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Multidimensional vibrational response functions of a harmonic oscillator are reconsidered by
assuming nonlinear system–bath couplings. In addition to a standard linear–linear~LL ! system–
bath interaction, we consider a square–linear~SL! interaction. The LL interaction causes the
vibrational energy relaxation, while the SL interaction is mainly responsible for the vibrational
phase relaxation. The dynamics of the relevant system are investigated by the numerical integration
of the Gaussian–Markovian Fokker–Planck equation under the condition of strong couplings with
a colored noise bath, where the conventional perturbative approach cannot be applied. The response
functions for the fifth-order nonresonant Raman and the third-order infrared~or equivalently the
second-order infrared and the seventh-order nonresonant Raman! spectra are calculated under the
various combinations of the LL and the SL coupling strengths. Calculated two-dimensional response
functions demonstrate that those spectroscopic techniques are very sensitive to the mechanism of the
system–bath couplings and the correlation time of the bath fluctuation. We discuss the primary
optical transition pathways involved to elucidate the corresponding spectroscopic features and to
relate them to the microscopic sources of the vibrational nonlinearity induced by the system–bath
interactions. Optical pathways for the fifth-order Raman spectroscopies from an ‘‘anisotropic’’
medium were newly found in this study, which were not predicted by the weak system–bath
coupling theory or the standard Brownian harmonic oscillator model. ©2004 American Institute
of Physics. @DOI: 10.1063/1.1629272#

I. INTRODUCTION

The multidimensional vibrational spectroscopy is the
Raman or the infrared analog of the multidimensional
nuclear magnetic resonance techniques, and has recently
been intensively developed to explore liquid dynamics,1

intra- and/or intermolecular vibrational couplings,2–7 mo-
lecular structure changes,8–12 and vibrational wave packet
motion in condensed phases.13

For the fifth-order Raman spectroscopy,1 signals corre-
sponding to various Raman polarizability tensor elements
were measured for the intermolecular vibrational modes of
liquids CS2 ~Refs. 14–16! and solution of CS2 ~Ref. 17! by
minimizing the cascade contributions,18,19which were under-
estimated in the initial attempts of experiments.20–22Molecu-
lar dynamics simulation techniques were developed23–27and
compared with experimental results.28–30 For example, the
nodal lines of signals observed by Kaufmanet al.16 were
also found in the molecular dynamics simulation studied by
Saito and Ohmine,30 and were recognized to arise from cou-
plings among intermolecular rotational modes. Theoretical
studies for different models probe sensitivities of the multi-
dimensional spectroscopy.31–40For the third-order IR experi-
ments, the femtosecond phase-controlled IR pulses are now

available to obtain the heterodyne detected signal fields from
the matter.12 The two-dimensional~2D! Fourier plots of the
three-pulse vibrational echo technique applied to a dipeptide
molecule implies the coupling between two amide-I modes.41

The degree of the correlation among vibrational modes in a
small molecule and the conformational fluctuation of an
a-helical peptide are also investigated by the 2D IR
spectroscopy.10,42–46

All the sensitivities of the multidimensional vibrational
spectroscopy rely upon the multiple pumping and the prob-
ing processes which are expressed by the multi-time correla-
tion functions of the polarizability or the dipole moment as a
function of the relevant vibrational coordinates. We can uti-
lize there the multiple-resonances, constructive or destructive
interferences among the optical pathways beyond one-
dimensional spectroscopy, i.e., the third-order nonresonant
Raman or the first-order IR spectroscopy, to select targeting
dynamics of interest.47–55 It is well understood that a har-
monic system does not show any vibrational nonlinearities.1

There must be nonlinear sources to endow a harmonic vibra-
tional system with the nonlinear response against an external
perturbation, e.g., the anharmonicity of the system potential,
the nonlinear coordinate dependence of the polarizability or
the dipole of the system and the anharmonic vibrational
mode couplings.31

In the condensed phase, dissipation induced by inelastic
interactions between molecules plays an important role in the
dynamics of molecular motion. The normal mode Hamil-
tonian represented by a sum of a few independent harmonic

a!Present address: Department of Chemistry, Graduate School of Science,
Tohoku University, Sendai 980-8578, Japan.

b!Author to whom all correspondence should be addressed. Present address:
Department of Chemistry, Graduate School of Science, Kyoto University,
Kyoto 606-8502. Electronic mail: tanimura@kuchem.kyoto-u.ac.jp

JOURNAL OF CHEMICAL PHYSICS VOLUME 120, NUMBER 1 1 JANUARY 2004

2600021-9606/2004/120(1)/260/12/$22.00 © 2004 American Institute of Physics

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.1629272


oscillators does not involve such effects. It can be introduced
by adding the heat–bath degrees of freedom to couple with
the normal coordinates. The Brownian oscillator model
~BOM! is one of the most successful quantum descriptions of
the dissipative process in the condensed phase such as the
vibrational energy relaxation.47,56–60In a standard BOM, the
system–bath coupling mechanism is assumed as a sum of the
bilinear functions represented by the products of the system
coordinate and the bath coordinates. Note that this system–
bath coupling has nothing to do with the vibrational nonlin-
earity, since the coupling term can be diagonalized with re-
spect to the vibrational coordinates. The total system is, in
principle, described by a normal mode Hamiltonian.

If the system–bath coupling mechanism has a nonlinear
or anharmonic property, we can expect that this coupling
induces vibrational nonlinear spectroscopic properties of the
relevant system, and it can be revealed by the higher-order
vibrational spectroscopy. This situation can be viewed as an
extension of the anharmonic intramolecular mode coupling31

to the system–bath coupling. However, it is not trivial to
elucidate the corresponding spectroscopic features and to re-
late them to the microscopic sources of the nonlinearity, be-
cause it cannot be diagonalized. The system–bath coupling
induces the vibrational nonlinearity as well as the vibrational
dephasing processes.

In one-dimensional spectroscopy, the distinct effects of
the nonlinear system–bath coupling mechanisms on the vi-
brational dephasing processes are hidden by other prominent
contributions which can also be observed for the standard
BOM as shown in our previous paper.61 The pure dephasing
contribution can only be seen to broaden the spectral width
in addition to the line broadening due to the vibrational en-
ergy relaxation. Differences of the dissipative processes may
be depicted by multidimensional vibrational spectroscopies,
since there the vibrational dynamics correlated by more than
two successive pumping processes are measured. We are able
to disentangle the several dissipative pathways involved and
to investigate the relaxation processes in more detail com-
pared to the one-dimensional spectroscopies. Although mul-
tidimensional spectroscopy is a sensitive tool to investigate a
mechanism of vibrational dephasing, the effect of a nonlinear
~anharmonic! system–bath coupling upon a signal is not
trivial as mentioned earlier; one has to clarify the features of
the response functions governed by a different dephasing
mechanism before analyzing a real experimental signal
where many other effects may be involved. For this purpose,
here we employ a single mode system to analyze the multi-
dimensional spectra induced by the nonlinear system–bath
couplings in various conditions.

