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Biorthogonal approach for explicitly correlated calculations
using the transcorrelated Hamiltonian
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A biorthogonal formulation is applied to the non-Hermite transcorrelated Hamiltonian, which treats
a large amount of the dynamic correlation effects implicitly. We introduce biorthogonal canonical
orbitals diagonalizing the non-Hermitian Fock operator. We also formulate many-body perturbation
theory for the transcorrelated Hamiltonian. The biorthogonal self-consistent field followed by the
second order perturbation theory are applied to some pilot calculations including small atoms and
molecules. ©2001 American Institute of Physics.@DOI: 10.1063/1.1408299#
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I. INTRODUCTION

The importance of the electron correlation effects h
been widely appreciated inab initio quantum chemistry. De
spite the successful developments of highly reliable co
lated methods like coupled-cluster theory,1 most numerical
results are obtained with a finite number of one-electro
basis functions. The slow convergence of such traditio
correlated methods is a direct consequence of the inabilit
describe the correlation cusp.2–5 The inclusion of explicitly
correlated functions turned out to ameliorate this feat
dramatically.6–10 The uses of explicitly correlated Gaussia
type geminals9–16 and the functions with explicitly linearr 12

behavior17–19have been plugged into many-electron theor
to provide highly accurate approaches. After the impro
ments of scaling and feasibility, the explicitly correlate
methods will play the most important role in contempora
quantum chemistry for reliable energetics with wide varie
including the potential energy surfaces of large molecule

Recently, Ten-no proposed the simple use of a simila
transformed Hamiltonian, which is parameterized with
fixed two-electronic function~geminal!.20,21 Hereafter the
Hamiltonian is referred to as the transcorrelated Hamilton
after the former terminology of Boys and Handy.22 The
geminal is determined such that the singular behavior of
Coulomb potential is compensated at short interelectro
distances. The accompanying correlation factor reprodu
the correlation cusp in the many-electronic wave funct
appropriately. The non-Hermitian nature of the transcor
lated Hamiltonian, however, makes the construction o
self-consistent field nontrivial. The problem was resolved
employing a modified Møller–Plesset~MP! partitioning20

with the usual hermite component of the Hartree–Fo
model Hamiltonian. Approximate ground state energies w
obtained at the second order perturbation level based on
pseudo-orbital theory with the partitioning.

In this paper, we propose an attractive alternative to tr
the transcorrelated Hamiltonian using biorthogonal formu
tion, which has been applied to many electron theories w
7860021-9606/2001/115(17)/7865/7/$18.00
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nonorthogonal orbitals. For instance, Mayer, Surja´n, and co-
workers proposed a method called the chemical Hamilton
approach~CHA! ~Refs. 23, 24! to eliminate the basis se
superposition error~BSSE!. Gouyet discussed the intermo
lecular interactions25,26 using a nonhermite unperturbe
Hamiltonian. Biorthogonal perturbation formulas were d
veloped by Gouyet25,26 and by Surja´n and Mayer.27

Fuchikami and Block treated the exchange interactions
tween monomers representing the interaction Hamilton
with nonorthogonal orbitals.28 Cantu and co-workers pro
posed an application to the valence bond~VB! theory.29 They
discussed a group theoretical treatment to construct the
states with definite spin symmetry from biorthogonal orbit
and evaluate matrix elements. Norbeck and McWeeny p
formed preliminary VB calculations with biorthogona
orbitals.30

We shortly review how operators are represented in
second quantized form using biorthogonal formulation
Sec. II. In Sec. III, we illustrate the transcorrelated Ham
tonian approach and discuss the self-consistent field the
using biorthogonal orbitals. In Sec. IV, we develop MBP
for the transcorrelated Hamiltonian based on the biortho
nal formalism. In Sec. V, we report numerical results. W
also explain the approximate calculations of three-elect
integrals, which appear in the transcorrelated method.
summarize this work in Sec. VI.

II. BIORTHOGONAL SECOND QUANTIZATION

The biorthogonal second quantization has been
cussed in several literatures.23,26,28,29,31We briefly show the
key features of the formulation. Let us suppose the b
thogonal functions,

l5$x1 ,x2 ,...%, ~2.1!

p5$f1 ,f2 ,...%, ~2.2!

