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Analytic derivation of the map of null rays passing near a naked singularity
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Recently the energy emission from a naked singularity forming in spherical dust collapse has been investi-
gated. This radiation is due to particle creation in a curved spacetime. In this discussion, the central role is
played by the mapping formula between the incoming and the outgoing null coordinates. For the self-similar
model, this mapping formula has been derived analytically. But for the model @Vitldensity profile, the
mapping formula has been obtained only numerically. In the present paper, we argue that the singular nature
of the mapping is determined by the local geometry around the point at which the singularity is first formed.

If this is the case, it would be natural to expect that the mapping formula can be derived analytically. In the
present paper, we analytically rederive the same mapping formula for the modeCWidlensity profile that
has been earlier derived using a numerical technique.
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[. INTRODUCTION shown that the map takes the form of a power lay:-u
x(vg—v)?, whereu=uy andv=v, are outgoing and in-
There are many known examples in the literature showingoming null rays passing through the point at which the sin-
that naked singularities can form from regular initial data, ingularity is first formed.
the classical gravitational collapse of a bounded object. On the other hand, such a map was not derived analyti-
Quantum effects analogous to Hawking radiation are exeally for the more generic so-callgg models for which we
pected to play an important role in determining the finalhave non-vanishing second derivative of the density profile
outcome of such a collapse. A study of such effects hast the center before the formation of naked singularity. Nu-
received some attention in recent years. The most notablmericany, the map was showi8,4] to be given anZ(Uo
feature of these studies is that if a massless scalar field is y)/dy2u (v o—0v) Y2
quantized on the background of a star forming a naked sin- | this paper, we would like to show two things. First we
gularity, the outgoing quantum flux of the scalar field can besha)| point out that it is not necessary to study the global
calculated in the geometric optics approximatids-5], and  o|ytion for radial null geodesics far from the singularity for

in 2D models[6-8]. This quantum flux can be shown t0 y,o nurpose of investigating the singular behavior of the
diverge on the Cauchy horizon. An interpretation of this d"map. We shall show that the basic feature of the map can be

vergence has r_ecently been given[By. . . extracted just by considering a small region near the point at
The calculation of the quantum flux in the geometric op- " . . o
which the singularity is first formed.

tics approximation crucially relies on the determination of To demonstrate this. we propose an alternative mao. Let
the map between ingoing null rays coming in frdm and . . » We propos P
us consider sending radial incoming null rays from an ob-

outgoing null rays going t@ *. This map can be calculated .
in a straightforward manner for the model of self-similar server on a comoving shell. These null rays are reflected at

spherical dust collapse. However, when the self-similaritytn€ center, and come back to the same comoving observer. A

condition is dropped, the calculation becomes difficult andf@dial null geodesic crosses a comoving shell located at a
the map has so far only been determined numerically. fixed comoving radius twice before and after the reflection
In this paper we argue that this map is determined, not bt the center. Thus these null rays define a map between the
the global geometry, but by the local geometry around théending time and the receiving time measured by the proper
point at which the singularity is first formed. It is then pos- time for the comoving observer. We shall show that this map
sible to determine the map analytically. possesses the same structure of singularity as the previously
In this paper, we solve the radial null rays in the Tolman-investigated map between null coordinates. In defining this
Bondi spacetime approximately. These null rays naturallymap, we will see that the radius of the comoving shell can be
define a map between the incoming and outgoing null coorehosen arbitrary small. One would expect such a result be-
dinates,u andv. As noted above, this map plays a crucial cause there is no singular feature in the map between ticks on
role in calculating the energy emission due to the quantuna comoving shell at a finite distance and that of the null
effect in curved spacetime in the geometrical optics approxicoordinates naturally defined at infinity.
mation. Secondly, using the same map, we show that the structure
For the self-similar model with a stellar surface on whichof singularity forp, models can be obtained analytically.
the background solution is matched to the Schwarzschild Throughout this paper, we use the units@=1 andc
metric, this map was determined analytical®]. It was =1.
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[l. SELF-SIMILAR CASE Hererg. is the integration constant which parametrizes dif-
ferent null rays. For the limit of smalt while keepingt