We consider a model system to describe a vibrational
motion in the condensed phase, which is represented by a
Hamiltonian defined by

Ĥ5Ĥs1(
j

F 1

2mj
p̂j

21
1

2
mjv j

2H x̂ j2
F j~ q̂!

mjv j
2J 2G , ~1!

where

Ĥs5
1

2M
p̂21U~ q̂! ~2!

is the Hamiltonian for the relevant optically active oscillator
in which q̂, p̂, M, andU(q̂) denote the coordinate~displace-
ment from the potential minimum!, momentum, mass, and
the potential. An ensemble of optically inactive harmonic
oscillators is assumed as a heat–bath, and the coordinate,
momentum, mass, and frequency of thej th bath oscillator
are given byq̂ j , p̂ j , mj , andv j , respectively.

The standard BOM assumes a linear–linear~LL !
system–bath coupling with respect to the vibrational coordi-

nates as mentioned before,ĤSB52( jF j (q̂) x̂ j , where
F j (q̂)5cj q̂ with the coupling constantcj . For a harmonic
potential, within the weak system–bath coupling, the LL in-
teraction with a white noise reduces the level-dependent
population relaxation rate, but is insufficient to induce the
pure dephasing, i.e., lifetime limited dephasing. The loss of
phase coherence can be achieved by anharmonicities in the
system potential, the bath potential, or both, or by a nonlin-
ear system–bath coupling mechanism considered in the
present paper.61–64

In the context of the BOM, Okumura and Tanimura in-
troduced an interaction term composed of a squared system
coordinate and a linear bath coordinate~SL interaction!, i.e.,
F j (q̂)5gj q̂

2/2 with the coupling constantgj , to discuss the
effects of pure dephasing on the one-dimensional
spectroscopies.65 From the viewpoint of the normal mode
picture, the SL interaction corresponds to the anharmonic
mode coupling. For a harmonic oscillator system with a fun-
damental frequencyv0 , this interaction causes frequency
modulations of the system given by dv(t)
5( jgjxj (t)/(2Mv0), wherexj (t) denotes the classical mo-
tion of the bath coordinate in the weak coupling limit. In Ref.
65, they derived a perturbative expression for a two-time
correlation function of the system coordinate~corresponds to
spontaneous Raman spectroscopy! and demonstrated that the
LL and the SL models are distinguishable by their tempera-
ture dependencies. In a real experiment, however, molecular
structures and configurations may also be changed by a tem-
perature, it is not so easy to distinguish such effects. In order
to verify a mechanism, one need to develop a measurement
which is more sensitive to a difference of a dephasing
mechanism. Fifth-order Raman and third-order IR spectros-
copy are such examples@see Eqs.~6! and ~7!#.1,55

For the SL model, Steffen and Tanimura calculated one-,
two-, and three-time correlation functions of the Raman po-
larizability or the dipole moment for various coupling
strengths and noise correlation times.66–68 They derived the
quantum Fokker–Planck equation for the SL coupling by
generalizing the reduced equation of motion for a Gaussian–
Markovian ~GM! bath69–71 to overcome the complexity of
the analytical perturbative treatments. The nonlinearity of the
system–bath interaction yields an interesting feature in the
fifth-order Raman and the third-order IR photon echo re-
sponse: 2D signal is shown to be useful to measure the de-
gree of the frequency fluctuations~i.e., inhomogeneity! of
the vibrational mode. The key to their studies is the inclusion
of a noise correlation. In liquids or glasses where the motions
of the bath molecules have the same time constant as the
motions of the system, the white noise approximation can
break down and a more elaborate model is necessary, which
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accounts for the finite correlation between the system and the
bath motions. The simplest example is a GM modulation
defined by the noise correlation functionf (t)5D2 exp
(2gt),69 whereD andg denote the strength and the correla-
tion of the modulation, respectively. The pure dephasing is
then analogous to theT2* process in the nuclear magnetic
relaxation, but it cannot be characterized by a single decay
constant 1/T2* because of the finite correlation time of the
modulation.

In this paper we investigate the effects of thesimulta-
neouspresence of the LL and the SL couplings on the vibra-
tional multidimensional spectroscopies in contrast to the
above-mentioned studies, where theadditivity of the dissipa-
tive processes induced by the two coupling mechanisms are
implicitly assumed. As shown in our previous study,61 it is
reasonable to assume theadditivity of the dissipative effects
for the one-dimensional vibrational spectroscopy. Such an
assumption is not valid for the higher-order spectroscopies as
shown in this study. Theoretical models for the dissipative
processes beyond the simpleT1 and T2 picture, which is
based on the weak system–bath coupling and assumes the
additivity, can really be pursued through the careful exami-
nations of the multidimensional response functions.

In this study, the system–bath coupling function is rep-
resented by

F j~ q̂!5
gj

2
~2C1q̂1C2q̂2!, ~3!

wheregj is the coupling strength. ConstantsC1>0 andC2

specify the relative importance of the couplings via the
q̂(LL) or q̂2(SL) term, respectively. In Fig. 1 we show the
schematic illustration for the LL and the SL coupling mecha-
nisms for a harmonic potential system considered. The LL
coupling and the SL coupling induce the displacement and
the frequency fluctuation of the relevant potential, respec-
tively, and are responsible forT1-type andT2-type vibra-
tional relaxation processes in the weak coupling limit. We
choseC250 or 61 to set the relative phase between the two
coupling mechanisms@see Sec. III B#.

The organization of this paper is as follows: In Sec. II,
we summarize the theoretical description of the multidimen-
sional vibrational spectroscopy by a numerical Fokker–

Planck equation approach. In Sec. III A, we estimate of the
leading order contributions of the vibrational nonlinear re-
sponse functions by using the Liouville pathways. The ef-
fects of the spatial averaging on the response functions are
considered in Sec. III B. Numerical results are presented for
the fifth-order Raman and the third-order IR response func-
tions, and are discussed in Sec. IV. The concluding remarks
are given in Sec. V.

II. A FOKKER–PLANCK EQUATION DESCRIPTION
OF THE RESPONSE FUNCTIONS

In this section, we outline the theoretical basis for the
calculations of the multidimensional vibrational response
functions affected by a GM noise bath.61,66,67,71The vibra-
tional dephasing processes can be determined by the
system–bath coupling form@Eq. ~3!# and the spectral distri-
bution of the bath oscillators. We assume the bath spectral
density expressed as70

J~v!5(
j

gj
2

8mjv j
d~v2v j !5

Mz

p

vg2

v21g2 . ~4!