E xp~1!fq~1!d15dpq , ~2.3!
5 © 2001 American Institute of Physics
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where the indices,p,q,..., denote spin orbitals. For simplic
ity, the one-electronic functions are assumed to be real.
field operators are expressed in terms of the biorthogo
functions, which span the complete one-electronic space

C1~1!5(
p

bp
1xp~1!, ~2.4!

C~1!5(
q

cqfq~1!, ~2.5!

wherebp
1 andcq are new creation and annihilation operato

corresponding to the biorthogonal functions,fp andxq , re-
spectively,

bp
15E fp~1!C1~1!d1, ~2.6!

cq5E xq~1!C~1!d1. ~2.7!

These definitions of the operators are mathematically equ
lent to the ones using the inverse of overlap integrals of
nonorthogonal basis set.23,26,28,29,31One can express opera
tors in the second quantized form using the biorthogo
basis functions. The one-electron operator,

O15(
i

c1~ i !, ~2.8!

is rewritten as

O15E C1~1!v1~1!C~1!d15(
pq

vpq
1 bp

1cq , ~2.9!

vpq
1 5E xp~1!v1~1!fq~1!d1. ~2.10!

Similarly, the two-electron operator,

O25(
i . j

v2~ i , j !, ~2.11!

becomes

O25
1

2 (
pqrs

vpqrs
2 bp

1bq
1cscr , ~2.12!

vpqrs
2 5E E xp~1!xq~2!v2~1,2!f r~1!fs~2!d1d2.

~2.13!

The Hermitian conjugate ofcp is notbp
1 unless the orbitalxp

coincides withfp . The usual anticommutation relations ho
for the biorthogonal operators,

$bp
1 ,bq

1%50, ~2.14a!

$cp ,cq%50, ~2.14b!

$bp
1 ,cq%5dpq . ~2.14c!

The Wick theorem can be used for the calculation of opera
products. This fact enables us to use the conventional se
quantized formalism, i.e., the normal ordering and diagra
matic techniques, for different determinatal states as diffe
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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bracket vacuums.25,26,29 In what follows, we formulate a
many-body perturbation theory for the transcorrela
method.

III. TRANSCORRELATED HAMILTONIAN

The transcorrelated Hamiltonian10,22,32is defined as

H̃5e2FHeF, ~3.1!

which deals with the dynamic correlation effects accurat
through the correlation factor,eF. The correlation factor is
dependent on the positions of electrons explicitly. The tra
formation does not change the energy spectrum while
effective Hamiltonian becomes non-Hermitian. This mea
that the variational calculation does not necessarily give
upper bound of the exact energy. The feature never beco
a major disadvantage in practical applications. In the rec
development,20,21 a spherically symmetric geminal

F5(
i . j

f ~r i j !, ~3.2!

is used to describe the Coulomb hole in the vicinity ofr 12

50. Residual correlation effects are dealt with by the st
dard expansions with one-electronic functions.H̃ is ex-
panded in a power series ofF as

H̃5H1@H,F#1
1

2!
@@H,F#,F#, ~3.3!

which terminates at the double commutator.22,32 We can re-
write the transcorrelated Hamiltonian as

H̃5H1K1L, ~3.4!

where the operators,K andL, are in the biorthogonal form,

K5
1

2 (
pqrs

^pquK12urs&bp
1bq

1cscr , ~3.5!

L5
1

6 (
pqrstu

^pqruL123ustu&bp
1bq

1br
1cuctcs , ~3.6!

with the operators,

K1252¹1
2f ~r 12!2¹1f ~r 12!•¹1f ~r 12!

2¹1f ~r 12!•~¹12¹2!, ~3.7!

L12352¹1f ~r 12!•¹1f ~r 13!2¹2f ~r 23!•¹2f ~r 21!

2¹3f ~r 31!•¹3f ~r 32!. ~3.8!

We parameterize the geminal using the least square fit
such that the relation,

¹1
2f ~r 12!1¹1f ~r 12!•¹1f ~r 12!>r 12

21w~r 12!, ~3.9!

holds approximately,20 wherew(r 12) is a short-range weigh
function. Under this condition, we localize the correlatio
factor to keep the additional integrals, Eqs.~3.7! and ~3.8!,
increasing linearly to the system size, maintaining the pro
description of the Coulomb cusp. The geminal is represen
by a linear combination of Gaussian functions,
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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f ~r 12!52(
G

NG

cG exp~zGr 12
2 !. ~3.10!

