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Nonlinear evolution of cosmic magnetic fields and cosmic microwave background anisotropies
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In this work we investigate the effects of primordial magnetic fields on cosmic microwave background
anisotropies (CMB). Based on cosmological magneto-hydro dynamic (MHD) simulations [R. Banerjee
and K. Jedamzik, Phys. Rev. D 70, 123003 (2004).] we calculate the CMB anisotropy spectra and
polarization induced by fluid fluctuations (Alfvén modes) generated by primordial magnetic fields. The
strongest effect on the CMB spectra comes from the transition epoch from a turbulent regime to a viscous
regime. The balance between magnetic and kinetic energy until the onset of the viscous regime provides a
one to one relation between the comoving coherence length L and the comoving magnetic field strength B,
such as L� 30�B=10�9Gauss�3pc. The resulting CMB temperature and polarization anisotropies for the
initial power law index of the magnetic fields n > 3=2 are somewhat different from the ones previously
obtained by using linear perturbation theory. In particular, differences can appear on intermediate scales
l < 2000 and small scales l > 20 000. On scales l < 2000 the CMB anisotropy and polarization spectra
are flat in the case of our nonlinear calculations whereas the spectra have a blue index calculated with
linear perturbation theory if we assume the velocity fields of baryons induced by the magnetic fields
achieved Alfvén velocity due to the turbulent motions on large scales in the early universe. Our calculation
gives a constraint on the magnetic field strength in the intermediate scale of CMB observations. Upper
limits are set by WMAP and BOOMERANG results for comoving magnetic field strength of B<
28 nGauss with a comoving coherence length of L > 0:7 Mpc for the most extreme case, or B<
30 nGauss and L > 0:8 Mpc for the most conservative case. We may also expect higher signals on large
scales of the polarization spectra compared to linear calculations. The signal may even exceed the B-mode
polarization from gravitational lensing depending on the strength of the primordial magnetic fields. On
very small scales, the diffusion damping scale of nonlinear calculations turns out to be much smaller than
the one of linear calculations if the comoving magnetic field strength B> 16 nGauss. If the magnetic field
strength is smaller, the diffusion scales become smaller too. Therefore we expect to have both,
temperature and polarization anisotropies, even beyond l > 10 000 regardless of the strength of the
magnetic fields. The peak values of the temperature anisotropy and the B-mode polarization spectra are
approximately 40�K and a few �K, respectively.
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I. INTRODUCTION

Magnetic fields have been observed in many galaxies
and galaxy clusters [1,2]. Observations have revealed that
these magnetic fields typically have a few �Gauss
strengths and relatively large coherent scales, i.e., a few
tens of kpc for clusters of galaxies and a few kpc for
galaxies. It is one of the great challenges for modern
astronomy to understand the origin of these magnetic
fields.

Perhaps the most conventional scenario of generating
such magnetic fields is as follows. First, small seeds of the
magnetic fields are produced due to the Biermann battery
mechanism. Although the resultant magnetic fields are
very weak, those are amplified by the dynamo process
[3] (for a comprehensive review see [4]). Eventually these
address: htashiro@tap.scphys.kyoto-u.ac.jp
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magnetic fields are spread by Supernova winds or active
galactic nuclei jets into intergalactic medium.

However, the fact that magnetic fields with very large
coherent scales are observed in galaxy clusters or high
redshift galaxies with a strength of a few �Gauss casts
some questions on this standard dynamo scenario [1,5]:
how can these coherent magnetic fields be spread into
intercluster medium, and is it possible for the dynamo
amplification to take place fast enough in high redshift
galaxies? An alternative possibility to the dynamo scenario
is the generation of magnetic fields in the early universe.
There are in fact many previous works which suggest the
generation of the magnetic fields in the early universe, e.g.
during an inflation or at cosmological phase transitions
(QCD or electroweak phase transition). For a detailed
review, see [6].

If magnetic fields are generated in the early universe, we
need to understand their evolution in the expanding hot
-1 © 2006 The American Physical Society
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universe to obtain their field strength and structure at
present. Several studies of evolution of magnetic fields
have been performed by employing the linearized equa-
tions of magneto-hydro dynamics (MHD) [7,8]. These
studies found that the growth of magnetic fields in the
early universe is rather complicated such that the cosmo-
logical viscosity plays an important role [7]. Magnetic field
energy is dissipated by the viscosity due to neutrinos and
photons, equivalent to Silk damping [9] for density fluctu-
ations of baryon-photon fluid. However, the damping effi-
ciency is different for different MHD modes. The Alfvén
and the slow modes are damped less than the fast modes so
that the Alfvén and the slow modes survive at small scales
where the dissipation is effective. Meanwhile, it is also
expected that the nonlinear effects contribute to the evolu-
tion of magnetic fields since equipartition between the
magnetic field and the fluid will be established and the
magnetic fields will cascade from large scales to small
scales. Nonlinear effects on Alfvén modes in the presence
of viscosity is investigated analytically for particular con-
figurations [8] and only a little damping of Alfvén modes is
found in these situations.

Recently, Banerjee and Jedamzik [10,11] studied the
evolution of Alfvén modes using MHD simulation in the
expanding universe including dissipation due to diffusion
and neutrino/photon-drag due to free-streaming neutral
particles. The evolution of the primordial magnetic fields
is solely determined by the kinetic Reynolds number,
which is defined by R � v2=Lf where v is the fluid
velocity, L is the length scale and f is the fluid dissipation
(which is discussed in more detail in the following section),
can be divided into three different regimes: turbulent re-
gime �R� 1�, viscous (diffusion) regime and (viscous)
free-streaming regime �R< 1�. Furthermore, analytic ex-
pressions for the growth of the magnetic coherence length
due to small wavelength damping and helicity conserva-
tion were found. Under optimistic assumptions it is pos-
sible for magnetic fields produced during a QCD phase
transition with an initial coherence length of 1 pc to have
attained a kpc coherence length at present.

The existence of the primordial magnetic fields leaves
traces on various cosmological phenomena. Investigating
the cosmological effects of the magnetic fields in the early
universe, i.e., the effects on Big Bang nucleosynthesis
(BBN), structure formation and cosmological microwave
background (CMB) anisotropies, we can constrain the
strength and the structure of primordial magnetic fields.

Among them, the traces of primordial magnetic fields on
CMB anisotropies and polarization are of particular inter-
est since they provide information of not only the magnetic
field energy but also the coherence length. On the contrary,
BBN gives only a limit on the magnetic field energy
density (B & 7� 10�5 Gauss at present) [12].

The coherence length is an especially important obser-
vational quantity if one wishes to understand the origin of
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cosmic magnetic fields because the length scale strongly
correlates with the production mechanism. The primordial
magnetic fields produced by a causal mechanism during,
for example, a phase transition are limited by the length
scale which corresponds to the horizon scale at the epoch
of the magnetic filed generation. In contrast, the magnetic
fields produced in the inflation epoch are expected to have
the scale-invariant spectrum such that the amplitudes of the
magnetic fields at the horizon crossing are the same over
the all scales.

There have been already several works to set constraints
on the primordial magnetic fields by using current CMB
data. But so far, non of these considered the full nonlinear
evolution of Alfvén modes. Barrow et al. [13] set a limit on
the homogeneous (coherent) magnetic field by using
COBE data. Such a homogeneous magnetic field produces
large scale anisotropic pressures and these pressures re-
quire an anisotropic gravitational field to support them.
This anisotropic gravitational field should generate anisot-
ropies in CMB temperature. They obtain a limit of
B & 10�9 Gauss [13] at present.

Primordial magnetic fields with a coherence length
comparable to the horizon size at the last scattering surface
(LSS) affect the sound speed of the baryon-photon fluid
and change their acoustic oscillations. This effect might be
observed as the modification of the acoustic peaks in the
CMB angular power spectrum. Adams et al. [14] found
that this modification should be detectable by WMAP and
PLANCK if the today’s magnetic fields are
B> 10�8 Gauss with the coherence length larger than
the horizon at recombination.

A distortion of the CMB energy spectrum from the black
body shape also gives a constraint on primordial magnetic
fields. The magnetic fields with a small coherent scale are
dissipated due to viscosity of the baryon-photon fluid and
this dissipation energy distorts the black body spectrum of
CMB [15]. The spectrum distortion is described by either a
chemical potential � or a Compton y-parameter. If the
dissipation process takes place in the very early universe
when thermal equilibrium is maintained, it does not affect
the CMB spectrum. As the temperature of the universe
goes down, however, thermal equilibrium can no longer be
maintained. Instead, kinetic equilibrium is preserved since
only the Compton scattering process which conserves pho-
ton number is effective. If dissipation occurs during this
stage, we expect to have � distortion. As the temperature
drops more, eventually even kinetic equilibrium can no
longer be maintained and we expect to have y distortion
due to the dissipation. COBE-FIRAS gives the CMB
chemical potential constraint of � & 9� 10�5. This limit
corresponds to the magnetic field constraint of
B & 3� 10�8 Gauss at present on a comoving scale of
400 pc at redshift z * 2� 106 [15]. On the other hand, the
constraint by the Compton y-parameter, which is y &

1:5� 10�5, leads to the constraint on the magnetic fields
of B & 3� 10�8 Gauss on 600 kpc.
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Another important constraint can be given from small
scale CMB temperature anisotropies and polarization.
Magnetic fields induce peculiar velocities in photon-
baryon fluids driven by Alfvén modes. These peculiar
velocities generate temperature anisotropies and polariza-
tion in CMB. Observations by WMAP already constrain
these anisotropies induced by Alfvén modes to be smaller
than the primary anisotropies due to acoustic oscillations
of the photon-baryon fluid. Therefore, one might conclude
that there is no chance to measure magnetic field sourced
temperature fluctuations. However this is not the case for
small scale anisotropies. Primary CMB anisotropies and
polarization at the recombination epoch are expected to
have a lack of small scale power due to the diffusion
damping of the photon-baryon fluid (Silk damping). On
the other hand, calculations of linear evolution of Alfvén
modes show less damping [16–19]. These Alfvén modes
generate CMB temperature anisotropies and polarization.
Therefore we can likely expect to have dominant contri-
bution on small scale CMB anisotropies from the magnetic
fields if they exist. Using the WMAP result and taking into
account both scalar and Alfvén modes, one can constrain
primordial magnetic fields to be B & 3:9� 10�9 Gauss on
1 Mpc at present by using the Markov Chain Monte Carlo
method [19].

For the same reason, polarization induced by Alfvén
modes from primordial magnetic fields may dominate on
small scales [20]. It is known that the polarization can be
decomposed into two modes, i.e., the E-mode polarization
(gradient component) and the B-mode polarization (rota-
tion component) [21]. Observationally they are distin-
guishable. It is very interesting that Alfvén modes only
produce B-mode polarization since its perturbations are of
vector type. On the contrary, scalar type perturbations,
which form the large scale structure of the universe, only
produce E-mode polarization. It has been known that the
gravitational lensing effect on the primary E-mode polar-
ization caused by structure of the universe produces B-
mode polarization on intermediate scales (a few tens of arc
minute angular size). However, polarization of the mag-
netic field origin can be dominant as a B-mode on small
sales.

