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A general model of autocatalytic stochastic growth with diffusion is analytically and numerically
investigated. Exact analytical results for the intermittency exponents and the probability of rare
strong bursts in an infinite system are presented. Finite-size saturation effects, leading to the
stretched exponential growth of statistical moments, are further considered. These analytical
predictions are checked in numerical simulations.2@3 American Institute of Physics.
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Itinerancy is a characteristic property not only of chaotic, (p(x, 1) p(x',t"))=2s8(t—t") S(x—X"). 2)

but also of stochastic systems where fluctuations are in-

duced by external noises. These external noises are usu- We interpret this stochastic equation in the Ito sense and
ally Gaussian because they result from the combined ac- consider only the one-dimensional case. The Stratonovich
tion of many independent random forces. Nonetheless, interpretation of Eq(1) is briefly discussed in Appendix A.
stochastic response of a system may show large deviations The model(1) defines a dynamical system with a simple
from the Gaussian statistics. In strong rare fluctuations, structure. In absence of noise, it has a linear repeller at

it would visit regions of its phase space which are not =0 for each spatial poink. Local diffusive coupling be-
accessible for typical trajectories. Such stochastic dynam- tween such repellers is present. The noise is applied in a
ics can be viewed as an alteration of rare strong bursts multiplicative way, so that it randomly modulates local ex-
and long periods with moderate fluctuations. The origin  pansion rates. Note that the model does not include any non-
of stochastic itinerancy(also known as intermittency) can  linearities.

be traced to the presence of repellers. Whenever a phase Because of its general form, the modg) is found in
trajectory passes close to a repeller, it becomes sensitive many different applications. Autocatalytic stochastic growth
to noise and strong fluctuations are thus developing. This with diffusion typically arises when spatially distributed
behavior is especially interesting for spatially extended chemical reactions or reproduction of biological species un-
systems. The presence of repellers is a common property der random fluctuation of reaction or reproduction rates are
of chaotic and stochastic itinerancies. In our contribu-  considered:?> The repeller structure is characteristic for
tion, we provide a detailed analysis of a model that serves activator-inhibitor reaction-diffusion systems where the rate
as a paradigm for stochastic itinerancy in extended sys- of autocatalytic growth of an activator species can be fluctu-
tems with local diffusive coupling and is related to syn- ating in space and in tineBy a nonlinear transformation of
chronization phenomena in cross-coupled lattices of cha- variables, the modell) can be expressed as the Kardar—
otic maps. Parisi-Zhang (KPZ) equation for stochastic growth of
crystals? A variant of the stochastic equatiéh) with a vec-

tor field z has been used to describe the phenomenon of
I. INTRODUCTION generation of strong magnetic astrophysical fields, known as
“magnetic dynamo.”®® A similar equation describes the de-
velopment of material structures in the early inflationary
stage of the UniversOn the other hand, it also arises when
9z pr sync_hronizatiqn in two _co_upled arrays of Chaotic maps is
—=[a+9(x,1)]z+D—5, (1) considered. Finally, statistical cluster analysis of random
at 20 fields generated by this equation shows strong similarities
with the intermittency observed in hydrodynamic
turbulence’

Though “chaatic itinerancy,” which is the subject of this
Focus Issue, has rather broad meaning, it typically arises as
chaotic hopping between various weak attractors or saddles
embedded in a high-dimensional phase space. For example,
dElectronic mail: mikhailov@fhi-berlin.mpg.de Kaneko showed that chaotic itinerancy observed in globally

The process of autocatalytic stochastic growth with dif-
fusion is described by

where the parametet is the mean growth rate of the real
field z(x,t), D is its diffusion constant, andy(x,t) is a
Gaussian white noise of intensisywith ( 7(x,t))=0 and the
autocorrelation function
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coupled chaotic maps can be associated with the existence of 40
a network of multiple fragilgMilnor) attractors® Although

his model had many degrees of freedom and unraveling of its

complex phase space structure is still an unsolved challeng- 30
ing problem, it was pointed ousee, e.g., Ref. 1ithat the
behavior of an orbit in the vicinity of one of such attractors

shares common features with the so-called “on—off intermit- no20
tency,” which can readily be observed in low-dimensional
dynamical systems. 10 |

and Yamada in a system of two coupled chaotic naBue 1 l
to the symmetry, the system had an invariant manifold in 0 - I | mulx “ Lm
which the synchronized chaotic attractor was embedtled. 0 1000 2000 3000 4000 5000
When the coupling strength was slightly less than the thresh- X
old for chaotic synchronization, the difference of the vari- g5 1 Typical snapshot of the fiekdx,t). The system size itl=5000.
ables of the two maps exhibited strong intermittent bursting.
This was a consequence of creation of “holes” on the invari-
ant manifold, resulting in occasional long excursions of thestochastic differential equatiofl) are reported in Sec. IV.
orbit escaping from the synchronized chaotic attractorrhe paper ends with the discussion of obtained results. In
through such holes. Such intermittent dynamics of orbits camppendix A the Stratonovich interpretation of the considered
be described by a single linear multiplicative stochastic prostochastic differential equation is briefly discussed. The al-
cess, which well reproduces some of its statisticalgorithm, used for numerical integration of E@.), is pre-
properties-3 sented in Appendix B.

