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Analytic derivation of the map of null rays passing near a naked singularity
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Recently the energy emission from a naked singularity forming in spherical dust collapse has been investi-
gated. This radiation is due to particle creation in a curved spacetime. In this discussion, the central role is
played by the mapping formula between the incoming and the outgoing null coordinates. For the self-similar
model, this mapping formula has been derived analytically. But for the model withC` density profile, the
mapping formula has been obtained only numerically. In the present paper, we argue that the singular nature
of the mapping is determined by the local geometry around the point at which the singularity is first formed.
If this is the case, it would be natural to expect that the mapping formula can be derived analytically. In the
present paper, we analytically rederive the same mapping formula for the model withC` density profile that
has been earlier derived using a numerical technique.
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I. INTRODUCTION

There are many known examples in the literature show
that naked singularities can form from regular initial data,
the classical gravitational collapse of a bounded obje
Quantum effects analogous to Hawking radiation are
pected to play an important role in determining the fin
outcome of such a collapse. A study of such effects
received some attention in recent years. The most not
feature of these studies is that if a massless scalar fie
quantized on the background of a star forming a naked
gularity, the outgoing quantum flux of the scalar field can
calculated in the geometric optics approximation@1–5#, and
in 2D models@6–8#. This quantum flux can be shown t
diverge on the Cauchy horizon. An interpretation of this
vergence has recently been given by@9#.

The calculation of the quantum flux in the geometric o
tics approximation crucially relies on the determination
the map between ingoing null rays coming in fromI 2 and
outgoing null rays going toI 1. This map can be calculate
in a straightforward manner for the model of self-simil
spherical dust collapse. However, when the self-simila
condition is dropped, the calculation becomes difficult a
the map has so far only been determined numerically.

In this paper we argue that this map is determined, no
the global geometry, but by the local geometry around
point at which the singularity is first formed. It is then po
sible to determine the map analytically.

In this paper, we solve the radial null rays in the Tolma
Bondi spacetime approximately. These null rays natura
define a map between the incoming and outgoing null co
dinates,u and v. As noted above, this map plays a cruc
role in calculating the energy emission due to the quan
effect in curved spacetime in the geometrical optics appro
mation.

For the self-similar model with a stellar surface on whi
the background solution is matched to the Schwarzsc
metric, this map was determined analytically@2#. It was
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shown that the map takes the form of a power law:u02u
}(v02v)g, where u5u0 and v5v0 are outgoing and in-
coming null rays passing through the point at which the s
gularity is first formed.

On the other hand, such a map was not derived ana
cally for the more generic so-calledr2 models for which we
have non-vanishing second derivative of the density pro
at the center before the formation of naked singularity. N
merically, the map was shown@3,4# to be given asd2(u0

2u)/dv2}(v02v)21/2.
In this paper, we would like to show two things. First w

shall point out that it is not necessary to study the glo
solution for radial null geodesics far from the singularity f
the purpose of investigating the singular behavior of
map. We shall show that the basic feature of the map can
extracted just by considering a small region near the poin
which the singularity is first formed.

To demonstrate this, we propose an alternative map.
us consider sending radial incoming null rays from an o
server on a comoving shell. These null rays are reflecte
the center, and come back to the same comoving observe
radial null geodesic crosses a comoving shell located a
fixed comoving radiusr twice before and after the reflectio
at the center. Thus these null rays define a map between
sending time and the receiving time measured by the pro
time for the comoving observer. We shall show that this m
possesses the same structure of singularity as the previo
investigated map between null coordinates. In defining t
map, we will see that the radius of the comoving shell can
chosen arbitrary small. One would expect such a result
cause there is no singular feature in the map between tick
a comoving shell at a finite distance and that of the n
coordinates naturally defined at infinity.

Secondly, using the same map, we show that the struc
of singularity forr2 models can be obtained analytically.

Throughout this paper, we use the units 8pG51 andc
51.
©2001 The American Physical Society21-1
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II. SELF-SIMILAR CASE

The marginally bound Tolman-Bondi dust collapse is d
scribed by the metric

ds25dt22R82dr22R2dV2 ~2.1!

and the evolution of the circumferential radiusR(t,r ) and
the densityr(r ,t) is determined by the Einstein equations

Ṙ25
F~r !