We use another weight Gaussian function, exp(2zwr12
2 ) for

closed expressions in the least-square fitting. The pre
method does not treat the correlation factor as a variatio
parameter unlike the others6–15 including the original
transcorrelated method.10,22 This feature bypasses the com
plicated nonlinear optimization of the factor, which requir
four electron integrals. The antisymmetrized part of the wa
function is treated efficiently with one-electronic basis fun
tions since the transcorrelated Hamiltonian is almost f
from the Coulomb singularity. The expansion series is
pected to converge much faster than the usual wave func
one.

We introduce the self-consistent field theory for t
transcorrelated Hamiltonian using the biorthogonal form
ism. Henceforward, the indices,i , j ,..., anda,b,..., denote
occupied and virtual orbitals in the biorthogonal basis,
spectively. Let us suppose the conjugate states consistin
N biorthogonal occupied orbitals,

X5ix1x2¯xNi , ~3.11!

F5if1f2¯fNi , ~3.12!

with the normalization condition,̂XuF&51. The variation to
the energy functional,

ĒSCF5^XuH̃uF&, ~3.13!

leads to the Brillouin theorem for the transcorrelated Ham
tonian,

^XuH̃ba
1ci uF&5 f̃ ia50, ~3.14!

^Xubi
1caH̃uF&5 f̃ ai50. ~3.15!

The non-Hermite Fock operator is given by

f̃ pq5hpq1(
i

^piur 12
211K12uqi&A

1
1

2 (
i j

^pi j uL123uqi j &A , ~3.16!

wherehpq are the one-electron integrals in the biorthogo
basis and the antisymmetrized matrix elements are

^pqur 12
211K12urs&A5^pqur 12

211K12urs&2^pqur 12
21

1K12usr&, ~3.17!

^pqruL123ustu&A5^pqruL123ustu&1^pqruL123utus&

1^pqruL123uust&2^pqruL123usut&

2^pqruL123utsu&2^pqruL123uuts&.

~3.18!

We can obtain the biorthogonal canonical orbitals by dia
nalizing the Fock operator,

f̃ pq5«pdpq . ~3.19!
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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The choice of the model Hamiltonian fulfills the Hellman
Feynmann theorem,

]

]a
^X~a!uH̃~a!uF~a!&U

a50

5^Xu
]H̃

]a
uF&. ~3.20!

Therefore, molecular properties like the energy gradients
simply calculated in terms of the transformed molecular
tegrals and the reduced density matrix for the biorthogo
states,X andF. One disadvantage is that we have to manip
late the time-consuming three-electron integrals iterative
Fortunately, our choice of the short-ranged geminal ma
the contribution ofL much less important thanK and the
approximate form of the model Hamiltonian,

f̃ pq>hpq1(
i

^piur 12
211K12uqi&A , ~3.21!

works pretty well as will be discussed in Sec. V.

IV. MANY-BODY PERTURBATION FOR THE
TRANSCORRELATED HAMILTONIAN

Let us proceed with reviewing the biorthogonal pertu
bation theory.25–27,29

We derive perturbation formulas for the transcorrela
Hamiltonian following the previous biorthogona
theories.25–27,29Suppose the partitioning,

H̃5H̃01Ṽ. ~4.1!

The biorthogonal Slater determinants are assumed to be
eigenfunctions of the non-Hermitian model Hamiltonia
H̃0 ,

~H̃02E0!uF&50, ~4.2!

^Xu~H̃02E0!50. ~4.3!

The projection of the Schro¨dinger equation,

~H̃2E!VuF&50, ~4.4!

on the bra vector,̂Xu, gives the perturbation energy,

E2E05^XuṼVuF&, ~4.5!

whereV is the wave operator. Using the projection ope
tors,

P5uF&^Xu, ~4.6!

Q512P, ~4.7!

and Eq.~4.4!, we have

V511
1

z2H̃0

Q~z2E1Ṽ!V, ~4.8!

for any number,z. Iterating the equation, we obtain the pe
turbative formulas for the wave operator and energy,

V5 (
m50

` F 1

z2H̃0

Q~z2E1Ṽ!Gm

, ~4.9!

E2E05 (
m50

`

^XuṼF 1

z2H̃0

Q~z2E1Ṽ!Gm

uF&. ~4.10!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Setting the parameter,z5E0 , we obtain the biorthogona
Rayleigh–Schro¨dinger series,26,27

E2E05 (
m50

`

^XuṼuF 1

E02H̃0

Q~E02E1Ṽ!Gm

uF&.