Recently, cross-coupled spatiotemporally chaotic sys-
tems have received much attent_i’é‘ﬁ?(?onsidering SYNchro- || EXACT ANALYTICAL RESULTS FOR AN INEINITE
nization in two coupled map lattices, it was pointed®dbt  gysTEM
the linearized field of the difference between the local states ) o )
of the two coupled map lattices can be described by a mul- Theé stochastic model(1), describing autocatalytic
tivariate multiplicative stochastic process with diffusion, i.e., 9rowth with diffusion, is linear and its exact analytical solu-
by a discrete version of the stochastic autocatalytic systerions can be constructed. Such exact results for an infinitely
(1). The desynchronization transition in cross-coupled chagXtended system are presented in this section.
otic map lattices can be regarded as a variant of spatiotenx. |ntermittency exponents
poral on—off intermittency. Therefore, a detailed analysis of
the stochastic autocatalytic systdf) is also important for
Esstea::rﬁrizgil_ng of synchronization phenomena for sp of the fi_eld variable. Let us denote tkth statistical moment

A remarkable property of the stochastic equati@pis of the fieldz(x,t) by
that it is exactly solvablg&!®!” The evolution of statistical M (1) ={(z(x,1)¥). (3)
moments of the fiel&(x,t) is governed by the same linear in the followi I tak ith ¢
operator as the Hamiltonian for a system of quantum identi-Here and in the following all averages are taken with respec

. . : . . . to an ensemble of different realizations of the stochastic pro-
cal particles interacting via a contact binary attractive poten-

. . o cessz(x,t). We also consider relative statistical moments,
tial, whose exact spectrum is knowhThe variational equa- (1)

tions for optimal fluctuations, corresponding to the modeli'e" the ratios of thé&th moment to théth power of the first
. . ! . momentM (t)/M(t)¥, and define the intermittency expo-
(1), are identicalup to a certain transformatipno the non- (D/M4(1) y exp

linear Schrdinger equation(NSE) which is exactly inte- nentsA, as

The on—off intermittency was first reported by Fujisaka l
l ll ‘ l

In order to characterize the growth property of the field,
yve focus on the growth rates of various statistical moments

grable using the inverse scattering methbtf Note that the e 1 | My(t)
NSE is, in turn, a classical limit for the quantum Salirger Ak—:ﬂ?'” M (D[ @

equation describing a system of identical particles with at-

tractive binary interactions. If A is nonvanishing, the relative moments grow exponen-
Figure 1 shows a characteristic spatial distribution oftially with time. It means that the evolution of the probability

the fieldz generated by the process of autocatalytic stochasdensity ofz(x,t) is not self-similar.

tic growth with diffusion(1). It contains a number of bursts In absence of diffusion=0), Eq. (1) reduces to a

of varying strengths. Such bursts can be viewed as largéimple Langevin equation

local excursions from the low-density quiescent state. The

aim of this paper is to systematically discuss the statistics —=[a+ 7(t)]z 5)

of such rare strong bursts in moddl). In Sec. Il, exact o

results for an infinite system are presented. Section Il iBy solving the Fokker—Planck equation describing the prob-

devoted to approximate analytical estimates for finite-sizeability density function of the variablg(t), it can be showh

saturation effects in this model. Numerical simulations of thethat M (t) grows with time as
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M, (t)~exd kat+ (k*—Kk)st], (6) for autocatalytic growth with diffusion has previously been
determined*®!/Introducing the functionalP[ z(x,t)] which
gives the probability density for various statistical realiza-
A= (k?>—K)s. (7)  tions of the fieldz(x,t), a solution for this functional in the
form of a path integral is obtained as

and the intermittency exponent fér=0 is

The growth rate for systerfil) with diffusion has been

earlier determined by A.S.Msee Refs. 2, 16, and L7The .

statistical momeni = (z(x,t)*) for this system obeys the P[Z(X't)]:f Dp(x,t)ex _f dt _H+j dxzp ||,

following evolution equation: (14)
M =kaM—LM,, (8)  wherep(x,t) is the auxiliary real field and

where the linear self-adjoint differential operator is given #z

by : peralqris g Hzf dx(DpWJrs,fzz). (15)

k 2 k . .. . .
~ d For simplicity we takew=0 here and in the following.
b= Dizl W_Si,j;l‘{i#j X =Xj). ©) The optimal trajectories for the considered random pro-

. I . o cess correspond to the minima of “action”
The long-time asymptotics of thie¢h statistical moment for

t—oo is therefore determined by the lowest eigenvaliyeof B .

