It is the
ring diagrams of U1 as illustrated in Fig. 1�a� that bring the
system to quantum degeneracy of atoms �but not dimers�.
Substituting Eq. �17� into Eq. �16�, we obtain

ln ��1� = − P Tr ln�1 − PzU1� . �19�

When a two-body interaction exists, two-particle clusters
and larger ones appear in the cumulant expansion in addition
to one-particle clusters. There are n incoming lines and n
outgoing lines associated with an n-particle cluster. Formally,
we can write down the coefficient bn as a sum over all pos-
sible connected diagrams:

�20�

where the set 	mj
 satisfies � j=1
n jmj =n, the sum over P� is to

be taken over all possible permutations P� of particle con-
figurations, a� ,b� , . . ., for each set 	mj
, and a� ,a ,b� ,b, etc.,
symbolically represent a certain set of wavevector and spin
states. In the round brackets of Eq. �20�, 1 and sgn P� cor-
respond to bosons and fermions, respectively.

In a uniform system, Un in the wave vector representation
involves Kronecker’s � function arising from the conserva-
tion of the total momentum. In the thermodynamic limit V
→�, we have

�k1�
1�, . . . ,kn�
n��Un�k1
1, . . . ,kn
n�

= �3�K� − K���
j=1

n

�
j�,
jun�k1�, . . . ,kn�,k1, . . . ,kn�

�21�

where K�=�iki� and K=�iki, and un is independent of the
volume. Furthermore, the trace operation, Tr, is to be inter-
preted as an integral over the wave vector, �dk, and the �
function should be interpreted as limV→�

V
�2��3 �K�,K. Thus, in

the thermodynamic limit,

1

V
Tr�Un� =

1

V
�

k1,. . .,kn

�k1, . . . ,kn�Un�k1, . . . ,kn�

→
1

�2��3��
j=1

n � dk jun�k1, . . . ,kn� �22�

The same argument applies to quantum clusters Un
S,A.

III. REPEATED BINARY COLLISIONS

We first discuss the case of spinless bosons, and then ex-
tend it to cases of spin-J bosons and fermions. Throughout
this paper we take into account many-body effects up to
two-particle clusters and make the s-wave approximation.
This assumption is valid up to the order of o(�ka�3), provided
that ka�1, where a is the s-wave scattering length and k is
a characteristic wave number of the system. Within the
s-wave approximation the wave number representation of a
quantum state of a uniform system can be decomposed into
the part that involves only the absolute value of the relative
momentum �k−k�� and the part that involves only the center-
of-mass momentum as
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�k,k��� = ��k + k����k − k��� . �23�

Thus, the exchange between k and k� yields an identical
result, and so we need not distingush between �k ,k�� and
�k� ,k�.

We consider a set of connected diagrams that describe
repeated collisions between two particles, as illustrated in
Fig. 1�b�. Each dot stands for the U2 cluster and hence rep-
resents the exact two-body scattering unlike the case of the
ladder approximation. Thus if the two-body problem can be
solved exactly, the present method offers a powerful tool for
computing the partition function accurately. When the two-
body problem supports a bound state, the dot should also
describe dimers in addition to two-body scattering.

The U2 cluster is expressed in operator form as

U2 = e−�H2 − e−�H1 � e−�H1 �24�

where H1 and H2 are the one-body Hamiltonian and the
two-body Hamiltonian, respectively. This definition agrees
with that of the U2 cluster in Eq. �4�. Let K2n be the number
of diagrams that give the same contribution in the 2n-body
cumulant consisting of U2’s only. To construct the corre-
sponding diagram shown in Fig. 1�b�, we must choose n
pairs of lines, each constituting a two-particle cluster. The
number of ways to choose two lines for the first pair is 2nC2,
it is 2n−2C2 for the second pair, and so on. Since a factor of 2
arises from each pair due to the exchange between k and k�
�see the remark below Eq. �23��, we have, in total, an addi-
tional factor of 2n. Thus

K2n = 2nC2 � 2n−2C2 � ¯ � 2C22nn−1 =
�2n�!

n
, �25�

where the factor n−1 accounts for the fact that the cyclic
permutation of n pairs yields n topologically identical dia-
grams which should be counted just once. The contribution
to the grand partition function from binary collisions is thus
calculated to be

�
n=1

�
z2n

�2n�!
K2n� dk1dk2�k1,k2�U2

n�k1,k2�

= −� dk1dk2�k1,k2�ln�1 − z2U2��k1,k2�

= − Tr ln�1 − z2U2� . �26�

Equation �26� is derived under the assumption that two
outgoing lines go directly from one U2 into another without
undergoing quantum exchange with other atoms. However,
Nature does not distinguish between colliding atoms and
their surrounding atoms, and therefore one-particle lines con-
necting U2’s should be renormalized to take into account the
quantum exchange effect described by U1. The number of
times that U1 acts on a single line ranges from zero to infin-
ity. Thus the single-particle bare propagator should be renor-
malized as

z� di�i��i� �bare�

→�n=0

�
zn+1� di� dj�j��j�U1

n�i��i� �renormalized� .