A few authors have investigated the generation of B-
mode polarization either by an analytic treatment with
employing the tight coupling approximation [22] or by
direct numerical calculations [17,18]. For the evolution
of Alfvén mode perturbations, however, they all apply
linear analysis. In this paper, we study the evolution of
Alfvén modes using recent MHD simulation by Banerjee
and Jedamzik [10,11], which allows us to incorporate the
fully nonlinear and self consistent spectra of the Alfvén
modes to calculate resulting CMB temperature anisotropy
and polarization spectra.

This paper is organized as follows. In Sec. II, we sum-
marize the evolution of Alfvén modes based on the nu-
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merical MHD simulation of Banerjee and Jedamzik. We
separate the evolution into three regimes, i.e., turbulent,
viscous and free-streaming regimes. In each regime, the
evolution of velocity fields is carefully investigated. In
Sec. III, the power spectrum of the velocity fields is calcu-
lated. Using this power spectrum, in Sec. IV, we compute
CMB temperature anisotropy and polarization spectra.
Sec. V is devoted to discussion, in which we compare
our results to those obtained with linear perturbation the-
ory. We give our conclusions in Sec. VI. Throughout the
paper, we take WMAP values for the cosmological pa-
rameters, i.e., h � 0:71�H0 � h� 100 Km=s 	Mpc�,
T0 � 2:725 K, �bh2 � 0:0224 and �Mh2 � 0:135 [23].
II. EVOLUTION OF ALFVÉN MODES

Our final goal is to investigate the effect of the primor-
dial magnetic fields on the CMB temperature anisotropies
and polarization. Magnetic stresses produce vortical
modes, such as the ‘‘Alfvén mode’’ and ‘‘slow magneto-
sonic mode’’ in the ionized fluids. As both are very similar
we will refer to them as Alfvén modes, henceforth. These
Alfvén modes generate additional temperature anisotropies
and polarization by Doppler shift. Therefore, we need to
know the evolution of Alfvén modes first. Unlike previous
works which employed a linear perturbation approxima-
tion [16,17,22], Banerjee and Jedamzik [10,11] recently
investigated the nonlinear evolution of magnetic fields and
Alfvén modes using numerical MHD simulation. These
simulations cover the three different damping regimes
appearing in the early universe: turbulence, viscous, and
free-streaming. Based on their work, we summarize the
evolution of the velocity fluctuations (Alfvén modes) of the
ionized fluid in this section.

The growth of Alfvén modes is affected by the interac-
tion with photons and/or neutrinos in the early universe.
Here, we consider the interaction with photons only as
neutrinos are already decoupled from the cosmic evolution
at the epoch of LSS.

The MHD equations in the expanding universe including
diffusion due to the photon background are given by [10]
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where �b is the baryon density, �t, pt and cst denote the
total density, pressure and sound velocity of photons and
baryons,H is the Hubble parameter and f is the dissipation
term. The velocity v of photon-baryon fluids here is the
Alfvén mode, and as such is incompressible so that v
satisfies r 	 v � 0. The dissipation term, f, is written as
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f � a�2���
 p��1�r2v�; (3)

where the shear viscosity � is given by [24]

� �
4

15
��Lmfp: (4)

Here �� is the radiation energy density and Lmfp is the
photon mean free path, Lmfp � ��Tne�

�1 where �T is the
Thomson cross section and ne is the free electron density.

By using r 	B � 0, Eq. (1) is rewritten as
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where vA is the Alfvén velocity, vA � B=
�������������������������
4���t 
 pt�

p
.

The dissipation term, f which assumes multiple scatter-
ing between photons and baryons is valid only on scales
larger than Lmfp. Since Lmfp evolves rapidly as a3, it soon
exceeds the wave length of a particular mode we consider.
In other word, the comoving wave number of the velocity,
k, becomes a=k < Lmfp. Subsequently, we need to treat
baryons (ionized fluids) and photons separately.

Once the diffusive description becomes invalid, Alfvén
modes will be damped due to free-streaming background
photons. Note that the damping time on the integral scale in
the viscous regime is longer than the Hubble time and
dynamic evolution of the magnetic field is ‘‘stalled’’. In
the free-streaming regime, the dissipation process can be
described as radiation drag whose force is proportional to
the fluid velocity v. The coefficient � of the drag force is
given by [25]

� �
4

3

��
�b
L�1

mfp: (6)

Therefore, the Euler equation for the baryon fluid with
free-streaming photons is given by
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(7)

Let us now consider a characteristic scale on which most
of the magnetic energy exists. This characteristic scale
corresponds to the peak of the magnetic field power spec-
trum and can be defined by using the two point correlation
function ��r� � hjB�x
 r�B�x�ji as

Lint �
1

��0�

Z 1
0
dr��r�: (8)

We refer to this scale as the integral scale and define the
comoving wave number of the integral scale as kint �
a=Lint.

The integral scale grows in time. In the turbulent regime
a direct cascade due to nonlinear interactions transfers
energy from the integral scale to the much smaller viscous
scale, where it is lost to heat. In the free-streaming regime
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the integral scale may also grow due to the dissipation of
flows on the integral scale itself. In both regimes the damp-
ing time scale is given by

teddy �
L
v
�

a
kv
: (9)

By comparing this eddy time scale on the integral scale
with the cosmic time H�1, we can judge whether nonlinear
cascade processes are important or not. If once tint

eddy �

Lint=v < H�1 is satisfied, magnetic energy dissipation be-
comes effective and magnetic energy on scales L< Lint is
lost.

Now let us classify the evolution of the MHD nonlinear
Alfvén modes into three regimes, i.e., turbulent, viscous,
and free-streaming regimes, following the results of the
numerical simulation. In the following argument, we
mostly consider the evolution of Alfvén modes at the
integral scale.

A. Turbulent regime

In the early universe, since the photon mean free path
Lmfp, which is proportional to 1=ne, is very short, the effect
of viscosity on Alfvén modes at the integral scale is neg-
ligible until the mean free path becomes large enough to
have Reynolds number R� 1 on Lint. For R> 1 we can
ignore the dissipation term f in Eq. (5). The advective term
�vA 	 r�vA=a drives the fluid velocity in this regime, which
we call the turbulent regime.

Ignoring the cosmological expansion term, we find that
the fluid velocity eventually approaches an equipartition
state:

v � vA: (10)

This behavior is consistent with the MHD numerical simu-
lation [10,11]. Note that it is not clear whether the fluid
velocity approaches an equipartition state on the scales
larger than the integral scale or not since it takes longer
on larger scales. We will discuss this point in Sec. III A.

If magnetic fields do not decay, the Alfvén velocity stays
constant in time since B / a�2 for the adiabatic expansion
and �t / a

�4 during the radiation dominated epoch.
Accordingly the eddy time scale at the integral scale
evolves as tint

eddy � Lint=vA / Lint=�B=
�����
�t
p
� / a: On the

other hand, the cosmic time 1=H is proportional to a2 in
the radiation dominated epoch. Therefore soon or later the
cosmic time exceeds the eddy time, which allows for
turbulent decay of the magnetic fields.

Let us go into details about the evolution of the integral
scale. By definition the integral scale corresponds to the
peak location of the energy power spectrum of the mag-
netic field. Correspondingly, the Alfvén velocity, which is
proportional to the amplitude of the magnetic field, peaks
at the integral scale. Since we assume a blue magnetic
power spectrum, i.e. n > 0, the eddy turnover time on the
scales larger than the integral scale is longer than tint

eddy.
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Therefore the condition teddy � 1=H is first satisfied on the
integral scale and then gradually moves towards larger
scales. Meantime, the cascading decay of the short wave-
length modes (k > kint) shifts the integral scale towards
larger scales.

The underlying physical process of the cascade decay is
following. When nonlinear effects become prominent, the
magnetic field energy and the fluid kinetic energy achieve
equipartition. The flow eddies break into the smaller ed-
dies. Hence the kinetic energy is transported from large
scales to small scales by a nonlinear cascade (Kolmogorov
process). The transported energy is changed into heat at the
scale where the dissipation process is effective.
Consequently, the magnetic field energy at the integral
scale is converted into heat which is called direct cascade.

B. Viscous regime

As the universe evolves, the photon mean free path,
Lmfp / a3, becomes larger. Dissipation due to photon in-
teraction becomes efficient and velocity fluctuations are
damped by the photon drag. Eventually the dissipation
term dominates the advective term at the integral scale in
Eq. (5). This is the second regime, which is refereed as the
viscous regime. During the viscous regime, the eddy time
at the integral scale is always larger than the cosmic time
due to the decay of the fluid velocity v, which makes the
eddy time longer.

The transition epoch from turbulent to viscous regimes
on the integral scale can be determined by comparing the
advective term �v 	 r�v=a and the dissipation term f �
��=��t 
 pt��r

2v=a2. During the turbulent regime, the
amplitude of the fluid velocity in the advective term is
equal to the Alfvén velocity vA as shown in the previous
subsection. Therefore the advective term can be written by
using the integral scale as �v 	 r�v=a ’ v2

A=Lint. The dis-
sipation term can be also rewritten as ��=��t 

pt��vA=L

2
int: At the transition epoch, these two terms be-

come equal, which yields

vA �
�

��t 
 pt�Lint
�
Lmfp

5Lint
: (11)

Here we assume the radiation domination, i.e., �t 
 pt �

4��=3. Until the beginning of the viscous regime, the eddy
time teddy � Lint=vA is equal to the cosmic time 1=H,

which leads to vA ’
���������������������
H=�ne�T�

p
. Inserting the definition

of vA into this equation, the transition redshift zt�v can be
obtained as

zt�v ’ 6� 106B�2
�9 ’ 6� 106

�
kint

3:4� 104 Mpc�1

�
2=3
;

(12)

where B�9 is the comoving magnetic field normalized by
10�9 Gauss, i.e., B�9 � �B=10�9�a2 and
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kint ’ 3:4� 104B�3
�9 Mpc�1; (13)

is the comoving wave number of the integral scale at the
transition epoch. Note that Eqs. (12) and (13) are only valid
after e� annihilation where Lmfp � 1=�Tne, i.e., z < 108.
For earlier epochs Eq. (11) must be evaluated numerically
to find the redshift–B-field relations.

In the viscous regime, we can ignore the advective term
in Eq. (5) at the integral scale since the fluid velocity v
decays due to the dissipation. We can also omit the expan-
sion term since the evolution of the fluid velocity is con-
trolled by the dissipation whose time scale is much faster
than the cosmic expansion. Employing the terminal-
velocity approximation, we obtain

v2
A

Lint

�
�

��t 
 pt�

v

L2
int

: (14)

Using the comoving wave number at the integral scale kint,
the fluid velocity can be described as

v � ��t 
 pt�
v2

A

�
a
kint

: (15)

Hence it is found that the evolution of the fluid velocity
becomes v / a�2.