this operator as S= ] dil —H+ | dx2 (16)
My (t) ~exd (ke — wi)t]. (100 and obey variational equations
The linear operatof.k is identical to a Hamiltonian for a _ SH _ SH

system ofk quantum particles interacting via a binary attrac- = m, pP== S2(x.1) 17

tive potentialu(x)=—sd8(x). The exact energy levelghat ' ’

is, the eigenvalues of,) for this quantum system are Of. explicitly,

known2® Different energy states correspond to various par- 927

titions of k particles into groups, each forming a certain 7=2spz°+D —, (18)

bound state. The deepest energy level corresponds to a bound X

state of allk particles and the respective eigenvalue for an Pp

infinite domainx e (—,%) is!® pZ—ZSZpZ—DW. (19

12 . . .

T B(k3— k). (11  The probabilityp of an exponentially rare fluctuation can be

estimated by finding the respective solution of these varia-
Hence, the asymptotic behavior of the moments is given bytional equations, determining the corresponding value of the

2 action S, and taking in the saddle-point approximatipn
Mk(t)~exp{kat+ —(K3=K)t|, (12 ~exp(=9.
12D The variational equationgl8) and (19) are effectively

and theexact intermittency exponent for the autocatalytic €quivalent to the nonlinear Sclaioger equation
stochastic growth with diffusion 18 e

18, i¢//=—2¢//2¢*—m
- S5 (=K. (13)

(20

A
for the complex fieldy(x,t). To establish this correspon-

By comparing the intermittency exponer® and(13), we  dence, we additionally write the nonlinear Satirger equa-

see that autocatalytic growth with diffusion shows evention for the complex conjugate functiof* ,

higher deviations from the Gaussian statistics than the re- -

spective process in absence of diffusion. i(;[f* — 22yt Iy 21)
The growth law(12) holds for the Ito interpretation of ax?

the stochastic differential equatidit). In the Stratonovich Variational equationg18) and (19) are obtained from Egs.

mterplretatlon, the coefficient is adt_:hﬂona!ly renormalized (20) and(21)., if we formally treaty andy* as two indepen-
by noise(see Ref. 15 However, the intermittency exponents ) . )
dent variables and perform transformatidas —it, ¥—z,

are the same for both interpretations and are always given b M s .
Eq. (13), Xndw — sp. Additionally, the coordinat& should be appro-

priately rescaled.

Because the nonlinear Schiinger equation(NSE) is
completely integrable, the same holds for the variational
A typical realization of the fieldz(x,t) includes bursts equations(18) and (19). Each soliton solution of the NSE
separated by long intervals of low activi(gf. Fig. 1). Each  generates a certain solution of the variational equations,
burst can be viewed as a rare strong fluctuation of the stoahich can be obtained by applying the above-given transfor-
chastic fieldz(x,t). The exact statistics of rare strong burstsmations. The NSE solitons form a two-parameter family, and

B. Statistics of bursts
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are defined by their width and velocity. Immobile NSE soli- where the integral of the stochastic procegs$) should be
tons (with the zero velocity give rise to the following solu- taken according to the Ito interpretatidgsee Appendix A

tions of variational equation$: The stochastic growth rate over time intervialis then de-
U fined as
q-“exp(qt)
Z (X, 1) = . 22 1 (7
a0 = st (/D) A x—xo) ] @ q= ?f p(t)dt’ —s. (27)
0

The validity of such solutions can be verified by direct sub—AS a sum of independent Gaussian noiseis. itself 4 Gauss-
stitution. We see that they represent bursts localized at an b SIS,

. . ; . . lan random variable with(q)=—s and (Aqg?)=2s/T.
arbitrary pointx, in the coordinate space and growing expo- . R A

. o : Therefore, its probability distribution is
nentially with time. Such burst solutions depend on a free
parameterg that specifies the width of a burst and, at the (q+9)T
same time, determines its rate of exponential growth. p(q,T)~exp{ T T s

Generally, variational equations for a certain stochastic
process describe optimal fluctuations, i.e., the most probabfnd the functiorf(q) in absence of diffusion is given by
realizations of a stochastic process satisfying certain con- (q+s)?
straints (such as, e.g., initial conditionsLocalized bursts f(q)= 7s
(22) yield the most probable realizations of the stochastic
field z(x,t) that exponentially grow at any given rate If Note that, in contrast to Eq§23) and(25), these results are
such realizations are exponentially rare, their probability camot restricted to strong rare bursts.
be evaluated by taking burst solutiof®?) of the variational
equations and determining the acti@nfor such solutions.
Thus, we find that the probabilitp(q,T) to find a strong
burst with a growth rate existing within a time interval is
given by**® The exact asymptotic behavior of all statistical moments

M (t) of a random fieldz in the limit of long time is already
4q%¥2DY2T known and given(for a=0) by M(t)~exp(At) with the

p(q.T)=C(a.T)exp — 3s ' intermittency exponent&l3). Suppose that we can represent
such statistical moments as a linear superposition of some
whereC(q,T) is a preexponential factor which remains un- components growing exponentially with time, that is as
known.

