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Statistics of rare strong bursts in autocatalytic stochastic
growth with diffusion
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A general model of autocatalytic stochastic growth with diffusion is analytically and numerically
investigated. Exact analytical results for the intermittency exponents and the probability of rare
strong bursts in an infinite system are presented. Finite-size saturation effects, leading to the
stretched exponential growth of statistical moments, are further considered. These analytical
predictions are checked in numerical simulations. ©2003 American Institute of Physics.
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Itinerancy is a characteristic property not only of chaotic,
but also of stochastic systems where fluctuations are in
duced by external noises. These external noises are us
ally Gaussian because they result from the combined ac
tion of many independent random forces. Nonetheless
stochastic response of a system may show large deviation
from the Gaussian statistics. In strong rare fluctuations,
it would visit regions of its phase space which are not
accessible for typical trajectories. Such stochastic dynam
ics can be viewed as an alteration of rare strong bursts
and long periods with moderate fluctuations. The origin
of stochastic itinerancy„also known as intermittency… can
be traced to the presence of repellers. Whenever a phas
trajectory passes close to a repeller, it becomes sensitiv
to noise and strong fluctuations are thus developing. This
behavior is especially interesting for spatially extended
systems. The presence of repellers is a common propert
of chaotic and stochastic itinerancies. In our contribu-
tion, we provide a detailed analysis of a model that serves
as a paradigm for stochastic itinerancy in extended sys-
tems with local diffusive coupling and is related to syn-
chronization phenomena in cross-coupled lattices of cha
otic maps.

I. INTRODUCTION

The process of autocatalytic stochastic growth with d
fusion is described by

]z

]t
5@a1h~x,t !#z1D

]2z

]x2 , ~1!

where the parametera is the mean growth rate of the re
field z(x,t), D is its diffusion constant, andh(x,t) is a
Gaussian white noise of intensitys with ^h(x,t)&50 and the
autocorrelation function

a!Electronic mail: mikhailov@fhi-berlin.mpg.de
9531054-1500/2003/13(3)/953/9/$20.00
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^h~x,t !h~x8,t8!&52sd~ t2t8!d~x2x8!. ~2!

We interpret this stochastic equation in the Ito sense
consider only the one-dimensional case. The Stratonov
interpretation of Eq.~1! is briefly discussed in Appendix A.

The model~1! defines a dynamical system with a simp
structure. In absence of noise, it has a linear repeller az
50 for each spatial pointx. Local diffusive coupling be-
tween such repellers is present. The noise is applied
multiplicative way, so that it randomly modulates local e
pansion rates. Note that the model does not include any n
linearities.

Because of its general form, the model~1! is found in
many different applications. Autocatalytic stochastic grow
with diffusion typically arises when spatially distribute
chemical reactions or reproduction of biological species
der random fluctuation of reaction or reproduction rates
considered.1,2 The repeller structure is characteristic f
activator-inhibitor reaction-diffusion systems where the r
of autocatalytic growth of an activator species can be fluc
ating in space and in time.3 By a nonlinear transformation o
variables, the model~1! can be expressed as the Karda
Parisi–Zhang ~KPZ! equation for stochastic growth o
crystals.4 A variant of the stochastic equation~1! with a vec-
tor field z has been used to describe the phenomenon
generation of strong magnetic astrophysical fields, known
‘‘magnetic dynamo.’’5,6 A similar equation describes the de
velopment of material structures in the early inflationa
stage of the Universe.7 On the other hand, it also arises whe
synchronization in two coupled arrays of chaotic maps
considered.8 Finally, statistical cluster analysis of rando
fields generated by this equation shows strong similari
with the intermittency observed in hydrodynam
turbulence.9

Though ‘‘chaotic itinerancy,’’ which is the subject of thi
Focus Issue, has rather broad meaning, it typically arise
chaotic hopping between various weak attractors or sad
embedded in a high-dimensional phase space. For exam
Kaneko showed that chaotic itinerancy observed in globa
© 2003 American Institute of Physics
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coupled chaotic maps can be associated with the existen
a network of multiple fragile~Milnor! attractors.10 Although
his model had many degrees of freedom and unraveling o
complex phase space structure is still an unsolved challe
ing problem, it was pointed out~see, e.g., Ref. 11! that the
behavior of an orbit in the vicinity of one of such attracto
shares common features with the so-called ‘‘on–off interm
tency,’’ which can readily be observed in low-dimension
dynamical systems.

