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Vortex tilt modulus in Fulde-Ferrell-Larkin-Ovchinnikov state

Ryusuke Ikeda
Department of Physics, Kyoto University, Kyoto 606-8502, Japan
(Received 24 December 2006; revised manuscript received 23 May 2007; published 21 August 2007)

Vortex tilt response in a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) vortex lattice is studied as a probe
reflecting the spatial structure of this state. In quasi-two-dimensional materials under a parallel magnetic field,
the tilt modulus E, of the nodal planes in the FFLO state modulating along the field decreases as the para-
magnetic effect is effectively enhanced, and this reduction of E,, in turn, reduces the vortex tilt modulus. This
reduction, more remarkable in higher fields or in more two-dimensional-like systems, of vortex tilt modulus
upon entering the FFLO state may be one origin of an anomalous anisotropic reduction of sound velocity

detected in an ultrasound measurement in CeColns.
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I. INTRODUCTION

Recent accumulating experimental facts in heat capacity,’
thermal conductivity,”> penetration depth,®> and NMR data*
certainly indicate the presence of a new superconducting
(SC) phase of CeColns at low T and under high magnetic
fields parallel to the SC layers. This new phase, separated
from the ordinary Abrikosov vortex lattice via a second order
transition, is expected to be the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) vortex lattice with one-dimensional pe-
riodic modulation of the SC order parameter A parallel to the
field H based on a consistency between these observations
and a recent theory>® on the character of transitions between
different phases. If the FFLO modulation is perpendicular to
H, the mean field H,, transition between the normal and the
FFLO states is usually expected to be of second order,? just
like the conventional result in the Pauli limit.” However, this
is incompatible with the discontinuous H,, transition'? in
CeColns. Spatial structures of a FFLO state may also be
reflected in its elastic properties, and the tilt response of vor-
tices should be sensitive to the direction of the periodic
modulation.

In this paper, we examine changes of vortex tilt modulus
occurring through the transition between the FFLO vortex
lattice with modulation parallel to H and the familiar Abri-
kosov lattice and show that, through a coupling between the
vortices and the nodal planes accompanying the FFLO
modulation, a measurable reduction of vortex tilt modulus
may occur in such a FFLO state of uniaxially anisotropic
superconductors in fields parallel to the SC layers. The
present result may be relevant to the ultrasound experiment
in CeCoInS,10 in which a monotonous reduction of sound
velocity upon cooling through Hpp o(7T) was observed only
for a sound mode accompanied by vortex tilts.

First, a qualitatively expected feature of the tilt response
in the FFLO state will be explained. The FFLO state of our
interest is the so-called LO state, in which A in equilibrium
has a periodic modulation with a period 27/Q parallel to
HI % and vanishes on periodic nodal planes lying in the y-z
plane (see Fig. 1). The continuous FFLO to Abrikosov tran-
sition at Hpp o(7) is characterized by a vanishing of the Q2
term in the mean field free energy. On the other hand, the
vortex line tension 6Cy, of the Abrikosov lattice, which is
one part of its total tilt modulus
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is defined from the gradient term in the fluctuation free en-
ergy for variations parallel to H, where B is the uniform flux
density. Then, as in the conventional elastic softening in the
ordinary solids, it is natural to expect® a tilt softening to
occur on Hepo(T) with a cusplike minimum of 8Cyy (see
Fig. 2). Although such a behavior is generally expected for
the so-called FF state with no nodal planes of the amplitude
|A| and presumably also for other modulated vortex lattices
with nodal planes parallel to the vortices, this picture is,
when applied to the LO state with periodic nodal planes
perpendicular to the vortices, justified only in the limited
case where the nodal planes are never coupled with the vor-
tices. In the LO state, a tilted nodal plane can carry the mag-
netic flux, and hence, a vortex tilt is induced by a small tilt of
nodal planes since the number of vortices should remain un-
changed for a small variation. This statement is represented
in terms of tilt angles 6, and 6, of the vortices and of the
nodal planes (see Fig. 1), respectively, by the elastic energy

oF(u,s) [ 1 1
N(O)Ti :<EE195+ 5E292—2E30nﬁv>, (2)

where N(0) is the density of states per spin in the normal
state and the bracket () denotes the spatial average. The
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FIG. 1. (Color online) Sketch representing tilted vortex lines
(thick solid lines) and nodal planes (thin solid ones) in the FFLO
state modulating along H of a quasi-2D system in a parallel field
(HIIX). Thick and thin dashed lines denote their positions in equi-
librium. The SC layer and the anisotropy axis correspond to the x-y
plane and the z axis, respectively.
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FIG. 2. Example of # (=7/T,) dependence of L4, proportional to
6Cyy, in HIlIZ, which has a cusplike minimum at the FFLO to Abri-
kosov transition temperature 0.2887..

dimensionless vortex line tension defined under fixed nodal
planes is given by E|, E, is the corresponding tilt modulus of
the nodal planes, and a nonvanishing coefficient E5 of the
coupling term is a consequence of the periodic modulation of
the equilibrium A. Hereafter, the nonlocality arising from the
long interaction range between the vortices is neglected in
Cys.'! Then, the vortex line tension 6C,4 in the FFLO state
stabilized by a positive E, becomes

2
(E5) ] . 3)

85Cyy= N(O)Tﬁ[E1 -4
E,

Equation (3) implies that 5C,4 is reduced more drastically
with decreasing E,. Such a decrease of E, occurs due to an
effective reduction of the orbital depairing because the
modulation parallel to H is supported by the orbital effect of
the magnetic field. In quasi-two-dimensional (quasi-2D) su-
perconductors under a field parallel to the SC layers, the
orbital depairing effect becomes less important in more 2D-
like systems, where the paramagnetic depairing is relatively
more important. In the Pauli limit with no orbital depairing,
the direction of modulation is spontaneously chosen, i.e., E,
is vanishingly small, as long as the Fermi surface (FS) an-
isotropy is negligible. Thus, in highly 2D-like systems and/or
a case with a larger Maki parameter «,;, the FFLO state in
HI|x should show a softer tilt response, for displacements ||y,
as a consequence of a large fluctuation of nodal planes in-
duced by an enhanced paramagnetic depairing.

