Asymmetric $^{13}\text{C} - ^{13}\text{C}$ polarization transfer under dipolar-assisted rotational resonance in magic-angle spinning NMR

Ryutaru Ohashi and K. Takegoshi

Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan

(Received 21 June 2006; accepted 25 September 2006; published online 4 December 2006)

A two-dimensional (2D) homonuclear exchange NMR spectrum in solids often shows an asymmetric cross-peak pattern, which disturbs a quantitative analysis of peak intensities. When magnetization is prepared using cross polarization (CP), the asymmetry can naively be ascribed to nonequilibrium initial magnetization. We show, however, that the CP effect cannot fully explain the observed mixing-time dependence of the peak intensities in 2D $^{13}\text{C} - ^{13}\text{C}$ exchange spectra of [2,3-^{13}C] l-alanine (2.3-Ala) under $^{13}\text{C} - ^{1}\text{H}$ dipolar-assisted rotational resonance (DARR) recoupling, which has recently been proposed for a broadband recoupling method under magic-angle spinning. We develop a theory to describe polarization transfer in a two-spin system under DARR recoupling. By taking into account the effects of the partial spectral overlap among ^{13}C signals, which is a unique feature of DARR recoupling, and $^{1}\text{H} - ^{1}\text{H}$ flip-flop exchange, we can successfully explain the observed mixing-time dependence of the peak intensities of 2D $^{13}\text{C} - ^{13}\text{C}$ DARR exchange spectra of 2.3-Ala. A simple initial-rate analysis is also examined.

I. INTRODUCTION

Two-dimensional (2D) homonuclear exchange NMR is a useful tool for studying chemical exchange processes. Further, by monitoring polarization transfer among spins, we can assign signals and obtain geometrical information of a molecule. For example, the 2D exchange experiment using polarization transfer among ^{1}H spins by nuclear Overhauser effect (NOE) has been proposed to determine a structure of protein molecules in solution. While in solids, $^{13}\text{C} - ^{13}\text{C}$ polarization transfer was utilized to determine a structure of protein molecules such as the α-spectrin SH3 domain, where $^{13}\text{C} - ^{13}\text{C}$ polarization transfer is realized with a so-called ^{1}H-driven method. To facilitate $^{13}\text{C} - ^{13}\text{C}$ polarization transfer in solids, several $^{13}\text{C} - ^{13}\text{C}$ polarization transfer methods applicable under magic-angle spinning (MAS) have been proposed, to name a few examples, radio-frequency-driven dipolar recoupling (RFDR), double-quantum homonuclear rotary resonance (HORROR), combined rotation with nutation (CROWN), seven phase-shifted radiofrequency pulse cycles (C7), and dipolar-assisted rotational resonance (DARR). So far, DARR has been applied for signal assignment of protein molecules such as GB1 (Ref. 11) and ubiquitin. For signal assignment, short polarization-transfer times (mixing time τ_m) of ~ 10 ms, during which magnetization exchange between most of directly bonding $^{13}\text{C} - ^{13}\text{C}$ pairs can be observed, were used. To monitor polarization transfer for distant (~ 0.3 nm) $^{13}\text{C} - ^{13}\text{C}$ pairs, a longer mixing time ($\tau_m = 100$ ms) was required as shown in the 2D exchange experiment using DARR recoupling for rhodopsin. DARR with a longer mixing time has also been applied for structural analysis of selectively ^{13}C-labeled Alzheimer’s β-amyloid fibrils.