In Eq. ~4!, a constantg is related to the decay rate of the
symmetrized correlation function,S(t), of the collective bath
coordinate,X̂[( jgj x̂ j /2, within the high temperature condi-
tion b\g!1 (b51/kBT with kB andT being the Boltzmann
constant and the temperature, respectively!;

S~ t !5
1

2
^X̂~ t !X̂~0!1X̂~0!X̂~ t !&B5

Mzg

b
e2gutu, ~5!

whereX̂(t) denotes the Heisenberg representation ofX̂ and
^¯&B means taking thermal average with respect to the bath
degrees of freedom. Therefore,tc[1/g is a measure of the
noise correlation time.z is related to the system–bath cou-
pling strength. The SL coupling strength and the LL coupling
strength are defined from Eqs.~1! and~4! by zSL[zuC2u and
zLL[4@C1#2z, respectively. The dimensions of these cou-
pling strength are61 @zLL#5s21 and@zSL#5m22 s21. A set of
four parameterszLL , zSL , tc51/g, andb, thus, completely
specifies the system–bath coupling.

The fifth-order Raman and the third-order IR response
functions denoted byRRaman

(5) (T2 ,T1) and RIR
(3)(T3 ,T2 ,T1),

respectively, are defined as the functions of the pulse sepa-
ration times,Tj>0 ( j 51,2,3), as1,48

RRaman
~5! ~T2 ,T1!5S i

\ D 2

^@@â~T11T2!,â~T1!#,â~0!#&

~6!

and

RIR
~3!~T3 ,T2 ,T1!5S i

\ D 3

^@@@m̂~T11T21T3!,m̂~T1

1T2!#,m̂~T1!#,m̂~0!#&, ~7!

whereâ(t)5eiĤ t/\â(q̂)e2 iĤ t/\ or m̂(t)5eiĤ t/\m̂(q̂)e2 iĤ t/\

is the Heisenberg representation of the polarizability or the

dipole, and̂ ¯&[Tr$¯ r̂eq%, wherer̂eq5e2bĤ/Tr$e2bĤ% is
the thermal equilibrium density operator of the total system.
Using the polarizability~dipole! expanded by the coordinate,

FIG. 1. Schematic illustration of the effects of the system–bath coupling on
a relevant harmonic potential system. For simplicity, only the effects of the
coupling with the j th bath motion is drawn. The LL coupling
(22gjxjC1q) and the SL coupling (2gjxjC2q2) induce the displacement
and the frequency fluctuation of the relevant potential, respectively, and are
responsible forT1-type andT2-type vibrational relaxation processes in the
weak coupling limit. The bold lines represent the unperturbed potential,
while the dotted-dashed and dashed lines represent the perturbed potential
for C2 /C1.0 ~left! andC2 /C1,0 ~right!, respectively. These two patterns
of the potential distortion reflect the difference of the relative phase between
the LL and the SL coupling mechanisms.
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a(q)5(n50 anqn/n! (m(q)5(n50 mnqn/n!), the response
functions are given by a sum of the multi-time correlation
functions of the coordinateq̂. The second-order IR and the
seventh-order Raman response functions, respectively, de-
noted byRIR

(2)(T2 ,T1) and RRaman
(7) (T3 ,T2 ,T1), are obtained

by exchanging the polarizabilitya(q) and the dipolem(q)
in Eqs.~6! and~7!, respectively. In general, theNth-order IR
response function is obtained from the (2N11)th-order Ra-
man response function by replacinga(q)→m(q) as sug-
gested in Refs. 1 and 48~vice versa!. In this paper, results are
presented only in terms of the fifth-order Raman and the
third-order IR response functions for clarity.

Formal expressions of the response functions given by
Eqs.~6! and ~7! are recast into

RRaman
~5! ~T2 ,T1!5TrH a~ q̂!e2 iLT2 /\

i

\
a3~ q̂!

3e2 iLT1 /\
i

\
a3~ q̂!r̂eqJ ~8!

and

RIR
~3!~T3 ,T2 ,T1!5TrH m~ q̂!e2 iLT3 /\

i

\
m3~ q̂!

3e2 iLT2 /\
i

\
m3~ q̂!

3e2 iLT1 /\
i

\
m3~ q̂!r̂eqJ , ~9!

respectively, whereX3...5@X̂,...# for X̂5â or m̂, and
L...5@Ĥ,...# is the Liouvillian.72 These expressions provide
us more intuitive pictures on the response functions. For ex-
ample, the right-hand side of Eq.~8! can be read from right
to left; the thermal equilibrium state is modified by the first
interaction with the impulsive laser pulses via the polariz-
ability at t50, then it evolves in time forT1 governed by the
Liouvillian, and modified again by the second interaction
with the electric field att5T1 followed by the time propa-
gation for T2 . Then the state of the system is probed att
5T11T2 through its Raman polarization.

Because the laser field is assumed to only interact with
the system via the polarizability~dipole!, the reduced de-
scription of the optical processes can be made. The reduced
density operator of the relevant system is obtained by tracing
out the optically inactive bath degrees of freedom from the
density operator of the total system.47,73,74We made the re-
duced description of the system dynamics by using the
Wigner distribution function defined by75,76

W0~p,q,t ![
1

2p\ E
2`

`

dr eipr /\rS q2
r

2
,q1

r

2
,t D , ~10!

wherer(q,q8,t) is the reduced density matrix element in the
coordinate representation. The Wigner function represents
the system dynamics as an evolution of the probability dis-
tribution in the phase space,~p,q!. The quantum Fokker–
Planck equation, which governs the time evolution of the
Wigner function, can be cast into a hierarchical
form:61,66,67,71

]

]t
W0~p,q,t !52LsW0~p,q,t !2FW~p,q!W1~p,q,t !,

~11a!

]

]t
W1~p,q,t !52$Ls1g%W1~p,q,t !

2FW~p,q!W2~p,q,t !

1QW~p,q!W0~p,q,t !, ~11b!

]

]

]t
Wn~p,q,t !52$Ls1ng%Wn~p,q,t !

2FW~p,q!Wn11~p,q,t !

1nQW~p,q!Wn21~p,q,t !, ~11c!

]

and

]

]t
WN~p,q,t !52$Ls1Ng%WN~p,q,t !

1GW~p,q!WN~p,q,t !