According to this solution, the eddy time at the integral
scale is proportional to a3 in both radiation and matter
dominated epochs. Therefore the eddy time remains longer
than the cosmic expansion time, 1=H which is proportional
to a2, and a3=2 in the radiation dominated epoch and the
matter dominated epoch, respectively. As a result, no direct
cascade occurs during the viscous regime and the integral
scale does not grow.

C. Free-streaming regime

The third regime is the free-streaming regime, in which
photon mean free path is larger than the integral scale. In
this regime, photons and baryon fluids are decoupled and
magnetic fields can amplify the fluid velocity. This ampli-
fication of the velocity makes the eddy time shorter until
the eddy time becomes equal to the cosmic time 1=H. At
this point the kinetic energy on Lint is directly dissipated
into heat and the integral scale shifts to larger scales.

Let us first estimate the transition epoch from the vis-
cous regime to the free-streaming regime. The transition
happens when the mean free path Lmfp becomes equal to
the integral scale Lint. Employing the comoving wave
number of the integral scale in the viscous regime
Eq. (13), we obtain the transition redshift as

zv�f ’ 1:7� 105B�3=2
�9

’ 1:7� 105

�
k

3:4� 104 Mpc�1

�
1=2
; (16)

Using Eq. (15), and noting that a=kint � Lmfp during this
epoch, we find that v has decayed to v � v2

A at the tran-
-5
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FIG. 1. The transition comoving scales as the function of the
redshift. The dotted line is the transition line from the turbulent
to the viscous regime, Eq. (12). The solid line is that from the
viscous to the free-streaming regime, Eq. (16). The dashed line
represents the start of the direct cascade in the free-streaming
regime, Eq. (19), which is more or less when the diffusion
process takes place. In the left side of this line there is no direct
cascade or diffusion damping. In the right side the direct cascade
or diffusion damping is occurring.
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sition. In the free-streaming regime, we need to solve
Eq. (7) instead of Eq. (5) for the evolution of the fluid
velocity. Ignoring the cosmological expansion term, we
obtain the solution with the terminal-velocity approxima-
tion as

v �
��t 
 pt�kintv2

A

�b�a
: (17)

The eddy time is longer than the cosmic time when the
free-streaming epoch begins since v is much smaller than
vA during the viscous regime due to dissipation. From the
above solution, however, it is found that v / a2 in the free-
streaming epoch. Accordingly the eddy time evolves as
a�1. Therefore the eddy time soon becomes shorter than
the cosmic time which is proportional to a2=3 in the matter
dominated universe.

As is shown in the previous subsection, the integral scale
does not evolve in the viscous regime. In the free-streaming
regime, the integral scale does also not change until the
eddy time becomes equal to the cosmic time.

When the eddy time is equal to the cosmic time on the
integral scale, i.e. Lint=v � 1=H, the comoving wave num-
ber must satisfy the relation (using Eqs. (17) and (6)):

k�1
int ’

vA

kS
; (18)

where k�1
S is the comoving Silk scale defined as k�1

S ’����������������
Lmfp=H

q
=a. Note that in this regime, vA=kS is the comov-

ing damping scale for Alfvén modes. Unlike in the non-
magnetized photon-baryon fluid overdamped Alfvén
modes survive below the Silk damping scale for weak
magnetic fields as was first pointed out by [7,8]. While it
is not clear either the direct cascade or the diffusion
process takes place first, the baryon velocity exponentially
damps away bellow this scale.

Substituting Eq. (13), which is the comoving integral
wave number in the viscous regime and in the free-
streaming regime until the damping scale for Alfvén
modes, vA=kS, becomes equal to the integral scale, into
Eq. (18), we obtain the redshift below which further growth
of the integral scale in the (viscous) free-streaming regime
occurs

z � 1100
�

B�9

16 nGauss

�
�8=5

� 1100
�

kint

8 Mpc�1

�
8=15

: (19)

Therefore if the integral scale once became larger than
100 kpc by the end of the turbulent regime, the integral
scale did not change through viscous and free-streaming
regimes all the way until the recombination epoch.

On the contrary, if the integral scale was smaller than
100 kpc, there was further growth of Lint during the free-
streaming regime before recombination. The integral scale
shifts to a larger scale in this case. The resultant integral
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scale at the recombination epoch depends on the slope of
the magnetic field power spectrum.

In Fig. 1 we show the areas of turbulent, viscous and
free-streaming regimes in the z� kint plane. Here we
employ Eqs. (12), (16), and (19). Knowing the time evo-
lution of the integral scale kint, which depends on the
magnetic field spectrum, we can draw an evolutionary
track in this plane and easily understand when the transi-
tion between different regimes occurs. We will discuss this
evolution in the next section.
III. ALFVÉN MODE SPECTRUM

In the previous section, we discussed the evolution
history of magnetic fields and fluid velocity or Alfvén
modes. We separated the evolution into three regimes,
i.e., turbulent, viscous, and free-streaming. We analytically
solved the MHD-Euler equation and acquired the relation
between the fluid velocity v and the Alfvén velocity vA in
each regime. Once v was obtained, we could estimate the
eddy time teddy and compare it with the cosmic time in
order to know whether field evolution occurred.

However we can not describe the time evolution of the
integral scale of the magnetic fields without knowing the
magnetic field power spectrum.

In this section, we find the power spectra of magnetic
fields and the fluid velocities for a given initial shape of the
magnetic field power spectrum. Being motivated by a
causal mechanism of primordial magnetic field generation
such as QCD phase transition, we employ the power law
-6
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FIG. 2. The evolution of the comoving energy power spectrum
of the magnetic fields and the kinetic energy power spectrum of
the fluids in the turbulent regime from the numerical simulation
by [10,11]. The x-axis is a comoving wave number. The normal-
izations of x and y-axes are arbitrary. The thin and thick lines are
the power spectra of magnetic fields and fluids, respectively. The
dotted lines are the initial power spectra (	 � 0:00) with the
spectrum index n � 4. This figure shows that the energy den-
sities become the equipartition, v � vA after a few eddy time
scale even on large scales.
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spectrum with exponential cutoff for initial comoving
magnetic fields as

P comov
B �ti; k� �

k3

2�2 hjBcomov�ti; k�j2i

� B2
comov

�
k
kc

�
n

exp
�
�

�
k
kc

�
2
�
; (20)

where n is the initial power law index and kc is the cutoff
scale, and Bcomov is the amplitude of the initial comoving
magnetic fields at the cutoff scale. Obviously, the cutoff
scale corresponds to the integral scale at the initial epoch
for a blue, n > 0 spectra.

To see the evolution of the fluid velocity induced by the
magnetic field, it is convenient to define the power spec-
trum of the Alfvén velocity PA�k� as

P A�t; k� �
k3

2�2 hjvA�t; k�j
2i

�
1

4�
1

��t 
 pt�a
4 P

comov
B �t; k�: (21)

A. Turbulent regime

In the turbulent regime, we have shown that the mag-
netic field energy reaches an equipartition state with the
fluid kinetic energy, i.e., v � vA (Eq. (10)).

Therefore we expect to have the following relation
between the power spectrum of the fluid velocity P v�t; k�
and the energy density of the magnetic field, i.e. the power
spectrum of the Alfvén velocity, PA�t; k�, as

P A�t; k� � P v�t; k�: (22)

Here the power spectrum of the fluid velocity is defined as

P v�k� �
k3

2�2 hjvj
2i: (23)

Equation (22) is consistent with the results of the MHD
simulation as is shown in Fig. 2. In this figure s is the time
stamp and has the following relation with the redshift z,

z
 1

zi 
 1
� exp

�
�s

tieddy

H�1
0

�
; (24)

where the subscript i denotes the initial value. Initially, the
power spectrum of the fluid velocity is very different from
the one of the magnetic field. However, the fluid velocity
power spectrum soon catches up with the magnetic field
one. Subsequently, they evolve in a very similar manner. In
this figure, it is shown fluid velocity on large scales also
immediately reaches the equipartition as well as the veloc-
ity on scales smaller than the integral scale. Therefore
hereafter we assume the equipartition on all scales, i.e.,
Eq. (22). Although it is immediate in terms of s, however, it
may take longer time in physical time. If this is the case
and the fluid velocity on larger scales has not caught up
with the Alfvén velocity by the end of the turbulent regime,
023002
we expect that the power spectrum of the fluid velocity
P v�k� has less power on large scales than the one of the
magnetic fields PA�k� which is proportional to kn on large
scales. The most extreme case is that turbulence does not
work at all on large scales, in which we need to employ
linear perturbation. Subramanian and Barrow [16] obtain
P v�k� / k

5 for the linear calculation. Therefore the power
law slope on large scales can be between n and 5.

On scales larger than the integral scale, the power spec-
trum of the Alfvén velocity keeps its initial amplitude. The
power spectrum of the fluid velocity also soon reaches to
this amplitude.

Let us now estimate the evolution of the integral scale. In
Sec. II A, we explained the reason why this scale shifts to
larger scale with time during the turbulent regime. Now we
would like to estimate the rate of this shift as a function of
the power law index n.

As we have shown in II A, the integral scale is the scale
where teddy � 1=H is satisfied. In the turbulent regime
teddy � a=�kintv� � a=�kintvA�. Therefore kint � aH=vA.
The time evolution of the Alfvén velocity at the integral
scale, in the absence of dissipation, is estimated as vA �

B=
����������������
�t 
 pt
p

/
�����������������
PA�kint�

p
� a0. On the scale larger than

the previous integral scale, P B�k� / kn. Therefore the
growth of the integral scale, when dissipation is also con-
sidered, is obtained as

kint / a
�2=�n
2�: (25)

This analytic estimate is supported by the numerical simu-
lation as is seen in Fig. 2. This figure also shows the direct
-7
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cascade of the magnetic fields soon smears out the initial
sharp damping in the power spectrum.

The resultant power spectrum of the magnetic fields
during the turbulent regime has power law shape on both
large and small scales but with different indices. Matching
the amplitude with the initial value on large scales, we
obtain

P A�t; k� � PA�ti; k� / k
n; k < kint; (26)

P A�t; k� � PA�ti; kint�

�
k
kint

�
m
/ km; k > kint; (27)

where m as observed in the numerical simulation is ap-
proximately m��2=3 (for details see [10]).