The on–off intermittency was first reported by Fujisa
and Yamada in a system of two coupled chaotic maps.12 Due
to the symmetry, the system had an invariant manifold
which the synchronized chaotic attractor was embedde13

When the coupling strength was slightly less than the thre
old for chaotic synchronization, the difference of the va
ables of the two maps exhibited strong intermittent bursti
This was a consequence of creation of ‘‘holes’’ on the inva
ant manifold, resulting in occasional long excursions of
orbit escaping from the synchronized chaotic attrac
through such holes. Such intermittent dynamics of orbits
be described by a single linear multiplicative stochastic p
cess, which well reproduces some of its statisti
properties.13

Recently, cross-coupled spatiotemporally chaotic s
tems have received much attention.14,15Considering synchro-
nization in two coupled map lattices, it was pointed out8 that
the linearized field of the difference between the local sta
of the two coupled map lattices can be described by a m
tivariate multiplicative stochastic process with diffusion, i.
by a discrete version of the stochastic autocatalytic sys
~1!. The desynchronization transition in cross-coupled c
otic map lattices can be regarded as a variant of spatiot
poral on–off intermittency. Therefore, a detailed analysis
the stochastic autocatalytic system~1! is also important for
better understanding of synchronization phenomena for
tiotemporal chaos.

A remarkable property of the stochastic equation~1! is
that it is exactly solvable.2,16,17 The evolution of statistica
moments of the fieldz(x,t) is governed by the same linea
operator as the Hamiltonian for a system of quantum ide
cal particles interacting via a contact binary attractive pot
tial, whose exact spectrum is known.18 The variational equa-
tions for optimal fluctuations, corresponding to the mod
~1!, are identical~up to a certain transformation! to the non-
linear Schro¨dinger equation~NSE! which is exactly inte-
grable using the inverse scattering methods.19,20Note that the
NSE is, in turn, a classical limit for the quantum Schro¨dinger
equation describing a system of identical particles with
tractive binary interactions.

Figure 1 shows a characteristic spatial distribution
the fieldz generated by the process of autocatalytic stoch
tic growth with diffusion~1!. It contains a number of burst
of varying strengths. Such bursts can be viewed as la
local excursions from the low-density quiescent state. T
aim of this paper is to systematically discuss the statis
of such rare strong bursts in model~1!. In Sec. II, exact
results for an infinite system are presented. Section II
devoted to approximate analytical estimates for finite-s
saturation effects in this model. Numerical simulations of
ownloaded 05 Mar 2008 to 130.54.110.22. Redistribution subject to AIP lic
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stochastic differential equation~1! are reported in Sec. IV
The paper ends with the discussion of obtained results
Appendix A the Stratonovich interpretation of the consider
stochastic differential equation is briefly discussed. The
gorithm, used for numerical integration of Eq.~1!, is pre-
sented in Appendix B.

II. EXACT ANALYTICAL RESULTS FOR AN INFINITE
SYSTEM

The stochastic model~1!, describing autocatalytic
growth with diffusion, is linear and its exact analytical sol
tions can be constructed. Such exact results for an infini
extended system are presented in this section.

A. Intermittency exponents

In order to characterize the growth property of the fie
we focus on the growth rates of various statistical mome
of the field variable. Let us denote thekth statistical moment
of the fieldz(x,t) by

Mk~ t !5^z~x,t !k&. ~3!

Here and in the following all averages are taken with resp
to an ensemble of different realizations of the stochastic p
cessz(x,t). We also consider relative statistical momen
i.e., the ratios of thekth moment to thekth power of the first
momentMk(t)/M1(t)k, and define the intermittency expo
nentsLk as

Lk5 lim
t→`

1

t
lnF Mk~ t !

M1~ t !kG . ~4!

If Lk is nonvanishing, the relative moments grow expone
tially with time. It means that the evolution of the probabili
density ofz(x,t) is not self-similar.

In absence of diffusion (D50), Eq. ~1! reduces to a
simple Langevin equation

]z

]t
5@a1h~ t !#z. ~5!

By solving the Fokker–Planck equation describing the pr
ability density function of the variablez(t), it can be shown2

that Mk(t) grows with time as

FIG. 1. Typical snapshot of the fieldz(x,t). The system size isN55000.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp



c

e
a
in
ou
a

b

ic

en
r

f

ts
n

st
ts

n

a-

ro-

e
ria-
the

-

.

nal

ns,
for-
nd

955Chaos, Vol. 13, No. 3, 2003 Statistics of rare strong bursts

D

Mk~ t !;exp@kat1~k22k!st#, ~6!

and the intermittency exponent forD50 is

Lk5~k22k!s. ~7!

The growth rate for system~1! with diffusion has been
earlier determined by A.S.M.~see Refs. 2, 16, and 17!. The
statistical momentMk5^z(x,t)k& for this system obeys the
following evolution equation:

Ṁ k5kaMk2L̂kMk , ~8!

where the linear self-adjoint differential operatorL̂k is given
by

L̂k52D(
i 51

k
]2

]xi
2 2s (

i , j 51,iÞ j

k

d~xi2xj !. ~9!