By examining several 2D $^{13}\text{C} - ^{13}\text{C}$ exchange spectra in solids, we found that intensities of a pair of cross peaks are often unequal. For example, let us examine a 2D exchange spectrum [Fig. 1(a)] of fully ^{13}C-labeled N-acetyl-l-prolylglycyll-l-phenylalanine using DARR recoupling with τ_m of 10 ms. Apparently, the cross peak corresponding to that observed at $(F1,F2)=(38.6,138.9)$ ppm is missing. Further, the $(F2, F1)$ cross peaks associated with $(F1,F2)=(28.2,174.6)$ and $(38.6,172.2)$ ppm are not appreciable. Figure 1(b) summarizes distribution of the ratio of the $(F2, F1)$ cross-peak intensities to the corresponding $(F1, F2)$ ones. In the 18 pairs of cross peaks observed, only two pairs are almost symmetric (the ratios are 0.9–1.1), and the remaining 15 pairs are asymmetric (the ratios are 0.3–0.9 or 1.1–1.3). This apparent asymmetry in the 2D exchange spectrum cannot be interpreted intuitively because the intensities of a pair should be equal when the mixing process retains microscopic reversibility and the initial magnetization is prepared nonselectively. The asymmetry in cross-peak intensities is not quite obstructive to signal assignment, however, for determination of a molecular structure quantitative signal analysis is required. In this work, we developed a theory to explain the asymmetric cross-peak intensities in 2D exchange spectra and compared with experimental results for a two ^{13}C-spin system in [2,3-^{13}C] l-alanine (2,3-Ala). The observed apparent asymmetry in 2D exchange spectra using DARR recoupling was ascribed to the use of cross polarization (CP), the character-
l-phenylalanine (Pro-Gly-Phe) was synthesized using the Fmoc method, purified with a reverse phase HPLC, and finally freeze dried. To minimize intermolecular 13C–13C coupling, [$U-^{13}$C, 15N]-labeled Pro-Gly-Phe was diluted 1:10 with unlabeled one. White crystalline needles were obtained from hot hexane and ethanol solution, which were ground for solid-state NMR.

The NMR experiments were carried out by using a Chemagnetics Infinity spectrometer operating at 100 MHz for 13C and at 400 MHz for 1H with a Chemagentic MAS probe for a 3.2 mm rotor. All experiments were done at the spinning frequency (v_s) of 20 kHz and at room temperature. DARR recoupling was done by applying 1H cw irradiation with the 1H rf intensity equal to the spinning frequency, and two-pulse phase modulation (TPPM) decoupling was used with the phase-modulation angle of ±10.5° and the rf intensity of 120 kHz. For CP enhancement, the 1H rf intensity was 50 kHz and 13C rf intensity was varied from 66 to 74 kHz stepwise.

II. EXPERIMENTAL DETAILS

[2,3-13C] l-alanine (2,3-Ala) was purchased from Cambridge isotope Laboratories, Inc, and used without purification. Fully 13C- and 15N-labeled N-acetyl-l-prolylglycyl-l-phenylalanine diluted 1:10 with unlabeled one. The spectrum was taken with DARR at $\tau_s=10$ ms. The projection spectrum in the first domain (F1) thus shows two peaks with the intensity ratio of 120:80, while that in F2 assumes thermal equilibrium (100:100). Each figure associated with the peaks denotes its relative intensity.

III. RESULT AND DISCUSSION

A. Effects of CP

In 2D exchange NMR experiments with CP, asymmetric cross-peak intensities can simply be ascribed to nonuniform CP signal enhancement. Suppose we observe a 2D exchange spectrum of two spins, A and B, with the initial magnetization being prepared by CP with an unequal intensity ratio, say, 120:80. After a mixing time long enough to achieve internal equilibrium among A and B, the intensity ratio would become 100:100 if the spin-lattice relaxation can be ignored. Then the resulting 2D spectrum may be schematically represented in Fig. 2, showing an asymmetric 2D spectrum. For the experiment with CP, it is therefore easy to explain the asymmetry in the extreme case of a long mixing time.

