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Numerical Calculation on a Top-Hat Plasma
Particle Analyzer Using a Boundary-Fitted

Coordinate System
Tadahiro Shimoda, Shinobu Machida, and Naoki Terada

Abstract—A boundary-fitted coordinate system is applied to
numerical calculation on a top-hat plasma particle analyzer to
include the effect of tiny serrations on toroidal plates. The cal-
culation of electrostatic potential inside the analyzer showed the
validity of replacement of the serrated toroidal plates to virtual flat
toroidal plates, since the potential between the serrated toroidal
plates was almost flat except for the area near both the serrated
plates. Virtual flat toroidal plates equivalent to serrated plates
were obtained from the results of an electric field between the
serrated toroidal plates whose position was consistent with an
ordinary empirical model. However, calculation of the trajectories
of numerous protons revealed sensitivity difference between ana-
lyzers with serrated toroidal plates and flat toroidal plates. Such
difference was reduced by introducing a path of protons whose
boundary is identical to the envelopes of serration tips.

Index Terms—Boundary-fitted coordinate system, instrumental
development, numerical calculation, plasma measurement.

I. INTRODUCTION

A TOP-HAT electrostatic analyzer [1] is one of the most
common instruments for obtaining velocity distribution

functions of space plasmas. It has been boarded on many satel-
lites such as Freja [2] and Planet-B [3]. To develop it, the shape,
size, and other parameters should be optimized depending on
the measured plasma environment and the structure of the
spacecraft. Numerical simulations have commonly been used
for optimization.

When performing numerical simulations, an orthogonal
cylindrical coordinate system is usually adopted because it is
easy to program, and it quickly calculates the analyzer perfor-
mance. However, this coordinate system cannot deal with such
fine structures as serrations, which are almost always deployed
to prevent solar UV from impinging into the deep part of the
analyzer. Therefore, they have been replaced by flat plates
based on the empirical skill of developers in numerical sim-
ulations. In addition, the relationship between such serrations
and flat plate has not been numerically investigated yet.
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Fig. 1. Top-hat electrostatic analyzer considered in this paper. Size of analyzer
is shown in millimeters. (a) Whole structure of analyzer and a particle entering
analyzer with elevation angle of α. Due to axial symmetry of the analyzer, only
the right part is shown. ψ represents polar angle of toroidal plates. (b) Size and
location of serrations on toroidal plates. Serrations are solid lines, and virtual
flat plates are dashed lines. Dotted line between both plates is the midpoint line
of both plates (midline in text).

To overcome such drawbacks, we adopted a boundary-fitted
coordinate system [4], [5], which is a structured grid system
whose boundary area is mapped to lines or planes parallel to
a coordinate axis. In addition, since the intervals of grid lines
can be arbitrarily determined, it can deal with small structures
that cannot be considered in an orthogonal coordinate system.
We calculated the internal electric field, the detection proper-
ties for impinging particles, and the sensitivities of a top-hat
electrostatic analyzer with tiny serrations using the boundary-
fitted coordinate system and discussed the effect of serrations
for deriving an equivalence relationship between the serrated
toroidal and flat plates.

The top-hat electrostatic analyzer considered in this paper
is shown in Fig. 1. It has an axially symmetric shape, and an
electrostatic deflector is placed in front of the top-hat collimator
to detect the protons that impinge from various elevation angles,
which are represented by α in Fig. 1(a). It carries out the 3-D
measurements of proton velocity even if the analyzer is boarded
on three-axial stabilized (i.e., nonspin) spacecraft, although the
field-of-view coverage is not full 3-D (< 4π). The value of h in
Fig. 1(b) is variable. At first, we set h = 0.06 mm.