�27�

In Fig. 1�c�, we schematically illustrate the bare propagator
as a thin line and the renormalized single-particle propagator
as a thick line.

In accordance with this renormalization procedure, we re-
place thin one-particle lines in Fig. 1�b� by thick ones and
obtain the corresponding grand partition function as sche-
matically illustrated in Fig. 1�d�. To implement this proce-
dure algebraically, suppose that there are m “surrounding”
atoms in addition to the 2n particles constituting the two-
particle cluster ring. In this case, K2n in Eq. �25� should be
replaced with

K2n+m = 2n+mC2 � ¯ � 2+mC22nn−1m ! =
�2n + m�!

n
,

�28�

where m! accounts for the number of orderings of the sur-
rounding atoms. The second-order correction, ln ��2�, to the
grand partition function is thus given as

ln ��2� = �
n=1

�

�
m=0

�

�
m=m1+¯+m2n

z2n+m

�2n + m�!
K2n+m

� Tr	�U1
m1 � U1

m2U2� � ¯ � �U1
m2n−1 � U1

m2nU2�


= − Tr ln�1 − fB�H1� � fB�H1��U1
−1

� U1
−1U2�� , �29�

where fB�H1�= �exp	��H1−��
−1�−1 is the Bose-Einstein
distribution operator. Introducing the S matrix, S, as

S = 1 + U1
−1

� U1
−1U2, �30�

we have

ln ��2� = − Tr ln�1 − �fB � fB��S − 1�� . �31�

Substituting Eq. �24� into Eq. �30�, we obtain

S = �e�H1 � e�H1�e−�H2 = T� exp�− �
0

�

V���d� , �32�

where T� is the imaginary-time ordering operator and

V��� � �e�H1 � e�H1�V�e−�H1 � e−�H1� �33�

with V=H2−H1 � 1−1 � H1. Comparing Eq. �31� with Eq.
�26�, we find that the quantum exchange effect amounts to
the replacement of the fugacity z with the distribution func-
tion fB and U2 with S−1. It follows from Eqs. �19� and �31�
that the grand partition function for spinless bosons is given
by

ln �B
J=0 = ln ��1� + ln ��2�

= − Tr ln�1 − zU1� − Tr ln	1 − �fB�H1� � fB�H1��

��S − 1�
 . �34�
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As shown in Appendix B, this result can be generalized to
the case of spin-J bosons and fermions:

ln �B = − �2J + 1�Tr ln�1 − zU1� − �2J + 1��J + 1�

�Tr ln�1 − �fB � fB��S − 1�� , �35�

ln �F = �2J + 1�Tr ln�1 + zU1� − J�2J + 1�Tr ln�1 − �fF � fF�

��S − 1�� . �36�

In Eqs. �35� and �36�, Tr implies the trace operation only
over the coordinate or the wavevector.

IV. BEC OF DIMERS

We can use Eqs. �34�–�36� to investigate the BEC transi-
tion of dimers formed in the bound state of the two-body
Hamiltonian for both Bose and Fermi systems. We first con-
sider a system of spinless bosons, and assume that the two-
body interaction V�rij� is finite ranged and supports one
bound state that describes a dimer state. The corresponding
quantities in the Fermi system can be obtained by the re-
placement of the distribution function fB with fF or, equiva-
lently, the fugacity z with −z. We will consider the case of
nonzero spin later.

When the s-wave scattering length a is much larger than
the effective range leff of interaction, the binding energy of
the dimer is given by �16,17� �see also Eq. �45� below�

Eb = −
�2

ma2 , �37�

where m is the mass of the atom, and a is the s-wave scat-
tering length. In this section, we assume that the binding
energy is much larger than the thermal energy, i.e.,
�Eb � �kBT. Thus we consider a parameter regime
leff�a��dB, where �dB�h /�2�mkBT is the thermal de
Broglie length.

We first note that the operator in the trace of Eq. �31� can
be expanded as

�fB � fB��S − 1� = �
n1=0

�

�
n2=0

�

zn1+n2+2e−n1�H1e−n2�H1U2.