_The marginally b_ound Tolman-Bondi dust collapse is de'finite, y goes towe. Then, in this limit, we find
scribed by the metric

ds?=dt?— R'2dr2— R2d0?2 (2.1) e 1 r

Mo T1-at/r a¢é’ 2.9

and the evolution of the circumferential radigt,r) and

the densityp(r,t) is determined by the Einstein equations asHere we have defined= —t|,_,. From this relation, we can
read thatr .. =a&. We consider a pair of an outgoing radial

F(r) F’ null ray and an incoming one such that the latter is the re-

R ' PT R2R' (2.2 flection of the former at the center. Then both rays have the

same value o, and hence we conclude that
In the above equations, a prime and a dot denote a derivative

Ro-

with respect tor andt, respectively. Herd (r) is the mass Fo+=To-- (2.10

function which in case of the self-similar model is given by

F(r)=\r when the scaling iR=r at the singular epoch For a range of values ok the singularity forming in

=0. Collapse is assumed to begin at some epech. collapse is naked. In this case, the outgoing null ray emanat-
This self-similar model was discussed in REZ]. The ing from the point at which the singularity first occurs, i.e.,

evolution of the circumferential radius is given by r=0t=0, forms the Cauchy horizon. This null ray is given

by y=a, where we assumer, is the largest real root
amonge; . Similarly, the incoming null ray terminating at
the first singular point is also given yy=a, where, in the
same waya, is the largest real root among" . Since we
where we have introducea= 2 \\. In this model, the initial are considering the null rays close to the above limiting one,
density profile at=t;,<0 near the center is of the form we expand the solution arouryd= , . Then we find

at
1— —
r

R3/2: r3/2 , (23)

p=potpsR3+pR°+- - -. (2.4 ; 3 .
—~(y—az) ] (ag—af) A
Here the coefficienp;= — (16/3)a”3(—t;,)° is negative, in a¢ =1

which case the central singularity is known to be globally
naked for a range of values &af The values of higher order
coefficients such agg andpg are accordingly tuned so as to
realize a self-similar solution. wheret..(r)=(r/a)[1—(«;)°%] and

The equation which determines the incomingper sign

~C.(tu(r)—t)~3As, (2.1

and outgoinglower sign radial null geodesics on this back- a ~3A4 3 . .
ground geometry is given by Co=|—"5 IT (=) 3.
3r(ay) i=1
dt —3at/r , _ _ .
Fo=R'=———0. (2.5  As we have mentioned in the Introduction, we are consider-
dr (1—at/r) ing a map between the sending time and the receiving time
. _ . measured by an observer on a comoving shell. We denote the
Following Ref.[2], we introduce the variable former time agt; and the latter time as,. Then, from Eqgs.
(2.10 and(2.11), we obtain
y=(1—at/r)'" (2.6)
h he ab A . CUBA,) .
Then the above equation is rewritten as (t_(ren) —ty)= c (to (rep)—ty)Pa /A
r:rsh
dr 9y3 3A* (2.12
-2 ——, 27

rdy  3y*¥ay’-3y¥2a S (y—a)

! wherer g, is the coordinate radius of the comoving shell on
which the observer resides. Note that the result does not
change even if we choose a very small valuer gf. By a
simple computation, we can show thAj /A, here is the
qguantity denoted byy in Ref.[2]. Hence, we find that the
basic property of the map around the singularity is main-

where a;” are the roots of $*+ay*—3y+2a=0, and the
last equality defines the coefficien#;”, which satisfy
>* A" =1. Equation(2.7) is integrated to obtain the solu-
tion

4 tained in this new calculation, which does not use any infor-
L:H (y_a_:)—sAf (2.9 mation about the geometry away from the first singular
fo+ =1 ' ' ' point.
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Ill. p, MODEL

In the preceding section, we considered the self-similar
model in which the second derivative of the density profile at
the center vanishes, and the third derivative is in a certain
negative range. In this section, we would like to consider

more general cases in which the second derivative does n
vanish.