~4.11!

Alternatively, we have the Brillouin–Wigner one wit
z5E,

E2E05 (
m50

`

^XuṼS 1

E2H̃0

QṼD m

uF&. ~4.12!

Applying the partitioning,

H̃05(
pq

f̃ pqbp
1cq5(

p
«pbp

1cp , ~4.13!

Ṽ52(
pq

~ f̃ pq2hpq!bp
1cq1

1

2 (
pqrs

^pqur 12
21

1K12urs&bp
1bq

1cscr

1
1

6 (
pqrs

^pqruL123ustu&bp
1bq

1br
1cuctcs , ~4.14!

to the formula, Eq.~4.11!, we obtain the second order pe
turbation energy,

Ē~2!5ĒD
~2!1ĒT

~2! , ~4.15!

ĒD
~2!5

1

4 (
abi j

g̃i jabg̃abi j

« i1« j2«a2«b
, ~4.16!

Ēr
~2!5

1

36 (
abci jk

^ i jk uL123uabc&A^abcuL123u i jk &A

« i1« j1«k2«a2«a2«b
, ~4.17!

where we defined the matrix elements

g̃pqrs5^pqur 12
211K12urs&A1(

i
^pqiuL123ursi&A . ~4.18!

If we use the approximate form of the Fock operator~3.21!,
the singles correction appears in the energy expression,

Ē~2!5ĒS
~2!1ĒD

~2!1ĒT
~2! , ~4.19!

ĒS
~2!5

1

4 (
ai jk

^ i jk uL123ua jk&A^a jkuL123u i jk &A

« i2«a
. ~4.20!

Usually, the triples energy,ĒT
(2) , is negligibly small for our

localized geminal.

V. NUMERICAL METHOD AND RESULTS

For the application of the present biorthogonal meth
the manipulation of the three-electron integrals is crucial
cause the explicit calculation of the integrals requires a la
amount of CPU time and disk space. To avoid this difficu
the approximate completeness insertion,

^pqru¹1f 12•¹1f 123ustu&

>(
w

^pqu¹1f 12uwt&•^wru¹1f 12usu&, ~5.1!
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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was used in the previous work.20 The formula however re-
quires all of the Cartesian components of the integra
^pqu¹1f (r 12)urs&. Furthermore, it is difficult to adapt the
spatial symmetry. In this work, we employ an alternati
formula.33 The operator,K12, is decomposed into the linea
and quadratic terms in the geminal as,

K125
1
2~K12

L 1K21
L !1K12

Q , ~5.2!

K12
L 52¹1

2f 1222¹1f 12•¹1 , ~5.3!

K12
Q 52¹1f 12•¹1f 12. ~5.4!

Then the three-electron integrals are approximated by

^pqru¹1f 12•¹1f 13ustu&>
1

2 (
w

~^pruK12
L uwu&^wqu f 12ust&

2^pqu f 12uwt&^wruK12
L usu&).

~5.5!

The operators,K12
1 and f 12, are antisymmetric and symme

ric to reduce the disk storage and to enable us to use
molecular symmetries. In addition to these features, the
pression increases the accuracy of the completeness i
tion. This is because the operators do not include extra
mentum unlike the one,¹1f 12, and do not increase th
necessary angular momentum of the expansion functionsw.
We consistently use the spherical harmonic basis functi
for all the calculations.

A. Beryllium atom

We first apply the present biorthogonal MBPT~2! to the
beryllium atom. The frozen geminal determined forzw55
with 6-component Gaussian functions20 is employed
throughout this work for all molecules consist of light atom
elements. We use the primitive functions in the atomic na
ral orbitals~ANO! triple zeta set,35 14s9p4d3 f , and check
the convergence by removing the angular components o
than thes-shell. The approximate expression of the Fo
operator~3.21! is used for the self-consistent scheme.

We compare the biorthogonal energies with the conv
tional MBPT ~2! results in Table I. The component,DĒSCF

1ES
(2) , can be attributed to the single determinant contrib

tion of the reference to the correlation energy, whe
DĒSCF5^XuH̃2EHFuF&. The singles energy,ES

(2) , is less
than 0.01 mEh . This rationalizes the use of the approxima
Fock operator. The triples contribution,ET

(2) , is always less
than 1mEh and can be neglected practically. The referen

TABLE I. Biorthogonal MBPT energies of the beryllium atom (mEh).
a

Basis set DĒSCF1ĒS
(2) ĒD

(2) ĒT
(2) DĒSCF1Ē(2) MBPT~2!