R
, r5

F8

R2R8
. ~2.2!

In the above equations, a prime and a dot denote a deriva
with respect tor and t, respectively. HereF(r ) is the mass
function which in case of the self-similar model is given
F(r )5lr when the scaling isR5r at the singular epocht
50. Collapse is assumed to begin at some epocht,0.

This self-similar model was discussed in Ref.@2#. The
evolution of the circumferential radius is given by

R3/25r 3/2S 12
at

r D , ~2.3!

where we have introduceda5 3
2 Al. In this model, the initial

density profile att5t in,0 near the center is of the form

r5r01r3R31r6R61•••. ~2.4!

Here the coefficientr352(16/3)a23(2t in)5 is negative, in
which case the central singularity is known to be globa
naked for a range of values ofl. The values of higher orde
coefficients such asr6 andr9 are accordingly tuned so as t
realize a self-similar solution.

The equation which determines the incoming~upper sign!
and outgoing~lower sign! radial null geodesics on this back
ground geometry is given by

7
dt

dr
5R85

12 1
3 at/r

~12at/r !1/3
. ~2.5!

Following Ref.@2#, we introduce the variable

y5~12at/r !1/3. ~2.6!

Then the above equation is rewritten as

dr

r dy
52

9y3

3y47ay323y72a
52(

i 51

4 3Ai
6

~y2a i
6!

, ~2.7!

wherea i
6 are the roots of 3y47ay323y72a50, and the

last equality defines the coefficientsAi
6 , which satisfy

( i 51
4 Ai

651. Equation~2.7! is integrated to obtain the solu
tion

r

r 06
5)

i 51

4

~y2a i
6!23Ai

6

. ~2.8!
12402
-
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Herer 06 is the integration constant which parametrizes d
ferent null rays. For the limit of smallr while keepingt
finite, y goes to`. Then, in this limit, we find

r

r 06
'y235

1

12at/r
'

r

aj
. ~2.9!

Here we have definedj52tur 50. From this relation, we can
read thatr 065aj. We consider a pair of an outgoing radi
null ray and an incoming one such that the latter is the
flection of the former at the center. Then both rays have
same value ofj, and hence we conclude that

r 015r 02 . ~2.10!

For a range of values ofl the singularity forming in
collapse is naked. In this case, the outgoing null ray ema
ing from the point at which the singularity first occurs, i.e
r 50,t50, forms the Cauchy horizon. This null ray is give
by y5a4

2 where we assumea4
2 is the largest real roo

amonga i
2 . Similarly, the incoming null ray terminating a

the first singular point is also given byy5a4
1 where, in the

same way,a4
1 is the largest real root amonga i

1 . Since we
are considering the null rays close to the above limiting o
we expand the solution aroundy5a4

6 . Then we find

r

aj
'~y2a4

6!23A4
6

)
i 51

3

~a4
62a i

6!23Ai
6

'C6„t6~r !2t…23A4
6

, ~2.11!

wheret6(r )5(r /a)@12(a4
6)3# and

C65F a

3r ~a4
6!2G23A4

)
i 51

3

~a4
62a i

6!23Ai
6

.

As we have mentioned in the Introduction, we are consid
ing a map between the sending time and the receiving t
measured by an observer on a comoving shell. We denote
former time ast1 and the latter time ast2. Then, from Eqs.
~2.10! and ~2.11!, we obtain

„t2~r sh!2t2…5FC2

C1
G

r 5r sh

1/(3A4
2)

„t1~r sh!2t1…
A4

1/A4
2

,

~2.12!

wherer sh is the coordinate radius of the comoving shell
which the observer resides. Note that the result does
change even if we choose a very small value ofr sh . By a
simple computation, we can show thatA4

1/A4
2 here is the

quantity denoted byg in Ref. @2#. Hence, we find that the
basic property of the map around the singularity is ma
tained in this new calculation, which does not use any inf
mation about the geometry away from the first singu
point.
1-2
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III. r2 MODEL

In the preceding section, we considered the self-sim
model in which the second derivative of the density profile
the center vanishes, and the third derivative is in a cer
negative range. In this section, we would like to consid
more general cases in which the second derivative does
vanish.