PHYSICAL REVIEW D 63 124021

whereé= —t|,_, as before.
To keep the notation simple, we introduce the function

1= (3s/7)

F(s)

cfjhen, substituting the above ans&®#6) into Eg. (3.5, we

What we would like to do here is to deduce an analogouget the equations which determitg) order by order:

map for the model with th€~ initial density profile consid-
ered by Haradat al.[3,4]

p(R)=po+pR%+ - - -. (3.1)
We write the solution of Eq(2.2) as
3 9 2
R =ZF(r)(t—t0(r)) , (3.2

wherety(r) is an arbitrary function. By using the remaining
gauge degrees of freedom we set

to(r)=r. (3.3
Then, the density profile near the center at some egoch
=1;,<0 before hitting the singularity, which first appears at
t=0, r=0, is given by

4

3t2

2
1+ —

0 . (3.9

F
r+—
F/

For smallr, we assumeF(r)=ar*+0(r*). Then R3xr#
for smallr att=t;,. Requiring that the second term in the
round brackets of Eq3.4), r +F/F’, is proportional toR?,

we find thatu should be chosen as 3/2. Then the condition
p»<0 is automatic, and the singularity at the center turns out

to be at least locally naked.

dtl__7 e
W——O—Er .F(_f/r),
dtz__7 U6me ty
W—+€r .7-"(—§/r)?, (38)
dt3__7 18 ty
W——l—gl’ f(—glr)r
1]—"’ / ti
+§ (—f r)r—2 .
Recall that
7 dR(=¢&,r)
ey _
6r F(—&Ir) ar , (3.9

which relation is not at all accidental but follows from the
starting expression for the geodesic equatitiidr=+*R’.
Using this relation, we can calculatg(r) as

ti(N=FR(—&N=5r"%1+¢&r)?%  (3.10

The next order term is evaluated as

T (r
t2=gf0dr'r'1’3(1+ &l )2RF (= élr')

Now let us consider a model truncated at the leading order

for the expansion of(r), i.e., we supposé(r)=ar®?

Then the equation which determines the incoming and out-

going null geodesics is given by

dt
a_-

dr

7
6

_3
ve L st/r

r 1
(1—t/r)¥3

(3.9

where, for convenience, we have performed the following

rescaling of variables,

For smallr, the right hand side of the above equation
diverges, but this divergence is slower than'. Hence the
value oft atr =0 dominates the solution for smalunless it

vanishes. Thus we consider an expansion of the solution i

the form

—tr)=&—ty(r)—ta(r)—- -, (3.6

7 r/é
:gg%fo dp w31+ Up)?2F (- Up). (3.10

Expanding the integrand for large/é, the asymptotic
form of the integration is evaluated as

93
f du 31+ Up)?2F (— Uu)
0

(r/§)4/3

“Com g

(3.12

1+ &0+ .

Here C, is the integration constant, which cannot be deter-
mined by integrating the expression expanded for lavge
Except for the term containinG,, all other terms are com-
pletely determined by the asymptotic expansion of the inte-
grand. One may notice that we have not introduced the cor-
responding constant fag(r). In the case of,(r) we can see
that this constant vanishes by looking at the explicit expres-

ion which is written in terms oR. It will be worth stressing
that this cancellation of the integration constant is not due to
the assumed form dR.