1NQW~p,q!WN21~p,q,t !, ~11d!

whereWn(p,q,t) (1<n<N), are the auxiliary functions in-
troduced to treat the memory effects of the GM noise, Eq.
~5!. Ls is the deterministic quantum Liouvillian of the
system.77 The Fokker–Planck equation in a hierarchical form
can handle the GM bath from weak to strong system–bath
couplings under the high temperature condition.71,78

Bath-induced relaxation operators are given by61

FW~p,q!522~C11C2q!
]

]p
, ~12!

QW~p,q!52zgH ~C11C2q!S p1
M

b

]

]pD
1C2

\2

4

]2

]p]qJ , ~13!

and

GW~p,q!54z~C11C2q!2
]

]p S p1
M

b

]

]pD
1\2zC2~C11C2q!

]3

]p2]q
. ~14!

We note that within the LL model (C2[0) the explicit co-
ordinate dependencies of the relaxation operators~12!–~14!
vanish. In the limit of the Gaussian-white~GW! bath g
→`, i.e., J(v)→Mzv/p in Eq. ~4! and S(t)
→2MzSLd(t)/b in Eq. ~5!, the dynamics of the relevant
system is described by a single differential equation@N50
in Eq. ~11d!#, and the single operator of Eq.~14! governs the
vibrational relaxation. The Wigner function description of
the system is suitable for our numerical investigation. The
Wigner function is a real valued function in contrast to the
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complex valued reduced density matrix elements,r(q,q8,t),
and the expression of the vibrational relaxation operators be-
come much simpler compared with the ones in the energy
level representation.61 Derivation of the Fokker–Planck
equation and the numerical implementation of the time inte-
gration are described in detail in the previous paper.61 Cal-
culation steps of the fifth-order Raman response function for
the GW bath are presented in the Appendix to show how the
nonlinear response functions defined in Eqs.~8! and ~9! are
related to the Wigner function.

III. PROPERTIES OF THE MULTI-TIME
RESPONSE FUNCTIONS

A. Estimation of leading order of response functions

To interpret the calculated signals, we will use the Liou-
ville paths associated with the fifth-order Raman and the
third-order infrared optical processes. If we assume a rela-
tion, an@AMv0 /\an11 ~or mn@AMv0 /\mn11), and a
weak system–bath coupling, the leading order of the re-
sponse function with respect toan ~or mn) is readily
estimated.79 We first consider the Liouville paths for the
fifth-order Raman response function by explicitly expanding
the commutator in Eq.~8! by the polarizability, a(q)
5(n50 anqn/n!. If a linear polarizability, a(q)5a1q, is
assumed, one cannot compose any contributing Liouville
paths to the fifth-order response as is explained in Fig. 2~a!.
With the three~odd!-times of system–laser field interactions
one cannot close the diagram with a diagonal element. Note

q̂}â1â†, whereâ and â† denote, respectively, the annihi-
lation and the creation operator for the vibrational state of
the system. Thereby, the second lowest order term,@a1#2a2 ,
becomes the leading term. This coincides with the BOM
prediction.1 Next we consider the third-order IR response.
There are eight possible Liouville paths for the system–laser
field interactions, Fig. 2~b!. It can be shown that these dia-
grams do not contribute to the response as a whole because
of the destructive interference among Liouville paths if the
population decay rate and the dephasing rate between any
two vibrational levels are both level independent. Such the
destructive interference was first pointed out in Ref. 1 for the
BOM, and the leading order of@m1#2@m2#2 was assumed. In
the study of vibrational echo spectroscopy for a harmonic
oscillator, Fourkas and co-workers analyzed this cancellation
under a weak system–bath coupling condition. They showed
that the signal proportional to@m1#4 arises if the dephasing
rate constants depend on the vibrational states.80

To conclude this section, we should point out the validity
of a diagrammatic approach. This approach is convenient to
analyze the peak positions related to the higher-order vibra-
tional optical transitions, if the system–bath interaction is
weak and does not mix the reduced density matrix elements
in the course of the time evolution,81 e.g., the cases where
the vibrational coherence transfer, vibrational population
feeding82 can be safely neglected. If such mixing processes
become significant, many intermediate states are generated
from a single vibrational population or the coherence state.
Accordingly, many Liouville paths must be taken into ac-
count in addition to the ones shown in Fig. 2 for a given
configuration of the system–laser field interactions,79,80,82–84

which makes the diagrammatic approach practically impos-
sible.

B. Symmetric properties of response functions

In this section, we will consider the properties of the
response functions upon a spatial averaging, although we
cannot discuss the detailed molecular reorientational motion
as done in Ref. 43. It is not apparent whether the response
function will remain finite or not by the spatial averaging,
since the polarizability or the dipole, and the Hamiltonian of
Eq. ~1! do not possess the coordinate inversion symmetry.

We first treat the (2N11)th-order Raman response
functionRRaman

(2N11) . It is specified by the notationRRaman(66)
(2N11) ,

where the signs in the subscript specify the parameters for
the calculation; the first sign symbolizes the polarizability,
a(q)56a1q1a2q2/2, and the second one assigns the rela-
tive phase between the LL and the SL coupling constants
@sign of C2 in Eq. ~3!#. The sign ofa1 represents the orien-
tation of the vibrational coordinate to a laboratory frame. The
LL and SL couplings are naturally assumed to have equal
weight for both signs after a statistical average as is explic-
itly demonstrated by the molecular dynamics simulation.85

The Hamiltonian of Eq.~1! represents the vibrational motion
that has fixed orientation to a laboratory frame, and after the
ensemble average it should describe the isotropic property of
the system. Response functions satisfy a relation,

RRaman~a,p!
~2N11! 5RRaman~2a,2p!

~2N11! ~a,p56 !, ~15!

FIG. 2. Examples of the Liouville paths for~a! the fifth-order Raman re-
sponse and~b! the third-order IR response with a linear polarizability or a
dipole X(q̂)5X1q̂ for X5a or m in the weak system–bath coupling limit.
Time runs from left to right and the system–laser field interactions (}q̂
5â1â†) are denoted by the dots, where the last~probe! interaction is put on
the upper line, and the other dots can be put on both lines. We assume an
initial population stater̂}(nrn,nun&^nu. The vibrational quantum number of
ket ~upper! and bra~lower! sides are depicted forn50. To yield the finite
contribution, the final~rightmost! state must be diagonal.~a! There is no
Liouville path contributing to the fifth-order Raman response.~b! Eight
configurations for the system–laser field interactions are possible for the
third-order IR response, but as a whole they do not contribute to the re-
sponse because of the destructive interferences among them when the
dephasing rate is level independent.
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since the coordinate inversionq→2q should not change the
value of the response functions. For simplicity, we assume
that there are only two relative phases between the LL and
the SL couplings,6, and define an ‘‘isotropic’’ response
function as

RRaman~ iso!
~2N11! 5$RRaman~11 !