The physical argument given above implies that, in ex-
tremely 2D-like systems in the parallel fields, 6C44 in the
FFLO state may take a negative value and suggests a possi-
bility that even a tilt instability of the FFLO state might
occur. To see to what degree the reduction of C,y4 is substan-
tial in real systems, a consistent and microscopic derivation
of E, (n=1, 2, and 3) and the phase diagram will be per-
formed in the remainder of this paper, and the ultrasound
data'® will be discussed based on the resulting tilt response.

This paper is organized as follows. In Sec. II, details of
the model and our calculations performed to obtain the phase
diagram and the tilt modulus are explained. In Sec. III, typi-
cal examples of our numerical results following from the
expressions derived in Sec. II and appendices are shown. In
Appendix A, expressions following from a higher Landau-
Level (LL) mode leading to a correction to H,, are given,
and a theoretical background on the relation between the
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vortex tilt deformation and a LL mode of the order parameter
is explained in detail in Appendix B.

II. MODEL AND DESCRIPTION

Our approach for describing the vortex lattices affected by
the paramagnetic depairing takes the same route as the pre-
vious one® and starts with a BCS Hamiltonian H="H,+H,
+H;y for quasi-2D systems, where

Ho=d2 f &ri[ef(r )]
a.]

X[(- iV, +eA)>

. - UMBB] @7 (r,), 4)

Jd i
Hy== 72 f &r lef (r )efi(r) + ¢l r el )],
a,]

(5)

and

|gld &’k +
7_(int == TUEJ (27T)zBo,j(kL)Bo',j(kL) ’ (6)

with B, ;(k ) =EpiAApa]7”(—p_)af(p+), where p.=p, =k /2.

Here, j is the index numbering the SC layers, p, is the
component of p parallel to the layers, AP is the normalized
orbital part of the pairing function which, in the case of d,2_,2
pairing, is written as \s"2(ﬁ)2€— ﬁ%) in terms of the unit vector p
parallel to the layers, and m is the effective mass of a quasi-
particle. Further, ougB=uzB or —uzB is the Zeeman
energy.'? In discussing our calculation results, the strength of
the paramagnetic effect will be measured by the Maki pa-
rameter ay,=\2H,4(0)/Hp(0), where H,.,(0) and Hp(0)
=T,/ (\2e"p) = 1.2T,/ up are the orbital and Pauli limit-
ing fields at 7=0, defined within the weak-coupling BCS
model, respectively, where y;=0.577 is an Euler constant.
Hereafter, the gauge field A will be assumed to consist only
of the contribution of the uniform flux density B, i.e., we
work in the type II limit with no spatial variation of flux
density, because we are interested mainly in the field region
near H .

We use the familiar quasiclassical approximation for the
single-particle propagator

Gf,g(r,r’) =G, (r- r’)exp(iej ds - A) . (7)

Here, the Fourier transform of G, ,(r) is given by

G, ,(p)=[ie+ouzB—¢,]™", (8)

where sp=(p2L —pf,-)/(Zm)—J cos(p.s), pr is the Fermi mo-
mentum in the 2D case, and ¢, denotes the Matsubara fre-
quency 27T(n+1/2). Since we take account of the paramag-
netic depairing suppressing the upper critical field in the
mean field approximation H,,(T), the use of the quasiclassi-
cal approximation, valid if pprg>1, is safely valid, where
rg=(2|e|B)~" is the magnetic length.
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Hereafter, in deriving an appropriate Ginzburg-Landau
(GL) functional in HIIX, the spatial variation of the SC order
parameter field A in the out-of-plane (z) direction is assumed
to have a longer range than the interlayer spacing d. When
the paramagnetic effect is absent, this continuum approxima-
tion is valid only if B<B,=1/(2eyd*)."® Here, y (>1) is
the anisotropy defined from the ratio between the in-plane
coherence length &=vp/(27T,) and the out-of-plane coher-
ence length &,., where vy is the Fermi velocity in the 2D
case. In the present case where the H,,(T) is reduced via the
paramagnetic depairing, this continuum approximation is
safely valid if Hp(0)<<B,,, or

2
L _13§ o)
2eHpd> d&* M

y< , )

where a{,”'=\2HZ>(0)/Hp(0), and HZP(0) is the orbital-
limiting field in 2D limit for fields perpendicular to the lay-
ers. The above inequality means that an increase of y com-
petes with an enhanced paramagnetic depairing. In fact, Eq.
(9) implies that, as the paramagnetic depairing is stronger
under a fixed anisotropy, the FFLO state just below H.,(T)
tends to enter not the nearly 2D region in B> B, but the
anisotropic three-dimensional (3D) regime below B, in
which repeated structural transitions between the Josephson
vortex lattices occur. Nevertheless, the transitions between
the ordinary Josephson vortex lattices are not visible in most
of the quasi-2D materials, and the layer structure may be
treated as an anisotropic 3D-like medium for most purposes
as long as the intrinsic pinning effect of vortices does not
become essential.'* Then, the difference &p,~Ep_ of the qua-
siparticle energy may be replaced by w-k even in layered
systems. Consequently, the quadratic term of the GL free
energy density is given by

fz=‘l/fd3rA*(r){é —kz(H)]A(r)» (10)

where w is the velocity field on the FS, II=—iV +2¢A, and
an appropriate gauge transformation has been performed to
make the gauge field parallel to the z direction. The operator