Because of the equipartition, the evolution of the power
spectrum of the fluid velocity is identical to the Alfvén
velocity as

P v�t; k� � PA�ti; k� / kn; k < kint; (28)

P v�t; k� � PA�ti; kint�

�
k
kint

�
m
/ km; k > kint: (29)
B. Viscous regime

When the relation vA � ��t 
 pt��k=a is satisfied at the
integral scale, the magnetic fields enter into the viscous
regime. In the viscous regime the magnetic fields do not
decay. Therefore the spectrum of the magnetic fields is
frozen over the viscous regime and keeps its feature at the
transition epoch from the turbulent to the viscous regimes
tt�v as

P A�t; k� � PA�tt�v; k�: (30)

In the viscous regime no further growth of Lint happens
and the amplitude of the fluid velocity is proportional to
square of the Alfvén velocity amplitude as is shown in
Eq. (15). Note that Eq. (15) can be applied not only to the
integral scale but also to all scales during the viscous
regime. Therefore the power spectrum of the fluid velocity
can be described using the power spectrum of the Alfvén
velocity.

If the power law index n is smaller than 3=2, the con-
tribution from larger k (smaller scales) is negligible and we
obtain

P v�t; k� �
�
��t 
 pt�a

�k
PA�tt�v; k�

�
2

/

�
k2�n�1�; k < kint;

k2�m�1�; k > kint:
(31)

If n is larger than 3=2, on the other hand, the contribution
from the integral scale dominates in the convolution on
scales larger than the integral scale. Then we can simply
describe the power spectrum of the fluid velocity as (cf.
023002
Appendix A, Eq. (A23) and text below)

P v�t;k��
�
��t
pt�a
�kint

PA�tt�v;kint�

�
2
�
k
kint

�
/k; k<kint;

(32)

P v�t;k��
�
��t
pt�a

�k
PA�tt�v;k�

�
2
/k2�m�1�; k>kint:

(33)

Note that in Eq. (32), the slope may be steeper on large
scales if the equipartition was not achieved during the
turbulent regime.

On scales smaller than the photon mean free path Lmfp,
the diffusion approximation is no longer valid as is the case
in the free-streaming regime regardless of the value of the
initial power law index n. Therefore we shall use the
argument of Sec. II C for the evolution of the fluid velocity.
Employing Eq. (17), we obtain

P v�t;k��
�
��t
pt�k
�b�a

PA�tt�v;k�
�

2
/k2�m
1�; k>kf ;

(34)

where kf �
���
5
p
a=Lmfp. For the definition of kf , we put the

factor
���
5
p

in order to match the power spectrum at kf . The
estimated value of kf at the recombination epoch is kf �
1:2 Mpc�1�z=1100�2.

C. Free-streaming regime

When the integral scale becomes smaller than the pho-
ton mean free path, i.e., kf � kint, the free-streaming re-
gime begins. At the beginning of the free-streaming
regime, the eddy time at the integral scale is longer than
the cosmic time. Therefore the integral scale does not
change. If the integral scale is larger than 100 kpc, the
eddy time is always longer than the cosmic time until
recombination as is described in Eq. (19), and further
dissipation never occurs. In this case, the Alfvén velocity
vA does not evolve and the fluid velocity is expressed in
terms of vA as v � ��t 
 pt�kv2

A=��b�a� (Eq. (17)).
Accordingly the power spectrum of the fluid velocity can
be described by the convolution of the power spectrum of
the Alfvén velocity.

Following the argument we made in the previous sub-
section, we obtain the power spectrum of the fluid velocity
as

P v�t; k� �
�
��t 
 pt�k
�b�a

PA�tv�f ; k�
�

2

/

�
k2�n
1�; kf < k< kint;

k2�m
1�; k > kint;
(35)

for the power law index n being smaller than 3=2.
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If n > 3=2, on the contrary, we obtain

P v�t; k� �
�
��t 
 pt�kint

�b�a
PA�tt�v; kint�

�
2
�
k
kint

�
5
/ k5;

kf < k< kint;
(36)

P v�t;k��
�
��t
pt�k
�b�a

PA�tv�f ;k�
�

2
/k2�m
1�; k>kint:

(37)

On the scales larger than the free-streaming scale, i.e.,
k < kf , the evolution of the fluid velocity still follows the
solution of the viscous regime. Therefore

P v�t;k��
�
��t
pt�a
�kint

PA�tt�v;kint�

�
2
�
k
kint

�
/k;

k<kf ; n>3=2;
(38)

P v�t; k� �
�
��t 
 pt�a

�k
PA�tt�v; k�

�
2
/ k2�n�1�;

k < kf ; n < 3=2:
(39)

Note that in Eqs. (38) and (39), the slopes may be steeper
on large scales as is pointed out in the previous subsection.

Finally, in the case of the integral scale at the transition
epoch from the viscous to free-streaming regimes being
smaller than 100 kpc, the further processing of Lint begins
at the redshift of Eq. (19). Once further decay takes place,
the integral scale shifts to larger scales. Let us now esti-
mate the evolution of the integral scale as a function of the
initial power law index n. The integral scale can be written
as kint � aH=v. The time evolution of the fluid velocity at
the integral scale is estimated as v � ��t 

pt�kv2

A=��b�a� / kintPA�kint�a2. On the scale larger than
the previous integral scale, PA�k� / kn. Therefore the time
evolution of the integral scale is given by

kint / a�3=�n
2� in the radiation dominant,

kint / a�5=�2�n
2�� in the matter dominant:
(40)

We should note that H / a�2 in the radiation dominated
universe and H / a�3=2 in the matter dominated universe
while �t / a

�4 until the energy density of baryons domi-
nate the one of photons, which happens much later than
recombination. Therefore vA � B=

����������������
�t 
 pt
p

is still con-
stant through this regime. This time evolution is consistent
with the numerical result.

Now we can estimate the power spectrum on scales
where the direct cascade or diffusion damping during the
free-streaming regime occurs. Even if the cascade process
occurs first, the power law slope of the decay immediately
washes away by diffusion since the scales of the direct
cascade and the diffusion are very close. Therefore we only
consider the diffusion process here. The resultant power
spectrum leads to
023002
P v�t;k��
�
��t
pt�kint

a��b
PA�kint�

�
2
e�2�k=kint�

2
; k>kint:

(41)

In the above power spectrum, the shape on the scales larger
than the integral scale is identical to the one without further
growth of the integral scale during free-streaming (cf.
Eqs. (35)–(39)).

D. Summary of velocity power spectra

Let us summarize the fluid velocity power spectrum of
Alfvén modes at LSS for estimating power spectra of CMB
anisotropies and polarization. There are three different
cases corresponding to the integral scale on LSS. We refer
them as ‘‘Case A’’, ‘‘Case B’’ and ‘‘Case C’’ for kint <
kf � 1:2 Mpc�1, kf � 1:2 Mpc�1 < kint < 8 Mpc�1, and
8 Mpc�1 < kint, respectively, (cf. to Fig. 1 at z � 1000).
Here 1:2 Mpc�1 and 8 Mpc�1 correspond to amplitudes of
comoving magnetic field strength as 30 nGauss and
16 nGauss. Case A is the case in which the viscous regime
continues until recombination. For Case B, while transition
from the viscous to the free-streaming regimes occurs
before recombination, the direct cascade process never
happens on the integral scale. The diffusion process on
the integral scale only takes place for Case C.

Let us first list the power spectra with n > 3=2.
Case A—(Eqs. (32)–(34))

P v�t;k��
�
��t
pt�a
�kint

PA�tt�v;kint�

�
2
�
k
kint

�
/k; k<kint;

(42)

P v�t; k� �
�
��t 
 pt�a

�k
PA�tt�v; k�

�
2
/ k2�m�1�;

kint < k< kf ;
(43)

P v�t;k��
�
��t
pt�k
�b�a

PA�tt�v;k�
�

2
/k2�m
1�; kf<k:

(44)

Case B—(Eqs. (38), (36), and (37))

P v�t;k��
�
��t
pt�a
�kint

PA�tt�v;kint�

�
2
�
k
kint

�
/k; k<kf ;

(45)

P v�t; k� �
�
��t 
 pt�kint

�b�a
PA�tt�v; kint�

�
2
�
k
kint

�
5
/ k5;

kf < k< kint; (46)

P v�t;k��
�
��t
pt�k
�b�a

PA�tv�f ;k�
�

2
/k2�m
1�; kint<k:

(47)
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Case C—(Eqs. (38), (36), and (41))

P v�t;k��
�
��t
pt�a
�kint

PA�tt�v;kint�

�
2
�
k
kint

�
/k; k<kf ;

(48)
P v�t; k� �
�
��t 
 pt�kint

�b�a
PA�tt�v; kint�

�
2
�
k
kint

�
5
/ k5;

kf < k< kint;
(49)
P v�t;k��
�
��t
pt�kint

a��b
PA�kint�

�
2
e�2�k=kint�

2
; kint<k:

(50)

Fig. 3 shows the evolutionary track of each case. The
Case A is represented as the dotted line. The Case B and
Case C are the solid and the dashed lines. The slope of the
tracks follow Eqs. (25) and (40). Here we employ the
spectral index of the initial magnetic fields n � 4.

Next we list the power spectra with n < 3=2.
100000 10000 1000

5.0

10

50

Case A

Case C

Case B

co
m

ov
in

g 
in

te
gr

al
 s

ca
le

k
[M

pc
]

-1

zredshift

FIG. 3. Evolution of the comoving integral scale of the mag-
netic field configurations with n � 4. The dotted line corre-
sponds to Case A which undergoes the turbulent regime and
the viscous regime before recombination. The solid line corre-
sponds to Case B which passes through turbulent, viscous and
free-streaming regimes, with nevertheless no growth of the
integral scale immediately before recombination occurring.
The dashed line corresponds to Case C in which there is growth
of Lint in the free-streaming regime shortly before recombina-
tion. The thin dotted line represents the transition line from the
turbulent regime to the viscous regime. The thin solid line shows
the evolution of kf , whereas the thin dashed line represents the
start of growth of the integral scale in the free-streaming regime.
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Case A’—(Eqs. (31) and (34))

P v�t; k� �
�
��t 
 pt�a

�k
PA�tt�v; k�

�
2

/

�
k2�n�1�; k < kint;

k2�m�1�; kint < k< kf ;
(51)

P v�t;k��
�
��t
pt�k
�b�a

PA�tt�v;k�
�

2
/k2�m
1�; kf<k:

(52)

Case B’—(Eqs. (39) and (35))

P v�t;k��
�
��t
pt�a

�k
PA�tt�v;k�

�
2
/k2�n�1�; k<kf ;

(53)

P v�t; k� �
�
��t 
 pt�k
�b�a

PA�tv�f ; k�
�

2

/

�
k2�n
1�; kf < k< kint;

k2�m
1�; kint < k:
(54)

Case C’—(Eqs. (39) and (35) (kf < k< kint) and (41))

P v�t;k��
�
��t
pt�a

�k
PA�tt�v;k�

�
2
/k2�n�1�; k<kf ;

(55)

P v�t; k� �
�
��t 
 pt�k
�b�a

PA�tv�f ; k�
�

2
/ k2�n
1�;

kf < k< kint;
(56)

P v�t;k��
�
��t
pt�kint

a��b
PA�kint�

�
2
e�2�k=kint�

2
; kint<k:

(57)

Note that on large scales (k < kint), the power law slopes
of above equations may be steeper as is pointed out before.
In the most extreme case, P v�t; k� / k

5 instead of k for n >
3=2, and P v�t; k� / k2�n
1� instead of k2�n�1� for n < 3=2
as is expected from the linear analysis.