�38�

When the dimers are deeply bound so that e��Eb��1, the
two-particle cluster U2 can be approximated as

U2 = e−�HG�e−��pr
2/m+V� − e−��pr

2/m��

= e−�HG��b�e��Eb��b� + �
ks

�ks�e−��2ks
2/m�ks�

− �
k

�k�e−��2k2/m�k� � e−�HG�b�e��Eb��b� , �39�

where �b� represents the bound state, HG describes the
center-of-mass part of the two-body Hamiltonian H2, and pr
represents the momentum of the relative motion. The chemi-
cal potential must take such values that the geometrical se-
ries in Eq. �26� or Eq. �29� converges, that is,

2� � inf	eigenvalue ofH2
 . �40�

Then the fugacity becomes very small, z=e��

�exp�−� �Eb � /2��1, since by assumption � �Eb � �1. This
allows us to ignore the quantum exchange effect for atoms
�but not for dimers� and take only the term with n1=n2=0 in
Eq. �38�. Since the center-of-mass motion and the relative
motion are decoupled from to each other, Eq. �31� reduces to

ln ��2� = − Tr ln�1 − z2e−�HG�b�e��Eb��b�� . �41�

The contribution from free �unbound� atoms is also ne-
glected due to the smallness of the fugacity. Then the aver-
age number of dimers is calculated to be

Ndimer =
1

2
z

�

�z
ln � = Tr

1

e��HG+Eb−2�� − 1

= N0
dimer +

V

�2��3 � dK
1

e���2K2/4m+Eb−2�� − 1
, �42�

where N0
dimer denotes the number of dimers in the K=0 state

which is dropped when we replace the discrete sum with the
integral.

The integral in the last term of Eq. �42� takes the maxi-
mum when the chemical potential is maximal. If the integral
is below the total number of particles of the system, the
remaining dimers should condense in the lowest energy �i.e.,
K=0� state. The transition temperature is given by the tem-
perature at which the number of exited particles with 2�
=Eb is equal to the total number of dimers

Ndimer

V
= �

0

� 4�K2dK

�2��3

1

e�c�2K2/4m − 1

=
2�

�2��3� 4m

�c�
2�3/2

��3

2
��3

2
 . �43�

Hence the critical temperature is given by

Tc
dimer =

2��2

�2m�kB
� Ndimer

��3/2�V�2 � 3

. �44�

This formula is identical to that of free dimers. Thermody-
namic properties of dimers are also similar to those of free
bosons. While we have assumed here that dimers are deeply
bound, this assumption is by no means essential for the
analysis of our grand partition function. At least in principle
we can investigate the case in which the scattering length is
comparable with or much larger than the thermal de Broglie
length.

V. HIGH-TEMPERATURE EXPANSION AND UNIVERSAL
THERMODYNAMICS

In a high-temperature regime, excited atoms and dimers
can coexist. On the other hand, the two-body scattering prob-
ability decreases with decreasing 	�dB

3 . By expanding the
grand partition function �31� with respect to the fugacity, we
can evaluate the quantum-statistical weight of dimers in the
high-temperature regime.

To investigate this problem, we use a pseudopotential �18�
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Vpseudo�r� =
4��2

m
a�3�r�

�

�r
r . �45�

The advantage of using this pseudopotential is that we can
exactly solve the two-body problem within the s-wave ap-
proximation. The pseudopotential �45� supports continuous
scattering states and one bound state with the binding energy
given in Eq. �37�. With this pseudopotential, the two-particle
cluster U2 and the renormalized cluster fBfB�S−1�, which
includes an infinite series of fugacity, can be computed as
done in Appendix C. Expanding the grand partition function
up to the second order in the fugacity, we obtain the equation
of state

�p =
1

�dB
3 �z +

z2

25/2 + 2�2�ex2
−

1

2
ex2

erfc�x�z2� , �46�

	 =
1

�dB
3 �z +

z2

23/2 + 4�2�ex2
−

1

2
ex2

erfc�x�z2� , �47�

where x=�dB/ ��2�a�. On the right-hand side of Eqs. �46�
and �47�, the first terms ��z� correspond to the Boltzmann
gas, while the second terms ��z2� give the first quantum
correction to the Boltzmann gas. The remaining terms pro-
portional to ex2

and ex2
erfc�x� are contributed from the bound

state and the scattering states, respectively. The number of
dimers Ndimer is thus given from Eq. �47� by

Ndimer = 2�2
V

�dB
3 ex2

z2. �48�

The fugacity is determined from Eq. �47�. In the high-
temperature regime, where 	�dB

3 �1, we expand the fugacity
up to the second order in 	�dB

3 , obtaining

z = 	�dB
3 − � 1

23/2 + 4�2�ex2
−

ex2
erfc�x�

2
��	�dB

3 �2.

�49�

Substituting this in Eq. �48�, we obtain

Ndimer = 2�2N�	�dB
3 �ex2

. �50�

When the thermal energy dominates the binding energy of
dimers, i.e., x=�dB/ ��2�a��1, the fraction of dimers is
negligible and the system behaves like a classical gas of
atoms.