In addition to standing bursts which are described by Eq.  \, (t)= Jmexp(kqt)p(q,t)dq, (30)
(22), traveling bursts corresponding to traveling NSE soli- 0
tons are possible. Such traveling burst solutions have be
constructed and analyz&d® They are similar to the burst
solutions(22) and also exponentially grow with time, while
moving in a certain direction. The probability of such trav-
eling bursts, growing at a ratpand traveling at velocity/,
can also be estimateéd? It is, however, less than that for the
standing bursts with the same rate of growth. Therefore, the
statistics is dominated by standing bursts. Mk(t):f

If we define a functiorf(q) through

(28)

(29

C. The Legendre transform method

(23

Phere p(q,t) can be viewed as statistical weights of such
components. Suppose further that such weights are exponen-
tially small and therefore we can write(q,t)=C(q,t)

X exfg —tf(q)]. Then the integral decompositidi30) takes

the form

:C<q,t>exp[<kq—f(q))t]dq. (31)

As we know, the momentd/,(t) grow exponentially

p(q,T)=C(q,T)exp —Tf(q)) (24)  with time in the long-time limit. This means that the integral
(31) should be dominated dt—-« by a single component
it is given, according to Eq23), by with a certain growth ratg} . This value ofg is determined
4D by the condition that the exponent in the integrand of
f(q) = ——q32. (25) (31) has a maximum atj=qj; . If the exponent\, for the
3s growth of kth statistical moment is defined a,

y _ =lim_ ..t tInM(t), it should be related to the function
Note that only the probability of exponentially rare fluctua- f(q) by

tions can be estimated using the saddle-point approximation

for the path-integral solution. This implies that the product ~ A=maxkq—f(q)]. (32)
Tf(g) in the exponent in the distributio(24) should be q
large, Tf(q)>1. ~ When all exponents\, are known, the functiorf(q) can
A similar analysis can be performed for the system with-therefore be determined by the inverse Legendre transform
out diffusion D =0). Integrating Eq(5), we get of \y.
ot In the considered problem of autocatalytic stochastic
. - . _ 2 3
2(t+T)=2(t)ex f p(tHdt' —sT|, (26) gromh Wlth diffusion, we havaxk—(s_/12D)(k —k) and
t thus its inverse Legendre transform yields
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fa)=—5g|a* 15p (33 strong burst. This leads to the saturation of intermittency at

4D1’2( g2 )3/2 of a finite size would not be large enough to possess such a
sufficiently large times in a finite system.

It can be verified by direct substitution of functi¢83) into
the integral(31) that this integral indeed yields in the long- A. Saturation time
time limit the statistical momentM (t) with the intermit-
tency exponentsl3).

The “components,” characterized by various growt
ratesq, were formally introduced above through an integra
decomposition of statistical moments. For sufficiently high ~ N(q,t)=LCq(q,t)exd —tf(q)], (35)
growth rates, these components can however be identified a

strong bursts, considered in the previous section. The expc\:/\—lShere the preexponential fact@y is unknown. If this mean

nentially rare burst$22), growing at various ratesg, are humber .iS !arge, we.wiII always obserye a burs.t W.ith. g'rowth
independent and well separated in space. Therefore, the Corna_teq within time t n the system of sizé, while if it is
tributions from such rare bursts should also satisfy a decoms-ma”.’ s_uch a burst wil pra_ctlcally never be f‘?“r_‘d- The_char-
position (30), where, however, the weightg(q,t) would al- f'ictenstlc tlme_t(q), separating these_ _two statistical regimes,
ready represent probability densities to find a burst with a roughly estimated from the conditid(q,t)=1 as
rate g within time t. In Lo

Hence, it interesting to compare the functiofiéy) t(q)= T (36)
yielded by the inverse Legendre transform of the exact inter- ) ) o
mittency exponentEEq. (33)] with the respective functions Where an “effective system size¢;=LC, is introduced.
(25) obtained using optimal fluctuation arguments. We see According to our previous analysis, the growth of the
that these two functions coincide fop>s%/D. This means KN m*omentM «(t) should be dominated by a burst with the
that, for high enough growth rateg the “components” in rateq, . However, in a finite system, such a rare burst cannot

the integral decompositiof80) can indeed be identified as P& observed whetr>t(qi). Thus, the characteristic satura-

The mean number of bursts with the growth rqteound
h in a system of the length and persisting within timé& can
Ibe estimated as

corresponding to individual rare bursts. tion time of M(t) is given by
It can be argued thaqo=52/ D represents the character- In Lgg
istic growth rate of a “normal” burst and that “strong” tsat:f(q—*) (37)
k

bursts should have the rates q,. Note that, by appropriate

rescaling of time, coordinates, and the variahlall param-  or, explicitly by using Eqs(29) and (33),

eters in the considered stochastic equatibncan be set to 1

unity. This means that, without loss of generality, we can  tg(k)= kTsln Ler (D=0), (38
takes=D=1 in all our results. We see that a “normal” burst

is characterized by a unit growth ratg=1, in contrast to 6D

the “strong” bursts with g>1. We conjecture that the tsalK) = (3zinLer  (D>0). (39)
optimal-fluctuation estimaté24) and (25 holds, actually,

only for such strong bursts. Therefore, higher order moments shall saturate earlier.