K, is given by
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~ T A~
KZ(H) = EE f |Ap|2Gs,o(p)G—s,—o(_ P+ H)
g0 Jp

isgn(e,)
2(18}1 + O'ILLBB) -w-1I ES

= 7N(0)T>, <|&pl2

=N(0) f dpf(p)(|A,1* exp(iT; ' pw - T)es.  (11)
0

Here, ( )ps denotes the average over the FS, r=T/T,, N(0)
=N,(0)/d with the density of states N,(0) per spin in the 2D
case,

21t 2,uBBp>
= , 12
1) = @) COS( T, (12)
and the identity
1 o]
—=| dpexp(-pD) (13)
D Jy

was used in obtaining the last equality of Eq. (11). Similarly,
the fourth order (quartic) term and the sixth order term of the
GL free energy density are written as

1 > # *
Fu= EJ d3”K4(Hj)A (r)A (1'3)A(1'2)A(1'4)|rﬁr,

Fe= %/J d3rf(6(Hj)A*(r1)A*(r3)A*(I’5)

XA(rZ)A(r4)A(r6)|rjﬁr’ (14)

where

T .
Ky= EE f |AP|4G£,U(p)G—s,—o’(_ p+ HI)G—&_‘T(_ p

g0 Yp

+11,)G, ,(p + 115 - I1,)
. A |4
—isgn(e)[A| 15)

=2mN(0)T, g
164263 FS

&,0

and

A T a * * * ES ES
KG == EE f |Ap|6G£,zr(p)G—s,—(r(_ p+ HI)G—S,—IT(_ P+ H6)Gs,(r(p - I—[l + HZ)G—S,—(r(_ pt I—[l + H3 - H2)Ga,(r(p - HG + HS)
e,o0Jp

[—isgn(e)]|A,[°

i,perm

> didiyidiod;s

= 7N(0)TY,

&,0

dydydsdydsds (dy+dy—dy)(ds+ds—dy)(ds+d,—de) | g5

(16)

Here, 2 cndid;s1disodis=ddrdsds+ - +ded drds, di=2(ie,+ougB)—w-II; for an even j, and dj=2(is,1+a',uB)—w-H; for
an odd j. Although the above expression of the sixth order term is apparently different from the corresponding one in Ref. 5
it can be numerically checked that both of them are the same. By using the identity (13) again, we obtain

3 3
N 2 A l % *
K= ?N(O) I1 dP;f(E Pj><|Ap|4 exp[;(l)lw XL+ pow - I + p3w - Ha)]> ,
c J=1 Jj=1 ¢

FS
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5 5
Ke=~ %N(O) J I1 dpJ(E p,~>
j=1 j=1

c

><<|Ap|6 eXP{F[le s+ pow - I + psw - (I + I1; = ILy) + pyw - (15 + 15 — L) + psw - (15 + 1T, — He)]}>

Hereafter, the order parameter field A will be decomposed
into the LLs. When the FFLO state modulating along H is
formed, no additional spatial variation is induced in the y-z
plane perpendicular to HIIX except that due to the vortex
structure, and hence, the y and z dependences of A of the
FFLO state in equilibrium is, as in the Abrikosov state, well
described in the lowest (n=0) LL. Nevertheless, in H||X par-
allel to the layers, the anisotropy 7 in the y-z plane between
the coherence lengths needs to be determined to consistently
define creation and annihilation operators 11, for the LLs. To
determine 7y, we follow its derivation in the conventional GL
region and focus on the quadratic term in IT and IT" which is
proportional to

((w, 1, + w I1,)?)ps = 7_1<W§>F5[r1_92 + (71/21-[)’ iy VL)
x(,yl/ZHy+ l-,y—l/ZHZ)]’ (18)

where y= \/<w§>/ (wz) Here and below, we have chosen the
gauge A=-ByZ leading to TI_II,—II,IT_=1, where II.
=rp(y "1, xiy"I1,)/\2 are the creation and annihilation
operators of the LLs satisfying IT_¢(y,z)=0, and ¢,(y,z) is
a basis function in the nth LL. According to H, defined
above, the velocity field on the FS is given by

w( k) =vp(1 = J[1 = cos(p.d)])*[cos(¢)% + sin(¢) 7]
+Jd sin(p.d)zZ, (19)

where j=2mJ/p%. In this case, we have y=2\1-J/(m)).
For this w, the averaging over the FS is defined by

Tde (7 d(p.d)
M)pc = — —M. 20
(M)gs fo 2m)  om (20)

Next, the operation &,(y,z)=exp(ipT,'w-I)g,(y,2),
necessary to make the expressions of F,, tractable for nu-
merical calculations, will be examined. This is most easily
accomplished in terms of the corresponding coherent state!?
exp(=|0]*/2)2,=00"¢,/Vn!. Examining the action of
exp(iTleT[) to this coherent state, we obtain
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FS
(17)
|
~ _ . P
&u(y,2) = exp(z;w . l'[)(p,,(y,z)
NO p2 5
= =exp| (1 =) || plp— 1)
V2! 2
A ,f_
L } exp{— ipz— 9 \’2P,U~+P)2]
pw) 2
21
for n<2, where y=vy12y, =92z,
~1/2 v
w,+ iy w
o Yt iy, 22)
V2rgT.
and the corresponding n=0 LL state is
., G+p)?
@o(y,2) =N CXP{— pz— 2 . (23)

At this stage, it is straightforward to study properties in
equilibrium of a FFLO vortex state. First, as already men-
tioned, we assume the FFLO state in equilibrium to be de-
scribed in the lowest (n=0) LL, where no nodal points or
lines except the field-induced vortices of |A| are present in
the y-z plane perpendicular to H. Instead, nodal planes per-
pendicular to H are periodically formed. If the Q dependence
of the free energy is incorporated only from the quadratic
term F,, the transition line between the LO state and the
Abrikosov state is the same as that between the FF and Abri-
kosov states, where Q is the wave number corresponding to
the period between the FFLO nodal planes. However, once
the QO dependence of the free energy from the higher order
terms, F; (k=4), is considered, as pointed out elsewhere'® in
the HIlZ case, the transition temperature between the LO and
Abrikosov states is higher than that between the FF and
Abrikosov states. For this reason, we will not consider the
possibility of appearance of the FF state. Hereafter, the equi-
librium order parameter A, in the FFLO state is assumed to
take the form