The primary objective of this paper is not analyzer optimiza-
tion but to develop the method of numerical calculations of
electric field, detection properties, and sensitivity. Therefore,
analyzer size is not necessarily optimized.
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II. CALCULATION METHOD

We calculated the analyzer performance in the following
ways: generating lattice points on and inside the analyzer,
obtaining the internal electric field by solving Laplace’s equa-
tion for each lattice point, and calculating the trajectories of
a number of protons with different parameters that enter the
analyzer.

A. Grid Distribution

The first step is to generate lattice points. This is necessary
for a boundary-fitted coordinate system because the grid cells
are not generally and equally spaced rectangles, as in a tradi-
tional cylindrical coordinate system. First, initial lattice points
on the boundary of the analyzer are given, and then, the initial
lattice points inside are obtained using a transfinite interpolation
method [4], [6]. Next, the initial grid lines are smoothed by
solving the Poisson’s equations, which are used for electric-
field calculation. Since the logical shape is complicated, it was
disassembled into parts when generating the initial lattice points
and reassembled when smoothing the grid lines. Hereafter,
x = (r, z) represents a position in the cylindrical coordinate
system, and ξ and η are the components of the boundary-fitted
coordinate (0 ≤ ξ ≤ ξmax, 0 ≤ η ≤ ηmax). ξ and η are defined
as ∆ξ = 1 and ∆η = 1 between the neighboring lattice points
in the ξ(η) direction. Since the initial lattice points on the
boundary are already given, the initial lattice positions inside
boundary x0(ξ, η) (1 ≤ ξ ≤ ξmax − 1, 1 ≤ η ≤ ηmax − 1) are
calculated in two steps using [6]

x(1)(ξ, η) = α(ξ)x0(0, η) + {1 − α(ξ)}x0(ξmax, η) (1)

and

x0(ξ, η) = x(1)(ξ, η) + β(η)
{

x0(ξ, 0) − x(1)(ξ, 0)
}

+ {1 − β(η)}
{

x0(ξ, ηmax) − x(1)(ξ, ηmax)
}

(2)

where α(ξ) and β(η) are blending functions, and since we give
lattice positions at regular intervals, they are given as follows:

α(0) =β(0) = 1

α(ξ) = 1 − s1(ξ)
s1(ξmax)

, β(η) = 1 − s2(η)
s2(ηmax)

(3)

s1(ξ) =
ξ∑
j=1

√
(rj,0 − rj−1,0)2 + (zj,0 − zj−1,0)2 (4)

s2(η) =
η∑
k=1

√
(r0,k − r0,k−1)2 + (z0,k − z0,k−1)2. (5)

To smooth the grid lines, the following Poisson’s equations
∂2ξ/∂r2 + ∂2ξ/∂z2 = P (ξ, η) and ∂2η/∂r2 + ∂2η/∂z2 =
Q(ξ, η) are used, which are solved iteratively. Source terms
P and Q are given empirically to prevent grid lines from being
strongly distorted.

Fig. 2. (a) Grid distribution of particle analyzer in physical space. It is shown
in cylindrical coordinate system, and one of the ten grid lines is drawn. (b) Grid
lines between the serrated toroidal plates. (c) Shape of analyzer in logical space.
ξ and η are expressed in grid numbers.

Fig. 2 shows the analyzer’s grid distribution and logical
shape, i.e., its shape in the boundary-fitted coordinate system.
(a) Top panel is the grid distribution of the entire analyzer,
(b) middle panel is between the serrated toroidal plates, and
(c) bottom panel is the logical shape of the analyzer. One grid
line out of ten is drawn in (a). In (c), the left side of the logical
space corresponds to the symmetric axis of the analyzer, and
small steplike structures correspond to the serrations on the
toroidal plates.
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B. Internal Electric Field

The next step is to calculate the electrostatic field inside the
analyzer by solving Laplace’s equation. Since we are using
a boundary-fitted coordinate system, Laplace’s equation ex-
pressed with a cylindrical coordinate system should be modified
into the following form

1
r
J−1

(
zη

∂Φ
∂ξ

−zξ
∂Φ
∂η

)