As follows from Eq.(32), the growth of thekth statisti-
cal moment of the field(x,t) att—co is dominated by the B Stretched exponential growth after saturation
component withq=gqj , corresponding to the maximum in

Eq. (32). Explicitly, we obtain For t>t.,(k), the growth ofM(t) is no longer domi-

nated by the bursts with the rate=q; . Instead, it is deter-
52 mined by the bursts with the maximum rage=q" within
o Zﬁ(3k2— 1). (34  timet which are possible in a system of lendth This rate
q' can be found by inverting E436). It is given by

Therefore, the growth of statistical moments of low orders In Lo

(k~1) is dominated by normal bursts witi~q,, whereas qT(t)=fl(T)- (40)
high statistical moments witk>1 are determined by expo-

nentially rare strong bursts. Under saturation conditions, the growth rate of the moment

M(t) in the long-time limit can therefore be approximately
estimated as

lll. FINITE-SIZE SATURATION EFFECTS M () ~exd {kq'(t)—f(q'(t))}t]. (41

In the above-presented analysis, we have assumed thgt FOr the diffusionless cased(=0), we obtain from Eg.
the system is always sufficiently large to possess within tim 29)
t a burst with the growth rate; giving a dominant con- q'(t)=(4sInLyp) Y2 Y2—s (42)
tribution to the growth of théth statistical moment. But the
probability to find such bursts decreases with time asand
exd —f(gf)t] and, starting from some time moment, a system M, (t)~exd —kst+k(4sInLeg)YaY?—InLyy]. (43
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Analyzing this result, we notice that in the saturated regime
the growth of statistical moments is characterized by a
stretched exponential. The dependence ofijron time con- _ K=3.5

™)

=
=
]
s
=]

-
o

tains the terms linear ih and proportional ta*2 2 k=3.0 )
In the presence of diffusiorD(>0), we obtain from Eq. = 4 e Pl ]
(33 = B e
t )= SZ + 3S|n LEﬁ 2/3t_2/3 a4 E. 5 .’I.':.',___,. g R ;:'_1_5 _________
QM=+ 2p7z , (44) = F, o
o ul
-‘-\_\_\_\_\_\_‘—\_
and k=05
kst 3sIn Ly 23 -5
~ — + 1/3_ _ 0 100 200 300 400 500
M (t) ex;{ 12D k( oz | ¢ INLeg|. (45 ime

Thus, stretched exponential growth of statistical moment$iG. 2. (Color online Growth of relative statistical momenks,(t)/M(t)

with a nonlineart’® growth component in addition to the of various order for a system of siz&l=20000.

linear exponential growth is found in this case after the satu-

ration. Note that, according to E¢44), the rateq" of the

dominant burst decreases with time and, at some time, wilfukawa Institute for Theoretical Physics of Kyoto Univer-

approach the growth ratg, of a “normal” burst. Our ap- sity. Without loss of generality, the parameterands were

proximation, based on the assumption that statistical mofixed ata=0 ands=1.0 in all our simulations; the diffusion

ments are determined by a single strongest burst found in theonstant was always chosen Bs=3.0. Periodic boundary

system of a given size, then becomes invalid. Various “nor-conditions were used. As the initial condition, a sequence of

mal” bursts withq~ g, will provide substantial contributions random numbers from an interval between 0 and 1 has been

to statistical moments. Therefore, some deviations from thehosen. Integrations of the stochastic differential equdtion

stretched exponential la5) with the exponent 1/3 are ex- with such initial conditions and different noise realizations

pected at large times. yield an ensemble of fieldg,,(x,t)}. For each fieldn in the
Summarizing, we have found that, in a finite system ofensemble, spatial means[af,(x,t) ] were first computed at

lengthL, the growth of statistical momenbtd (t) obeys the each time moment. Afterwards, these spatial means were ad-

exponential law with the intermittency expondi} or (13) ditionally averaged over the ensemble of up to 250 different

characteristic for infinite systems until tintgy. After tqy, realizations of the fiel&(x,t) to obtain statistical moments

finite-size saturation effects become dominant and &V (t). Details of the employed numerical algorithm are de-

stretched exponential laWt3) or (45) is instead observed. scribed in Appendix B.