In the following, we examine the mixing-time dependence of peak intensities on the basis of a theory developed for 2D exchange NMR using three $\pi/2$ pulses. For 13C experiments in solids, CP enhancement is used instead of the first $\pi/2$ pulse in the original sequence. Even with this difference, the 2D exchange NMR spectrum $S(\omega_1, \tau_m, \omega_2)$ can formally be written as

$$S^*(\omega_1, \tau_m, \omega_2) = -\sum_k \sum_l \frac{1}{i(\Omega_k - \omega_2)}[\exp(L \tau_m)]_{k,l} \times \text{Re}\left[\frac{1}{j(\Omega_l - \omega_1)}\right] M_{0,l}. \quad (1)$$

The symbols in Eq. (1) carry their original meanings given in Ref. 15. We assume that the polarization-transfer process between the methyl and the methine carbons in 2,3-Ala is simply expressed by using the following exchange matrix

$$L = \begin{pmatrix} -R_{AA} & K \\ K & -R_{BB} \end{pmatrix}, \quad (2)$$

with
FIG. 3. (a) Pulse sequence for 13C–1H 2D exchange NMR using DARR recoupling during the mixing time τ_m. (b) The 13C–1H 2D exchange NMR spectrum of [2,3-1H]L-alanine taken with DARR at $\tau_m=10$ ms and the CP contact time of 700 μs. (c) The 1D 13C spectrum taken at the CP contact time of 700 μs used to estimate the CP enhancement factors. Each signal becomes doublet due to the 13C–1H J coupling.

\[K = k/2, \]

where k represents the exchange rate of the polarization transfer (A for methine and B for methyl). Note here that we consider a two-spin system with identical molar fractions. The diagonal elements in L include the spin-lattice relaxation rates R_{1l} ($l=A$ or B) and the exchange rate as

\[R_{1l} = R_{1l} + K. \]

By using L, the mixing-time (τ_m) dependence of magnetizations $[M_A(\tau_m)$ and $M_B(\tau_m)]$ is described as the following simultaneous differential equations:

\[\frac{d}{d\tau_m} \begin{pmatrix} M_A(\tau_m) \\ M_B(\tau_m) \end{pmatrix} = L \begin{pmatrix} M_A(\tau_m) \\ M_B(\tau_m) \end{pmatrix}. \]

Following the work of Jeener et al.,15 the intensities of the two diagonal peaks are given by

\[a_{AA}(\tau_m) = M_{0A} e^{-\sigma \tau_m} \left[\cosh(D\tau_m) - \frac{\delta}{D} \sinh(D\tau_m) \right], \]

and

\[a_{BB}(\tau_m) = M_{0B} e^{-\sigma \tau_m} \left[\cosh(D\tau_m) + \frac{\delta}{D} \sinh(D\tau_m) \right], \]

and those of the two cross peaks are

\[a_{AB}(\tau_m) = M_{0A} \frac{K}{D} e^{-\sigma \tau_m} \sinh(D\tau_m), \]

and

\[a_{BA}(\tau_m) = M_{0A} \frac{K}{D} e^{-\sigma \tau_m} \sinh(D\tau_m), \]

with

\[D = \sqrt{\delta^2 + K^2}, \]

\[\sigma = K + \frac{R_{1A} + R_{1B}}{2}, \]

and

\[\delta = \frac{R_{1A} - R_{1B}}{2}. \]

Equations (8) and (9) show that the intensities of the two cross peaks become unequal when their initial intensities M_{0A} and M_{0B} are unequal. Here, we consider that the unequal initial intensities are brought about as a result of different CP enhancement for A and B:

\[a_{AB}(\tau_m) = \frac{M_{0A}}{M_{0B}} = \frac{\eta_A}{\eta_B}, \]

where η_l is the CP enhancement factor for spin l.

Figure 3(b) shows the 2D DARR exchange spectrum of 2,3-Ala at the mixing time of $\tau_m=100$ ms, showing apparently asymmetric cross-peak intensities. The spectrum was taken with a CP contact time (CT) of 700 μs. The CP enhancement factors are estimated to be $\eta_A=2.38$ and $\eta_B=2.54$ from the corresponding one-dimensional (1D) CP spectrum [Fig. 3(c)] taken with the same contact time of 700 μs. While Eq. (13) gives similar cross-peak intensities $a_{AB}/a_{BA}\approx0.94$, the experimental ratio, $a_{AB}/a_{BA}\approx0.73$, is much smaller, indicating additional causes of asymmetry.