14s 58.38 6.46 0.131024 64.84 15.91
14s9p 58.38 18.82 1.231024 77.20 64.05
14s9p4d 58.38 22.34 1.931024 80.72 68.29
14s9p4d3f 58.38 23.33 1.931024 81.71 69.45

aThe Hartree–Fock energy is214.57299Eh . Almost exact MBPT~2! en-
ergy is276.36 mEh ~Ref. 39!. The best R12-MBPT~2! and R12-CCSD~T!
energies are276.25 and294.29 mEh , respectively~Ref. 19!.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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energy,DĒSCF1ES
(2) , covers'70% of the total correlation

energy and the residual is dealt with mainly by the doub
ED

(2) . The best biorthogonal MBPT~2! energy lies in between
the exact MBPT~2! and R12-CCSD~T! ones. This is becaus
the transcorrelated results implicitly include the quadrup
and higher excitations, which are similar to the disconnec
products in the coupled-cluster theory, as a result of the
ponential form of the correlation factor. We expect a cle
improvement by inclusion of higher order contributions33,34

because the nondynamic correlation effects are importan
the atom.

B. Methane and acetylene

The methane molecule was calculated using the m
fied MP partitioning20 in the previous work. We apply the
biorthogonal theory to the system to compare with the c
ventional results including those of the R12 theory. Additio
ally, we also calculate the acetylene molecule whose extra
lated MBPT~2!, CCSD, and CCSD~T! energies are
available.36 The primitive basis functions are derived fro
the parent basis set, cc-pVTZ of Dunning.37 To improve the
description around core, we augment the basis set for ca
with s-, p-, and d-primitives with the exponents, 41615.0
70.588, and 3.784305, respectively, which are even-temp
sequences of the original basis set. Other conditions fol
the previous calculation.

In Table II, we show the result of methane. The calcu
tions are performed with the geometrical parameters,RCH

51.0848 Å and /HCH5109.47°. The conventiona
MBPT~2! energy is about 25 mEh above the R12-
MBPT~2!-A one, whereas the presentDĒSCF1Ē(2) is
2282.56 mEh , which is in between R12-MBPT~2!-A and
R12-CCSD~T!. This agrees with the previous transcorrelat
result using the modified MP partitioning.20 The singles en-
ergy, 22.07 mEh , is purely from the operatorL and is suf-
ficiently small to be treated perturbationally outside the ite

TABLE II. Perturbation energies (mEh) of the methane molecule.a

DĒSCF ĒS
(2) ĒD

(2) DĒSCF1Ē(2) MBPT~2! CCSD CCSD~T!

159.28 2.07 121.21 282.56 249.75 270.71 277.5
~59.03! ~2.07! ~26.81!

aThe numbers in the parentheses denote the contribution ofL. The HF en-
ergy is 240.21469 Eh . The R12-MBPT~2!-A, R12-CCSD, and R12-
CCSD~T! correlation energies are2273.58,2288.56, and2295.95 mEh ,
respectively~Ref. 19!.
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tive scheme. The contribution ofL in DĒSCF, which is the
first order correction with the approximate Fock operator
somewhat larger in comparison with the beryllium case
cording to the increase of the number of electrons in
carbon atom.

The result of acetylene is given in Table III. The ge
metrical parameters used areRCC51.2033 Å and RCH

51.0605 Å. In contrast to the methane result, the biortho
nal MBPT~2! energy is only 8 mEh above the R12-CCSD~T!
one, since acetylene is strongly correlated in compari
with methane due to the presence of the triple bond. Eva
ating the contrast improvement over the conventional me
ods, it is clear that the present transcorrelated Hamilton
considerably enhances the accuracy with such a minor m
fication of the correlated method. In the subsequ
publication,33,34we will show the importance of higher-orde
energies in achieving the chemical accuracy.