The long-time asymptotics of thekth statistical moment for
t→` is therefore determined by the lowest eigenvaluemk of
this operator as

Mk~ t !;exp@~ka2mk!t#. ~10!

The linear operatorL̂k is identical to a Hamiltonian for a
system ofk quantum particles interacting via a binary attra
tive potentialu(x)52sd(x). The exact energy levels~that
is, the eigenvalues ofL̂k) for this quantum system ar
known.18 Different energy states correspond to various p
titions of k particles into groups, each forming a certa
bound state. The deepest energy level corresponds to a b
state of allk particles and the respective eigenvalue for
infinite domainxP(2`,`) is18

mk52
1

12

s2

D
~k32k!. ~11!

Hence, the asymptotic behavior of the moments is given

Mk~ t !;expFkat1
s2

12D
~k32k!t G , ~12!

and theexact intermittency exponent for the autocatalyt
stochastic growth with diffusion is16

Lk5
1

12

s2

D
~k32k!. ~13!

By comparing the intermittency exponents~7! and ~13!, we
see that autocatalytic growth with diffusion shows ev
higher deviations from the Gaussian statistics than the
spective process in absence of diffusion.

The growth law~12! holds for the Ito interpretation o
the stochastic differential equation~1!. In the Stratonovich
interpretation, the coefficienta is additionally renormalized
by noise~see Ref. 16!. However, the intermittency exponen
are the same for both interpretations and are always give
Eq. ~13!.

B. Statistics of bursts

A typical realization of the fieldz(x,t) includes bursts
separated by long intervals of low activity~cf. Fig. 1!. Each
burst can be viewed as a rare strong fluctuation of the
chastic fieldz(x,t). The exact statistics of rare strong burs
ownloaded 05 Mar 2008 to 130.54.110.22. Redistribution subject to AIP lic
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for autocatalytic growth with diffusion has previously bee
determined.2,16,17Introducing the functionalP@z(x,t)# which
gives the probability density for various statistical realiz
tions of the fieldz(x,t), a solution for this functional in the
form of a path integral is obtained as

P@z~x,t !#5E Dr~x,t !expF2E dtS 2H1E dx żr D G ,
~14!

wherer(x,t) is the auxiliary real field and

H5E dxS Dr
]2z

]x2 1sr2z2D . ~15!

For simplicity we takea50 here and in the following.
The optimal trajectories for the considered random p

cess correspond to the minima of ‘‘action’’

S5E dtS 2H1E dx żr D ~16!

and obey variational equations

ż5
dH

dr~x,t !
, ṙ52

dH

dz~x,t !
, ~17!

or, explicitly,

ż52srz21D
]2z

]x2 , ~18!

ṙ522szr22D
]2r

]x2 . ~19!

The probabilityp of an exponentially rare fluctuation can b
estimated by finding the respective solution of these va
tional equations, determining the corresponding value of
action S, and taking in the saddle-point approximationp
;exp(2S).

The variational equations~18! and ~19! are effectively
equivalent to the nonlinear Schro¨dinger equation

i ċ522c2c* 2
]2c

]x2 ~20!

for the complex fieldc(x,t). To establish this correspon
dence, we additionally write the nonlinear Schro¨dinger equa-
tion for the complex conjugate functionc* ,

i ċ* 52c* 2c1
]2c*

]x2 . ~21!

Variational equations~18! and ~19! are obtained from Eqs
~20! and~21!, if we formally treatc andc* as two indepen-
dent variables and perform transformationst→2 i t , c→z,
andc* →sr. Additionally, the coordinatex should be appro-
priately rescaled.

Because the nonlinear Schro¨dinger equation~NSE! is
completely integrable, the same holds for the variatio
equations~18! and ~19!. Each soliton solution of the NSE
generates a certain solution of the variational equatio
which can be obtained by applying the above-given trans
mations. The NSE solitons form a two-parameter family, a
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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are defined by their width and velocity. Immobile NSE so
tons ~with the zero velocity! give rise to the following solu-
tions of variational equations:16

zq~x,t !5
q1/2exp~qt!

cosh@~q/D !1/2~x2x0!#
. ~22!

The validity of such solutions can be verified by direct su
stitution. We see that they represent bursts localized a
arbitrary pointx0 in the coordinate space and growing exp
nentially with time. Such burst solutions depend on a f
parameterq that specifies the width of a burst and, at t
same time, determines its rate of exponential growth.