Further, to examine the mixing-time dependence of the peak intensities, we observed 2D exchange spectra at different mixing times ($\tau_m=5, 10, 20, 50, 100$, and 200 ms) with two different CT values (700 and 50 μs). For CT=50 μs, the CP enhancement factors are estimated to be $\eta_A=2.06$ and $\eta_B=0.84$ from the corresponding 1D spectrum (not shown). Figures 4(a)–4(d) show the mixing-time dependence at CT =700 μs [(a) and (b): diagonal-peak intensities, (c) and (d): cross-peak intensities], and Figs. 4(e)–4(h) at CT=50 μs [(e) and (f): diagonal-peak intensities, (g) and (h): cross-peak intensities]. The observed intensities for CT=700 μs are least-squares fit to Eqs. (6)–(9) using K and M_0 as adjustable parameters ($M_0=M_{0l}/\eta_l$ and $l=A, B$). The spin-lattice relaxation rates R_{1l} necessary for fitting were determined from initial decays of each magnetization (not shown) observed by using Torchia’s sequence,18 and were found to be $R_{1A}=0.19$ Hz and $R_{1B}=12$ Hz. The dotted lines in Fig. 4 are the best-fit curves using the best-fit exchange rate $k=30$ Hz. The
observed intensities at CT=50 \mu s are fitted to Eqs. (6)–(9) using \(M_l \) as an adjustable parameter with \(k=30 \) Hz. In Fig. 4, the dotted lines apparently deviate from the experimental data (squares), confirming further that the different CP enhancement cannot fully explain the observed asymmetry.

Further, we plot the observed ratios \(a_{AB}/a_{BA} \) in Fig. 5 for CT=700 \mu s (a) and CT=50 \mu s (b) with the calculated lines using Eq. (13). Although Eq. (13) predicts the constant ratios for the mixing time (dotted lines), the observed ratios from the experimental data (squares) apparently depend on the mixing time \(\tau_m \). It indicates that the simple two-site model [Eq. (5)] is inconsistent with the experiments. To explain the observed mixing-time dependence of the ratio of the cross-peak intensities, we modify the two-site model in the following section.

B. The four-site model

Here, we separate each \(l \) magnetization (\(l=A \) or \(B \)) into two groups: \(M_{1l}(\tau_m) \) is the magnetization involved in the transfer and \(M_{2l}(\tau_m) \) is the magnetization not involved in the transfer (Fig. 6). We assume that \(M_{1l} \) and \(M_{2l} \) can exchange magnetizations with a rate \(k_l \) (the intraspin exchange rate), and the ratio of the initial magnetizations is given by

\[
M_{1l}(\tau_m=0) : M_{2l}(\tau_m=0) = \lambda_l : 1 - \lambda_l. \tag{14}
\]

The exchange is therefore represented by using the following differential equations:

\[
\frac{d}{d \tau_m} \begin{pmatrix} M_{A1}(\tau_m) \\ M_{A2}(\tau_m) \\ M_{B1}(\tau_m) \\ M_{B2}(\tau_m) \end{pmatrix} = L \begin{pmatrix} M_{A1}(\tau_m) \\ M_{A2}(\tau_m) \\ M_{B1}(\tau_m) \\ M_{B2}(\tau_m) \end{pmatrix}. \tag{15}
\]