C. Water and neon

The application of the transcorrelated Hamiltonian h
been even straightforward for systems consisting of li
atomic elements. As the mass of a constituent atom
creases, however, we have to pay attention to the radiu
the correlation factor. This is because the linear behavio
the correlation factor,4 f (r 12)5 1

2r 12, is adequate only in the
slowly varying limit of the wave function. If the momentum
difference of electrons is large, the term,2¹1f (r 12)•(¹1

2¹2), in K12 can become a primary perturbation over t
Coulomb repulsion at somewhat large interelectronic d
tances. This makes the second-order treatment inapprop
especially for pair correlations including core electrons. F
thermore, the uncertainty in the completeness insertion
creases according to the dominance ofL as described in the
previous work.20 For instance, the three-body contribution
the total energy becomes as large as21000 mEh for Ne with
the geminal derived in the previous study. In order to redu
the uncertainty from the completeness insertion forL, we

TABLE III. Perturbation energies (mEh) of the acetylene molecule.a

DĒSCF ĒS
(2) ĒD

(2) DĒSCF1Ē(2) MBPT~2! CCSD CCSD~T!

296.28 2.95 173.02 472.24 411.58 425.50 443.4
~109.15! ~2.95! ~214.37!

aThe numbers in the parentheses denote the contribution ofL. The HF en-
ergy is 276.85194Eh . The extrapolated correlation energies are2455.0,
2460.6, and2480.2 mEh , at MBPT~2!, CCSD, and CCSD~T!, respec-
tively ~Ref. 36!.
4
0
7
6

TABLE IV. Perturbation energies (mEh) of water.a

Basis set HF DĒSCF1ĒS
(2) DĒSCF1Ē(2) MBPT~2! CCSD CCSD~T!

9s4p1d 76 030.43 103.16 317.27 257.74 266.34 271.2
10s5p3d1f 76 057.32 101.40 347.04 318.46 325.06 333.4
12s6p5d3f 1g 76 064.89 101.12 354.88 341.90 345.74 355.2
14s8p7d5f 3g 76 066.87 101.05 356.23 348.89 351.48 361.3

aAlmost exact MBPT~2! energy is 2361.4 mEh ~Ref. 41!. The R12-MBPT~2!-A, R12-CCSD, and R12-
CCSD~T! energies are2361.691,2359.312, and2369.228 mEh , respectively~Ref. 19!. The Gaussian-type
geminals MBPT~2! is 2356.43 mEh ~Ref. 40!.
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parameterize a tight geminal for systems including he
elements using the weight exponent,zw520. The three-body
contribution does not exceed2140 mEh for the present sys
tems under this condition. We use an even-tempered
quence of 6 Gaussian-type functions with the range
Gaussian exponents between 9040.0 and 0.52. We also in
tigate the basis set convergence for water and neon u
primitive functions for the heavy atoms derived from t
parent basis sets, cc-pVXZ~Ref. 37! ~X5D, T, Q, and 5!.
The primitive sets are augmented with thed-, f-, andg-core
polarization functions in the corresponding cc-pCXZ~Ref.
38! sets. This gives rise to the 9s4p1d, 10s5p3d1 f ,
12s6p5d3 f 1g, and 14s8p7d5 f 3g sets, respectively. The
corresponding primitive sets from cc-pVXZ are used for h
drogen with the exception that cc-pVQZ is used for the la
est oxygen set, 14s8p7d5 f 3g. The contributions ofĒT

(2) are
estimated for 10s5p3d1 f . We do not discuss the effect i
more detail since the absolute values ofĒT

(2) are less than
0.01 mEh under the above conditions.

The correlation energies of the water molecule
shown in Table IV and Fig. 1. We use the bond length a
bond angle,ROH50.9573 Å and/HOH5104.52°. It is
shown that the biorthogonal MBPT~2! energies yield consid

FIG. 1. Correlation energies of water for the cardinal number X in
cc-pVXZ basis set series augmented with the core polarization function
cc-pCVXZ. Bio-MBPT~2!, MBPT~2!, CCSD, and CCSD~T! mean the bior-
thogonal MBPT~2!, conventional MBPT~2!, CCSD, and CCSD~T!, respec-
tively.
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erable improvements over the conventional MBPT~2!. One
notes the single determinant contribution,DĒSCF1ĒS

(2) , is
much less sensitive to the basis set in comparison with
change of the HF energy. The biorthogonal MBPT~2! ener-
gies is always superior to the conventional MBPT~2! and
CCSD for the present basis sets. The CCSD~T! however
gains more correlation energy at 12s6p5d3 f 1g due to the
importance of connected triples which are absent in
transcorrelated MBPT~2!. The energy difference between th
10s5p3d1 f and 14s8p7d5 f 3g sets is only 9 mEh in our
approach, which is less than one-third of the conventio
MBPT~2!. This manifest improvements in the converge b
havior is due to the absence of Coulomb singularity in
transcorrelated Hamiltonian.