A (r) = \2T, a0 (y,2)cos(0x), (24)

with the normalization condition (|A,[*),,=77, where (),
implies the spatial average and ¢ is the Abrikosov solution
of the vortex lattice in n=0 LL. Then, in equilibrium, the
mean field free energy density of the FFLO state takes the
form
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e 2 Vald) 4 Vs o 0 @ : F ; ( ﬂ2§ )
— S =ap(q@)a o+ a,)+c(a ay(0)==1In(h)+ | dp| —ex
N0y =@+ =5 Fat e Stal =) + Ma)g? 0= )+ | dp| exo| =755 = flp)
+cW(a,)q*. (25) - |0
X\ |A,* exp| - ,
Hereafter, the dimensionless wave number of the FFLO 2 ES
modulation will be defined as
- A |ul’p
4= 0rsy". (26) a? = fo dpf(p)p2<(Re w)? cot” glA * ex ( 5 R
The coefficients in Eq. (25) are given by
1 o]
ag(q) = ap(0) + afq* - al’q*, ay’ = gf dof o)’
2) 4) ¢ |,U«|2 :
Vi(g) = V4(0) - VPq? + ViPg*. (27) X\ (Re w)* cot* PlA,|* exp 5 ,
FS
Hereafter, the ¢ dependence of Vg will be neglected. This
simplification is, in part, based on the fact that it has been
verified'® that the ¢ dependences of V are unimportant even v,(0)=3 H dp,f E p;
quantitatively for the position of the FFLO to Abrikosov 0 =1
transition in H|Z. Further, to study systematically possible R 1 1
phase diagrams including FFLO states, inclusion of ¢ depen- X\ |A,|*exp| - o\ ER24 +Ryy | [cos(ly) )
FS

dences in higher order terms requires a difficult numerical
task. On the other hand, if even the g dependence of V, is
neglected, the B-T region in which the FFLO state can ap-

2
pear is highly overestimated, and, as is seen in Sec. III, a 0 l_lldP}f(E PJ) |:§ pPj— g( 1)l+]PzPJ:|
fictitious tilt instability of the FFLO state occurs. Therefore, = = Ji)

for practical purposes, neglecting g dependences of V, and 5 9 4

keeping the corresponding ones of V,(g) is a convincing ap- X\ (Re w)” cot ¢|AP|

proach. Of course, when using Eq. (25), it is necessary to

verify the conditions V>0 and ¢ >0, which justify the Xex {_ l(_ lR +R )}cos([)

use of F, truncated at the O(JA|®) and O(g*) terms. Pl 7o\ 7 Y s

The onset temperature 7, at which the mean field H,

transition becomes discontinuous is given as the position at :
which V,(q) becomes negative upon cooling while V>0, V<4)— - Hdpjf E pj 2 p}‘
and a second order transition line Hgpp o(7) is determined as 0 j=1 =1
the line on which ¢®(a,) in B<H,, becomes negative on 4
cooling while ¢¥(a,) >0é Then, by minimizing F, with re- + > |:3pl p; = 2= D™ pip;(pei_)* - 5(_ l)”jp,»p;]
spect to both ¢ and «,, «, is determined by i#]
2 - Vi(q) + \"’(V4(Q))2 —4ay(q) Vs X<(Re ,U«)4 cot* ¢|Ap|4
a,(q) = , (28)
2Ve o1
X ——|=-=ZRu+R I ,
while g=0 if a? -V (a,(¢))*/2>0, and eXp[ 2( 2 "‘)]COS( 4)>FS
, —ay) + VPla (@2 (29) 5 5
T Y Cd T o Vo)’ Ve=—15 | [T dps| 2 p
j=1 k=1
otherwise. Below T, the discontinuous H,, transition (i.e., . 1
first order mean field SC transition) occurs when X\ [A,|° exp| - E(Rlﬁ +Ry) |cos(lg) ), (31)
FS
3 [Vulg)? = (2D)
aslq )_ [Vi(@)] (30) where h=B/H_,"(0) and
Vé 3
_1,2 2
irrespective of the minimized value of q. Riy=|pl [El pj+palps+ pl)]’
j=

By applying Eq. (24) to F, it is straightforward to derive
the coefficients in Eq. (25) 1f Eq. (13) is repeatedly used. - )
Consequently, they are given by Ryy=Re(u)p3 + (p3— p1)7],
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2
L= (o ),

) 2
Ris=|ul €1+@2+€3+§€465 )

) ei+e§ 2
R26=RCM e t+eyt+ez— 3 —5(66+87+€8+€9) N
Im(u?) ei—ef
6= 4 e +ey;—ez+ 3 +§(€8+69—€6—€7) N

e :(P3+P5)2+(P3+P4)2,
er=(p;+ps+ Ps)z,
€3=P§+P421+(P2—P5)2,
eq=p;+2(p3+ ps+ps),
€5= P2 = P3 = P4~ Ps>
_ 2 2
es=(py—ps)”+ (p1+ps—p3)°,
_ 2
e7=(p1 +ps—p3)°,

_ 2 2
eg=(p3—pa)°+ (p2+p3—ps)°,

eg=(py+ ps—ps). (32)

In obtaining a(0), the interaction strength |g| has been elimi-
nated under such a condition that, in H perpendicular to the

layers, the operation |g|™'—K, at T=0 and in the absence of
the paramagnetic effect vanishes at H(()Zrt? (0).