Generally, variational equations for a certain stocha
process describe optimal fluctuations, i.e., the most prob
realizations of a stochastic process satisfying certain c
straints ~such as, e.g., initial conditions!. Localized bursts
~22! yield the most probable realizations of the stochas
field z(x,t) that exponentially grow at any given rateq. If
such realizations are exponentially rare, their probability c
be evaluated by taking burst solutions~22! of the variational
equations and determining the actionS for such solutions.
Thus, we find that the probabilityp(q,T) to find a strong
burst with a growth rateq existing within a time intervalT is
given by2,16

p~q,T!5C~q,T!expS 2
4q3/2D1/2T

3s D , ~23!

whereC(q,T) is a preexponential factor which remains u
known.

In addition to standing bursts which are described by
~22!, traveling bursts corresponding to traveling NSE so
tons are possible. Such traveling burst solutions have b
constructed and analyzed.2,16 They are similar to the burs
solutions~22! and also exponentially grow with time, whil
moving in a certain direction. The probability of such tra
eling bursts, growing at a rateq and traveling at velocityV,
can also be estimated.2,16 It is, however, less than that for th
standing bursts with the same rate of growth. Therefore,
statistics is dominated by standing bursts.

If we define a functionf (q) through

p~q,T!5C~q,T!exp~2T f~q!! ~24!

it is given, according to Eq.~23!, by

f ~q!5
4D1/2

3s
q3/2. ~25!

Note that only the probability of exponentially rare fluctu
tions can be estimated using the saddle-point approxima
for the path-integral solution. This implies that the produ
T f(q) in the exponent in the distribution~24! should be
large,T f(q)@1.

A similar analysis can be performed for the system wi
out diffusion (D50). Integrating Eq.~5!, we get

z~ t1T!5z~ t !expF E
t

t1T

h~ t8!dt82sTG , ~26!
ownloaded 05 Mar 2008 to 130.54.110.22. Redistribution subject to AIP lic
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where the integral of the stochastic processh(t) should be
taken according to the Ito interpretation~see Appendix A!.
The stochastic growth rate over time intervalT is then de-
fined as

q5
1

T E
0

T

h~ t8!dt82s. ~27!

As a sum of independent Gaussian noises,q is itself a Gauss-
ian random variable with^q&52s and ^Dq2&52s/T.
Therefore, its probability distribution is

p~q,T!;expF2
~q1s!2T

4s G ~28!

and the functionf (q) in absence of diffusion is given by

f ~q!5
~q1s!2

4s
. ~29!

Note that, in contrast to Eqs.~23! and~25!, these results are
not restricted to strong rare bursts.

C. The Legendre transform method

The exact asymptotic behavior of all statistical mome
Mk(t) of a random fieldz in the limit of long time is already
known and given~for a50) by Mk(t);exp(Lkt) with the
intermittency exponents~13!. Suppose that we can represe
such statistical moments as a linear superposition of so
components growing exponentially with time, that is as

Mk~ t !5E
0

`

exp~kqt!p~q,t !dq, ~30!

where p(q,t) can be viewed as statistical weights of su
components. Suppose further that such weights are expo
tially small and therefore we can writep(q,t)5C(q,t)
3exp@2tf(q)#. Then the integral decomposition~30! takes
the form

Mk~ t !5E
0

`

C~q,t !exp@~kq2 f ~q!!t#dq. ~31!

As we know, the momentsMk(t) grow exponentially
with time in the long-time limit. This means that the integr
~31! should be dominated att→` by a single componen
with a certain growth rateqk* . This value ofq is determined
by the condition that the exponent in the integrand
~31! has a maximum atq5qk* . If the exponentlk for the
growth of kth statistical moment is defined aslk

5 limt→`t21 ln Mk(t), it should be related to the functio
f (q) by

lk5max
q

@kq2 f ~q!#. ~32!

When all exponentslk are known, the functionf (q) can
therefore be determined by the inverse Legendre transf
of lk .

In the considered problem of autocatalytic stochas
growth with diffusion, we havelk5(s2/12D)(k32k) and
thus its inverse Legendre transform yields
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp



-

th
ra
gh
d

xp

c
om

te

e

s

r-
’

a
t

n

r

-

t
im

a
em

ch a
at

th

ar-
s,

e
e
not
-

ent
ly

957Chaos, Vol. 13, No. 3, 2003 Statistics of rare strong bursts

D

f ~q!5
4D1/2

3s S q1
s2

12D D 3/2

. ~33!

It can be verified by direct substitution of function~33! into
the integral~31! that this integral indeed yields in the long
time limit the statistical momentsMk(t) with the intermit-
tency exponents~13!.

The ‘‘components,’’ characterized by various grow
ratesq, were formally introduced above through an integ
decomposition of statistical moments. For sufficiently hi
growth rates, these components can however be identifie
strong bursts, considered in the previous section. The e
nentially rare bursts~22!, growing at various ratesq, are
independent and well separated in space. Therefore, the
tributions from such rare bursts should also satisfy a dec
position~30!, where, however, the weightsp(q,t) would al-
ready represent probability densities to find a burst with
rateq within time t.