We also show the results for the neon atom in Table
and Fig. 2. The correlation energies of the biorthogo
MBPT~2! are closer to the R12-CCSD~T! one than those of
the conventional MBPT~2!, CCSD, and CCSD~T!. The best
biorthogonal MBPT~2! energies of water and neon are ve
close to those of Gaussian-type geminals MBPT~2!. The ac-
curacy of the present fit for the correlation factor is 95.7
which is less than the previous one, 98.7%, in which both

ofFIG. 2. Correlation energies of neon for the cardinal number X in
cc-pVXZ basis set series augmented with the core polarization function
cc-pCVXZ. Bio-MBPT~2!, MBPT~2!, CCSD, and CCSD~T! mean the bior-
thogonal MBPT~2!, conventional MBPT~2!, CCSD, and CCSD~T!, respec-
tively.
4
8
5
4

TABLE V. Perturbation energies (mEh) of Ne.a

Basis set HF DĒSCF1ĒS
(2) DĒSCF1Ē(2) MBPT~2! CCSD CCSD~T!

9s4p1d 128 488.78 190.99 366.31 255.48 257.48 259.6
10s5p3d1f 128 531.86 187.69 381.17 330.53 332.81 337.6
12s6p5d3f 1g 128 543.47 183.66 385.31 360.63 361.84 368.8
14s8p7d5f 3g 128 546.77 183.47 385.60 370.69 370.78 377.2

aAlmost exact MBPT~2! energy is 2387.9 mEh ~Ref. 42!. The R12-MBPT~2!-A, R12-CCSD, and R12-
CCSD~T! energies are2388.311,2383.823, and2390.508 mEh , respectively~Ref. 19!. The Gaussian-type
geminals MBPT~2! is 2385.3 mEh ~Ref. 43!.
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Gaussian exponents and coefficients are optimized. The q
ity of the fit may lead to a difference less than 10 mEh in the
DĒSCFenergy. Our preliminary calculations however show
that the total energy is much less sensitive to the accurac
the fit. It is expected that the combinations with more soph
ticated correlated methods like CCSD~T! will enable us to
attain a calculation with a few mEh accuracy easily.

VI. CONCLUSIONS

We have presented the biorthogonal formalism in o
transcorrelated method. The best feature of the method is
the usual second quantization formalism over the biortho
nal basis sets can be used with the definition of canon
orbitals for the transcorrelated Hamiltonian. This makes
construction of single reference MBPT straightforward. T
applications to the atoms and molecules showed that
present method leads to markedly better convergence
proving the feasibility of the explicitly correlated calcula
tions. All of the effective interactions in the transcorrelat
Hamiltonian are parameterized to be short-ranged. This
ture will make the application to even large molecules p
sible, with high accuracy in combination with the linea
scaling methods.44–47

The contribution of the three-electron integrals becom
more important as the masses of the constituent atoms
crease. In such a situation, we will have to evaluate the th
electron integrals more precisely. The explicit evaluation
the three-electron integrals is feasible21 when the system size
is sufficiently small. Our choice of the short-range gemin
however, implies that the integrals must be calculated exp
itly only in the vicinity of the core electrons. The partial us
of the explicit calculation along with the completeness ins
tion will be promising in the calculations with heavy atom
elements.

Finally, we mention the computational requirements
the present transcorrelated method.N, V, andO are the num-
bers of basis functions, virtual orbitals, and occupied or
als, respectively. The small contributions of the thre
electron integrals allow us to exclude the treatment ofL in
the SCF cycle. The biorthogonal MBPT~2! calculation is
dominated by generating the connected doubles which
quires NV2O3 floating point operations. In this way, th
original scaling of the correlated method is hardly altered
the introduction of the transcorrelated Hamiltonian.

We are implementing other correlated methods using
transcorrelated Hamiltonian, like MRCI and higher ord
perturbation schemes including the coupled cluster meth
We will be able to report further investigations in the
lines.34
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