+J−1zη

(
∂J−1

∂ξ
zη

∂Φ
∂ξ

+J−1zξη
∂Φ
∂ξ

+J−1zη
∂2Φ
∂ξ2

− ∂J−1

∂ξ
zξ

∂Φ
∂η

−J−1zξξ
∂Φ
∂η

−J−1zξ
∂2Φ
∂ξ∂η

)

−J−1zξ

(
∂J−1

∂η
zη

∂Φ
∂ξ

+J−1zηη
∂Φ
∂ξ

+J−1zη
∂2Φ
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∂η
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(
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−J−1rξξ
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−J−1rξ
∂2Φ
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)

−J−1rξ

(
∂J−1

∂η
rη
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+J−1rηη
∂Φ
∂ξ

+J−1rη
∂2Φ
∂ξ∂η

− ∂J−1

∂η
rξ

∂Φ
∂η

−J−1rξη
∂Φ
∂η

−J−1rξ
∂2Φ
∂η2

)
= 0

(6)

where Φ is the electrostatic potential, and J−1 ≡
∂r/∂ξ ∂z/∂η − ∂r/∂η ∂z/∂ξ is the Jacobian inverse of
the transformation matrix.

Electrostatic potential is normalized by the voltage applied
to the inner toroidal plates. It is fixed to −1000 V in this
paper, although it varies, in practice, to measure the protons
of different energy. The boundary condition used is as follows.
The voltage given to the inner toroidal plate is unity due to
normalization of voltage. The outer toroidal plate, the top-
hat collimator, the lower deflector, and the entrance mesh are
grounded. The electric potential of the upper deflector is −2.
Potential distribution at the exit of the toroidal plates is identical
to the distribution inside the spherical condenser plates. On
the insulators, electric potential is given assuming a cylindrical
capacitor.

C. Detection Properties and Sensitivity

After obtaining the electric field inside the analyzer, the
detection properties and sensitivity of the analyzer are calcu-
lated by examining whether each of the numerous protons with
different parameters travels through the analyzer. The following
four parameters describe the initial velocity and position of the
incident protons: kinetic energy (K), elevation angle (α) shown

in Fig. 1, deviation angle (β), which is out of the plane angle of
the proton velocity in Fig. 1, and incident height (z).

Particle position is determined by the fourth-order
Runge–Kutta method in the cylindrical coordinate system.
Then, the electrostatic field must be calculated at the particle
position at each time step, and a particle-in-cell (PIC) method
coupled by a boundary-fitted coordinate system [5] is adopted
for it.

Suppose particle position x = (r, z) corresponds to (ξ, η) =
(J + α1,K + α2) in the boundary-fitted coordinate system.
Parameters J and K are both integers, and α1 and α2 should
satisfy 0 ≤ α1, α2 < 1, then J and K are assumed to be the
lower left point of the grid cell in which the proton lies and
the cell is called cell (J,K) hereafter. Particle position in cell
(J,K) (α1 and α2) in the logical space is given by iteratively
solving

α0
2 =

zs

1 + rs/rsj+1,k+1

(
zsj+1,k+1 − 1

) (7)

αi2 =
zs
{

1 + αi−1
2

(
rsj+1,k+1 − 1

)}
1 + αi−1

2

(
rsj+1,k+1 − 1

)
+ rs

(
zsj+1,k+1 − 1

) (8)

α1 =
rs

1 + α2

(
rsj+1,k+1 − 1

) (9)

where

(
rs

zs

)
≡
(

rj+1,k − rj,k rj,k+1 − rj,k
zj+1,k − rj,k zj,k+1 − rj,k

)−1(
r − rj,k
z − zj,k

)
(10)

and rj,k, zj,k denote r(j, k), z(j, k), respectively. In this paper,
iteration was conducted three times, i.e., α2 = α3

2, which is
sufficient for calculating the particle position [5]. Then, the
electric field at particle position E is obtained by [5]