IV. CALCULATION OF CMB TEMPERATURE
ANISOTROPY AND POLARIZATION SPECTRA

Alfvén modes of baryon-electron fluid produced by the
primordial magnetic fields generate CMB temperature
fluctuations by a Doppler shift [16]. Moreover, the quad-
rupole component of the generated temperature anisotro-
pies produces polarization due to Thomson scattering. It is
known that CMB polarization can be decomposed into two
parity independent modes, i.e., the E-mode (electric type)
and the B-mode (magnetic type) [21]. Among them, the B-
mode polarization is not primarily produced by the scalar
type perturbations which eventually form the structure of
-10
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the universe and provide dominant contribution on the
temperature anisotropies. Therefore the B-mode polariza-
tion possibly can be a good probe of primordial magnetic
fields.

First, we summarize the derivations of the temperature
anisotropy and polarization spectra induced by Alfvén
modes with use of the linear perturbation theory
[16,17,22]. The Alfvén mode in the linear MHD theory is
identical to the vector mode of the cosmological fluid
velocity in the cosmological perturbations. The vector
metric perturbations in the linear perturbation theory can
be written as (cf. [26] also for notation)


g0i � �a
2Vi � �a

2VQi;


gij � 2a2HTij � 2a2HTQij;
(58)

where V and HT are the amplitudes of the vector metric
perturbations and Qi and Qij are the vector type mode
functions which are defined as

r2Qi � �k
2Qi; riQi � 0;

Qij � �
1

2k
�riQj 
rjQi�:

(59)

The amplitude vb of the vector components of the baryon
fluid velocity vbi can be represented with the mode func-
tions as

vbi � vbQi: (60)

Employing the total angular momentum method [27], we
obtain the CMB temperature anisotropies �TTT�l� induced
by Alfvén modes as

�TTT�l� � T0

�����������������������������
l�l
 1�CTT�l�

2�

s
; (61)

�TBB�l� � T0

�����������������������������
l�l
 1�CBB�l�

2�

s
; (62)

CTT�l� �
4

�

Z 1
0
k2dk

�����������1�l ��0; k�
2l
 1

��������2
�
; (63)

CBB�l� �
4

�

Z 1
0
k2dk

���������B
�1�
l ��0; k�
2l
 1

��������2
�
; (64)

��1�l �k; ��
2l
 1

�
Z �

0
d�0e�	��

0�

�
_	�vb � V�j

�11�
l �k��� �

0��




�
_	P�1��k; �0� 


1���
3
p kV

�
j�21�
l �k��� �

0��

	
;

(65)

B�1�l �k;��
2l
1

��
���
6
p Z �

0
d�0e�	��

0� _	P�1��k;�0���1�l �k����
0��;

(66)

P�1��k; �� � 1
10�

�1�
2 �k; �� �

���
6
p
E�1�2 �k; ���; (67)
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E�1�2 �k;����5
���
6
p Z �

0
d�0e�	��

0� _	P�1��k;�0�"�1�2 �k����
0��;

(68)

j�11�
l �x� �

����������������
l�l
 1�

2

s
jl�x�
x

;

j�21�
l �x� �

�������������������
3l�l
 1�

2

s
d
dx

�
jl�x�
x

�
;

(69)

"�1�2 �x� �
j2�x�

x2 

1

x
dj2�x�
dx

; (70)

��1�l �x� �
1

2

����������������������������
�l� 1��l
 2�

p jl�x�
x

; (71)

e�	��
0� � exp

�
�
Z �

�0
_	d�00

�
; (72)

where jl�x� is the spherical Bessel function, � �
R
da=a is

the conformal time, subscript 0 denotes the present epoch
and _	 is the differential optical depth which is expressed as

_	 � ane�T � a=Lmfp: (73)

For further notation the reader is referred to Ref. [27]. The
conformal time � can be written in terms of redshift z as

��
1

H0

Z dz����������������������������������������������������������������������������������������
1��M
�M1
�1
z��1
z�1

eq ���1
z�3
q ;

(74)

where zeq � 2:4� 104�Mh
2 is the redshift of the matter-

radiation equality epoch. In the above expressions, we have
taken two independent vector modes into account. The
time evolution of vb is given by the Euler equation.

Combining these formulas with the linear perturbation
theory, we can calculate temperature anisotropy and polar-
ization spectra induced by the nonlinear Alfvén modes by
simply substituting the fluid velocity of Alfvén modes v in
Sec. II to vb � V of Eq. (65) due to the Newtonian gauge
condition [27]. Although, we obtain the Alfvén modes
from (fully nonlinear) numerical simulation, we still can
treat them as the vector modes because r 	 v � 0.

For the recombination history, we assume the visibility
function to be a Gaussian as

g��� � _	 exp
�
�
Z �0

�
_	d�0

�

� �2��2��1=2 exp
�
�
��� �LSS�

2

�2�2�

	
; (75)

where �LSS is the conformal time at the LSS and � is the
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FIG. 5. The B-mode polarization power spectrum. The dashed
line is the case of the magnetic fields with the comoving integral
scale kint � 1:0 Mpc�1 with 32 nGauss The solid line is the case
of kint � 1:5 Mpc�1 with 28 nGauss and the dotted line is the
case of kint � 10 Mpc�1 with 16 nGauss. The comoving integral
scale is related to the magnetic field strength by Eq. (13). The
gray line is the linear result of the magnetic field strength
28 nGauss at 1.5 Mpc with spectral index n � 4. Because this
linear result uses the tight coupling approximation, it is plotted
up to the�kf � 1:4 Mpc�1. For purpose of comparison, we plot
the polarization power spectrum in the standard CDM model (a
thin line), computed using CAMB with the same cosmological
parameters. This anisotropies is produced by the gravitational
lensing mainly.

FIG. 4. The temperature anisotropy power spectrum. The
dashed line is the case of the magnetic fields with the comoving
integral scale kint � 1:0 Mpc�1 with 32 nGauss. The solid line is
the case of kint � 1:5 Mpc�1 with 28 nGauss and the dotted line
is the case of kint � 10 Mpc�1 with 16 nGauss. The comoving
integral scale is related with the magnetic field strength by
Eq. (13). The gray line is the linear result of the magnetic field
strength 28 nGauss at 1.5 Mpc with spectral index n � 4. This
line has exponential damping at smaller scales than the cutoff
scale (for details see Sec. V C). For purpose of comparison, we
plot the temperature anisotropy power spectrum in the standard
CDM model (a thin line), computed using CAMB with the
same cosmological parameters [28].
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width of the LSS. From the WMAP results, the redshift and
the thickness of the LSS are 1
 z � 1089 and �z � 195
[23]. This implies that � is 13 Mpc for the cosmological
parameters we use in this work.

In our calculations the magnetic field power spectrum
stays virtually unchanged after the transition from turbu-
lence to viscous diffusion (i.e. for t > tt�v), even in the
case where kint � 10 Mpc�1 (Case C), since the free-
streaming regime before recombination is so short that
there is hardly any time for Lint to grow. Since in this study
we concentrate on causal spectra (n > 3=2) we mostly
require the magnetic filed spectrum around the integral
scale in order to derive the fluid velocity spectrum on all
scales. We therefore take the numerical results in the fully
developed turbulent regime at s � 2:49, which is expected
to resemble that at tt�v closely. From these numerical
spectra of the magnetic fields, we obtain the power spectra
of Alfvén modes using Eqs. (44)–(57). We assume the
equipartition between magnetic fields and fluid velocities
during the turbulent regime, which makes the power spec-
tra flat on large scales (small l’s). The modification of the
power spectra due to possible violation of this assumption
will be discussed in the next section.

For the calculation of polarization, we compute the
source term P�1� by using the publicly available code
CAMB [18,28] in which we substitute Alfvén modes ob-
tained by the numerical simulation.
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Now we are ready to calculate CMB temperature anisot-
ropy and polarization spectra. Hereafter, we fix the initial
power law index n to be 4. Temperature anisotropy and B-
mode polarization spectra are shown in Figs. 4 and 5,
respectively. Here we calculate models with kint �
10 Mpc�1, 1:5 Mpc�1 and 1:0 Mpc�1 at the LSS, whose
magnetic field strengths at the integral scale are 15 nGauss,
28 nGauss, and 32 nGauss, respectively, (see Eq. (13)).
Note that kint � 10 Mpc�1 corresponds to Case C,
1:5 Mpc�1 to Case B and 1:0 Mpc�1 to Case A in
Sec. III D.

For purpose of comparison, we also plot the temperature
anisotropies and polarization by using linear perturbations
of the Alfvén modes in Figs. 4 and 5. Here we adopt two
types of the magnetic field strength. One is 32 nGauss at
1:0 Mpc�1 and another is 28 nGauss at 1:5 Mpc�1. In both
cases we take the spectral index as n � 4.
V. DISCUSSION

Let us investigate the features of the power spectra of
CMB anisotropies and polarization obtained in the pre-
vious section. For the qualitative understanding of these
spectra, we first develop analytic expressions of CMB
anisotropies and polarization.

Both spectra are induced from the power spectrum of the
fluid velocity Pv�k� at the LSS. In fact, employing the
small angle approximation and considering the phase can-
-12
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cellation damping of anisotropies within the thickness of
the LSS, we obtain [16,22]

�TTT�l� � T0

��������������������������
�
p

2k�
P v�k�

s ��������k�l=��0��LSS�

; (76)

�TBB�l� � T0

���������������������������
3
����
�
p

2k�
P P�1� �k�

s ��������k�l=��0��LSS�

; (77)

where P P�1� �k� is the power spectrum of the source term
defined as

P P�1� �k� �
k3

2�2 hjP
�1�j2i: (78)

Here, 1=k� is due to the phase cancellation damping
within the thickness of the LSS.

In Sec. III we studied the velocity power spectra where
we found that the shape and amplitude of the power spectra
on the LSS depend on the regime of the comoving integral
scale at recombination. Note that magnetic fields with the
comoving integral scale kint � 1:2 Mpc�1 at recombina-
tion are transiting from the viscous regime to the free-
streaming regime right at recombination as is shown in
Fig. 3. At the recombination epoch, the integral scale is still
in the viscous regime for kint < 1:2 Mpc�1, while it has
already been in the free-streaming regime for kint >
1:2 Mpc�1.