On the other hand, when x�1, it is possible for the num-
ber of dimers to be macroscopic. We may use this fact to
calculate fBe�H1 � fBe�H1U2. As shown in Eq. �C15� in Ap-
pendix C, the contribution from the bound state reads

1

V
Tr�fBfBe��H1+H1��b��b�e−�H2�b��b��

=
ex2

�dB
3 �2�2z2 +

�−1/2

x3 �
n+m�2

�
zn+m

�2nm − n − m�3/2� ,

�51�

where higher-order terms in the fugacity �zn with n�3� de-

scribe quantum exchange effects between dimer atoms and
the surrounding atoms; however, their contributions are
much smaller than the Maxwell-Boltzmann weight of dimers
in the regime of x�1.

When kBT� �Eb�, the system behaves like a classical gas
of dimers. Writing down the grand partition function with
only the classical atomic term and the classical dimer term,
we have

�p =
1

�dB
3 �z + 2�2�ex2

−
ex2

erfc�x�
2

z2� , �52�

z =
�1 + 8�2ex2

�2 − erfc�x��	�dB
3 − 1

4�2ex2
�2 − erfc�x��

. �53�

It follows from these results that for 	�dB
3 �1 the pressure of

the system decreases from 	kBT to 	kBT /2 with increasing
x as shown in Fig. 2. Since there is a bound state of the
two-body problem, the pressure cannot reach 	kBT. This fact
continues to hold true at the unitarity limit of a→�.

The universal thermodynamic relations for the pressure p
and the energy per volume e are obtained from Eq. �46� up to
the order of O(�	�dB

3 �2) as

p

	kBT
= 1 −

9

8
�2�	�dB

3 � , �54�

e =
3

2
	kBT�1 −

9

8
�2�	�dB

3 �� . �55�

These expressions hold true for spinless bosons. The gener-
alization of these results to cases with arbitrary spins is
straightforward: for bosons with spin J, we have

e =
3

2
	kBT�1 −

�2�J + 1� + 2−5/2

2J + 1
	�dB

3 � �56�

and for fermions with spin J, we have

FIG. 2. Dependence of p /	kBT on x=�dB/�2�a for 	�dB
3

=0.001,0.01,0.1. With increasing x, the pressure decreases to about
one half of that of the ideal atomic gas because of dimer formation.
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e =
3

2
	kBT�1 −

�2J − 2−5/2

2J + 1
	�dB

3 � . �57�

We also find that the relation e=3p /2 holds true up to the
same order. For the special case of J=1/2, Eq. �57� reduces
to the formula obtained in Ref. �19� using the Beth-Ulenbeck
formula.

As long as we deal with many-body effects by using only
the one-particle and two-particle clusters, the coefficients of
the grand partition function �13� can be written as

bl =
1

�dB
3 f l�x� , �58�

where �dB
−3 is the contribution from the center-of-mass motion

and f l is a dimensionless function of x=�dB/ ��2�a�. If the
function f l is regular with respect to x and the fugacity is
finite at the limit of a→�, the relationship between the en-
ergy per volume and the pressure is e=3p /2. This is because
the energy density is given by

e = − � �

��

ln �

V


z

=
3

2
kBT

ln �

V
−

kBT

2 �
l=1

�

zl�dB
−3x

�

�x
fl,

�59�

where the first term on the right-hand side corresponds to the
pressure given in Eq. �14�, and the second term vanishes at
the unitarity limit �x→0�.

VI. POSSIBLE COEXISTENCE OF ATOMIC
AND DIMER BECS

In the preceding sections, we have shown that thermal
atoms, thermal dimers, and Bose condensed dimers can be
described in terms of two dimensionless parameters x
=�dB/�2�a and 	�dB

3 . In Sec. IV, we assume that the binding
energy is very strong ���Eb /2� and ignore the repulsive
interaction between atoms. The dimers in our grand partition
function behave as an ideal quantum gas since the diagrams
of the repeated binary collisions do not give rise to the inter-
actions between dimers. However, as the scattering length or
the atomic density increases, the chemical potential should
eventually overcome the binding energy and then our ap-
proximation would become invalidated. This possibility will
be discussed in a future publication.

Here we discuss a coexistence of atomic and dimer BECs
within our grand partition function. This is possible if the
first excited state of the dimer BEC lies above the atomic
BEC state and if the thermal energy is large enough to popu-
late the atomic BEC state.

Let us estimate the number of states N that lie below the
zero-energy state of atoms. Assuming that the Hamiltonian
supports only one bound state, we can focus on the center-
of-mass motion of dimers. Hence N can be estimated in the
same way as for free particles, giving

N =
V

�2� � �3

4�

3
�4mEb�3/2 �

N

	a3 . �60�

Thus the atomic BEC state may exist for x�1 and 	a3�1.
In fact, when the energy of the first excited state of the mo-

lecular BEC, Eb+�, is positive and the thermal energy is
large enough to excite the zero energy state, the occupation
number of the atomic BEC state could be macroscopic at low
temperatures such that x�1 and kBT��.