E = (1 − α1)(1 − α2)Ej,k + α1(1 − α2)Ej+1,k

+ (1 − α1)α2Ej,k+1 + α1α2Ej+1,k+1 (11)

where Ej,k means E(rj,k, zj,k).
After calculating the trajectory of each proton, the detection

properties and sensitivity of the analyzer can be obtained. In
this paper, energy-alpha characteristics and the g-factor are
adopted and calculated by using the transmission function
P (K,α, β, z), where P (K,α, β, z) = 1 if the proton reaches
the exit of the analyzer and P (K,α, β, z) = 0 if it does not.
Energy-alpha characteristic C(K,α) is a detection property
that indicates the acceptance of particles with specific K and α.
It is obtained by integrating P (K,α, β, z) in relation to
β and z, i.e.,

C(K,α) =
∑
β

∑
z

P (K,α, β, z). (12)
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The g-factor (G), which represents the sensitivity of the ana-
lyzer, is calculated by

G=RΘ




∞∫
0

dK

π
2∫

−π
2

dα

π∫
−π

dβ

∞∫
−∞

dz cos2αcosβ P (K,α, β, z)




2

/


∞∫
0

dK

π
2∫

−π
2

dα

π∫
−π

dβ

∞∫
−∞

dzKcos2α cosβ P (K,α, β, z)




(13)

where R and Θ represent the radius at the entrance of particles
and the angular width of a sector of microchannel plate (MCP),
respectively. In this paper, Θ = 22.5◦.

This study dealt with as many as five million protons that
have 64 different energy values varying logarithmically from
4500 to 7500 eV, 46 elevation angle values from 11◦ to 26◦,
18 deviation angle values from 0◦ to 17◦ (considering axial
symmetry of the analyzer), and 100 incident height values from
the top to the bottom of the electrostatic deflector in front of
the top-hat plates. Elevation angle, deviation angle, and incident
position values are distributed at equal intervals in linear scale,
except for the incident energy in logarithmic scale. Their range
was determined by running the particle calculation in a wider
range but with coarse intervals of parameters. In this paper,
the analyzer accepts the upward protons (α > 0) since the
electrostatic deflector makes the particle velocity on the plane
of top-hat plates.

D. Equivalent Plates

The effect of serrations is considered by deriving a pair of
virtual flat toroidal plates equivalent to serrated toroidal plates.
Hereafter, virtual flat plates are called equivalent plates.

The positions of the equivalent plates are determined by
considering the electric field inside the flat toroidal plates. The
intensity of electric field E inside the flat toroidal plates at
distance rc from the curvature center of toroidal plates and polar
angle ψ, which is zero at the exit of the toridal plates and grows
larger as we retreat back deeper from the exit (shown in Fig. 1),
is approximately given by:

E(rc) =
V

ln Ro(Ri cosψ+l)
Ri(Ro cosψ+l)

(
1
rc

− 1
rc + l

cosψ

)
(14)

where Ri, Ro, l, and V are the curvature radii of the inner
and outer toroidal plates, the offset of curvature center from
the symmetrical axis of the analyzer, and the voltage applied
to the inner toroidal plate, respectively. We assume that the
midpoint line between the equivalent plates corresponds to
the midpoint line between both the serrated toroidal plates
(“midline” hereafter), which is shown as the dotted line in
Fig. 1(b), and obtained the gap width between the equivalent
plates d by using the electric field on the midline, i.e., rc =
30 mm and various ψ obtained by the calculations of this paper.

We carried out the calculation described previously, and the
results are shown in the next section.

Fig. 3. (a) Electrostatic potential between the serrated toroidal plates.
Potential gap between the neighboring contours is 0.02 times the voltage
on inner toroidal plate. (b) Component of electric field along the midline
normalized by intensity of electric field.