~2N11! 1RRaman~12 !
~2N11! 1RRaman~22 !

~2N11!

1RRaman~21 !
~2N11! %/4

5$RRaman~11 !
~2N11! 1RRaman~21 !

~2N11! %/2, ~16!

where in the first line we count all the configurations, and the
second line is reduced by the coordinate inversion property
of Eq. ~15!. For a linear polarizability (a1Þ0,a250), a

relation RRaman(1,p)
(2N11) 5(21)N11RRaman(2,p)

(2N11) holds from Eq.

~8!, thus we have RRaman(11)
(2N11) 5RRaman(22)

(2N11)

5(21)N11RRaman(12)
(2N11) and the ‘‘isotropic’’ response func-

tions become

RRaman~ iso!
~5! ~T2 ,T1!50 ~17!

and

RRaman~ iso!
~7! ~T3 ,T2 ,T1!5RRaman~11 !

~7! ~T3 ,T2 ,T1!

5RRaman~12 !
~7! ~T3 ,T2 ,T1!. ~18!

The same line of arguments also applies to theNth-order IR
response functionsRIR

(N) with m(q)56m1q1m2q2/2. We
have ‘‘isotropic’’ response functions for thelinear dipole
(m1Þ0,m250),

RIR~ iso!
~2! ~T2 ,T1!50 ~19!

and

RIR~ iso!
~3! ~T3 ,T2 ,T1!5RIR~11 !

~3! ~T3 ,T2 ,T1!

5RIR~12 !
~3! ~T3 ,T2 ,T1!. ~20!

Note that Eqs.~17! and~20! are compatible with the leading
order terms proportional to@a1#2a2 and@m1#4, respectively,
mentioned in the preceding section.

In the following considerations, we assume that the laser
pulses are impulsive and their envelopes are described by the
delta functions,47 then the spectroscopic signal is given by
the response function itself. For finite pulse envelopes, the
signal depends on the experimental layout due to the phase-
matching condition.86

IV. RESULTS AND DISCUSSIONS

A. Fifth-order Raman „or second-order IR …

response functions

We begin with a comparison of the unaveraged response
functions for different system–bath coupling mechanisms in
the GW bath (g→`). Figure 3 shows the contour plots of
RRaman(11)

(5) (T2 ,T1) at 300 K as a function ofT1 andT2 for
~a! the LL model,~b! and~c! the LL plus SL model, and~d!
the SL model. The fundamental energy of the system oscil-
lator \v0 is 38.7 cm21 (2p/v05861 fs), which is the typi-
cal value for the intermolecular oscillation in the condensed
phase. The LL coupling strength is taken aszLL /(\v0)

50.26 @zLL510 cm21# for ~a!–~c!, and the SL coupling
strengthzSL8 [\zSL /(Mv0

2) is set to be 0.01~weak coupling!
for ~b! and 0.1~strong coupling! for ~c! and ~d!. The leading
order term of the response function is depicted in each plot,
which is determined by obtaining a finite response function
starting the numerical calculation witha(q)5a1q. When
the response function vanishes for the linear polarizability,
calculation with a(q)5a1q1a2q2/2 is made. Therefore,
the response functions depicted in panels~a! and~d! are cal-
culated witha(q)5a1q1a2q2/2 and the response functions
in ~b! and ~c! are calculated witha(q)5a1q in Fig. 3. A
ratio ã2 /ã15A\/(Mv0)a2 /a1 is set to be 1022. The re-
sponse functions for the LL plus SL model,~b! and~d!, were
not changed by the inclusion ofa2 term with the present
ratio, and RRaman(12)

(5) (T2 ,T1) was identical to
2RRaman(11)

(5) (T2 ,T1) as indicated in Sec. III B. The re-
sponse functions for the LL plus SL model show the opposite
initial phase compared with the other two models. Response
functions for models~b!–~d! depend on the temperature;
they get large as the temperature decreases, while the re-
sponse function for the LL model is temperature independent
for our calculations betweenT5150 and 450 K~not shown!.
By the differences of the leading order terms and the tem-
perature dependencies, it is clearly indicated that the optical
pathways contributing in the LL plus SL model and the other
two are different. The response for the LL plus SL model is
regarded as the ‘‘anisotropic’’ response (}@a1#3) because of
Eq. ~17!, whereas those of the LL and the SL models are
‘‘isotropic’’ ( }@a1#2a2) as mentioned in the following.

In Fig. 4, we explain the leading order terms for the LL
plus SL model and for the SL model by using the Liouville
paths, where the system–bath coupling is considered as a
perturbation. Dots represent the system–laser field interac-
tions via thea1 term as in Fig. 2, and the vertices denote the
system–bath interactions with their explicit functional forms.
Initial diagonal vibrational states of the relevant system and

FIG. 3. Contour plots of the fifth-order Raman response functions
RRaman(11)

(5) (T2 ,T1) for ~a! the LL model,~b! and~c! the LL plus SL model,
and~d! the SL model at 300 K in the GW bath. The LL coupling strength is
taken zLL /(\v0)50.26 for ~a!–~c!, and the dimensionless SL coupling
strengthzSL8 is set to be 0.01 for~b!, and 0.1 for~c! and ~d!. The solid
~broken! contours represent positive~negative! values. The leading order of
the response function is depicted in each plot~see the text for details!.

265J. Chem. Phys., Vol. 120, No. 1, 1 January 2004 Two-dimensional vibrational spectroscopy

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



the bath are assumed. To produce a finite response it is nec-
essary to close the diagram with the diagonal states of the
bath modes. This condition is equal to requiring an even
number of vertices for each bath mode. Figure 4~a! shows
one example of the Liouville path contributing to the re-
sponse proportional to@a1#3, where the one-quantum coher-
ence state of the system is converted to the population state
by a LL interaction with thej th bath mode during theT1

evolution, u1&^0u→u0&^0u, and the coherence state is pre-
served through a SL interaction during theT2 evolution,
u1&^0u→u1&^0u. The quantum number of thej th bath mode
is conserved after the second SL interaction asun& j→un
61& j→un& j via the succeeding one-phonon emission~ab-
sorption! and absorption~emission! processes, whereun& j de-
notes the energy eigenstate of thej th bath mode. By these
system–bath interactions, in total, an odd number of
quanta~51! of the relevant system is changed, and this com-
pensates the odd quantum number change caused by the
system–laser field interactions to end up with the diagonal
state of the relevant system. On the other hand, within the SL
interaction, such compensation does not occur since the
quantum number change caused by a single SL interaction
must beDn50 or 62 as shown in Fig. 4~b!. Therefore, one
cannot compose any Liouville paths with a diagonal element
of the system at the final time. A finite response is expected
beyond the linear polarizability approximation and the con-
tributing terms will be proportional to@a1#2a2 and @a2#3,
where the former is the leading order term for the present
case. This argument for the SL model is also applied to the
LL model, since even times of the LL interactions bring
about an even quantum number change in the relevant sys-
tem. For a response function proportional to@a1#2a2 , we
note a relationRRaman(11)