In a bulk system, the excitation spectrum of dimers is
continuous, so the atomic BEC state can hardly be occupied
by a large number of particles. However, in a trapped system,
the BEC state can be populated appreciably because the ex-
cited states are distributed in a discrete manner. For instance,
since �= �� in a harmonic trap, Eb+��0 implies a�dho
where the dho=�� /m� is the size of the ground-state wave
function of an ideal BEC in a harmonic trap. When the en-
ergy of the first excited state of the dimer is higher than the
atomic BEC state, the atomic BEC state is considered to be
in the first excited state of the system. Hence, if �Eb � �kBT
��, the thermal fluctuations do not significantly excite the
excited states of the dimers but do populate the zero-energy
state of atoms. This implies that if the condition a��dB
�dho is met, an atomic BEC can coexist with a dimer BEC.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have applied the Lee-Yang cluster ex-
pansion method to investigate quantum-statistical properties
of a mixture of atoms and dimers. We consider a system of
bosons and that of fermions with arbitrary spins, interacting
via s-wave scattering.

We truncate the cluster expansion by taking only
one-particle and two-particle clusters. The one-particle clus-
ter describes the quantum exchange effect and the ring dia-
gram of the one-particle clusters shown in Fig. 1�a� leads to
Bose-Einstein condensation �BEC� of atoms �20�. If the
two-body Hamiltonian supports the bound state, the ring dia-
gram of repeated collisions via two-particle clusters is shown
to lead to Bose-Einstein condensation of dimers. We have
taken into account the renormalization of the one-particle
cluster due to the exchange of dimer atoms with surrounding
atoms as shown in Fig. 1�d�. Thus our theory takes into ac-
count the interconversion of atoms between dimers and sur-
rounding atoms.

When the scattering length a is much larger than the ef-
fective range leff of the interaction, the grand partition func-
tion and the equation of state depend only on the thermal de
Broglie length �dB and a. The large ratio of x=�dB/ ��2�a�
implies weak scattering and strongly bound dimers if they
exist. On the other hand, the small ratio is achieved in the
universality limit near the Feshbach resonance. We evaluated
the number of dimers in the high-temperature regime as a
function of x, and found that with increasing x the number of
dimers grows and the pressure of the system decreases to
about one half due to formation of dimers. We also found the
pressure and the energy in the universality limit of x→0 for
systems of an arbitrary spin up to the second order in the
number density.

When we consider the interacting bose system that has a
bound state, it is of interest to ask whether the BEC of atoms
and that of dimers coexist. Our grand partition function sug-
gests that in the bulk system the dimer BEC is dominant
because of a finite binding energy and the continuous exci-
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tation spectrum of dimers. However, in a trapped system, the
coexistence of atomic and dimers BECs is implied when the
scattering length is larger than both the thermal de Broglie
length and the system size.

In this paper, in the grand partition function we take only
the ring diagrams of one-particle and two-particle clusters
and neglect the higher-order effects. In particular, the inter-
action between dimers is not included. It is not clear, how-
ever, whether the ground-state energy of dimers is lower than
that of atoms in the presence of repulsive interaction between
dimers. This subject merits further study.
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APPENDIX A: DERIVATION OF CLUSTER EXPANSION

To make the paper self-contained, we outline a derivation
of the cumulant expansion formula of the grand partition
function applicable to both classical and quantum systems.
Using the Boltzmann factors Wn, Wn

S, and Wn
A in Eqs. �3�,

�7�, and �8�, respectively, we evaluate the corresponding par-
tition functions, QN, for an N particle system

Qn
cl =

1

N! �
1,. . .,N

�1, . . . ,N�WN�1, . . . ,N� , �A1�

QN
S,A =

1

N! �
1,. . .,N

�1, . . . ,N�WN
S,A�1, . . . ,N� . �A2�

Since the procedure for the classical system applies equally
to the quantum system, we only show the derivation for the
classical system. The grand partition function is defined by

� = �
N=0

�

zNQN, �A3�

where z�e�� is the fugacity. We then decompose WN into
j-particle clusters Uj, and regroup the grand partition func-
tion as follows:

� = �
N=0

�

�
	mj


zN

N!�j=1

N
N!

�
j

�j ! �mjmj!