The exchange matrix \(L \) in Eq. (15) includes the intraspin exchange rate \(k_l \) for the \(l \) spin (\(l=A \) or \(B \)) and the exchange rate (\(k=2K \)) between \(A \) and \(B \) as

\[a_{AB}/a_{BA}, \text{ at } \text{CT}=700 \mu s (a) \text{ and } \text{CT}=50 \mu s (b). \text{ Dotted lines are the calculated ones using the values of Eq. (13), and solid lines are those using Eq. (17) with the best-fit parameters. Squares represent the experimental data.} \]

\[a_{AB}/a_{BA}, \text{ at } \text{CT}=700 \mu s (a) \text{ and } \text{CT}=50 \mu s (b). \text{ Dotted lines are the calculated ones using the values of Eq. (13), and solid lines are those using Eq. (17) with the best-fit parameters. Squares represent the experimental data.} \]
A solution of Eq. (15) is formally written as

$$
\begin{align*}
&M_{A1}(\tau_m) = \exp(\mathbf{L} \tau_m) \begin{pmatrix}
\lambda_A M_A(\tau_m = 0) \\
(1-\lambda_A)M_A(\tau_m = 0) \\
\lambda_B M_B(\tau_m = 0) \\
(1-\lambda_B)M_B(\tau_m = 0)
\end{pmatrix},
\end{align*}
$$

which is solved numerically to calculate the cross- and diagonal-peak intensities at τ_m.

By using this four-site model [Eq. (17)] with λ_A, λ_B, K, k_A, k_B, and M_0 as adjustable parameters, we achieved better fitting to the observed mixing-time dependences of the signal intensities of the diagonal and the cross peaks at CT = 700 μs [solid lines in Figs. 4(a)–4(d)]. Other parameters of R_{1A}, R_{1B}, η_A, and η_B were those determined separately as described above. The best-fit exchange rate $k = 160$ Hz and the best-fit intraspin exchange rates $k_A = 56$ Hz and $k_B = 2.6$ Hz were obtained. The observed intensities at CT = 50 μs were fitted to Eq. (17) with λ_A, λ_B, and M_0 as adjustable parameters with the best-fit k, k_A, and k_B at CT = 700 μs. The solid lines in Fig. 4 are the best-fit ones with the parameters $\lambda_A = 0.67$ and $\lambda_B = 0.57$ for CT = 700 μs, and $\lambda_A = 0.45$ and $\lambda_B = 0.84$ for CT = 50 μs.

The solid lines in Fig. 5 are the ratios a_{AB}/a_{BA} calculated with the best-fit parameters, and are qualitatively consistent with the experimental data. The apparent deviation is ascribed to errors associated with the small cross-peak intensities.

In the above, it was shown that the four-site model (Fig. 6) can explain the observed mixing-time dependence of the diagonal and cross peaks. Hence, each spin is separated into two groups, one is involved in transfer and the other is not involved, and there is an exchange between them. We ascribe this separation to the partial spectral overlap that occurs in the 1H-driven recoupling (Ref. 4) and 13C–1H dipolar-driven recoupling such as DARR. In such recoupling, the 13C–1H dipolar interaction is introduced during the mixing time by either simply turning off 1H decoupling for the former or applying a 13C–1H recoupling method for the latter. The 13C line broadening due to 13C–1H dipolar couplings realizes spectral overlap for a pair of 13C spins with different chemical shifts necessary for energy conservation in 13C–13C polarization transfer. In other words, 13C–13C polarization transfer occurs only for a pair of 13C spins with a particular internuclear orientation to have common resonance frequencies.

C. Effects of partial spectral overlap under DARR and 1H flip-flop motion

To appreciate the spectral overlap under DARR, we observed 13C–1H recoupled signals of the methyl and the methine carbons of 2,3-Ala separately [Figs. 7(b) and 7(c)] by using the sequence in Fig. 7(a). For a 13C–1H spin system under DARR recoupling, the 13C signal becomes a doublet with the recoupled 13C–1H interaction. One such example is the spectrum of the methine carbon shown in Fig. 7(b). In this spectrum, a symmetric lineshape is observed as a result of powder summation of 13C–1H doublet peaks. One of the doublet is a 13C transition associated with the 1H spin state of $1/2^+$ and the other with $1/2^-$. In Fig. 7(b), we...
schematically draw a 13C–1H doublet of the methine carbon together with the observed spectrum for explanation. Further, we assume that the corresponding methyl signal of the pair is a singlet peak as illustrated in Fig. 7(c). In this particular case, one of the doublet peaks of the methine carbon has spectral overlap with the methyl singlet peak, while the other peak in the doublet does not. However, the 1H flip-flop transition caused by the 1H–1H dipolar interactions would exchange the positions of the 13C signals of the methine doublet.\(^1\) The whole exchange process for this pair can then be expressed by using the following equation:

$$
\frac{d}{d\tau_m} \begin{pmatrix} M_{A1} \\ M_{A2} \\ M_{B1} \end{pmatrix} = \begin{pmatrix} -R_{1A} - k_A/2 - K & k_A/2 & K \\ k_A/2 & -R_{1A} - k_A/2 & 0 \\ K & 0 & -R_{1B} - K \end{pmatrix} \begin{pmatrix} M_{A1} \\ M_{A2} \\ M_{B1} \end{pmatrix},
$$

(18)

with the initial magnetizations as $M_{A1}(\tau_m=0):M_{A2}(\tau_m=0):M_{B1}(\tau_m=0) = 0.5:0.5:1$. Note here that we assumed a singlet methyl peak, i.e., $M_{B2}(\tau_m)=0$. On the other hand, for a pair with a smaller splitting for the methine doublet, both of the doublet peaks can participate in the transfer and the corresponding equation becomes

$$
\frac{d}{d\tau_m} \begin{pmatrix} M_{A1} \\ M_{A2} \\ M_{B1} \end{pmatrix} = \begin{pmatrix} -R_{1A} - K & K & 0 \\ K & -R_{1A} - K & 0 \\ 0 & 0 & -R_{1B} - K \end{pmatrix} \begin{pmatrix} M_{A1} \\ M_{A2} \\ M_{B1} \end{pmatrix},
$$

(19)

with the initial magnetizations as $M_{A1}(\tau_m=0):M_{A2}(\tau_m=0):M_{B1}(\tau_m=0) = 1:1$. The phenomenologically deduced 4×4 equation [Eq. (15)] is thus a result of a weighted sum of exchange equations, such as Eqs. (18) and (19), for all pairs in a powdered sample. For example, a simple sum of Eqs. (18) and (19) results in the initial magnetizations of $M_{A1}(\tau_m=0):M_{A2}(\tau_m=0):M_{B1}(\tau_m=0):M_{B2}(\tau_m=0) = 0.75:0.25:1:0$, which leads to unequal initial magnetizations. Orientational dependence of the CP enhancement\(^2\) can also affect the unequal initial magnetizations. At a short contact time, 13C magnetizations with the stronger 13C–1H dipolar couplings are enhanced more than those with the weaker 13C–1H couplings, leading to the different ratios of the initial magnetizations for the different CT values.

In this work, we attributed the intraspin exchange to 3H flip-flop dynamics. However, the obtained intraspin exchange rates $k_A=70$ Hz and $k_B=1.4$ Hz are much slower than the 1H dipolar fluctuation rate (~ 30 kHz) in l-alanine obtained from the spin-lattice relaxation study.\(^2\) The diffusion rate at $\nu_R=20$ kHz in the present work is not directly com-

![FIG. 8. ^1H spectrum of [2,3-13C] l-alanine at the MAS frequency of 20 kHz obtained by a single $\pi/2$ pulse.](Image)

D. Examination of initial buildup

Here, we assume that the intraspin exchange between spins $l1$ and $l2$ is negligible for a short mixing time ($\tau_m \approx 50$ ms). Then, the problem becomes a two-site exchange and Eqs. (6)–(9) can be used with slight modifications. Equations (8) and (9) may be rewritten as
The assumptions with the two-sites model should be carefully obtained by using the four-site model. Therefore, the analysis lines in Fig. 9 represent the best-fit curves with the best-fit values of k_{AB} and k_{BA}, determined separately, were used in the fitting. Solid lines in Fig. 9 represent the best-fit curves with the best-fit values of $k=80$ Hz at CT=700 μs and $k=85$ Hz at CT=50 μs. The best-fit k values (80–85 Hz) are much larger than the best-fit k of 30 Hz obtained by using the data up to $τ_m=200$ ms (Fig. 4) and are closer to the best-fit k value (106 Hz) obtained by using the four-site model. This indicates that the two-site model is not applicable for the longer $τ_m$ region, where the effects of the intraspin diffusion become appreciable.