In the viscous or free-streaming regimes, the velocity
power spectra do not explicitly depend on the initial spec-
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tral index of the magnetic fields n if n > 3=2, which is the
case we consider in this paper, as is shown in III B and III C
(or summarized in III D). Even in this initially blue spec-
trum case, however, the initial spectral index still affects
the growth rate of the integral scale (see Eqs. (25) for the
turbulent regime and (40) for the free-streaming regime).
But as is shown in Fig. 3, the integral scale does not change
during the viscous regime and only changes little in the
free-streaming regime, provided the magnetic fields are
sufficiently strong, i.e. the comoving B> 16 nGauss at
recombination. Since the turbulent regime, where the in-
tegral scale mostly evolves, is long before the recombina-
tion epoch, we can ignore the growth of the integral scale
and accordingly the dependence of the initial spectral
index. Therefore we expect the velocity power spectra
and the resultant temperature anisotropy and polarization
spectra to show virtually no dependence on the initial
spectral index n, for n > 3=2.

A. Temperature anisotropy power spectrum

Let us now discuss the temperature anisotropies.
Following Sec. III D, we investigate the temperature an-
isotropy spectrum for three separate cases corresponding to
the integral scale on the LSS.

First, we consider Case A in which the integral scale
kint < 1:2 Mpc�1. The integral scale is still in the viscous
regime at the recombination epoch in this case.
Substituting the equations of Case A in Sec. III D into
Eq. (76), we can derive the approximations of the tempera-
ture anisotropy spectrum produced by the magnetic fields
as
�TTT � T0

���������������������������������������������������������������������������������
�
p

2k�

�
��t 
 pt�a
�kint

PA�tt�v; kint�

�
2
�
k
kint

�s ��������k�l=��0��LSS�

� 104
�

kint

1:0 Mpc�1

�
�13=6

�K�; l < lint; (79)

�TTT � T0
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�13=6

�
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(80)

�TTT � T0

�����������������������������������������������������������������
�
p

2k�

�
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 pt�k
�b�a

PA�tt�v; k�
�

2
s ��������k�l=��0��LSS�

� 31:5
�

kint

1:0 Mpc�1

�
�1=6

�
l
lint

�
m
1=2

�K�; lf < l; (81)
where

lint � kint��0 � �LSS� � 14 500
�

kint

1:0 Mpc�1

�
; (82)

lf � kf��0 � �LSS� � 17 800: (83)

We find a very good agreement between these approx-
imations and full numerical calculations as is shown in
Fig. 4. On scales l < lint and for k�> 1, Eq. (79) suggests
no l dependence of the temperature anisotropy spectrum,
whereas for l < lint and k�< 1, although this region is not
shown in Fig. 4, a residual small l-dependence is expected
to remain / l1=2. Since m ’ �2=3, l dependence on scales
l > lf is also very weak. We expect to see some variation of
the temperature anisotropy spectrum between lint < l < lf .
The dashed line in Fig. 4 shows these features.

Note that we assume the equipartition between magnetic
fields and fluid velocities during the turbulent regime. On
very large scales (small l’s), we may expect violation of
this assumption. Above the scale at which this assumption
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FIG. 6. The magnetic field strength B�9 for the comoving
integral scale kint (Eq. (13)). The gray region is the forbidden
region by the WMAP results. Magnetic fields with comoving
strength larger than 30 nGauss at recombination are ruled out.
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is no longer valid, the temperature anisotropy spectrum
shows l dependence. In the most extreme case, the advec-
tive term can be completely ignored. Therefore the behav-
ior of the power spectrum is described by the linear
perturbation as is shown in Appendix ((A29)), and the
temperature anisotropy spectrum is proportional to l5=2.
In Fig. 4, this damping on small l’s (the blue spectrum)
is shown for the linear case. For the nonlinear cases, we do
not really know the location of the break from the flat
spectrum and the power law index since they strongly
depend on when and how the initial magnetic fields were
formed. If there existed strong magnetic fields in the very
early universe, the assumption of the equipartition is
mostly valid, and the flat spectrum on small l’s is expected.

The amplitude of temperature anisotropies in Case A is
generally very large. Even in the case when kint �
1:2 Mpc�1, which corresponds to the smallest amplitude
of Case A (or transition between Case A and Case B),
�TTT ’ 70 �K. This amplitude is much larger than the
one measured by WMAP or BOOMERANG, i.e., �TTT ’
40 �K at l ’ 800 [29] or �TTT ’ 30 �K at l ’ 1100 [30],
in which major parts of anisotropies should be explained as
the primordial anisotropies. Only a small fraction of an-
isotropies can be interpreted as primordial magnetic field
origin at most. Note that we ignore here the possible
damping of the temperature spectrum on small l’s due to
the nonequipartition between magnetic fields and fluid
velocities during the turbulent regime. Accordingly the
amplitude of temperature anisotropies at l � 800 and
1100 may be smaller than 70 �K. Even in the most ex-
treme case with assuming the same power spectrum as the
linear calculation, however, we still get �TTT ’ 20 �K at
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l � 1100, which is about 3=2 of the observed temperature
anisotropies. Here we take the break scale lv is 1800 using
the expression in Appendix, and employ the equation
�TTT � 70�l=lv�

5=2�K.
Therefore we can safely rule out the possibility of Case

A, i.e., kint < 1:2 Mpc�1 and B> 30 nGauss at the recom-
bination epoch (see Fig. 6) for n > 3=2.

Now we study Case B. In this case, the integral scale is
1:2 Mpc�1 & kint & 8 Mpc�1 and the temperature anisot-
ropies on the LSS are given by the power spectrum in the
free-streaming regime. Substituting the equations of Case
B into Eq. (76), we get
�TTT � T0

������������������������������������������������������������������������
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(85)

�TTT � T0
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l
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m
1=2

�K�; lint < l: (86)
Again we find a good agreement between the above
approximations and full numerical calculations, i.e., a solid
line in Fig. 4. On the scales l < lf and l > lint, we expect no,
or very little l dependence from Eqs. (84) and (86) while
the nonequipartition between magnetic fields and fluid
velocities may change l dependence in the same manner
as Case A. Between lf < l < lint, however, temperature
fluctuations should increase as l2. In Fig. 4, the solid line
stays flat on the scale l < 18 000 ’ lf , and increases until
l ’ 30 000. However �TTT / l2 only on the scale l &

22 000 ’ lint and gradually decreases the gradient for larger
l.

The WMAP and BOOMERANG results have ruled out
Case A. They also constrain Case B as kint > 1:5 Mpc�1,
-14



NONLINEAR EVOLUTION OF COSMIC MAGNETIC . . . PHYSICAL REVIEW D 73, 023002 (2006)
or B< 29 nGauss at the recombination epoch if the
equipartition assumption is valid. When the assumption
is violated, we cannot set concrete limits for Case B.
On the other hand, one might think that CMB aniso-
tropies produced by the magnetic fields can explain the
small scale excess of the temperature power spec-
trum observed by the CBI experiment [31]. However,
the power spectrum of CMB anisotropies we find is very
flat on scales 2000< l < 18 000 even with consid-
ering possible violation of the equipartition. Therefore it
is rather difficult to explain the CBI experiment which
023002
shows Silk damping at l � 2000 and increases the power
to l � 2800.

Finally let us investigate Case C, in which some further
growth of the integral scale takes place before recombina-
tion. In this case, the power spectrum Eq. (86) is no longer
valid due to the direct cascade while the rests of the power
spectra Eq. (84) and (85) are the same. Therefore the
difference between Case B and Case C appears in the
power spectrum at scales smaller than the integral scale.
Employing Eq. (50), we obtain the temperature anisotropy
spectrum as
�TTT � T0

�������������������������������������������������������������������������������������
�
p

2k�
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2
PA�kint�

2e�2�k=kint�
2
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�
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�
�1=6

e��l=lint�
2
�K�; lint < l:

(87)
FIG. 7. The Thomson scattering source term P1�k� at the
recombination epoch obtained by CAMB for a fixed magnetic
field with 1 nGauss amplitude and the scale-invariant power
spectrum (solid line). The dashed and dotted lines are the tight
coupling approximation, Eq. (88), and the decoupling approxi-
mation, Eq. (89), respectively. Note that the Silk damping scale
here is kS ’ 0:08 Mpc�1, which corresponds to the transition
scale between tight coupling and decoupling and the free-
streaming scale is kf ’ 1:2 Mpc�1.
The dotted line of Fig. 4 corresponds to Case C. In this
figure, we can find the temperature anisotropy spectrum
stays constant for l < lf and follows / l2 for l > lf . The
integral scale of this model is too large, i.e., lint � 1:5�
105, to see the difference with Case B.

Note that the temperature anisotropy spectrum induced
by the magnetic fields shown in Fig. 4 does not show any
significant damping on large l’s (small scales) unlike the
primary temperature anisotropy spectrum which suffers
Silk damping at l ’ 2000. This is due to the fact that
Alfvén modes can survive even below the Silk damping
scale [7]. The damping scale for Alfvén modes is the
integral scale. Our numerical simulations also show the
damping below the integral scale is rather mild compared
to the linear calculations. There exists the diffusion scale
vA=kS below which the power spectrum is exponentially
damped for Case C (and Cases A and B in extremely small
scales), while we cannot see the damping within the range
of Fig. 4. Further comparison with linear calculations will
be made in Sec. V C.

B. B-mode polarization power spectrum

We investigate the B-mode polarization spectrum shown
in Fig. 5. For the quantitative understanding, we need to
know the behavior of the source term P�1� defined in
Eq. (67). In our calculation, we employ CAMB to solve
P�1�. However, it is rather easy to develop an analytic
solution for the evolution of P�1�.

First of all, we divide the evolution into two stages. The
first one is the period when the tight coupling approxima-
tion is valid. Once the wave length of the perturbations
becomes shorter than the Silk scale, however, electrons and
photons are decoupled and the tight coupling approxima-
tion is no longer valid. This gives rise to the second stage.

In the first stage, the solution of the Boltzmann equa-
tions of polarization becomes E�1�2 � ��

���
6
p
=4���1�2 in the

limit of 	! 1 (Eq. (89) of [27]). The quadrupole (l � 2)
component of the Boltzmann temperature hierarchy gives
��1�2 � �4

���
3
p
=9��k= _	���1�1 . Because of the tight coupling,

electron (baryon) velocity follows the photon velocity as
��1�1 � v. Therefore the source term can be written as
(Eq. (94) of [27])
P�1� �
1
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In the second stage, the E-mode component is damped
due to diffusion. Therefore ��1�2 induced by the Alfvén
modes (Eq. (65)) v only contributes to the source term
P�1� in Eq. (67). Namely, P�1� is induced by v. It is known
that the oscillations of the temperature quadrupole, i.e.,
j�11�

2 �k��� ��� of Eq. (65), suffers damping due to the
phase cancellation within the optical depth. Note that the
1=

�������
k�
p

coefficient of Eqs. (76) and (77) appeared because
of this effect. Therefore we expect to have a factor

1=
������������������
kLmfp=a

q
in the source term P�1�. Adding a numerical

factor to fit with the simulation, we obtain

P�1� �
v

10
������������������
kLmfp=a

q ; (89)

which we refer as the decoupling approximation.
For the intuitive understanding, we plot the source term

P�1��k; �LSS� of the model in which the magnetic fields
have a scale-invariant power spectrum, i.e., k3Pv�k� / k0,
with a magnetic field strength of nGauss in Fig. 7 by
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employing CAMB. In this figure, it is found that the
numerical calculation follows the tight coupling approxi-
mation at scales larger than the Silk damping scale, kS �

a
����������������
H=Lmfp

q
’ 0:08 Mpc�1. It is also shown that the nu-

merical calculation traces the decoupling approximation
Eq. (89) on scales smaller than the Silk damping scale.
Gradual increase of the source term on scales k > kf ����

5
p
a=Lmfp ’ 1:2 Mpc�1 is due to the increase of the ve-

locity v since the viscosity is no longer efficient and the
fluid velocity can evolve on these scales (see Eq. (17)).