The normalized statistical moments do not depend on time A typical stochastic realization of the fiel{x,t) show-

after saturation and are given by ing rare strong bursts is presented in Fig. 1. Figure 2 displays
M (1) the growth of various relative moments in the system of size
——~exd (k—1)In Lgg]. (46) N=20000. We see that initially they increase exponentially,
M (t) but then the growth becomes saturated. The saturated values

Thus, the intermittency is suppressed in a finite system, andf relative statistical moments depend on the moment order

saturated relative moments scale with the system size & The initial interval with the exponential growth could be

IN Lgg. extended by running integrations with very large systems.
The estimates in this subsection were obtained by conFigure 3 shows in the logarithmic scale the initial growth of

sidering probabilities of bursts. Strictly speaking, we should

have used only the probability distributid23) and the re-

spective function(25). Instead, the corrected functid3), 3.0

yielded by the inverse Legendre transform, has been em-

ployed. As we shall see in Sec. IV, this leads to good agree- =h k=15 D-0k=35 g

ment with numerical simulations. g | #P=20 T-Thed0 M |

o k=05 &aks25
x k=10 +—+k=30

# 0 %0

o -t ot

IV. NUMERICAL SIMULATIONS = 18 w,c—”""vi_#ﬂmﬂu“*” 1
To integrate Eq.(1), we employed the explicit Euler = 10 .&au_n—n,urr””m#_bwﬁf
method for stochastic differential equations with the time = asssnnl ittt
stepAt varying from 0.00001 to 0.01. The coordinate step A N |
was always set atx=1.0, so that the simulated system size o :m—o—@--}--o-uy—o—o—o—o—@--q -:--H—e—v_:é
L coincided with the numbeN of grid points. The system ' _'_E E__! _E__i_f _E_E E__f_!_ E_E H_E__E H_E _E__
sizes in our computations varied from*® 10'. We had to 0.0 0.1 02 03 0.4

tirme

consider very large systems because effects of exponentially
rare statistical fluctuations were investigated. The computar|g. 3. (Color online Growth of relative moments,(t)/M,(t) of differ-
tions were therefore performed on a vector computer at thent ordersk in the system of sizél=10'.
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FIG. 4. (Color onling Intermittency exponentd, for moments of different

ordersk in the system of siz&=10". The solid line shows fitting of the  FIG. 6. (Color onling Dependence of saturated values of relative moments

numerical data to the analytical predictidn=A(k®—k) with A=0.05. M (t)/M(t)* on the system sizBl. The logarithmic dependence is appar-
ent; the effective system sizey is estimated from this dependencelag
=N/25.

relative statistical moments of various orders in a much

larger system of siz&N=10". The linear dependence of

In[Mk(t)/M'{(t)] on time is now evident.

The slopes of the curves, corresponding to different mo
ment orderk in Fig. 3, yield respective intermittency expo-
nentsA,. Figure 4 displays these numerically determinedtems were, thereford, .;=N/C.

intermittency exponentd , as a function ok (open circles In the saturation regime fdr>t., the growth of statis-

The solid line in Fig. 4 is obtained by nonlinear Ieast—square§ica| moments should be described by the stretched exponen-

curve fitting to the numerical data. Fitting has been Pelial law (45) with the exponent 1/3. According to E®5
formed by using cubic dependenég¢k®—k) [cf. Eq. (13)] the com(bin)ation P ' g ®5),

but treatingA as an adjustable parameter. A very good agree-
ment with the statistical data has been found Act0.05. g()=[In My (t) —kBt+In L] /K5, (47)

Note, however, that this numerical value is substantiallywhereﬁz_ $2/12D in the considered case. should increase
. - . 2 — A ) A X L . X
larger than the theoretical predictién=s/12D=0.03. POS-  |inearly with time and be independent frdm This analytical

sible origins of this discrepancy are discussed in Sec. V. yrediction is numerically tested in Fig. 7 for the system of
According to Eq.(46), the saturated values of the rela- gj;e N=20000. To perform the test, we first notice that,

tive momentsM(t)/M (1) should depend linearly both on 4ccording to Eq(45), (14)In My(t) should approach a con-
(k=1) and on IN. The linear dependence ok{1) iS  stant equal tks in the long-time limit. In numerical simu-
confirmed numerically in Fig. 5, where saturated values Ofations, we find that (1jIn M,(t) indeed becomes constant at
relative moments fob =3.0 are plotted as functions &ffor  ery |arge times, though the respective constant is a little
the systems of different sizes. We see that the data points f@lfterent from the theoretical prediction. We use the long-
on straight lines which cross the horizontal axi&atl, with  time asymptotics of the computed statistical moments to de-
the slopes depending on the system $izerigure 6 further  fine an effective systematic growth raieg, which replaces
displays these slopes as a function of the logarithm of th% in Eq. (47). Then, we calculate functiong(t) based on

system sizeéN (circles. The statistical data can be well fitted
by the dependence IN(C) with the fitting parameterC
=25 (solid ling), which is in agreement with the theoretical
predictions. Note that the effective sizes of considered sys-