By further assuming $k \gg R_{1A}$ and R_{1B}, we have

$$a_{AB}(τ_m) \sim a_{AB}^0 e^{-κτ_m} \sinh(Dτ_m)$$

and

$$a_{BA}(τ_m) \sim a_{BA}^0 e^{-κτ_m} \sinh(Dτ_m),$$

and the observed cross-peak intensities for $τ_m \leq 50$ ms were fitted to Eqs. (20) and (21) by taking a_{AB}^0, a_{BA}^0, and k as adjustable parameters. Again R_{1A} and R_{1B} determined separately, were used in the fitting. Solid lines in Fig. 9 represent the best-fit curves with the best-fit values of $k=80$ Hz at CT=700 μs and $k=85$ Hz at CT=50 μs. The best-fit k values (80–85 Hz) are much larger than the best-fit k of 30 Hz obtained by using the data up to $τ_m=200$ ms (Fig. 4) and are closer to the best-fit k value (106 Hz) obtained by using the four-site model. This indicates that the two-site model is not applicable for the longer $τ_m$ region, where the effects of the intraspin diffusion become appreciable.

By further assuming $k \gg R_{1A}$ and R_{1B}, we have

$$a_{AB}(τ_m) \sim a_{AB}^0 [1 - \exp(-κτ_m)]$$

and

$$a_{BA}(τ_m) \sim a_{BA}^0 [1 - \exp(-κτ_m)].$$

It is also possible to fit the data to Eqs. (22) and (23) (dotted lines in Fig. 9), and we obtained $k=129$ Hz at CT=700 μs and $k=140$ Hz at CT=50 μs. The obtained k values using Eqs. (20) and (21) (80–85 Hz) and using Eqs. (22) and (23) (129–140 Hz) deviate significantly from $k=106$ Hz obtained by using the four-site model. Therefore, the analysis of 2D DARR exchange NMR data using the initial-rat e assumptions with the two-sites model should be carefully done.

IV. CONCLUDING REMARKS

The DARR recoupling examined in this work corresponds to that classified as the second-order DARR in Ref. 10, because the chemical-shift difference of the two spins are smaller than the 13C–2H dipolar broadening. For the first-order DARR, which works for a pair of spins whose spectral overlap is achieved between one of the spinning sidebands of one of the pair spin and the center band of the other, we can still apply the present theory; for the spin whose sideband is overlapped with the center band of the other, almost all of its magnetization is involved in transfer, and for the spin whose center band is overlapped with the other’s sideband, only a part of magnetization is involved.

The asymmetry found in 2D exchange spectra using other homonuclear recoupling methods, for example, RDFR, C7, etc., can most likely be ascribed to nonuniform CP enhancement. Lastly, we would like to recommend NOP (Refs. 22 and 23) instead of CP for a fully 13C-labeled molecule containing methyl groups, because NOP has two advantages over CP: (i) the signal enhancement is more uniform, and (ii) the enhancement factor is larger.

Note added in proof. It has recently come to the author’s attention that the effect of CP has also been examined by S. Caldarelli and L. Emsley, J. Magn. Reson. 130, 233 (1998).

ACKNOWLEDGMENTS

This research was financially supported in part by CREST, JST, and in part by Special Coordination Funds from Promoting Science and Technology of MEXT.

1R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of nuclear magnetic resonance in one and two dimensions (Clarendon, Oxford, 1987).