�� �
1,. . .,j

�1, . . . , j�Uj�1, . . . , j�mj

= �
j=1

�

�
mj=0

�
1

mj!
� z

j! �
1,. . .,j

�1, . . . , j�Uj�1, . . . , j�mj

= exp�V�
j=1

�

zjbj , �A4�

where the coefficient bj is defined as

bj �
1

Vj! �
1,. . .,j

�1, . . . , j�Uj�1, . . . , j� . �A5�

In Eq. �A4�, �	mj

implies summation over all possible sets

	mj
 that satisfy � j=1
N jmj =N, and the factor N ! / �� j�j ! �mjmj ! �

is the number of the particle configurations for a given 	mj
.
We can obtain the corresponding formulas for the quantum
system by replacing WN and Uj with WN

S,A and Uj
S,A, respec-

tively.

APPENDIX B: GRAND PARTITION FUNCTION
FOR AN ARBITRARY SPIN SYSTEM

We derive the grand partition function for a system of
fermions or bosons with spin J. The two-body interaction of
the system is assumed to be independent of the spin. We first
consider the case of fermions.

Let us evaluate the number of topologically distinct dia-
grams, K2n

J , with respect to the spin configuration for a sigle
loop composed of n two-particle clusters involving 2n inde-
pendent fermions with spin J. We must take into account the
spin degrees of freedom in performing the trace operation.
Let the ket vector of the spin state be �
i ,
 j�, where i and j
distinguish particles. Since there are two states, �
i ,
 j� and
�
 j ,
i�, in the trace operation for each pair of particles, the
contribution to the grand partition function reads

�
	



�
loop

��
i,
 j� − �
 j,
i��U2�
k,
l� , �B1�

where we assumed that i� j and k� l, and the minus sign in
Eq. �B1� arises from the Fermi statistics. We interpret Eq.
�B1� as a series of transitions of two particles from the ket
vector to the bra vector through U2. We shall refer to
��
i ,
 j �−�
 j ,
i � �U2 �
k ,
l� as portion. If the ith particle and
the jth particle have the same spin, the contribution �B1�
vanishes. Thus we only consider the situation in which 
i is
different from 
 j. By considering transitions of a pair of
particles from a ket to a bra, we identify nonvanishing spin
alignments. We first consider the following portion:

�

3,
4

�
3,
4���
3,
4� − �
4,
3��U2�
1,
2� . �B2�

Suppose that 
1= j, 
2= j�, and j� j�. Then, nonzero contri-
butions arise from the “direct” set �
3= j and 
4= j�� and the
“exchange” set �
3= j� ,
4= j�, and if the exchange set is
chosen, the minus sign appears as in the second term in Eq.
�B2�. By the same token, in the next portion of �
3 ,
4�, only
�j , j�� and �j� , j� give nonzero contributions. The crucial con-
straint is to form loop; for this loop to give a nonvanishing
contribution we must have

��
1,
2� − �
2,
1��U2�
2n,
2n−1� � 0. �B3�

We can thus categorize nonvanishing transitions of a pair
of particles from one U2 to another into three possibilities: �i�
All intermediate states are direct sets. In this case �
2n ,
2n−1�
is, of course, equal to the direct set �j , j��. �ii� Intermediate
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states include an odd number of exchange sets. In this case
�
2n ,
2n−1� is equal to �j� , j�. Since the minus signs also ap-
pear at odd times, this term carries the minus sign. �iii� In-
termediate states include an even number of exchange sets.
In this case �
2n ,
2n−1� is equal to �j , j��. This term carries
the plus sign. Finally, the number of choices of a pair of j
and j� is �2J+1�2− �2J+1�. Therefore,

K2n
J = 2n−1��2J + 1�2 − �2J + 1�� = 2nJ�2J + 1� . �B4�

We next consider a situation in which m particles partici-
pate in one-particle clusters between the two-particle clus-
ters. Let C2n+m

J be the number of particle configurations for
this situation. When there are 2n particles and n U2 clusters,
i.e., m=0, the sign sgn P of the nonvanishing contribution is
always positive. The quantum exchange of atoms occurs on
single-particle lines between two-particle clusters. Let us
consider a partial representation of a permutation such as

�i�U1�j��j�U1�k��k,l�U2�n,m� . �B5�

The corresponding permutation reads

� j k n m

i j k l
 . �B6�

By performing the trace for the j particle, we can eliminate
the state of j from Eq. �B5�, giving

�i�U1
2�k��k,l�U2�n,m� . �B7�

Accordingly, the representation of the permutation is
changed into

� j k n m

j i k l
 . �B8�

Comparing Eqs. �B6� and �B8�, we find that the trace opera-
tion over the j particle amounts to the transposition of i and
j. Furthermore, if the trace for the k particle is carried out,
Eq. �B5� becomes

��i�U1
2

� �l��U2�n,m� . �B9�

The corresponding representation of the permutation reads

� j k n m

j k i l
 . �B10�

Comparing Eqs. �B8� and �B10�, we find that the trace op-
eration over the k particle amounts to the transposition of i
and k. Thus each trace operation can be represented by one
permutation which yields a factor of −1, and therefore trac-
ing over m atoms adds a factor of �−1�m. The total contribu-
tion from the sign of the permutation is sgn P= �−1�m. Thus
we can calculate C2n+m