It should be noted that, for any FS with anisotropy in the
y-z plane, the n=2 LL mode couples to the n=0 LL mode of
A in high fields, and hence, that the expressions of GL coef-
ficients given above are, strictly speaking, insufficient. This
coupling inevitably occurs except in the conventional GL
region valid in lower fields, where the gradient terms are
kept only up to O(II?), and the y and z dependences of
expressions were isotropized in determining vy [see the de-
scription around Eq. (18)]. Expressions of coefficients in the
GL quadratic term related to the n=2 LL modes are given in
Appendix A. For the anisotropy values (y=<15.5) used in our
numerical calculations, however, this coupling was quantita-
tively negligible, and thus, the coefficients in Eq. (31) are
used in obtaining numerical results in Sec. III.

Now, let us explain how to describe tilt deformations in
the FFLO state with nodal planes perpendicular to H. In the
present parallel field configuration, the in-plane vortex tilt
unaffected by the intrinsic pinning effect of the layering is
expressed as an x-dependent vortex displacement u=uy re-
lated to a vortex flow in the y direction. In a vortex lattice in
equilibrium described in the n=0 LL, such a tilt deformation
accompanied by a vortex flow is, consistent with the vanish-
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ing of the corresponding static superfluid rigidity, expressed
as a fluctuation in the next lowest (n=1) LL of A.!” Such a
relation between the n=1 LL mode and the vortex displace-
ment will be reviewed in Appendix B within the conven-
tional GL region, valid in low fields and near 7. Through the
analysis shown there and in Ref. 17, it is convincingly un-
derstood that the following points are valid beyond the con-
ventional GL region. First, in examining the elastic deforma-
tions of the Abrikosov lattice, the energy gap between the
n=1 and n=0 LLs is lost due to the magnetic screening, i.e.,
a gauge field fluctuation coupling to the vortex motion, and
this disappearance of the mass gap is equivalent to the van-
ishing of the static superfluid rigidity, Y, =0, for a phase
twist perpendicular to H. The resulting main term of the
vortex tilt modulus is the magnetic energy B%/(4), which is
insensitive to the details of the SC state. Clearly, this result
that the main term of C,4 becomes insensitive to the details
of the SC state as a consequence of the vanishing of Y
holds true in the FFLO state modulating along H. On the
other hand, according to the results in the conventional GL
case in Appendix B, the remaining term O6Cy=Cy
—B?/(4m) arises directly from the gradient (d,) term of the
resulting GL action regardless of the magnetic screening.
That is, as long as focusing on 6Cy4, we can work in type II
limit with no fluctuation of the gauge field. Then, consistent
with Eq. (24), the SC order parameter field with tilt defor-
mations of the vortices and of the nodal planes included
should take the form

A=A (y.2) + SA() = \2a,T.[0o(.2)
+ 8a;(X) @1 (y,2)Jcos[Qx + Tos(x,y)vp],  (33)

where s(x,y) is the displacement of the nodal planes, and the
amplitude da,(x) of the n=1 LL fluctuation is identified with
the vortex displacement u=uy parallel to the layers in the
manner

8ay(x) = ==, (34)

as explained in Appendix B. If s(x,y)=0, 5C,4 is obtained as
the coefficient of (d,u)> term.

Hereafter, the elastic constants E; (j=1, 2, and 3) intro-
duced in Sec. I will be expressed in the manner

2 2

o —

E, =2ﬂ2—§°2 a§<L1 + —8L1>,
Yy 2

2 ag =
E2 = ae L2 + _L2 N
2
J’_ gO 2 a? T
E;= \cZﬂ'mae Ly+ ?L3 . (35)

To first obtain the contributions L; (j=1, 2, and 3) from the
quadratic GL term >, let us consider the following quantity:
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(Oly = 2<<¢3(y,z)COS[Qx + Ts(x,y)/vp]

Xexp{iTﬁ(w . H)] éa,(x)@,(y,z)cos[Ox

c

+Tcs(x,y)/vF]> > (36)
FS/ sp

(n=0 or 1) appearing commonly in F; (j=2, 4, and 6), where
Say=1 is assumed. First, using the identity exp(A+B)
=exp(A)exp(B)exp[-(AB—BA)/2], valid when AB—BA is a
constant, the expression

exp( Tipw . H) 8a,(x) @, (v,2)cos[ Ox + T,s(x,y) /v ]
(37)

will be written as

S, (x + T 'w p)cos[Q(x + T pw,) + T.s(x + T pw,,y
i
+ Tzlpwy)]exp{Fp(way + wzﬂz)} ©,(v,2). (38)

Then, the average on x over the scale 27/Q will be per-
formed prior to all of the spatial averages by assuming a
slow variation of s(x) in x, and thus, 2 cos’[ Qx+s(x,y)] may
be replaced by unity. Further, using Egs. (37) and (38) and
keeping only terms remaining finite after the momentum av-
erage on the FS, we find
(0|0) = (cos(pQw,/T,){cos(pw,d,s/v )cos(pw d,s/v )
Xexp(= p?uf*/2)) s (39)
and

ol1)= <<p%axaal(x>[— f—;pa_\,su,y)}sin(pg%)

c c

2,12
X(—pu*)eXp(—p |2M| >> >
sp/ FS

272 0° wo\Zw w
TP <<—l§0 ) —= sin| p—
Y rgUp/ Ufp T,

B 3 3 ) [ 3 |
L= | Ildpjp, + P2)2f<2 Pj) |Ap|4<&> {31_[ cos(j) + 3
j=1 v J=1

0 j=1 F
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2 2
Xexp(— %» (0,0,8)p. (40)
FS

The latter is valid up to the harmonic order in s and u. Then,
L;’s are easily obtained in terms of the above expressions and
are given by

» 2
L= J dPo<|Aﬁ|2f(Po)<pr0) (1 - pFlP)