Hence, it interesting to compare the functionsf (q)
yielded by the inverse Legendre transform of the exact in
mittency exponents@Eq. ~33!# with the respective functions
~25! obtained using optimal fluctuation arguments. We s
that these two functions coincide forq@s2/D. This means
that, for high enough growth ratesq, the ‘‘components’’ in
the integral decomposition~30! can indeed be identified a
corresponding to individual rare bursts.

It can be argued thatq05s2/D represents the characte
istic growth rate of a ‘‘normal’’ burst and that ‘‘strong’
bursts should have the ratesq@q0 . Note that, by appropriate
rescaling of time, coordinates, and the variablez, all param-
eters in the considered stochastic equation~1! can be set to
unity. This means that, without loss of generality, we c
takes5D51 in all our results. We see that a ‘‘normal’’ burs
is characterized by a unit growth rateq051, in contrast to
the ‘‘strong’’ bursts with q@1. We conjecture that the
optimal-fluctuation estimate~24! and ~25! holds, actually,
only for such strong bursts.

As follows from Eq.~32!, the growth of thekth statisti-
cal moment of the fieldz(x,t) at t→` is dominated by the
component withq5qk* , corresponding to the maximum i
Eq. ~32!. Explicitly, we obtain

qk* 5
s2

12D
~3k221!. ~34!

Therefore, the growth of statistical moments of low orde
(k;1) is dominated by normal bursts withq;q0 , whereas
high statistical moments withk@1 are determined by expo
nentially rare strong bursts.

III. FINITE-SIZE SATURATION EFFECTS

In the above-presented analysis, we have assumed
the system is always sufficiently large to possess within t
t a burst with the growth rateqk* giving a dominant con-
tribution to the growth of thekth statistical moment. But the
probability to find such bursts decreases with time
exp@2f(qk* )t# and, starting from some time moment, a syst
ownloaded 05 Mar 2008 to 130.54.110.22. Redistribution subject to AIP lic
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of a finite size would not be large enough to possess su
strong burst. This leads to the saturation of intermittency
sufficiently large times in a finite system.

A. Saturation time

The mean number of bursts with the growth rateq found
in a system of the lengthL and persisting within timet can
be estimated as

N~q,t !5LC0~q,t !exp@2t f ~q!#, ~35!

where the preexponential factorC0 is unknown. If this mean
number is large, we will always observe a burst with grow
rate q within time t in the system of sizeL, while if it is
small, such a burst will practically never be found. The ch
acteristic timet(q), separating these two statistical regime
is roughly estimated from the conditionN(q,t)51 as

t~q!5
ln Leff

f ~q!
, ~36!

where an ‘‘effective system size’’Leff5LC0 is introduced.
According to our previous analysis, the growth of th

kth momentMk(t) should be dominated by a burst with th
rateqk* . However, in a finite system, such a rare burst can
be observed whent.t(qk* ). Thus, the characteristic satura
tion time of Mk(t) is given by

tsat5
ln Leff

f ~qk* !
~37!

or, explicitly by using Eqs.~29! and ~33!,

tsat~k!5
1

k2s
ln Leff ~D50!, ~38!

tsat~k!5
6D

k3s2 ln Leff ~D.0!. ~39!

Therefore, higher order moments shall saturate earlier.

B. Stretched exponential growth after saturation

For t.tsat(k), the growth ofMk(t) is no longer domi-
nated by the bursts with the rateq5qk* . Instead, it is deter-
mined by the bursts with the maximum rateq5q† within
time t which are possible in a system of lengthL. This rate
q† can be found by inverting Eq.~36!. It is given by

q†~ t !5 f 21S ln Leff

t D . ~40!

Under saturation conditions, the growth rate of the mom
Mk(t) in the long-time limit can therefore be approximate
estimated as

Mk~ t !;exp@$kq†~ t !2 f ~q†~ t !!%t#. ~41!

For the diffusionless case (D50), we obtain from Eq.
~29!

q†~ t !5~4s ln Leff!
1/2t21/22s ~42!

and

Mk~ t !;exp@2kst1k~4s ln Leff!
1/2t1/22 ln Leff#. ~43!
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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Analyzing this result, we notice that in the saturated regi
the growth of statistical moments is characterized by
stretched exponential. The dependence of lnMk on time con-
tains the terms linear int and proportional tot1/2.

In the presence of diffusion (D.0), we obtain from Eq.
~33!

q†~ t !52
s2

12D
1S 3s ln Leff

4D1/2 D 2/3

t22/3, ~44!

and

Mk~ t !;expF2
ks2t

12D
1kS 3s ln Leff

4D1/2 D 2/3

t1/32 ln LeffG . ~45!