What we would like to do here is to deduce an analog
map for the model with theC` initial density profile consid-
ered by Haradaet al. @3,4#

r~R!5r01r2R21•••. ~3.1!

We write the solution of Eq.~2.2! as

R35
9

4
F~r !„t2t0~r !…2, ~3.2!

wheret0(r ) is an arbitrary function. By using the remainin
gauge degrees of freedom we set

t0~r !5r . ~3.3!

Then, the density profile near the center at some epot
5t in,0 before hitting the singularity, which first appears
t50, r 50, is given by

r'
4

3t in
2 S 11

2

t in
F r 1

F

F8
G D . ~3.4!

For small r, we assumeF(r )5ar m1O(r m). Then R3}r m

for small r at t5t in . Requiring that the second term in th
round brackets of Eq.~3.4!, r 1F/F8, is proportional toR2,
we find thatm should be chosen as 3/2. Then the condit
r2,0 is automatic, and the singularity at the center turns
to be at least locally naked.

Now let us consider a model truncated at the leading or
for the expansion ofF(r ), i.e., we supposeF(r )5ar 3/2.
Then the equation which determines the incoming and o
going null geodesics is given by

dt

dr
57

7

6
r 1/6

12 3
7 t/r

~12t/r !1/3
, ~3.5!

where, for convenience, we have performed the follow
rescaling of variables,

t→S 4

9a D 2

t,

r→S 4

9a D 2

r .

For small r, the right hand side of the above equati
diverges, but this divergence is slower thanr 21. Hence the
value oft at r 50 dominates the solution for smallr unless it
vanishes. Thus we consider an expansion of the solutio
the form

2t~r !5j2t1~r !2t2~r !2•••, ~3.6!
12402
r
t
in
r
ot

s

t

n
t

er

t-

g

in

wherej52tur 50 as before.
To keep the notation simple, we introduce the function

F~s!5
12~3s/7!

~12s!1/3
. ~3.7!

Then, substituting the above ansatz~3.6! into Eq. ~3.5!, we
get the equations which determinet(r ) order by order:

dt1
dr

57
7

6
r 1/6F~2j/r !,

dt2
dr

57
7

6
r 1/6F8~2j/r !

t1

r
, ~3.8!

dt3
dr

57
7

6
r 1/6FF8~2j/r !

t2

r

1
1

2
F9~2j/r !

t1
2

r 2G .
Recall that

7

6
r 1/6F~2j/r !5

dR~2j,r !

dr
, ~3.9!

which relation is not at all accidental but follows from th
starting expression for the geodesic equationdt/dr57R8.
Using this relation, we can calculatet1(r ) as

t1~r !57R~2j,r !57r 7/6~11j/r !2/3. ~3.10!

The next order term is evaluated as

t25
7

6E0

r

dr8r 81/3~11j/r 8!2/3F8~2j/r 8!

5
7

6
j8/6E

0

r /j

dm m1/3~111/m!2/3F8~21/m!. ~3.11!

Expanding the integrand for larger /j, the asymptotic
form of the integration is evaluated as

E
0

r /j

dm m1/3~111/m!2/3F8~21/m!

5C22
~r /j!4/3

14 S 11
28

3
~j/r !1••• D . ~3.12!

Here C2 is the integration constant, which cannot be det
mined by integrating the expression expanded for larger /j.
Except for the term containingC2, all other terms are com
pletely determined by the asymptotic expansion of the in
grand. One may notice that we have not introduced the c
responding constant fort1(r ). In the case oft1(r ) we can see
that this constant vanishes by looking at the explicit expr
sion which is written in terms ofR. It will be worth stressing
that this cancellation of the integration constant is not due
the assumed form ofR.

Also for t3(r ), we can do a similar calculation as
1-3
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t357
7

6
j9/6E

0

r /j

dn n1/6H 7

6n
F8~21/n!E

0

n

dmm1/3~1

11/m!2/3F8~21/m!1
n1/3

2
F9~21/n!~111/n!4/3J

57
7

6
C3j9/66

7

9
C2j8/6r 1/6~11••• !

7
11r 9/6

162
~11••• !. ~3.13!