0 Uf

% 2
. WP
L2=f dPo<|Aﬁ|2f(Po)<_LO) exp(—
0 Uf
w
v

A Po WxPo
L3=JdPo<|Aﬁ|2f(Po)Re(M)P0_LO n
0 F UF

212
Xexp(— p0|2,u| )sin(0)> , (41)
FS

cos(n) = cos(V2gp, Re(u)cot ¢),

where

sin(n) = sin(\rEqpn Re(u)cot ¢). (42)

It might be natural to discuss the elastic deformation of
the vortex lattice based on these L;’s without including the
contributions from F,. However, L, itself is found not to
lead to a qualitatively reasonable result of E, in the FFLO
state: As will be shown later in Fig. 4, the resulting tilt rigid-
ity L, of the nodal planes often becomes negative. This re-
sult, suggestive of an instability of the FFLO state modulat-
ing along H, is an artifact due to the neglect of contributions
to E, from the higher order terms, F,, of the GL free energy.
Hereafter, consistent with the neglect of g dependences in Vg
in Eq. (25), E, will be expressed, as in Eq. (35), as the sum
of the contributions of F, and F, terms of the GL free en-

ergy. Derivation of the contributions Zj to the elastic moduli
from F, is lengthy but straightforward using the expressions
(37) and (38), and they are expressed by

> (= )™ sin(i)sin(j)cos(6 — i —j)] [(— 1+ i{(i%pl +p2=p3)

i#j

X (3py+py + p3)l | + Re(u?)]+[(3py = pa— p3)(3p2— p3— p1) + 4(py — p2)* + 4ps(py + p) [ |l - Re(u)z]}>005(14)

1 . 1/ 1
+35 Im(u)[(p, + p3)* - P%]SIH(Q)]GXP{— _<— “Ryu+ Ry

2\ 2

),
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3
L,= H dPJ(E p]) |Ap|4(:}v ) |: (E p])H cos(k) + %2 {Spipj sin(i)sin(j)cos(6 — i — j) + (= 1) cos(6 — i — j)
0 j=1 k=

j=1 1

1
X {p,-p,- cos(i)cos() - 3 (i)’ sin(,-)sm@ ]exp

0 j=1 FHEJ

Xp; COS(i)sin(i)][Re(u)(3p1 = p3+ py)cos(ly) + Im(M)(

Actual numerical calculations of tilt moduli are performed
according to Eq. (35) in terms of L; and Zj (j=1, 2, and 3)
given above.

Before ending this section, we point out a couple of es-
sential features appearing in the coefficients of the GL free
energy and the elastic constants derived above. First of all,
noting that the contributions of the orbital depairing appear
as |u|p, or Re(u)p, everywhere, the effective strength of the
paramagnetic depairing is a,, (h7y)"2. Hence, an increase of
the flux density B or of the anisotropy 7y enhances the para-
magnetic depairing effects. Further, consistent with this dis-
cussion, the period of the FFLO modulation is scaled by not
the coherence length but by the magnetic length r5y"? [see

(26)], implying that the period of the modulation de-
creases with increasing B. Although this is not surprising
because the paramagnetic effect is enhanced with increasing
B, one should note that rz does not arise in any approach in
the Pauli limit with no vortices included.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, typical numerical results following from
the expressions of the coefficients [Eq. (31)] and the elastic

To

FFLO
"Hero(T)

0.4

1-0.04¢ 1
| -0.08¢

(a)|

0.3 04 05t

i#j

R24 +R14)]COS(I4) ,
FS

I1 dpﬂ‘(E p,)m |Ap|4 2 [pe. i sin(6 — i = j)[3 cos(i)cos(j) + (- 1)™ sin(i)sin(j)] - 2(= 1)/ cos(6 — i — j)

3

% Pj) sin(l4)] exp[— %(‘ %Rz4 + R14>} : (43)

FS

constants [Eq. (35)] are presented, and their relevance to an
available experimental result'® will be discussed.

In the ensuing numerical results, the values a,;,=10.65
and y=4.5 were used for HI| X, otherwise stated. Further, for
comparison, elastic constants in perpendicular fields, HIZ,
were also examined in terms of the values ay,=4.95 and 7y
=2.85. It is straightforward to, with an appropriate replace-
ment of FS and w, obtain the corresponding expressions to
Egs. (31) and (35) in perpendicular fields, which were used
elsewhere %1018 The orbital-limiting field H,,,(0) in each
field configuration was estimated numerically from ay(0)
=0 with ay;=01in T—0.

In determining the phase diagram [Fig. 3(a)], the onset
temperature 7, of the discontinuous H,, transition was deter-
mined as the position at which V,(g) changes sign while
verifying Vg(q) >0, and Hgp o(7) is determined, when ¢
X (a,) >0, as the line on which ¢?(e,) in H<H,, changes
sign. The above-mentioned conditions on the sign of Vi and
c® were satisfied in all of the resulting numerical data in
HI|£. As reported elsewhere,' the second order transition on
Higp oT) occurs at lower temperatures than T, and decreases
upon cooling, since, as mentioned at the end of Sec. II, the
paramagnetic depairing is stronger in higher fields and at

01y | | ‘(b):

0.3 0.4 0.5 t

FIG. 3. (a) Example of the i-r mean field phase diagram in HIIX obtained numerically, where each thick (thin) solid curve is the
discontinuous (second order) mean field transition curve. The low temperature region in 7<<0.25, where another FFLO-like vortex lattice
(Refs. 8 and 18) described by the n=1 LL modes of A, occurs, is not shown here. (b) The corresponding numerical data of Ly, defined in
the text, in clean limit. The lower (upper) solid curve denotes Lyu(f) in HII£ for A=0.5 (h=0.485), while the dashed curve is that in H||Z given

in Fig. 2 and follows from the dotted curve in Fig. 4.
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0.004 0.26 03 t 034

FIG. 4. Numerical results of L, in HII% for 7=0.485 (upper solid
curve) and A=0.5 (lower solid one) and in HIIZ for 7=0.24 (dotted
one) obtained by including contributions from the GL-quartic term
to the description of the FFLO state. The dashed line showing L,
<0 follows from Eq. (42) with y=3.65.

lower temperatures. We note that, in the case of Fig. 3(a), the
FFLO state modulating along H is overcome, in #<<0.25, by
another FFLO-like vortex state with a modulation perpen-
dicular to H and formed in the next (n=1) LL.%!8 However,
another FFLO-like state has no periodic modulation parallel
to H, implying that no specific feature is expected in tilt
deformations. For this reason, we focus here on the higher
temperature range in which the n=1 LL state does not occur.