Now we are ready to calculate the B-mode polarization
spectrum using Eq. (77), since the source term P�1� can be
written by employing the fluid velocity v as Eqs. (88) and
(89). Following our calculations of temperature anisotro-
pies, we obtain a B-mode polarization spectrum for three
separate cases, i.e., Cases A, B, and C whose velocity
spectra can be seen in Sec. III D.

For Case A, the approximation of the B-mode polariza-
tion spectrum is expressed as
�TBB � T0
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where

lS � kS��0 � �LSS� � 1800: (94)
For Case B,
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Finally, for Case C, the difference with Case B only arises at the scales smaller than the integral scale as is the case of
temperature anisotropies. Using Eq. (50), we acquire the B-mode polarization spectrum as

�TBB�T0

�����������������������������������������������������������������������������������������������������
3
����
�
p

2k�
1

100

a
kLmfp

�
��t
pt�kint

a��b

	
2
PA�kint�

2e�2�k=kint�
2

vuut ��������l�k��0��LSS�

�2:4
�

kint

10 Mpc�1

�
�2=3

e��l=lint�
2
�K�;

lint<l: (99)
Let us discuss our numerical results of B-mode power
spectra in Fig. 5. The dashed, solid and dotted lines corre-
spond to Cases A, B, and C. It is shown that all lines
gradually increase until l� 4000, since �TBB / l on
scales l < lS for all cases. Note that we assume the equi-
partition between magnetic fields and fluid velocities dur-
ing the turbulent regime. On very large scales (small l’s),
we may expect violation of this assumption and steeper
slopes for the B-mode power spectra below l & 2000 as is
the case with temperature spectra. Case A shows continu-
ous declining on l > 4000 which is consistent with our
analytic estimate. The increase of �TBB on scales l > lf �
17800 for Cases B and C is caused by the efficient evolu-
tion of the velocity field in the free-streaming regime due to
the lack of dissipation term f. For both Cases B and C,
�TBB decreases on scales l > lint. We can see this decrease
in Fig. 5 for Case B whose lint is 22 000. For Case C, we
cannot find this trend because lint � 1:4� 105, which is
beyond the range of Fig. 5.

From the temperature anisotropy spectrum, Case A and
a part of Case B are excluded. However, the solid line in
Fig. 5, which overshoots the B-mode produced by the
gravitational lens effect, is not yet ruled out. Even the
dotted line can provide dominant contribution as the B-
mode polarization on scales l > 3000.

C. Comparison with linear calculations

Here, we compare our results with linear calculations.
Note that all previous works investigated the effects of the
magnetic fields on CMB anisotropies and polarization are
based on linear perturbation theory.

In the Appendix, we summarize the linear perturbation
analysis and the approximated estimations of temperature
anisotropy and polarization spectra following the analysis
by Subramanian and Barrow ([16,22]).

In Fig. 4, we plot the temperature power spectrum of the
linear calculation with B � 28 nGauss at k � 1:5 Mpc�1

and n � 4 as the gray line for comparison. It is shown that
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differences with the nonlinear calculation (the solid line)
appear on scales l < 2000, and l > 18 000.

On large scales, we can ignore the diffusion in the early
epoch. In the nonlinear calculation, v immediately ap-
proaches the Alfvén velocity v � vA due to the nonlinear
coupling during the turbulent regime if there exist strong
magnetic fields in the very early universe. On the other
hand, the growth of the velocity induced by the magnetic
pressure gradient in the linear calculation turns out to be
much slower as is shown in the Appendix (Eq. (A9)).
Accordingly we find a smaller temperature power spec-
trum (and polarization) for the linear calculation. Note that
even for the nonlinear calculation, there may be the case in
which the equipartition could not be achieved by the end of
the turbulent regime if the primordial magnetic fields on
the large scale were not strong enough. In this case, we
rather expect to have similar behaviors of the power spec-
trum to the linear one on large scales (small l’s).

Once the viscosity becomes efficient, the velocity fol-
lows the linear solution even in the case of the nonlinear
calculation (see Eqs. (15) and (A10)). Unlike the perturba-
tions without the magnetic fields which suffer severe
damping, the velocity (Alfvén mode) induced by the mag-
netic fields can survive within the Silk scale for both non-
linear and linear calculations. The amplitude of the
velocity is determined by the Alfvén velocity, i.e., the
amplitude of the magnetic fields. Therefore both linear
and nonlinear calculations give almost identical results,
which are �TTT�l� / l0, between 2000��lS�< l < 18 000.

On small scales, l > 18 000, the linear calculation shows
steeper rise of the power spectra for both Cases A and B
than the nonlinear calculation as shown in Fig. 4. There
also exists exponential damping in the linear calculation on
smaller scales. On the other hand, nonlinear calculation
shows less rise and no damping in the power spectra.

The reason why the power spectra of the nonlinear
calculation have less prominent peaks on the small scales
(large l’s) is due to the cascade decay of the magnetic fields
-17
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during the turbulent regime. As shown in Fig. 2, the peak of
the magnetic field power spectrum shifts to larger scales.
The condition of this shift is determined by teddy �

Lint=vA � 1=H as is discussed in Sec. II A. Then the cutoff
scale (or integral scale) has been frozen since the transition
from the turbulent regime to the viscus regime.
Accordingly the comoving wave number of the cutoff
can be written and kint � aH=vAjzt�v as is obtained in
Eq. (13). On the other hand, the cutoff scale of the linear
calculation is always determined by the diffusion condition
kc � kS=vA (see Appendix). The power spectrum in-
creases toward small scales as long as k < kc. Then it starts
to show exponential damping at kc. In Cases A and B,
kint < kc at the recombination epoch. Therefore nonlinear
calculation shows less peaks in the power spectra for these
cases. The diffusion damping scale is determined by kc �
kS=vA / 1=B for both linear and nonlinear calculations.
Therefore one might expect to have same damping behav-
iors for both linear and nonlinear calculations. However,
since the magnetic field strength of the nonlinear calcula-
tion on the scales smaller than 1=kint is smaller than the one
of the linear calculation as well as temperature anisotro-
pies, we expect to have the smaller diffusion damping scale
for the nonlinear calculation than the linear calculation,
i.e., knonlinear

c > klinear
c . Within the range of Fig. 4, we can

only see the diffusion (exponential) damping of the linear
calculation. The nonlinear calculations for Cases A and B
only show much milder damping due to the cascade decay
during the turbulent regime below the integral scale.

In Case C, kint > kc at the recombination epoch.
Therefore we ought to obtain very similar temperature
power spectra for both linear and nonlinear calculations.

VI. CONCLUSION

In this paper we study the effect of the primordial
magnetic fields on the CMB temperature and polarization
anisotropies. In particular the nonlinear evolution of the
magnetic fields and the resulting Alfvén modes of the fluid
velocities, which are the source of temperature anisotro-
pies and polarization, are appropriately included based on
the cosmological MHD simulation by Banerjee and
Jedamzik [10,11]. Diffusion and direct cascade processes
are properly taken into account.

We separate the evolution into three regimes, i.e., turbu-
lent, diffusion, and free-streaming. In the turbulent regime,
the advective term, which is essentially nonlinear, provides
the dominant contribution on the evolution of Alfvén
modes. Viscosity plays an important role in the viscous
regime, while the drag term takes over the task of the
viscous term in the free-streaming regime.

By combining the numerical simulations of three re-
gimes, we obtain a comprehensive evolution history of
the magnetic fields and Alfvén modes. We find the relation
between the integral (or coherent) scale on which the
magnetic energy peaks, and the maximum magnetic field
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strength, or equivalently, the magnetic field strength at the
integral scale as shown in Fig. 6.

We divide the evolution of the magnetic fields and the
Alfvén modes into three cases, i.e., Cases A, B, and C. For
Case A, the integral scale is still in the viscous regime at
the recombination epoch, while the integral scale is in the
free-streaming regime for Cases B and C. The direct
cascade process takes place during the turbulent regime
for all cases. In the free-streaming regime the direct cas-
cade process as well as the diffusion process works for
Case C at the integral scale. The resultant velocity spectra
of Alfvén modes are quite different between three cases.

From the velocity spectra, we calculate CMB tempera-
ture anisotropy and (B-mode) polarization spectra. We
make comparisons between nonlinear and linear calcula-
tions and find differences on both large and small scales.
On large scales l < 2000, both CMB anisotropy and po-
larization spectra have flat and blue spectra for the non-
linear and linear calculations, respectively. This difference
is caused by the inclusion of the advective term for the
nonlinear calculations. This difference gives stronger con-
straints for the nonlinear case in the intermediate angular
scale using CMB observations such as WMAP and
BOOMERANG. Note that the possible nonequipartition
in the turbulent regime may make the difference between
nonlinear and linear calculations small.

Using WMAP and BOOMERANG, we set rough upper
limits for the comoving magnetic field strength as B<
28 nGauss and the comoving integral scale as kint >
1:5 Mpc�1 if the equipartition is valid in the turbulent
regime. If this assumption is violated, we still can set rough
upper limits as B< 30 nGauss and kint > 1:2 Mpc�1.

For the polarization spectra, we also expect higher sig-
nals on large scales by nonlinear calculations than linear
ones. The signal may exceed the B-mode polarization from
the gravitational lenses if primordial magnetic fields exist.

On small scales, nonlinear calculations show milder
damping of temperature anisotropies and polarization
than linear calculations in Cases A and B. We expect to
have both temperature anisotropy and polarization spectra
even beyond l > 10 000. The peak values of temperature
anisotropy and B-mode polarization spectra are approxi-
mately 40 �K and a few �K depending on the peak scale
lint (or the integral scale kint).

Note that we consider only the case with the spectral
index of the magnetic field spectrum n > 3=2 in this paper,
while the extension to the case with 0< n< 3=2 is
straightforward.