Thus, stretched exponential growth of statistical mome
with a nonlineart1/3 growth component in addition to th
linear exponential growth is found in this case after the sa
ration. Note that, according to Eq.~44!, the rateq† of the
dominant burst decreases with time and, at some time,
approach the growth rateq0 of a ‘‘normal’’ burst. Our ap-
proximation, based on the assumption that statistical m
ments are determined by a single strongest burst found in
system of a given size, then becomes invalid. Various ‘‘n
mal’’ bursts withq;q0 will provide substantial contributions
to statistical moments. Therefore, some deviations from
stretched exponential law~45! with the exponent 1/3 are ex
pected at large times.

Summarizing, we have found that, in a finite system
lengthL, the growth of statistical momentsMk(t) obeys the
exponential law with the intermittency exponent~7! or ~13!
characteristic for infinite systems until timetsat. After tsat,
finite-size saturation effects become dominant and
stretched exponential law~43! or ~45! is instead observed
The normalized statistical moments do not depend on t
after saturation and are given by

Mk~ t !

M1~ t !k ;exp@~k21!ln Leff#. ~46!

Thus, the intermittency is suppressed in a finite system,
saturated relative moments scale with the system size
ln Leff .

The estimates in this subsection were obtained by c
sidering probabilities of bursts. Strictly speaking, we sho
have used only the probability distribution~23! and the re-
spective function~25!. Instead, the corrected function~33!,
yielded by the inverse Legendre transform, has been
ployed. As we shall see in Sec. IV, this leads to good agr
ment with numerical simulations.

IV. NUMERICAL SIMULATIONS

To integrate Eq.~1!, we employed the explicit Eule
method for stochastic differential equations with the tim
stepDt varying from 0.000 01 to 0.01. The coordinate st
was always set atDx51.0, so that the simulated system si
L coincided with the numberN of grid points. The system
sizes in our computations varied from 104 to 107. We had to
consider very large systems because effects of exponen
rare statistical fluctuations were investigated. The comp
tions were therefore performed on a vector computer at
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Yukawa Institute for Theoretical Physics of Kyoto Unive
sity. Without loss of generality, the parametersa ands were
fixed ata50 ands51.0 in all our simulations; the diffusion
constant was always chosen asD53.0. Periodic boundary
conditions were used. As the initial condition, a sequence
random numbers from an interval between 0 and 1 has b
chosen. Integrations of the stochastic differential equation~1!
with such initial conditions and different noise realizatio
yield an ensemble of fields$zm(x,t)%. For each fieldm in the
ensemble, spatial means of@zm(x,t)#k were first computed a
each time moment. Afterwards, these spatial means were
ditionally averaged over the ensemble of up to 250 differ
realizations of the fieldz(x,t) to obtain statistical moment
Mk(t). Details of the employed numerical algorithm are d
scribed in Appendix B.

A typical stochastic realization of the fieldz(x,t) show-
ing rare strong bursts is presented in Fig. 1. Figure 2 disp
the growth of various relative moments in the system of s
N520 000. We see that initially they increase exponentia
but then the growth becomes saturated. The saturated va
of relative statistical moments depend on the moment or
k. The initial interval with the exponential growth could b
extended by running integrations with very large system
Figure 3 shows in the logarithmic scale the initial growth

FIG. 2. ~Color online! Growth of relative statistical momentsMk(t)/M1(t)k

of various ordersk for a system of sizeN520000.

FIG. 3. ~Color online! Growth of relative momentsMk(t)/M1(t)k of differ-
ent ordersk in the system of sizeN5107.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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relative statistical moments of various orders in a mu
larger system of sizeN5107. The linear dependence o
ln@Mk(t)/M1

k(t)# on time is now evident.
The slopes of the curves, corresponding to different m

ment ordersk in Fig. 3, yield respective intermittency expo
nentsLk . Figure 4 displays these numerically determin
intermittency exponentsLk as a function ofk ~open circles!.
The solid line in Fig. 4 is obtained by nonlinear least-squa
curve fitting to the numerical data. Fitting has been p
formed by using cubic dependenceA(k32k) @cf. Eq. ~13!#
but treatingA as an adjustable parameter. A very good agr
ment with the statistical data has been found forA50.05.
Note, however, that this numerical value is substantia
larger than the theoretical predictionA5s2/12D.0.03. Pos-
sible origins of this discrepancy are discussed in Sec. V.

According to Eq.~46!, the saturated values of the rel
tive momentsMk(t)/M1(t)k should depend linearly both o
(k21) and on lnN. The linear dependence on (k21) is
confirmed numerically in Fig. 5, where saturated values
relative moments forD53.0 are plotted as functions ofk for
the systems of different sizes. We see that the data points
on straight lines which cross the horizontal axis atk51, with
the slopes depending on the system sizeN. Figure 6 further
displays these slopes as a function of the logarithm of

FIG. 4. ~Color online! Intermittency exponentsLk for moments of different
ordersk in the system of sizeN5107. The solid line shows fitting of the
numerical data to the analytical predictionLk5A(k32k) with A50.05.