The main result in this paper is seen in Fig. 3(b): As the
curve of Ly (T) in h=0.5 shows, where

2 2
E
—r”z(El - 4—3>, (44)
E,

SC,, proportional to Ly [see Eq. (3)] can become negative in
the FFLO state and, thus, lead to a reduction of Cyy. As
argued in Sec. I, this 6Cy, reduction is more remarkable in
higher B and at lower 7, i.e., as the paramagnetic depairing is

stronger.
In Fig. 4, results of the nodal plane’s tilt modulus E, in

various situations are shown. When L, is neglected in E,,
and only the contribution L, from F, is kept, we often see, as
in the dashed curve, negative E, values. It implies that the-
oretical approaches based on an evaluation of an inhomoge-
neity of the order parameter field A(r) only from the qua-
dratic GL term F, (Ref. 19) cannot describe the stability of
the FFLO state properly as long as the normal to FFLO
transition is discontinuous in the mean field approximation.

In contrast, once L, is included in E,, the results of E, we
obtain remain positive, as is physically required for a stable
FFLO state modulating along H, although they significantly
decrease upon cooling especially in higher fields, reflecting
the “softening” of nodal planes induced by the paramagnetic
depairing (see Sec. I). Note that the decrease of E, is not
unlimited according to our microscopic calculation, suggest-
ing that a genuine instability of the FFLO state modulating
along H does not necessarily occur. In any case, the primary
origin of the negative 6Cy, in the FFLO state is clearly this
reduction of E, upon cooling, which becomes more remark-
able in situations affected by a stronger paramagnetic depair-
ing realizable in HI|X. In this way, the physical consideration
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given in Sec. | is supported by the microscopic derivation of
the elastic moduli in Sec. II.
The reduction of Cy, is estimated based on

2 2
oC R(B,T , 45
where \(0) is the London penetration depth at T=0, and
E; 1-T/T,
R(B,T) = (El - 4—3){ . . (406)

The expression in brackets is evaluated as 3.5 in terms of the
L, result known within the weak-coupling BCS model.
Based on Fig. 3(b), R can reach —0.5 in the temperature
range just below Hppo(T). Imagining CeColns in several
tesla and, as a rough estimation, taking the values A(0)
=10’ (A) and rz==10% (A), the resulting —5Cy, values in the
FFLO state near Hyp o(7) are 2 orders of magnitude smaller
than B2/ (4 ). This small value of reduction of 6Cyy/Cyy Will
partly become larger by taking account of the dispersive
main term'” of C,, (the k dependences of the B>/4 term).

The present result may be relevant to the observation in
the ultrasound measurements,'? where the normalized sound
velocity v, has shown a reduction upon cooling through
Hgpp o for the displacements of the underlying crystal per-
pendicular to H (Lorentz mode), while no signature of a
comparable magnitude has been seen for displacements par-
allel to H (non-Lorentz mode). This remarkable anisotropy
of phenomena is an evidence of a structural change on
Hepo(T) of the vortex state. Since, strictly speaking, a pin-
ning of the nodal planes due to the crystal lattice is present in
the latter, this fact implies that the pinning of the nodal
planes is quantitatively negligible. In contrast, in the Lorentz
mode, not the nodal planes but the vortices couple to the
crystal displacement, and consequently, the observed reduc-
tion of v, in this mode in entering the FFLO state implies
some reduction of Cy4 and/or of the vortex pinning strength.
First, the overall temperature variation of v, surviving at low
enough ¢ likely reflects that of the order parameter amplitude
a, carried by the pinning strength (see Fig. 3 in Ref. 10). In
addition, the data of quantities measuring «,(T) (Refs. 2, 3,
20, and 21) show a reduction of «,(T), due to an increase of

18 upon entering the FFLO state compared to the extrapo-
lation of «, in the Abrikosov state to lower temperatures.
Thus, the relative reduction of «, and, hence, of the pinning
strength may be one origin of the v, reduction in entering the
FFLO state. On the other hand, the reduction of C,4, ob-
tained in the present work, upon entering the FFLO state,
also leads to a reduction of v, in the Lorentz mode.!® The
feature seen in Fig. 3 that the Cyy reduction is more remark-
able in higher fields is consistent with the field dependence
of the observed anomalies.'” Although the reduction of Cyy
estimated above seems to be too small to quantitatively ex-
plain the observed reduction of v,, we expect this discrep-
ancy to be partly resolved by going beyond the GL expan-
sion in A because ag has been presumably underestimated in
the GL analysis of the present case with a discontinuous H,
transition.

For comparison, 6C,, in HIIZ was also examined by add-
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ing a small noncylindrical portion with large |w,/w,],
stabilizing®'® a FFLO in HIZ, to the cylindrical FS. Al-
though, as given in Fig. 2, it shows the familiar type of
softening behavior of 6Cyy at Hgpy o, this cusplike feature is
not visible on the scale of Fig. 3 (see the dashed curve), and,
as shown there, the temperature variations of 6Cy4, and L, are
quite weak around Hpgy o. Thus, changes of the tilt response
through Hgg o in HIIZ are negligible. The presence in HIlx
and the absence in HIIZ of a clear peak effect in magnetiza-
tion data of CeColns near Hgg; o (Ref. 20) might be related to
the corresponding difference in C4y mentioned above, be-
cause a peak effect occurs, reflecting a notable change of a
vortex elastic modulus.??