Also for t3(r), we can do a similar calculation as
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IV. INTERPRETATION

t =Iz§9/6Jr/§dv p/e lf’(—llv)fyd,u,ul/s(l
8 6 0 6v 0 The map that we have obtained in this paper is the map
L3 between the ingoing and outgoing intersection points of null
+ 1/,44«)2/37:'(— Uu)+ —F'(—1v)(1+ 1/,,)4/3J rays measured by the proper time of the comoving observer.
2 This mapping is not exactly the same as the mapping of the

7 7 incoming and outgoing null coordinates naturally defined for

=F - Ca&%¥0+—C e 81+ .. .) the observers at null infinities. However, as we mentioned in

6 9 the Introduction, the singular behavior of these two map-

1196 pings is expected to be common because there is no singular
+W(1+ ). (313 behavior in the null rays connecting the shell at a fikeohd
the shell at infinity.

Besides the terms containing the integration constéyts Then, in order to investigate the structure of the singular

terms int, have the structure of™r¥6-m*1(m=0). mapping, is it possible to set the location of shel} arbi-

The region of validity of the above expansion will be trarily small? The answer is basically yes. In the above deri-
determined by comparing the first and second term. Requiration, the only constraint ongy, is rp>¢, but this con-
ing that|t,|/£<1, we find that the condition for the validity Straint does not prevent us from choosmg arbitrary small.
of the above expansion is satisfied fog £/ Since we are interested in the limiting behavior when the

For sufficiently small¢, within this region of validity, time of reflectiont=— ¢ comes very close to the singularity

there is an overlapping region at which the conditié/m t:0_, We can assume th_@tls arbitrarily s.maII. In the pre-
<1 also holds. When this conditiagir <1 is satisfied, we ceding section, we considered a matching of two different
can expand the geodesic equation as ’ expressions for the null geodesics. One is valid for small

and the other for large. At this moment, one may wonder
dat 7 2t 5t? why it was necessary to consider this matching although we
—=F_r —t ==+ (3.19 T ;
dr 6 2Ir  63r are allowed to choosky, arbitrarily small. The reason is as
h . . . el follows. In the é—0 limit, the region of validity of the so-
Then, it can be integrated iteratively as lution for smallr shrinks to zero. Hence, the solution for

1/6|

t—-D.=r"® smallr cannot describe the limiting behavior for any value of
lsh-

Wl +2p v L e Anyway, the basic feature of the map is derived for arbi-

3" 12 trarily smallrg,,. This fact proves that it is determined by the

geometry just around the central singularity as expected.
ilDz_r—S/eJr ZD—I‘Z/GIEI‘QIG) This is unlike the case of the black hole for which the map is

+ .
9 " 9 162 not determined by the local geometry near the center. Instead
N 31 it is determined by the relationship between the regular inte-
T (3.19 rior coordinates and the external coordinates, near the event

whereD - is the integration constant. Terms in tHe-(1)-th  horizon.

line in the right-hand side have the structure of Here we have considered a specific model for the initial

DII*nr(Y(n+l)/6)fl(| =n=0). Comparing them with the terms density profile. However, we can expect that the basic struc-
in t,, we find the correspondence witee m+k—1, n=k.  ture of the map will be independent of the details of the

Corresponding terms in two different expressions have th&odel because it is determined by the geometry just near the
same coefficient. In other words, the first term in each line of0int at which the singularity is first formed. In this small

the right hand side basically correspondst@), the second ~region, we would be able to neglect the higher order terms in
term tot,(r) and so on. The relation betweén. and¢is  the expansion of the density profile, although further consid-

found by comparing the coefficient of theindependent €ration is necessary to give a rigorous proof for the statement
term. Then we have that the structure of singularity in the mapping formula is

totally determined by the leading term in the expansion of
the initial density profile for general spherical dust collapse.

In this paper we have discussed models of spherically
symmetric dust collapse. However, it would be of interest to
+0(&%). (3.16  generalize the prescription described in this paper to other

o . . . _ matter models and to non-spherical collapse.
Eliminating ¢ from this equation, we obtain the relation be-
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