(5) 5RRaman(21)
(5) 5RRaman(12)

(5) , where
we used@2a1#2a25@a1#2a2 and Eq.~15!. This means that
the response functions shown in Figs. 3~a! and 3~d! represent
the ‘‘isotropic’’ responses defined by Eq.~16!. Thus, we can
understand that the simultaneous presence of the LL and the
SL coupling mechanisms is crucial for the fifth-order Raman
response to be proportional to@a1#3, which is realized by
optical pathways different from those found in the theoretical

studies so far.1,79 We should note, however, that the SL cou-
pling is not the only candidate to lead@a1#3 dependence of
the leading order terms. For example, the anharmonicity of
the system potential causes such a contribution.72 System–
bath couplings which do not cause energy loss~quantum
transition! in the relevant system, that induce the pure
dephasing process,82,87may play the same role as the present
SL coupling mechanism does if they operatewith the LL
coupling mechanism.61,87–90

From the comparison of the response function shown in
Fig. 3~d! and the analytical result obtained by the stochastic
theory, it was suggested that the decay of the signal along the
T1 andT2 axes, respectively, correspond to the pure dephas-
ing and the population decay processes.66 Here, we compare
the response functions shown in Figs. 3~b! and 3~c!. We de-
duce that the decay times along theT1 andT2 axes in the LL
plus SL model are also responsible for the pure dephasing
and the population decay time, respectively, although an os-
cillatory response along theT2 axes is observed. We can see
a faster decay along theT1 axis in Fig. 3~c! ~strong SL cou-
pling! compared to Fig. 3~b! ~weak coupling! because of the
increase of the pure dephasing contribution.61 On the other
hand, the decay along theT2 axis is hardly affected by the
change of the SL coupling strength since it mainly reflects
the population decay process.

It was demonstrated that the potential fluctuations of the
system67,84 can be probed as an echo signal in the fifth-order
Raman response functions, where the leading order term is
proportional to@a1#2a2 and includes the rephasing paths;
one-quantum coherence stateun11&^nu during theT1 time
evolution is inverted to un11&^n12u via the second
system–field interaction with thea2 term for theT2 evolu-
tion. In Fig. 5 we now illustrate the response functions
RRaman(1,1)

(5) in the GM bath with different correlation times
tc51/g for ~a! the LL model, ~b! and ~c! the LL plus SL
model, and~d! the SL model at 300 K. The upper panels
show the response functions for a short correlation~fast
modulation!, tc51/v0 and the lower panels for a long cor-
relation ~slow modulation!, tc510/v0 . In the case of a
longer bath correlation time, the system is expected to have a

FIG. 4. Examples of the possible Liouville paths for the fifth-order Raman
response within the perturbative treatment of the system–bath interactions
for ~a! finite contribution and~b! no contribution. The vertex denotes a
system–bath interaction with the corresponding operator depicted. To leave
the bath mode be diagonal, even number of vertices are required for each
bath mode.~a! The LL plus SL model; the system and the bath modes can be
diagonal at the end.~b! The SL model; even number of system quanta is
changed by a system–bath interaction, thus it requires ana2 term instead of
an a1 term. The same is applied for the LL coupling case~not shown!.

FIG. 5. Effects of the finite correlation time of the GM bath on the fifth-
order Raman response functionsRRaman(11)

(5) (T2 ,T1) for ~a! the LL model,
~b! and~c! the LL plus SL model, and~d! the SL model at 300 K. The upper
panels are for a short correlation timeg5v0 ~fast modulation!, while the
lower panels are for a long correlation timeg50.1v0 ~slow modulation!.
The system–bath coupling parameters are the same as used in Fig. 3.
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more inhomogeneous character. In the fast modulation, Figs.
5~a!–5~d!, response functions are similar to those for the GW
bath shown in Fig. 3. On the other hand, in the slow modu-
lation, we observe qualitative changes of the response func-
tions from the GW case, especially in the response functions
with the SL coupling. In the LL plus SL models, Figs. 5~b8!
and 5~c8!, we observe a slowly decaying component along
the T2 axis for T1 less than the dephasing time<2 ps. For
the SL coupling, Fig. 5~d8!, the echolike peaks parallel to the
T15T2 direction in the time region about 0<T1 ,T2<2 ps
are clearly observed as well as the slowly decaying compo-
nent along theT2 axis. Note that the effective system–bath
coupling strength becomes weaker by the use of the longer
correlation time for the present model as mentioned in Ref.
61. The definite absence of the echolike component in the LL
plus SL model clearly indicates that the rephasing paths
(}@a1#2a2) are not the primary contributor to the optical
response. This fact is evidenced by plotting the response
functions in the frequency domain. The spectrum is
defined by R̃Raman

(5) (V2 ,V1)[*0
` dT2*0

` dT1ei (V2T21V1T1)

3RRaman
(5) (T2 ,T1). In Fig. 6, we show the absolute value of

R̃Raman
(5) (V2 ,V1) corresponding to Figs. 5~c8! and 5~d8!,

where the echo~rephasing! signal corresponds to the peaks at
(V1 ,V2);(7v0 ,6v0). The rephasing peaks seen in the
SL model, Fig. 6~b!, are not observed in the LL plus SL
model, Fig. 6~a!, and it implies that the vibrational system
with inhomogeneous character does not necessarily induce
the echo signal.

Now we move to the analysis of the ‘‘isotropic’’ fifth-
order response functions for the LL plus SL model. The re-
sponse functions for the LL and SL models are ‘‘isotropic’’
as explained for Figs. 3~a! and 3~d!, and the ‘‘anisotropic’’
responses are not realized for these models. Figure 7 shows
RRaman(iso)

(5) (T2 ,T1) for the GM bath;~a! and~b! are the plots
of calculated responses with the weak and strong SL cou-
pling constants together with the LL coupling constant in the
fast modulation regime, respectively, whereas~a8! and ~b8!
are for the slow modulation. These results should be com-
pared with the ‘‘anisotropic’’ counterparts shown in Fig. 5
@~b!, ~b8!, ~c!, and~c8!#. The phases of the response functions
are inverted from their ‘‘anisotropic’’ counterparts. This is
because the contribution proportional to@a1#3, the main
contributor for the ‘‘anisotropic’’ response, is totally can-
celled out by the spatial averaging and the second leading
order term proportional to@a1#2a2 plays a dominant role. In

other words, for the ‘‘isotropic’’ responses the optical path-
ways remain the same throughout the whole range of the
system–bath couplings. Thereby, with a strong SL coupling
constant for a GM bath, Fig. 7~b8!, we can clearly see the
echolike peaks due to the rephasing paths as opposed to the
‘‘anisotropic’’ response in the LL plus SL model, Fig. 5~c8!.