III. RESULTS

A. Electrostatic Field and Equivalent Plates

We solved (6) to obtain the electrostatic potential inside the
analyzer in the case of h = 0.06 mm in Fig. 1. The distribution
of electrostatic potential between the serrated toroidal plates is
shown in Fig. 3(a). The potential is represented as equipoten-
tial contours, and the potential gap between the neighboring
contours is 0.02 times the voltage applied to the inner toroidal
plates.

Equipotential contours are basically flat in most areas if we
go slightly away from the serrated plates. In areas close to
the serrations, the contours have ripples. To investigate them
quantitatively, we evaluated the value of |Eψ|/E, and the result
is shown in Fig. 3(b). The value of |Eψ|/E represents the tilt of
equipotential contours from the midline, where Eψ indicates
the electric-field component along the midline (polar angle
direction in Fig. 1). The value of |Eψ|/E is less than 1% in the
region away from the surface of the serrations by about twice
the serration depth, and the area at which it is more than 3% is
confined to a region near the length of the serration depth from
the surface of the serrations. Therefore, the electric field inside
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Fig. 4. (a) Electric-field intensity between the serrated toroidal plates for
different ψ. (b) Gap width between the equivalent plates for different ψ, which
is calculated by the electric-field intensity shown in (a).

the serrated toroidal plates is approximated by the flat toroidal
plates, which ensure that such a replacement is valid.

We now consider the equivalent plates using the obtained
electric field between the serrated toroidal plates and (14).
We calculated the gap width between the equivalent plates,
and the result is shown in Fig. 4. It demonstrates the electric
field E in (a) and gap width of equivalent plates d in (b),
which was obtained by substituting the electric-field intensity
at rc = 30 mm and every 0.1◦ of ψ inside the serrated toroidal
plates. Points near both ends of the toroidal plates (ψ < 10◦,
ψ > 70◦) were excluded due to the distortion of the electric
field there. Fig. 4 shows that the values of d range within
d = 3.054 ± 0.001 mm for all values of ψ, indicating that
serrated toroidal plates are replaceable by flat toroidal plates
with constant gap width. Comparing the calculated d gap width
between the tips of opposite serrations, which is 2.88 mm, and
the depth of each serration, which is 0.3 mm, the equivalent
plates are placed inward of the serrations from the surface that
contains the serration tips by 0.29 times the serration depth.
This is consistent with the empirical results where they are
placed inward from the surface, including the serration tips
roughly 0.2 to 0.3 times the depth of serrations. However, since
this replacement only focuses on the electric field, its particle
sensitivity has to be verified.

B. Detection Property and Sensitivity of Analyzers

Energy-alpha characteristics and the g-factor of the analyzer
with serrated toroidal plates and the scheme with equivalent
plates are calculated and compared.

Since h should be 0.29 times the serration depth, it is
modified to be 0.087 hereafter. However, we kept the gap
width between the equivalent plates to be 3.000 mm, since
its alternation affects the position of the neck and the top-hat
collimator.

The top and middle rows of Table I show the calculation
results for the serrated model described previously and the flat
model obtained in the previous section. The g-factor, energy,
and elevation angle at which the value of C(K,α) is maxi-
mum, and the average energy of detected protons is described.
The g-factors are for 22.5◦ of MCP. This result shows that the
g-factors differ from each other by about 20%, although the
energies and elevation angles at the peak of count and the av-
erage incident energies of both analyzers are close.

Therefore, we have to modify the equivalent plate to match
the g-factor with the serrated toroidal plates and obtain corre-
spondence between both analyzers. We restrict the path width
of particles between the equivalent plates to effectively modify
the g-factor without changing the other values.

We examined an analyzer with identical flat toroidal plates,
but it contains boundaries for particles so that the gap width
between both boundaries is identical to the gap width between
the opposite serration tips of the serrated toroidal plates. The
result is shown in the bottom row of Table I. Comparing
between the top and bottom rows of Table I, the difference in
g-factor is reduced in several percent. We also show the dia-
grams of the energy-alpha characteristics in Fig. 5 for analyzers
listed in the top and bottom rows of Table I. The energy-alpha
characteristics of both analyzers match each other very well.
The equivalent plates have almost the same electric field and
sensitivity characteristic as the serrated toroidal plates.