Besides the terms containing the integration constantsCk ,
terms intk have the structure ofjmr k/62m11(m>0).

The region of validity of the above expansion will b
determined by comparing the first and second term. Req
ing that ut1u/j!1, we find that the condition for the validity
of the above expansion is satisfied forr !j6/7.

For sufficiently smallj, within this region of validity,
there is an overlapping region at which the conditionj/r
!1 also holds. When this conditionj/r !1 is satisfied, we
can expand the geodesic equation as

dt

dr
57

7

6
r 1/6S 12

2t

21r
1

5t2

63r 2 1••• D . ~3.14!

Then, it can be integrated iteratively as

t2D75r 7/6

1S 6
2

3
D7r 1/62

1

12
r 8/6D

1S 6
1

9
D7

2 r 25/61
7

9
D7r 2/67

11

162
r 9/6D

1•••, ~3.15!

whereD7 is the integration constant. Terms in the (l 11)-th
line in the right-hand side have the structure
D7

l 2nr (7(n11)/6)2 l( l>n>0). Comparing them with the term
in tk , we find the correspondence withl 5m1k21, n5k.
Corresponding terms in two different expressions have
same coefficient. In other words, the first term in each line
the right hand side basically corresponds tot1(r ), the second
term to t2(r ) and so on. The relation betweenD7 and j is
found by comparing the coefficient of ther-independent
term. Then we have

D71O~D7
2 !52j1

7

6
C2j8/67

7

6
C3j9/61

7

6
C4j10/6

1O~j11/6!. ~3.16!

Eliminating j from this equation, we obtain the relation b
tweenD1 andD2 ,

D25D11
7

3
C3~2D1!3/21O~D1

11/6!. ~3.17!

This mapping formula has the same structure of singula
as that obtained for the map between incoming and outgo
null coordinates by Harada, Iguchi and Nakao numerical
12402
ir-

f

e
f

y
g

.

IV. INTERPRETATION

The map that we have obtained in this paper is the m
between the ingoing and outgoing intersection points of n
rays measured by the proper time of the comoving obser
This mapping is not exactly the same as the mapping of
incoming and outgoing null coordinates naturally defined
the observers at null infinities. However, as we mentioned
the Introduction, the singular behavior of these two ma
pings is expected to be common because there is no sing
behavior in the null rays connecting the shell at a fixedr and
the shell at infinity.

Then, in order to investigate the structure of the singu
mapping, is it possible to set the location of shellr sh arbi-
trarily small? The answer is basically yes. In the above d
vation, the only constraint onr sh is r sh@j, but this con-
straint does not prevent us from choosingr sh arbitrary small.
Since we are interested in the limiting behavior when
time of reflectiont52j comes very close to the singularit
t50, we can assume thatj is arbitrarily small. In the pre-
ceding section, we considered a matching of two differ
expressions for the null geodesics. One is valid for smar
and the other for larger. At this moment, one may wonde
why it was necessary to consider this matching although
are allowed to chooser sh arbitrarily small. The reason is a
follows. In thej→0 limit, the region of validity of the so-
lution for small r shrinks to zero. Hence, the solution fo
smallr cannot describe the limiting behavior for any value
r sh .

Anyway, the basic feature of the map is derived for ar
trarily smallr sh . This fact proves that it is determined by th
geometry just around the central singularity as expec
This is unlike the case of the black hole for which the map
not determined by the local geometry near the center. Ins
it is determined by the relationship between the regular in
rior coordinates and the external coordinates, near the e
horizon.

Here we have considered a specific model for the ini
density profile. However, we can expect that the basic str
ture of the map will be independent of the details of t
model because it is determined by the geometry just near
point at which the singularity is first formed. In this sma
region, we would be able to neglect the higher order term
the expansion of the density profile, although further cons
eration is necessary to give a rigorous proof for the statem
that the structure of singularity in the mapping formula
totally determined by the leading term in the expansion
the initial density profile for general spherical dust collap

In this paper we have discussed models of spheric
symmetric dust collapse. However, it would be of interest
generalize the prescription described in this paper to o
matter models and to non-spherical collapse.
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