J using K2n
J as

C2n+m
J = �− 1�mK2n

J 2n+mC2 � ¯ � 2+mC2

n
m! �B11�

We can use this result to find the contribution to the grand
partition function as a partial sum

�
n=1

�

�
m=0

�

�
m=m1+¯+m2n

z2n+m

�2n + m�!
C2n+m

J Trk1,...,k2n
	�U1

m1 � U1
m2U2� � ¯ � �U1

m2n−1 � U1
m2nU2�


= J�2J + 1��
n=1

�
z2n

n
Trk1,...,k2n�� �

m1=0

�

�− z�m1U1
m1 � �

m2=0

�

�− z�m2U1
m2 · U2

� ¯ � � �
m2n−1=0

�

�− z�m2n−1U1
m2n−1 � �

m2n=0

�

�− z�m2nU1
m2nU2�

= J�2J + 1��
n=1

�
z2n

n
Trk1,k2

� 1

1 + zU1
�

1

1 + zU1
U2n

= − J�2J + 1�Trk1,k2
ln�1 − fF�H1� � fF�H1��S − 1�� , �B12�

where fF�H1�= �exp	��H1−��
+1�−1 is the Fermi-Dirac dis-
tribution operation, and Trk¯ implies the trace operation
over k only, i.e.

Trk1,. . .,kn
¯ = ��

i=1

n � dki�k1, . . . ,kn� . . . �k1, . . . ,kn� .

�B13�

For the case of bosons, we consider

�

3,
4

�
3,
4���
3,
4� + �
4,
3��U2�
1,
2� , �B14�

where the plus sign corresponds to Bose statistics. In a man-
ner similar to Fermi statistics, we can calculate K2n

J and
C2n+m

J as

K2n
J = 2n−1��2J + 1�2 + �2J + 1�� = 2n−1�2J + 2��2J + 1� ,

�B15�
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C2n+m
J = K2n

J 2n+mC2 � ¯ � 2+mC2

n
m ! . �B16�

The difference from the case of fermions is that the diagonal
spin states �
3 ,
4�= �j , j� do not vanish. The partition func-
tion of a Bose system is obtained by the replacement of the
fugacity, z, in the fermions system with −z in the Bose sys-
tem

1

1 + zU1
→

1

1 − zU1
. �B17�

Using the coefficient of C2l+n
J , we can explicitly calculate the

correction of the grand partition function in a manner similar
to Eq. �B12�. We thus obtain Eq. �34�.

APPENDIX C: CALCULATION OF Trˆ„fB‹ fB…„S−1…‰

In this appendix, we evaluate the trace of �fB � fB��S
−1� and discuss the associated quantum exchange effect.
First, we solve the two-body problem defined by the Hamil-
tonian,

H2 =
p1

2

2m
+

p2
2

2m
+ Vpseudo�r2 − r1� , �C1�

where Vpseudo is given in Eq. �45�. The center-of-mass motion
is easily solved. Let us consider the relative motion within

the s-wave approximation. The boundary condition near the
origin of the relative coordinate is written for arbitrary wave
function  as

− �
�V�

�2�

�r
d� + 4�a

�

�r
�r��r=0 = 0, �C2�

where d� denotes integration over the solid angle and � is an
infintesimal positive number. The Hamiltonian �C1� supports
one bound state b and continuous scattering states ks

as

Eb = −
�2

ma2 ,

b�r� =
1

�2�a

e−r/a

r
;

�C3�

Es =
�2ks

2

m
,

ks
�r� =� 2

��1 + �ksa�2�
sin ksr − ksa cos ksr

r
Y0,0.

�C4�

We use these results to evaluate the two-particle cluster
�r1� ,r2� �U2 �r1 ,r2�:

�r1�,r2��U2�r1,r2� =
2�2

�dB
3 e−m�R − R��2/�2��b�r�b�r��e−�Eb + �

0

�

dke−��2k2/m�k�r�k�r�� −
sin kr sin kr�

2�2rr�
��

=
2�2

�dB
3 e−m�R − R��2/�2��b�r�b�r��e−�Eb+

1

2�2rr�
�� �m

4�2�
e−

m�r + r��2

4�2� −
�

2a
ex2

e−�r+r��/aerfc�x −
r + r�

2ax
�� ,

�C5�

where R and r denote the center-of-mass coordinate and the relative coordinate, respectively, and x=�dB/ ��2�a�. The function
of erfc�x� is the complete error function defined by 1−erf�x�, and the error function is defined as

erf�x� =
2

��
�

0

x

e−t2dt . �C6�

The corresponding wave vector representation is given by

�k1�,k2��U2�k1,k2� = �3�k1� + k2� − k1 − k2�e−�2�K2/4m

�� a3

�2

e−�Eb

�1 + �ka�2��1 + �k�a�2�
−

4

�

1

k2 − k�2 � d�� sin 2k�

k
−

sin 2k��

k�
� fs���� , �C7�

where

fs��� =
1

2�2���

2

e−��/ax�2

ax
−

�

2a
ex2

e2�/aerfc�x −
�

ax
� �C8�

and the K and k are the center-of-mass momentum and the relative momentum, respectively. Performing the integration, we
obtain
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�k1�,k2��U2�k1,k2� = �3�K − K��e−��2K2/4m� a3