B. Third-order IR „or seventh-order Raman …

response functions

We now consider the third-order IR response functions,
that have an equivalent form to those of the seventh-order
Raman responses. Figure 8 shows the contour plots of the
response functionsRIR(11)

(3) (T3,0,T1) for the GW noise cal-
culated by~a! the LL model, ~b! and ~c! the LL plus SL
model, and~d! the SL model. Each three-dimensional re-
sponse function is plotted in two dimension as a function of
T1 andT3 by setting the second controllable timeT2 in Eq.
~9! to be zero. In the third-order measurement, all the re-
sponse functions considered here are regarded as ‘‘isotro-
pic.’’ For the contributions proportional to@m1#4 or
@m1#2@m2#2, a relation,RIR(1,1)

(3) 5RIR(2,1)
(3) , holds, and the

coordinate inversion now readsRIR(2,1)
(3) 5RIR(1,2)

(3) . Thus,
we haveRIR(1,1)

(3) 5RIR(1,2)
(3) [RIR(iso)

(3) . Signals in Fig. 8 have
the same temperature dependencies as the corresponding re-
sponse functions explained for the fifth-order Raman re-
sponse~Fig. 3!. The effect of the SL coupling can be ob-
served in the leading order of the response functions. Only
the LL model needsm2 terms, whereas other system–bath
coupling models give finite responses only viam1 terms.
This is because, in the LL model, the perfect destructive
interference among the possible Liouville paths proportional
to @m1#4 plays a role. Differences of the leading optical path-
way between the LL model (}@m1#2@m2#2) and the other
two models (}@m1#4) are seen as the phase differences of

FIG. 6. Plots of the fifth-order Raman response function in the frequency

domain, uR̃Raman
(5) (V2 ,V1)u, for ~a! the LL plus SL model, and~b! the SL

model. These correspond to Figs. 5~c8! and 5~d8!, respectively. The param-
eter set is the same as used in Fig. 5.

FIG. 7. Plots of the ‘‘isotropic’’ fifth-order Raman response function for the
LL plus SL model at 300 K in the GM bath. The upper panels,~a! and~b!,
are for the short correlation timeg5v0 ~fast modulation!, while the lower
panels, (a8) and (b8), are for the long correlation timeg50.1v0 ~slow
modulation!. The LL coupling strengthzLL /(\v0) is 0.26 and the dimen-
sionless SL coupling strengthzSL8 is set to be~a! 0.01 and~b! 0.1. The
meaning of contour lines is the same as in Fig. 3. Note that~a! and ~b!
correspond to the ‘‘anisotropic’’ counterpart shown in Figs. 5~b! and 5~c!,
respectively.
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the response functions in Fig. 8. We plot the complemented
absolute value of the Fourier spectrumR̃IR

(3)(V3 ,V1)
[*0

` dT3*0
` dT1ei (V3T31V1T1)RIR

(3)(T3,0,T1) in Fig. 9. It is
clear that the LL plus SL and the SL models, Figs. 9~b!–9~d!,
exhibit basically the same spectra, where the one-quantum
coherences (V1 ,V3;6v0) play a dominant role. On the
other hand, in Fig. 9~a!, the LL model, we can see that the
two-quantum coherences and vibrational populations (V3

;62v0,0) contribute to the response beside the one-
quantum coherences (V1;6v0).

The third-order IR or the seventh-order Raman response
function has its sensibility to discriminate the SL coupling
mechanism from the LL coupling as seen in Figs. 8 and 9.
However, the spectrum does not differentiate the LL plus SL
model from the SL model, because the primary optical pro-
cesses are the same (}@m1#4) in these two cases as discussed
for the ‘‘isotropic’’ fifth-order Raman responses.

As mentioned in Sec. III A, the finite response with a
linear dipole is the manifestation of the incompleteness of
the destructive interference among the possible Liouville

paths. Fourkaset al. calculated the resonant vibrational echo
signal under the linear dipole approximation (}@m1#4) with
a weak system–bath coupling assumption. Their conclusion
suggests that the response is present when the coupling to the
bath is linear~;LL coupling!, and is absent when the cou-
pling to the bath is quadratic~;SL coupling!.80 This state-
ment seems to oppose our results shown in Fig. 8. This is
because the explicit form of the system–bath interaction they
used was different from ours. Qualitatively, it seems natural
to pursue the origin of the nonlinearity for the~LL plus! SL
models to the explicit coordinate dependence of the system–
bath coupling as defined by Eq.~3!; the nonlinearity of the
system–bath interaction determines the nonlinearity of the
system.80

The vibrational echo response is expected in the third-
order IR spectroscopy.12,91–95 In Fig. 10, we present
RIR(11)

(3) (T3,0,T1) with the GM noise for the different bath
correlation times with~a! the LL model,~b! and ~c! the LL
plus SL model, and~d! the SL model at 300 K. The upper
panels show the response functions for a short correlation
tc51/v0 , while the lower panels for a long correlationtc

510/v0 , respectively. The system–bath coupling parameters
are the same as used in Fig. 5. In the fast modulation, Figs.
10~a!–10~d!, the responses are similar to those calculated for
the GW bath, shown in Fig. 8. We can see that when the SL
coupling strength is appreciable and the bath correlation time
is long, the echolike signals parallel toT35T1 appear. For
the LL plus SL coupling model, the similarity of the profiles
in Figs. 8~b! and 8~c! in the GW bath is not preserved in
Figs. 10~b8! and 10~c8! in the GM bath, because the differ-
ence of the SL coupling strength is enhanced through the
rephasing path contributions.

V. CONCLUDING REMARKS

In this paper, we calculated the fifth-order Raman and
the third-order IR response functions for a mixed LL and SL
system–bath coupling model by using the quantum Fokker–
Planck equation. We demonstrated thatthe whole time pro-
files of the response functions change dramatically with the
form of the system–bath coupling. We found in particular

FIG. 8. Plots of the third-order IR response function for~a! the LL model,
~b! and~c! the LL plus SL model, and~d! the SL model in the GW bath. The
second time variableT2 is set to be zero. The parameters and the meaning of
the contour lines are the same as used in Fig. 3.