FIG. 5. ~Color online! Saturated values of relative statistical momen
Mk(t)/M1(t)k in systems of different sizes.
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system sizeN ~circles!. The statistical data can be well fitte
by the dependence ln(N/C) with the fitting parameterC
.25 ~solid line!, which is in agreement with the theoretic
predictions. Note that the effective sizes of considered s
tems were, therefore,Leff5N/C.

In the saturation regime fort.tsat, the growth of statis-
tical moments should be described by the stretched expo
tial law ~45! with the exponent 1/3. According to Eq.~45!,
the combination

gk~ t !5@ ln Mk~ t !2kbt1 ln Leff#
3/k3, ~47!

whereb52 s2/12D in the considered case, should increa
linearly with time and be independent fromk. This analytical
prediction is numerically tested in Fig. 7 for the system
size N520 000. To perform the test, we first notice tha
according to Eq.~45!, (1/t)ln Mk(t) should approach a con
stant equal tokb in the long-time limit. In numerical simu-
lations, we find that (1/t)ln Mk(t) indeed becomes constant
very large times, though the respective constant is a li
different from the theoretical prediction. We use the lon
time asymptotics of the computed statistical moments to
fine an effective systematic growth ratebeff , which replaces
b in Eq. ~47!. Then, we calculate functionsgk(t) based on

FIG. 6. ~Color online! Dependence of saturated values of relative mome
Mk(t)/M1(t)k on the system sizeN. The logarithmic dependence is appa
ent; the effective system sizeLeff is estimated from this dependence asLeff

5N/25.

FIG. 7. ~Color online! Scaling collapse of statistical moments in syste
with diffusion. Functionsgk(t) for moments of different ordersk are dis-
played for the system of sizeN520 000.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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the numerically computed statistical moments: the syst
atic growth rate is subtracted from the logarithm lnMk(t)
which is then shifted by lnLeff . After cubing the result, we
find that the curves for different moment ordersk collapse
after this transformation, as expected in the analytical pre
tion. A linear dependence ont, which confirms thet1/3 be-
havior of lnMk(t), is clearly seen in a broad initial time in
terval. Subsequently, some deviations from the lin
dependence of functionsgk(t) develop and the collapse o
the curves becomes less pronounced.

Finally, we present results of numerical investigatio
for the system without diffusion (D50). Figure 8 shows the
computed intermittency exponents for this system~open
circles!. Full agreement with the analytical prediction~7! is
found. Figure 9 presents a test of scaling collapse for
growth of statistical moments. In this case, the satura
growth of statistical moments is described by the stretc
exponential law~43! with the exponent of 1/2. According to
this law, the combination

hk~ t !5@ ln Mk~ t !1kst1 ln Leff#
2/k2 ~48!

should be independent of the moment orderk and should
depend linearly on timet. Both these properties are con
firmed with good accuracy by numerical simulations.

FIG. 8. ~Color online! Intermittency exponentsLk for moments of different
ordersk in the system without diffusion (D50). The solid line shows the
analytical predictionLk5k22k.

FIG. 9. ~Color online! Scaling collapse of statistical moments for the syste
without diffusion (D50). Functionshk(t) for moments of different orders
k are displayed.
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V. DISCUSSION

In this article, we have summarized previous exact
sults for the intermittency exponents and the probability
rare strong bursts, derived new analytical estimates for s
ration effects in finite systems, and tested these analyt
predictions in numerical simulations. Generally, our nume
cal tests yield good agreement with the analytical pred
tions. In the problem of autocatalytic stochastic growth w
diffusion, the predictedk32k dependence of the intermit
tency exponents is confirmed, and the principal predictio
for the saturated growth regime are successfully verifi
However, some differences for the linear coefficientA in the
intermittency exponentsLk5A(k32k) were also found. Ac-
cording to Eq.~13!, this coefficient is given byA5s2/12D
and, thus, should be equal toA'0.03 fors51 andD53. In
our simulations, the best fit of numerical data has been
tained, however, forA50.05. For the same diffusion con
stant D53, this value should be analytically expected f
somewhat higher noise intensity,s5A5/351.291. Similar
systematic discrepancies between exact values and nume
simulations have previously been found and extensively
cussed for the Kardar–Parisi–Zhang~KPZ! model.21 Their
origin apparently lies in the fact that finite-differenc
schemes, used for the integration of stochastic differen
equations with spatially delta-correlated white noise, can
truly reproduce the fractal nature of their solutions exhibiti
strong fluctuations at arbitrarily short length scales. For
KPZ model, the finite-difference simulations yielded nume
cal values of the diffusion constant which differed from
exact value, but the scaling exponents were, nonethe
correctly reproduced in these simulations.21 Similarly, this
numerical difficulty has only a limited effect on our simula
tions. The numerically obtained intermittency exponents
different from the theoretical prediction, and the agreem
could not be improved by going to smaller coordinate ste
~mesh steps! Dx. But once effective renormalization of th
noise intensity has been performed, the finite-differen
scheme described in Appendix B yields very good agreem
with the analytical prediction. The saturation effects at la
times, which are not sensitive to the noise intensity, are a
correctly reproduced in the simulations.