25 ; ‘ : . —
| s T— N=1U{]ﬂn z':' ﬁﬂn M{E? -
20 | *——= N=20000 ok -
is _ ¢ N=40000 g " Gt P
=1 | a——a N=80000 + 400 A
Eﬁ . & 5 t‘- ! E ‘&{‘[}1’ o k_zﬁ
A 3 o t.r_;‘ 3{]0 h =g,
= - s & / ke=2.5
3 7 200 ) sy
= | i k=3.5

—
| 4 100 k=40
| 0
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FIG. 7. (Color onling Scaling collapse of statistical moments in system

FIG. 5. (Color online Saturated values of relative statistical moments with diffusion. Functionsg,(t) for moments of different orderk are dis-
M (t)/M(t)* in systems of different sizes. played for the system of siZg¢= 20 000.
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12.0 - - ’ . : . — V. DISCUSSION
100 | 2 ﬁ-u%:rical In this article, we have summarized previous exact re-
| o sults for the intermittency exponents and the probability of
8.0 | rare strong bursts, derived new analytical estimates for satu-
60 a/ ration effects in finite systems, and tested these analytical
= . // predictions in numerical simulations. Generally, our numeri-
4.0 | /E{ cal tests yield good agreement with the analytical predic-
| 5 tions. In the problem of autocatalytic stochastic growth with
gl “ diffusion, the predictedk®—k dependence of the intermit-
0.0 :___ s __C,...---'D' tency exponents is confirmed, and the principal predictions
; for the saturated growth regime are successfully verified.
0.0 1.0 2.0 3.0 4.0

However, some differences for the linear coeffici@nn the
intermittency exponent& = A(k®—k) were also found. Ac-
FIG. 8. (Color onling Intermittency exponents  for moments of different  cording to Eq.(13), this coefficient is given byA=s?/12D
ordersk in the system without diffusionl{=0). The solid line shows the ~ and, thus, should be equal #6~0.03 fors=1 andD =3. In
analytical predictiond=k*~k. our simulations, the best fit of numerical data has been ob-
tained, however, foA=0.05. For the same diffusion con-

the numerically computed statistical moments: the systemStantDzs’ this value should be anfalytically expected for
atic growth rate is subtracted from the logarithmMp(t) somewhat higher noise intensity;= y5/3=1.291. Similar

e . : systematic discrepancies between exact values and numerical
which is then shifted by lh.4. After cubing the result, we y P

. . simulations have previously been found and extensively dis-
find that the curves for different moment orddescollapse b y y

after this transformation, as expected in the analytical predicCussecj for the Kardar—Parisi-ZhafigPZ) model” Their
. . ' . . origin apparently lies in the fact that finite-difference
tion. A linear dependence dn which confirms thet*® be- g PP y

; . . o . schemes, used for the integration of stochastic differential
havior of InM,(t), is clearly seen in a broad initial time in- g9

L . equations with spatially delta-correlated white noise, cannot
terval. Subsequently, some deviations from the Imearq b y

dependen £ functi 1 devel nd th " ¢ truly reproduce the fractal nature of their solutions exhibiting
ependence of functiong,(t) develop a € collapse o strong fluctuations at arbitrarily short length scales. For the
the curves becomes less pronounced.

Finall : its of cal i fqati KPZ model, the finite-difference simulations yielded numeri-
inally, we present resuits ot numerical INVestgations ., \ 5 yes of the diffusion constant which differed from its
for the system without diffusiond¥=0). Figure 8 shows the

computed intermittency exponents for this systéapen exact value, but the scaling exponents were, nonetheless,
) ; . SN correctly reproduced in these simulatidhsSimilarly, this
circles. Full agreement with the analytical prediction) is y rep y

found. Fi 9 i test of i I for th numerical difficulty has only a limited effect on our simula-
ound. Figure 9 presents a test of scaling coliapse for ons. The numerically obtained intermittency exponents are
growth of statistical moments. In this case, the saturate

o : . ifferent from the theoretical prediction, and the agreement
growth of statistical moments is described by the stretche P -

. . . ould not be improved by going to smaller coordinate steps
exponential law(43) with the exponent of 1/2. According to (mesh stepsAx. But once effective renormalization of the
this law, the combination '

noise intensity has been performed, the finite-difference
h(t)=[In M(t) + kst+In Leg]?/k? (48) scheme described in Appendix B yields very good agreement
with the analytical prediction. The saturation effects at later
times, which are not sensitive to the noise intensity, are also
correctly reproduced in the simulations.