FIG. 9. Plots of the third-order IR spectrumuR̃IR
(3)(V3 ,V1)u for ~a! the LL

model,~b! and~c! the LL plus SL model, and~d! the SL model. The param-
eters are the same as used in Fig. 3.

FIG. 10. Effects of the finite correlation time of the GM bath on the third-
order IR response function for~a! the LL model,~b! and~c! the LL plus SL
model, and~d! the SL model. The upper panels are for the short correlation
time g5v0 , while the lower panels are for the long correlation timeg
50.1v0 . The parameters and the meaning of the contour lines are the same
as used in Fig. 3.
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that the fifth-order Raman or the second-order IR response
function shows ‘‘anisotropic’’ response for the LL plus SL
coupling mechanism, where the leading order terms corre-
spond to the optical processes composed of three successive
one-quantum optical transitions (}@a1#3). In contrast, the
standard Brownian harmonic oscillator model predicts ‘‘iso-
tropic’’ response which includes a two-quantum optical tran-
sition (}@a1#2a2).

The perturbation theory with respect to the anharmonic
potentialVanh(q)5g3q3/3!1g4q4/4!1¯ of a harmonic os-
cillator predicts68 that the leading order of the fifth-order
Raman response function isg3@a1#3, and that for the third-
order IR response isg4@m1#4, respectively. Therefore, from a
viewpoint of the leading order term, the present calculations
indicate that the LL plus SL system–bath coupling plays the
same role as that of thethird-order anharmonic potential
g3q3/3! for the ‘‘anisotropic’’ fifth-order Raman response.
However, for the third-order IR response, the coupling
mechanism plays the same role as thefourth-orderanharmo-
nicity g4q4/4! does. The LL system–bath coupling mecha-
nism can be diagonalized,63 therefore, after this diagonaliza-
tion, the SL coupling is regarded as thethird-order
anharmonicity of the system potential. For the description of
the vibrational echo signal, the third-order anharmonic po-
tential has been pursued as the origin of the vibrational
dephasing and the optical nonlinearity.63,96 In the previous
paper,61 on the other hand, we showed that the SL coupling
mechanism can partly be recognized to serve as the fourth-
order system potential when the noise correlation is long
compared with the harmonic frequency~same as speculated
by the leading order term of the third-order IR response
above!. In these respects, the interrelation between the non-
linear system–bath coupling and the anharmonicity of the
system potential on the origin of the multidimensional vibra-
tional response functions has not been fully clarified. To elu-
cidate the information that the multidimensional vibrational
response function carries, further study is needed from the
microscopic viewpoint.

Very recently, Ma and Stratt put forward such a theoret-
ical attempt35,36by using the extended instantaneous-normal-
mode analysis of the molecular dynamics simulation of liq-
uid Xe. They studied the molecular origins accounting for
the lack of the echolike signal in the fifth-order Raman re-
sponse function, and pointed out the relative importance of
the dynamical third-order anharmonic potential for each nor-
mal mode to understand the fifth-order Raman response. It is
interesting to compare Figs. 5~c8! and 5~d8! with the re-
sponse functions labeled by ‘‘ANH’’ and ‘‘NL’’ in Fig. 9 of
Ref. 35, respectively. Although the response functions are
calculated by very different theoretical approaches, the time
profiles connected by their leading order terms seems to
share the main qualitative feature of the response functions.

Exploring the present study for a higher frequency vibra-
tional mode (\v0@kBT) and to extend to a multimodes an-
harmonic potential system are important to compare them
with experimental results and simulations, and to grasp the
underlying physical contents of spectroscopy. They can be
implemented through an extension of the methods used in
this paper, although it requires intensive numerical calcula-

tions. We shall address this issue in a future work. In addition
to the features observed in this paper, we expect complex
time profiles due to the mode couplings and the anharmonic-
ity of the modes, which cannot be resolved by the one-
dimensional spectroscopy. We are expecting that the present
paper and our previous interpretations of the anharmonic
coupling effects will be helpful to analyze the experimental
results.
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APPENDIX: CALCULATION STEPS FOR THE
FIFTH-ORDER RAMAN RESPONSE FUNCTION
FOR THE GAUSSIAN–WHITE BATH

In this Appendix, we present the calculation steps of the
fifth-order Raman response function defined in Eq.~8! to
show how the nonlinear response functions are related to the
Wigner distribution function. For the GW bath, we only need
the Wigner distribution functionW0(p,q,t) that is governed
by a single Fokker–Planck equation of Eq.~11d! with N
50 because of the vanishing correlation time of the bath.
The expression in Eq.~8! reads

RRaman
~5! ~T2 ,T1!5Tr$aW

o e2~Ls2GW!T2

3aWe2~Ls2GW!T1aWW0
eq%, ~A1!

where W0
eq(p,q) denotes the thermal equilibrium Wigner

function, andaW
o andaW are the Wigner representations that

correspond to the anticommutator, 1/2$a(q̂, ¯)% and the
commutator,i /\@a(q̂), ¯#, respectively.61 Tr means the in-
tegration over the momentump and the coordinateq. The
thermal equilibrium state is calculated by integrating Eq.
~11d! from time t52t i,0 to t50 with a trial initial condi-
tion,

W0~p,q,2t i !5Ne2b@p2/~2M !1U~q!#, ~A2!

whereN is the normalization constant, in whicht i was set to
be few ps. The time evolution of the Wigner function forT
represented bye2(Ls2GW)TW0(t) is evaluated by using the
second-order Runge–Kutta method applied to the finite dif-
ference expression of Eq.~11d!. Thereby, we obtain the re-
sponse function as a function of the two successive time
evolution periods ofT1 and T2 by using the corresponding
intermediate Wigner functions of

W0~T1!5e2~Ls2GW!T1aWW0
eq ~A3!

and

W0~T2 ,T1!5e2~Ls2GW!T2aWW0~T1!, ~A4!

respectively.
For the GM bath, we implemented the simultaneous time

integration of Eq.~11! for the intervalt i>1/g to obtain ther-
mal equilibrated auxiliary functions,Wn

eq(p,q), with a trial
initial condition, Wn(p,q,2t i)50 (1<n<N). The evalua-
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tion of the response function is carried out in the same way
as for the GW bath. The depth of the hierarchyN should
fulfill Ng.4v0 andNg.4zSL for the present study.
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M. Kahlil, N. Demirdöven, and A. Tokmakoff, Phys. Rev. Lett.86, 2154
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