Various observation projects for the small scale tempera-
ture anisotropies and polarization are planed [32]. These
observations may find the evidence of primordial magnetic
fields or at least will set stringent constraints. Perhaps the
best constraint will be provided by the really fine scale
data, i.e., l > 10 000.

Finally, another and possibly stronger constraint on the
field strength of putative primordial magnetic fields might
-18



NONLINEAR EVOLUTION OF COSMIC MAGNETIC . . . PHYSICAL REVIEW D 73, 023002 (2006)
be derived from the deflection of ultra high energy cosmic
rays (UHECR). Dolag et al. [33] simulated the evolution of
magnetic fields using a MHD SPH code and solved the
propagation of UHECR. Their seed magnetic fields were
only 2� 10�12 Gauss and they found that strong deflec-
tions of UHECR with arrival energies E � 4� 1019 within
a distance of 100 Mpc occur only when UHECR cross
galaxy clusters. Therefore the arrival directions of UHECR
mostly trace the source positions on the sky. On the other
hand, if there exists the magnetic fields of 10 nGauss as a
seed, we expect to have very strong deflections for UHECR
with arrival energies even above 1020 eV. In near future, a
huge amount of UHECR will be observed by the air shower
experiments such as the Pierre Auger observatory [34]
whose angular resolution is �0:6 degree [35]. If the ob-
served UHECR with 1020 eV, which only can arrive from
nearby sources ( & 100 Mpc) due to GZK cutoff [36], do
trace the large scale structure, we will be able to set a very
stringent upper limit for the primordial magnetic field
strength. Note that the propagation and the deflection of
UHECR are still open questions. Contrary to Dolag et al.,
Sigl et al. found larger deflection of UHECR in their
simulation [37]. They claimed that the sources are strongly
magnetized (�� Gauss) and the deflection angle can be
of order 20� up to 1020 eV even if the extragalactic mag-
netic fields of the observer are negligible (� 0:1�Gauss).
If this is the case, however, we can still set an upper limit to
the magnetic filed strength, if the observed UHECR above
1020 eV do trace the large scale structure. In near future, a
huge amount of UHECR will be observed by the air shower
experiments such as the Pierre Auger observatory [34]
whose angular resolution is �0:6 degree [35]. If the ob-
served UHECR with 1020 eV, which only can arrive from
nearby sources ( & 100 Mpc) due to GZK cutoff [36], do
trace the large scale structure, we will be able to set a very
stringent upper limit for the primordial magnetic field
strength.
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APPENDIX: LINEAR PERTURBATION

In this appendix, we review the linear perturbation
analysis of the magnetic fields in the early universe. For
a detailed discussion, see the references [16,17,22].

We assume that the metric perturbations of the vector
mode are expressed as Eq. (58). The stress energy tensors
are divided into the fluid-part, T��F , and the magnetic field
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part, T��B . In the fluid part, we take into account of the
viscosity between photons and baryons (electrons)

T��F � �pt 
 �t�U
�U� 
 ptg

�� � �H��H��W��;

(A1)

H�� � g�� 
U�U�;

W�;� � U�;� 
U�;� �
2
3g��U

�
;�; � � 4

15��Lmfp:
(A2)

Here U� is the four-velocity and is written as

U0 � 1=a; Ui � ui=a; (A3)

where ui are velocities. Now we are interested in the vector
mode of the stress energy tensor perturbations, so that the
velocity filed is divergence free and is decomposed as
Eq. (60).

The magnetic part of the stress energy tensor is ex-
pressed as

TBij�k� �
1

4�

Z
d3p

�
Bi�p�Bj�k� p�

�
1

2

ijBl�p�Bl�k� p�

	
: (A4)

For obtaining the vector mode of the magnetic part, we
introduce a projection tensor onto the transverse plane as

Pij�k� � 
ij � kikj=k2: (A5)

Then the vector mode of Eq. (A4) can be written as

TVBij � �Pinkj 
 Pjnki�kmTBmn=k
2: (A6)

From the conservation law of the energy momentum ten-
sors TF and TB , we obtain the Euler equation

� _ui � _Vi� 
 �1� 3cst�
_a
a
�ui � Vi� 


�
a

k2

�t 
 pt
�ui � Vi�

�
k�i

a4��t 
 pt�
; (A7)

where dots represent the derivatives with respect to the
conformal time and the comoving pressure gradient term of
the magnetic field �i is defined as

�i

a4
� Pink̂mT

mn
B : (A8)

As discussed in Sec. IV, we use vi which is defined as
vi � ui � Vi. We can rewrite Eq. (A7) in terms of vi.
When we evaluate Eq. (A7) at large scales where the
viscosity can be neglected as is the case of the turbulent
regime in the nonlinear calculations, we obtain as the
following approximation in the radiation dominated epoch

vi �
3k�i�

4�R
 1���a
4 ; (A9)
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where R � 3�b=4��. We refer the scales where Eq. (A9) is
valid as ‘‘no diffusion scales’’.

At small scales where the viscosity is dominant over the
cosmological expansion, which we call as ‘‘viscous
scales’’, we can neglect the expansion term in Eq. (A7)
and obtain

vi �
15�i

4��a3kLmfp

; (A10)

with employing the terminal-velocity approximation.
Matching Eqs. (A9) and (A10), we acquire the transition

scale between the no diffusion scales and the viscous scales
as

kv �

�
5a�1
 R�
�Lmfp

	
1=2
: (A11)

At the smaller scales than the photon mean free path,
which we refer as ‘‘free-streaming scales’’, baryons and
photons are decoupled and we can no longer adopt the
diffusion approximation, Eq. (A7). Instead, we must in-
troduce the drag force term _	vi=R in the baryon Euler
equation as

_v i 

_a
a
vi 


_	
R
vi �

k�i

�ba
4 : (A12)

When we neglect the cosmological expansion term and
apply the terminal-velocity approximation we obtain

vi �
3k�iLmfp

4a5��
: (A13)

The transition scale between the viscous scales and the
free-streaming scales is kf as discussed in Sec. III B be-
cause Eqs. (A10) and (A13) are identical to Eqs. (15) and
(17).

For the comparison with the nonlinear results we calcu-
late the power spectrum of the velocity fields. From the
above results vi is rewritten as

vi � kX����i; (A14)

X��� �

8><>:
3	=4��a4�1
 R�; k < kv;
15=4��a3k2Lmfp; kv < k< kf ;
3Lmfp=4��a

5; kf < k:
(A15)

The ensemble average of the velocity fields leads to

hjvij
2i � k2X���2hj�ij

2i: (A16)

By following the procedure of Ref. [17], hj�ij
2i can be

solved as

hj�ij
2i �

1

�4��2
Z 1

0
dq3 P B�q�

q3

P B�j�k
 q�j�
j�k
 q�j3

�1��2�

�

�
1

�k
 2q���k
 q��

�k2 
 q2 
 2kq��

	
; (A17)
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where q � jqj and � � k 	 q=�qk�. Now, we assume that
the magnetic power spectrum is the power law spectrum
with the spectral index n as

P B �
k3

2�2 hjBcomovj
2i � B2

�9

�
k
kn

�
n
; (A18)

where the strength of the magnetic fields is B�9nGauss at
the wave length kn.

Assuming the power law spectrum for the magnetic
fields, we can obtain the analytic approximation of
hj�ij

2i [16,17,22]. Accordingly, the power spectrum of
the fluid velocity leads to

P v�k� �
k3

2�2 hjvij
2i � k2B2

�9X���
2I�k�2; (A19)

where the mode coupling I�k� is different for the spectrum
with the index n < 3=2 and n > 3=2. From the reference
[16], in the case of n < 3=2, the mode coupling I�k� is
approximated as

I2�k� �
1

32�4

2

3n

�
k
kn

�
2n
: (A20)

In the case of n > 3=2,

I2�k� �
1

32�4

7

15�2n� 3�

�
k
kn

�
3
�
kc

kn

�
2n�3

; (A21)

where kc is the cutoff scale defined as kc � kS=vA [7,8].
This cutoff of the power spectrum is caused by the dis-
sipation due to the drag force.

For the comparison with the nonlinear results in this
paper, we focus on the case with the blue spectrum n >
3=2. Using Eq. (A21), we obtain the power spectrum of the
fluid velocity as

P v�k� � k2

�
3�

4��a4�1
 R�

	
2
I�k�2 / k5; k < kv;

(A22)

P v�k� � k2

�
15

4��a
3k2Lmfp

	
2
I�k�2 / k; kv < k< kf ;

(A23)

P v�k� � k2

�
3Lmfp

4��a
5

	
2
I�k�2 / k5; kf < k: (A24)

From the velocity power spectrum, CMB temperature
anisotropy and polarization spectra can be calculated.
Subramanian and Barrow [16,22] obtained the following
results with using the small angle approximation.

In the case of k�� 1,

�TTT � T0

�������������������������
l�l
 1�C�l�

2�

s
� T0

�����������������
�
2
P v�k�

r ��������k�l=��0��LSS�

;

(A25)
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�TBB � T0

�������������������������
l�l
 1�C�l�

2�

s

� T0

�����������������������������������
�
2

�kLmfp

3a

�
2
Pv�k�

s ��������k�l=��0��LSS�

: (A26)

And for the case of k�� 1,

�TTT � T0

�������������������������
l�l
 1�C�l�

2�

s
� T0

����������������������
�1=2

2k�
Pv�k�

s ��������k�l=��0��LSS�

;

(A27)

�TBB � T0

�������������������������
l�l
 1�C�l�

2�

s

� T0

�����������������������������������������
�1=2

2k�

�kLmfp

3a

�
2
Pv�k�

s ��������k�l=��0��LSS�

: (A28)

The temperature anisotropy spectrum induced by the
magnetic fields with spectral index n > 3=2 in the low
multipoles is given by substituting Eq. (A22) into
Eq. (A25) and the one in the high multipoles is given by
Eqs. (A23) and (A24) into Eq. (A27) as

�TTT � 5:4 B2
�9

�
l

1000

�
I�kl��K� / l5=2; l < lv;

(A29)
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�TTT � 13:0 B2
�9

�
l

2000

�
�3=2

I�kl��K� / k0;

lv < l < lf ;
(A30)

�TTT � 0:4 B2
�9

�
l

20 000

�
1=2
I�kl��K� / l2;

lf < l < lc;
(A31)

I�kl� � I�k�jk�l=��0��LSS�
; (A32)

where lv � kv��0 � �LSS� and lc � kc��0 � �LSS�.
The B-mode polarization spectrum induced by the mag-

netic fields with spectral index n > 3=2 is acquired by
substituting Eq. (A22) into Eq. (A26) and substituting
Eq. (A23) into Eq. (A28) as

�TBB � 0:04 B2
�9

�
l

1000

�
2
I�kl��K� / l7=2; l < lv;

(A33)

�TBB � 0:12 B2
�9

�
l

2000

�
�1=2

I�kl��K� / l;

lv < l < lf :
(A34)
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