A comment concerning the relationship between the
studied system and the KPZ model should finally be given.
5000 The properties of the KPZ model have been actively inves-
tigated and many results on the universality class of the KPZ
model and its statistical behavior are knoffiT.he reduction

k

should be independent of the moment oréteand should
depend linearly on timeé. Both these properties are con-
firmed with good accuracy by numerical simulations.

o of the KPZ model to the problem of autocatalytic stochastic
3000 growth involves, however, a nonlinedogarithmig transfor-
= mation of variables. Hence, statistical predictions for the
= 2000 KPZ model cannot be directly transferred to the stochastic
equation(1). While being equivalent, the two systems there-
1000 fore allow one to analyze different facets of stochastic itin-
erancy(see also Ref. 23
0 ol
0 50 100 150 200
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APPENDIX A: THE ITO AND STRATONOVICH The original equation is thus transformed to a multivariate
INTERPRETATIONS Langevin equation. We discretize this equation temporally

Any stochastic Langevin equation, including our basicUSing the explicit Euler scheme:

equation(1), can be defined using either the Ito or the Stra- 7 (t+At)=z(t) + az(t) At

tonovich interpretation$?* Roughly speaking, one can say

that the Stratonovich interpretation holds when the white +DZi+1(t)_22i(t)+zi—1(t)At
noise in a Langevin equation represents a limit of a continu-

ous noise with a vanishingly small, but finite correlation

AX?
time. On the other hand, the Ito interpretation is applicable +2,() 7 /25At &t (B5)
when the noise is discontinuous and its values are not corre- ! Ax "7

lated .a'.[ any times. The Ito mter.pret.atlon is .convemept 'nwheregi(t) is a random variable drawn independently from
describing effects of mterpal NOIS€ 1N ghem|cal reactionsy,e jgentical normal Gaussian distribution with mean 0 and
whereas the Stratonovich interpretation is usually employed, .- 1o 1 Note that the temporal integration given by this
to study the effects of external fluctuations in electric Cir'numerical scheme corresponds to the Ito integral

cuits. Both interpretations correspond to the same Fokker— i hacked the validity of the above-given discretiza-
Planck equation for the probability distribution and there ar'%ion scheme using several values bk (between 0.1 and

simple prescriptions, converting one interpretation into an- 0) and At (between 0.00001 and 0)0humerically. The
other (see Refs. 2 and 24 statistical momentgz(x,t)9) of the field variable obtained

The .analytlcal results for the problem of a_utocgtalyt_lc using different values oAx andAt agreed within statistical
stochastic growth have been presented by us in this articlg, .+ ation forq=1,2,3,4. In this sense, the above-given dis-

using the Ito interpretation of the stochastic differential equayoti»ation scheme gives consistent results independent of
tion (1). The respective analysis for the Stratonovich inter-

. . : ! .~ the mesh size used in the computations, hence the estimated
pretation of this equation has been performed in preV'ouﬁnermittency exponents are also consistent. In the main
publications>'%1” The only difference then is that in the

o ) o .~ simulation, we mostly usedx=1.0 in order to attain large
Stratonovich interpretation, E12), describing exponential system size
growth of statistical momentdl (t) in the long-time limit, is
modified, i.e., the coefficient in this equation gets a con-
stant correction proportional to the noise intensity. The inter-
mittency exponent$13) and probability distributiong23) 'A. S. Mikhailov, Phys. Rep184, 307 (1989.
are the same for both interpretations 2A. S. Mikhailov and A. Yu. LoskutovFoundations of Synergetics. II.
In the Stratonovich interpretation. the standard rules of Chaos and Noise2nd revised and enlarged editidgSpringer, Berlin,
' 1996.
differential calculus are applicable. In contrast to this, special®s. Kadar, J. C. Wang, and K. Showalter, Nat(irendon) 391, 770(1999.
rules should be used in the Ito interpretation when variables;"\/l- KardalraG- F;]arisi, and \If-hQ Zhang, Phys. Rellf- LE&d889 (1986)k |
; Ya. B. Zeldovich, S. A. Molchanov, A. A. Ruzmaikin, and D. D. Sokolov,
are changed or integrals are takén. Sov. Phys. Usp30, 353 (1987,
6Ya. B. Zeldovich, A. A. Ruzmaikin, and A. A. SokoloffThe Almighty
APPENDIX B: THE NUMERICAL INTEGRATION Chance(World Scientific, Singapore, 1990
ALGORITHM A. Linde, Phys. Rep333, 575(2000.
) ) ) ) ) 8A. Pikovsky and J. Kurths, Phys. Rev.4B, 898(1994; A. Pikovsky and
Here we explain the numerical integration algorithm A. Politi, Nonlinearity 11, 1049(1998; V. Ahlers and A. Pikovsky, Phys.
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D. Zanette and A. Mikhailov, Phys. Rev. 5, 1638(1994.
dz(Xx,t) z(x,t) 10K, Kaneko, Physica 0124, 322(1998.
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