A comment concerning the relationship between
studied system and the KPZ model should finally be giv
The properties of the KPZ model have been actively inv
tigated and many results on the universality class of the K
model and its statistical behavior are known.22 The reduction
of the KPZ model to the problem of autocatalytic stochas
growth involves, however, a nonlinear~logarithmic! transfor-
mation of variables. Hence, statistical predictions for t
KPZ model cannot be directly transferred to the stocha
equation~1!. While being equivalent, the two systems ther
fore allow one to analyze different facets of stochastic it
erancy~see also Ref. 23!.
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APPENDIX A: THE ITO AND STRATONOVICH
INTERPRETATIONS

Any stochastic Langevin equation, including our ba
equation~1!, can be defined using either the Ito or the St
tonovich interpretations.2,24 Roughly speaking, one can sa
that the Stratonovich interpretation holds when the wh
noise in a Langevin equation represents a limit of a conti
ous noise with a vanishingly small, but finite correlatio
time. On the other hand, the Ito interpretation is applica
when the noise is discontinuous and its values are not co
lated at any times. The Ito interpretation is convenient
describing effects of internal noise in chemical reactio
whereas the Stratonovich interpretation is usually emplo
to study the effects of external fluctuations in electric c
cuits. Both interpretations correspond to the same Fokk
Planck equation for the probability distribution and there
simple prescriptions, converting one interpretation into
other ~see Refs. 2 and 24!.

The analytical results for the problem of autocataly
stochastic growth have been presented by us in this ar
using the Ito interpretation of the stochastic differential eq
tion ~1!. The respective analysis for the Stratonovich int
pretation of this equation has been performed in previ
publications.2,16,17 The only difference then is that in th
Stratonovich interpretation, Eq.~12!, describing exponentia
growth of statistical momentsMk(t) in the long-time limit, is
modified, i.e., the coefficienta in this equation gets a con
stant correction proportional to the noise intensity. The in
mittency exponents~13! and probability distributions~23!
are the same for both interpretations.

In the Stratonovich interpretation, the standard rules
differential calculus are applicable. In contrast to this, spe
rules should be used in the Ito interpretation when variab
are changed or integrals are taken.24

APPENDIX B: THE NUMERICAL INTEGRATION
ALGORITHM

Here we explain the numerical integration algorith
used in the simulations. The original Langevin equation

]z~x,t !

]t
5az~x,t !1D

]2z~x,t !

]x2 1h~x,t !z~x,t !, ~B1!

whereh(x,t) is spatiotemporally white noise,

^h~x,t !&50,
~B2!

^h~x,t !h~x8,t8!&52sd~x2x8!d~ t2t8!.

First we spatially discretize

]zi~ t !

]t
5azi~ t !1D

zi 11~ t !22zi~ t !1zi 21~ t !

Dx2

1h i~ t !zi~ t !, ~B3!

where we definedx5 iDx. The correlation of the noise i
now given by

^h i~ t !&50, ^h i~ t !h j~ t !&5
2s

Dx
d i , jd~ t2t8!. ~B4!
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The original equation is thus transformed to a multivaria
Langevin equation. We discretize this equation tempora
using the explicit Euler scheme:

zi~ t1Dt !5zi~ t !1azi~ t !Dt

1D
zi 11~ t !22zi~ t !1zi 21~ t !

Dx2 Dt

1zi~ t !A2sDt

Dx
j i~ t !, ~B5!

wherej i(t) is a random variable drawn independently fro
the identical normal Gaussian distribution with mean 0 a
variance 1. Note that the temporal integration given by t
numerical scheme corresponds to the Ito integral.

We checked the validity of the above-given discretiz
tion scheme using several values forDx ~between 0.1 and
1.0! and Dt ~between 0.000 01 and 0.01! numerically. The
statistical momentŝz(x,t)q& of the field variable obtained
using different values ofDx andDt agreed within statistica
fluctuation forq51,2,3,4. In this sense, the above-given d
cretization scheme gives consistent results independen
the mesh size used in the computations, hence the estim
intermittency exponents are also consistent. In the m
simulation, we mostly usedDx51.0 in order to attain large
system size.
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