IV. DISCUSSION

By performing the numerical calculation on a top-hat ana-
lyzer with serrations, we found virtual flat toroidal plates that
were proxyies for the serrated toroidal plates. As a condition
for the serrated toroidal plates to be replaced with flat plates, the
contours of electrostatic potential around the midline should be
almost flat, as shown in Fig. 3(b), which ensures the validity of
such substitution.

However, notice that such replacement cannot guarantee the
sensitivity of an analyzer that has serrated toroidal plates. This
difference can probably be attributed to the gap width between
the toroidal plates, which is 2.816 mm between the opposite
serration tips which is narrower than the gap between the flat
toroidal plates whose width is 3.000 mm. Protons traveling near
the equivalent flat toroidal plates and passing through would
hit the serrations if they travel inside the toroidal plates with
serrations. This causes the g-factors of both analyzers to be
different. In addition, when the boundaries for particles are
set to the envelopes of the serration tips, the g-factors of both
analyzers became close to each other.

These facts suggest that the effect of serrations, particularly
the ripples of equipotential contours shown in Fig. 3, is in-
significant for motions of protons in the analyzers. Ripples
of equipotential contours are confined to the area near the
serrations, and protons traveling through such area for a long
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TABLE I
SENSITIVITIES AND DETECTION PROPERTIES OF ANALYZERS. (TOP) TOROIDAL PLATES, INCLUDING SERRATIONS. (MIDDLE) WITH

EQUIVALENT FLAT TOROIDAL PLATES. (BOTTOM) EQUIVALENT FLAT TOROIDAL PLATES WHOSE GAP BETWEEN THE BOUNDARIES

FOR PARTICLES IS IDENTICAL TO THE GAP WIDTH BETWEEN THE OPPOSITE SERRATION TIPS. g-FACTOR,
ENERGY, AND ANGLE AT THE PEAK OF PARTICLE COUNT, AND AVERAGE ENERGY ARE SHOWN

Fig. 5. Energy-alpha diagrams of analyzer with toroidal plates, including
(black contour) serrations and (red contour) analyzer with the equivalent flat
toroidal plates whose gap between the boundaries for particles is identical to
the gap width between the opposite serration tips. Counts are normalized by
maximum count of each analyzer.

time are likely to hit a wall of toroidal plates, although they
are affected by the rippled electric field. This is supported by
the similarity of the energy-alpha characteristics (black and red
contours) shown in Fig. 5.

In this paper, we considered the effective figures on the order
of micrometer, although it is impossible to make analyzers
of such accuracy in practice. However, we focused on the
relative position between the serrated toroidal and flat plates
and 0.29 times the depth of serrations inward and considered
such accuracy for our calculations.

In this way, we demonstrated a more sophisticated equiva-
lence relationship between the serrated and flat toroidal plates,
adding the boundary of the particle path. This relationship in-
creases the calculation accuracy and speed of particle analyzers.

In this paper, we describe only the case of 5–6-keV protons.
This result is also applicable to other energies and other species
of particles. Considering the normalization of dimensions, the
result for mass m, charge q, and particle energy E is applicable
to particles with mass am, charge bq, and particle energy cE to
change the voltage on all plates by ac/b times, where a, b, and
c are the multiplying factors.

Although we only focused on the tiny serrations on toroidal
plates, this coordinate system is applicable to the calculations
for other tiny structures, for example, rings on the neck of
analyzers and the collimator on the top-hat plane to reduce the

effect of secondary electrons by energetic particles. The effect
of such structures on the electric field, the detection properties,
and the sensitivity of the analyzer must be considered in the
future.
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