Throughout this paper, we have focused on the case in
which vortex lattices in equilibrium are described in the low-
est LL. As shown elsewhere,®!® a higher LL vortex lattice
tends to occur in “clean limit,” which is defined as the case
with infinitely long quasiparticle (QP) mean free path, and in
the case with large «,,. In fact, in Fig. 3(a), the n=1 LL
vortex lattice with additional nodal lines in the plane perpen-
dicular to H occurs in much lower temperatures than the
range shown there. Such an appearance of higher LL states
due to a large ay, under a strictly parallel field to the layers
is closely related to a different issue®® of transitions between
2D vortex lattices in the large y limit induced by a tilt of the
applied field from the parallel field configuration. However,
the n=1 LL state in the present case is easily pushed down to
T=0 due to a finite but, nevertheless, quite long QP mean
free path and is expected not to occur at measurable tempera-
tures in CeColns.'® In relation to this, it will be valuable to
point out that the 2D higher LL vortex lattices due to the tilt
of the applied field?®> may be expected only when the oppo-
site relation to Eq. (9), i.e.,

138
y> —dfo a?P), (47)

is satisfied. In fact, the neglect?? of the orbital depairing ef-
fect in the case with a strictly parallel field is equivalent to
assuming the absence of structural transitions between differ-
ent Josephson vortex lattices, and this assumption is justified
only in fields higher than 1/(2e7yd?)."* For CeColns with a
weak anisotropy,® Eq. (47) is never satisfied.

In conclusion, the vortex tilt modulus C,, in the FFLO
state modulating along H may be reduced due to tilts of the
nodal planes. This C44 reduction should be remarkable espe-
cially in quasi-2D materials with a strong paramagnetic de-
pairing in the parallel field, in which the nodal planes are
fixed only weakly by the field direction, and may be an ori-
gin of the reduction of sound velocity in the Lorentz mode
upon entering the FFLO phase observed in CeColns.
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APPENDIX A:

Strictly speaking, ay(0) and other coefficients in Eq. (31),
described within the n=0 LL, are affected by a mixing of the
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n=2 LL modes in expressing the equilibrium order param-
eter A,. For instance, a,(0) should be replaced by ay(0)
—(a0)*/a,(0), where?*

[’

a,(0) = % In(h) + J dp|:%g_(77'§0p/r3)2 —f(p)

0

41 14 22
18,12+ P e -2 }
2 2 FS
- A |up?
ax= f dpf(p)<|AplzpzﬂzeXp<— 5 -
0 FS

APPENDIX B:

We work here in the conventional GL free energy

T-T.
For= f d3r[TI*PI2+§S[E |

J=XY

b
X(—idj+2eA)W[ + y2|(—id, + 2eA )P |* | + 5|\If|4

1
+—(curl 6A)? |, (B1)
8

where »>0 and A=ByZ+ SA(x). Here, the order parameter
W is assumed to be the sum of the Abrikosov solution W,
=a,¥? in the n=0 LL and its excitation a,da,(x)¥" in the
n=1 LL, where \I’(")=HZ‘I’(°)/\E‘m. Noting that (IT,+I1_)W¥
=a,(V260, %@ +W¥ D+ 52, %) and assuming the normal-
ization [(W™)" W™=, the gradient terms dependent on
da; in Eq. (B1) are rewritten in the form

Iy 2
B 2e V2
]:GL|grad= agfé?’ ! f dx({ |:W5Az(x) +—Re 5611(x):|

I'p

A 2
2

+ |:2€'}/1/25Ay(.x) - \_ Im 5al(x):| } + 'y|(9X5a1|2
r'p

+ r;2|5a1|2> : (B2)
In obtaining the |d,8a,|> term, the fact that, since
(WO W =0, 5q, decouples with A, up to the harmonic
order was used. The last term can be absorbed into the first
term of Eq. (B1) so that the mass term vanishes not at 7. but
on the straight H.,(7T) line. As shown in Ref. 17, no quadratic
terms in da, occur from the sum of the resulting |4 term
and b|y*/2.

Here, let us first examine eq. (B2) by neglecting the x
dependences. Then, when

~12 s 12
vy u+iy v
gay= T2 (B3)
V2rp
where u=uy+vz is the vortex displacement field, the fa-
mous Josephson relation
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SA=uXB, (B4)

or E=—(du/dr) X B implying a nonvanishing vortex flow re-
sistance, follows as a condition for minimizing the fluctua-
tion free energy. In fact, this Josephson relation implies the
vanishing of the static superfluid rigidity Y,, to a current
perpendicular to H, because this relation implies that 6A is
lost (eaten) by the n=1 LL fluctuation from Fg;| arad SO that
Y, , = &8F/ 8(6A)*=0.

Next, the x dependences of the fluctuation fields will be
incorporated. Further, by substituting Eq. (B4) into the mag-
netic energy term [the last term of Eq. (B1)], the main term
B%/(4m) of the vortex tilt modulus C,, is obtained from
there, while 6C,4 defined in Sec. I follows from the remain-
ing term in Eq. (B2), i.e.,

vt s p & s B [ _ B ]
a;&d.8a)] _zréyae(axu) = e D HLD
X (d.u)?, (BS)

where \(7) is the London penetration depth. It is easy to see
that the resulting expression
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OCyuy= B [1 B ] (B6)
“T16meyINDPL Ho(T)

is —BM, where M is the magnetization following from the
SC condensate. Then, the familiar total tilt modulus

B(B-47wM) BH

B7
4ar 4T (B7)

is obtained for this Abrikosov vortex lattice. In general, 6Cyy
does not have to be equivalent to —MB: As shown in the text,
0Cy, can become negative in the FFLO vortex lattice, while
-M=0F,/dB of the FFLO vortex lattice is always positive
because the magnetic field tends to destroy superconductivity
and, hence, increase the condensation energy.
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