�2

e−�Eb

�1 + �ka�2��1 + �k�a�2�
−

1

2�2

1

k + k�

1

�k − k��
�1

k
� �ka�2

1 + �ka�2e−�kax�2
erfi�kax�

−
ka

1 + �ka�2ex2
erfc�x� −

ka

1 + �ka�2e−�kax�2 −
1

k�
� �k�a�2

1 + �k�a�2e−�k�ax�2
erfi�k�ax� −

k�a

1 + �k�a�2ex2
erfc�x�

−
k�a

1 + �k�a�2e−�k�ax�2�� , �C9�

where erfi�x� is the imaginary error function defined as erfi�x��−i erf�ix�.
Finally, we evaluate the trace of �fB � fB��S−1� using Eq. �38�. When we calculate the trace in terms of the wave vector

representation, the � function in the two-particle cluster U2 is replaced with the factor 1
�2��3 . Thus

1

V
Tr	�fB � fB��S − 1�
 =

1

�2��3 � dk1dk2 �
n1=1

�

�
n2=1

�

zn1+n2e−n1�2�k1
2/2me−n2��2k2

2/2mu2�k�e���2/4mK2+��2/m�k2�

=
1

�2��3 �
n1,n2

� dK̃dkzn1+n2e−��n1+n2��2K̃2/8me−2���2k2/mu2�k�

= �
n1,n2

1

�dB
3

zn1+n2

�n1 + n2�3/2 �Cb + Cs� , �C10�

where K̃=2
n1k1+n2k2

n1+n2
, �=

n1n2

n1+n2
,

u2�k� =
a3

�2

e��2k2/m

�1 + �ka�2�2ex2

− e��2k2/m 2

�

1

k

�

�k
�

0

�

d�fs���
sin 2k�

k
, �C11�

and the coefficients Cb and Cs describe the contribution from
the bound state of the first term of u2 and that from the
scattering states of the same term, respectively. By exchang-
ing the order of integrations over k and �, we obtain

Cb = 8�− 2�2� − 1

�
x + �1 + 2�2� − 1�x2�

�e�2�−1�x2
erfc��2� − 1x��ex2

, �C12�

Cs =
8

��arctan
1

�2� − 1
−

1

�2� − 1 −
1

�2� − 1
�

− 8ex2�
0

�

dte−2terfc�x −
t

x
erf� t

x�2� − 1


+
16
��

1

x�2� − 1
ex2�

0

�

dtt erfc�x −
t

x
e−2t−�t2/x2�2�−1��.

�C13�

For sufficiently small x, we obtain

1

V
Tr	fB � fB�S − 1�


�
1

�dB
3 �

n1,n2

zn1+n2

�n1 + n2�3/28�1 − 4�2� − 1

�
x�

+
1

�dB
3 �

n1,n2

zn1+n2

�n1 + n2�3/2� 8

��arctan
1

�2� − 1

−
1

�2� − 1 −
1

�2� − 1
� + 8�− 1 + 6�2� − 1

�
x�� ,

�C14�

where we ignore high-order terims in �2�−1x. The limit
x→0 corresponds to the unitarity limit. In addition, the en-
ergy of the bound state goes to zero. The fact that the coef-
ficients of higher-order terms in the fugacity remain nonva-
nishing at the limit of x→� implies that the quantum
exhange effect between dimers and surrounding atoms is im-
portant in the same limit.

On the other hand, the expansion of the partition function
for large x, which corresponds to strongly bound dimers, is
given by
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1

V
Tr	fB � fB�S − 1�
 �

1

�dB
3 �2�2z2 + 2�2�� a

�dB
3

�
n1+n2�3

zn1+n2

�2n1n2 − n1 − n2�3/2�ex2
−

1

�dB
3 � 2a

�dB
 �

n1,n2

1

n1
3/2n2

3/2zn1+n2.

�C15�

Since the factor contributed from the bound state, ex2
, is very large in this limit, the scattering effect is negligible. Furthermore,

the quantum exhange effect is not important even if the fugacity is close to 1. This implies that a composite particle within
which two particles are strongly bound together behave as one Bose particle.
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