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Second order perturbations in the Randall-Sundrum infinite brane-world model

Hideaki Kudoh* and Takahiro Tanaka†

Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
~Received 5 April 2001; published 26 September 2001!

We discuss the nonlinear gravitational interactions in the Randall-Sundrum single brane model. If we naively
write down the four-dimensional effective action integrating over the fifth dimension with the aid of the
decomposition with respect to the eigenmodes of four-dimensional D’Alembertian, the Kaluza-Klein mode
coupling seems to be ill defined. We carefully analyze second order perturbations of the gravitational field
induced on the three-brane under the assumption of the static and axial-symmetric five-dimensional metric. It
is shown that there remains no pathological feature in the Kaluza-Klein mode coupling after the summation
over all different mass modes. Furthermore, the leading Kaluza-Klein corrections are shown to be sufficiently
suppressed in comparison with the leading order term that is obtained by the zero mode truncation. We confirm
that the four-dimensional Einstein gravity is approximately recovered on the three-brane up to second order
perturbations.
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I. INTRODUCTION

The possibility that our four-dimensional universe is e
bedded as a brane in a higher dimensional spacetime
been extensively discussed recently as the brane world
nario @1–4#. In particular, Randall and Sundrum introduc
attractive models whose background bulk spacetime is fi
dimensional anti–de Sitter (AdS5) spacetime. These mode
suggest the possibility of the existence of extra dimension
a nontrivial form and the possible explanation of the lar
hierarchy between the Planck scale and the electroweak s
@3,4#.

The behavior of gravity in the Randall-Sundrum~RS!
models has been investigated by many authors@5–14#. For
the RS single brane model, which is a model with the po
tive tension brane alone, the extension of extra dimension
infinite. Nevertheless, gravity on the three-brane genera
by the matter field, which is confined on the three-bra
approximately coincides with four-dimensional Einste
gravity @5–8#.

For the RS two-brane model whose bulk space is boun
by the positive and negative tension branes, four-dimensio
Einstein gravity can be recovered on both branes under
approximation of the zero mode truncation@9# when we take
the stabilization mechanism of the distance between the
branes into consideration@15–17#.

Although a large number of studies have been made
linear perturbations of the metric@18–23#, little is known
about the nonlinear or nonperturbative feature of grav
@24–30#. There is concern about the RS single brane mo
In this model, it seems that the nonlinear gravitational int
action between Kaluza-Klein~KK ! modes becomes stron
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and it diverges as we move far away from the brane. A m
precise argument is that the four-dimensional effective ac
including interaction terms diverges when we attempt
write it down by integrating over the dependence on the fi
direction by using the decomposition of metric perturbatio
in terms of the eigenmodes of a four-dimension
D’Alembertian @4#. This fact indicates that we cannot con
struct a four-dimensional effective action for this model
the usual sense.

The above discussion is based on an analysis using
decomposition of the mass eigenmodes, which is referre
as the mode-by-mode analysis. However, it was dem
strated that the mode-by-mode analysis is insufficient to d
with metric perturbations and it is necessary to take i
account the contributions from all the KK modes when w
discuss the regularity of linear metric perturbations at a po
far from the three-brane@11#. Thus the pathological behavio
in the nonlinear interaction can be expected to be an arti
solely due to the mode-by-mode analysis, although it has
been proved yet. Even if the pathological behavior might
fictitious, there is another question as to whether the fo
dimensional Einstein gravity is recovered when we proce
to higher order perturbations.

The purpose of this paper is to give a partial answer to
above two questions. To study the nonlinear behavior of
gravity, we investigate second order perturbations in the c
text of the RS single brane model. To simplify the analys
we consider the static and axisymmetric configuration, wh
means that the three-brane metric is spherically symme
Following the method developed by Garriga and Tanaka@5#,
we confirm that there is no pathological feature in the K
mode coupling if we sum up all the mass eigenmodes,
that the contribution due to the KK mode coupling is suf
ciently small compared with the leading order terms, that
obtained by the zero mode truncation. Furthermore, the
©2001 The American Physical Society22-1
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HIDEAKI KUDOH AND TAKAHIRO TANAKA PHYSICAL REVIEW D 64 084022
sult obtained by the zero mode truncation exactly agrees
the one predicted by four-dimensional Einstein gravity.1

This paper is organized as follows. In the next section
first derive the second order perturbation equations in
five-dimensional bulk, and discuss the gauge transforma
as well as the boundary condition. In Sec. III, after giving
brief summary of the behavior of the five-dimensional Gre
function, which is needed to solve the perturbation eq
tions, we review the results for linear perturbations to g
their explicit expressions in the notation of the present pa
In Sec. IV, we analyze second order perturbations of
metric induced on the three-brane. First it is shown that
four-dimensional Einstein gravity is recovered in the a
proximation of the zero mode truncation, and then we pro
that the remaining contribution due to the Kaluza-Kle
mode coupling can be neglected. Section V is devoted
summary.

II. PERTURBATION EQUATIONS IN THE RS MODEL

The brane-world model proposed by Randall and S
drum is composed of the five-dimensional AdS space

ds25gabdxadxb5a2~y!hmndxmdxn1dy2, ~2.1!

with a single positive tension (s.0) three-brane located a
y50. Here a(y)[e2uyu/ l is the warp factor, andl is the
curvature radius of AdS5. We have denoted the four
dimensional Minkowski metric ashmn . The cosmological
constant on the bulk and the tension of the three-brane
respectively, related to the curvature radiusl as L526l 22

and ass53/4p lG5, whereG5 is the five-dimensional New
ton constant. The relation between the five-dimensional
the four-dimensional Newton constants is given byG5
5 lG4. We also use the notationk5[8pG5. Ordinary matter
field is supposed to be localized on the brane.

In this paper, we investigate second order perturbation
this model induced by nonrelativistic matter on the bra
whose energy momentum tensor is given by the perfect fl
form

1After we had submitted the previous version of this paper,
had the existence of Ref.@34# pointed out. In this reference, th
second order metric perturbation in the region far from the star
investigated using the truncation of the first order metric pertur
tion at the leading order for the expansion with respect to the
tance from the star. Since the Einstein equation was not solve
the whole region of the spacetime in that treatment, there rem
an ambiguity in adding some metric perturbations that satisfy
homogeneous linear perturbation equation only in the asymp
region. Nevertheless, one may be able to prove that the domi
part of this remaining ambiguity can be absorbed by the redefini
of the mass parameter, and actually our results show that this i
case. Hence, the recovery of the 4D Einstein gravity in the reg
far from the star is to be credited to Ref.@34#. On the other hand
what we show in the present paper is the recovery of the 4D E
stein gravity throughout the whole spacetime including the inside
the star, without assuming a specific radial matter distribution.
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n 5diag$2r,P,P,P%. ~2.2!

To simplify the analysis, we restrict our consideration to t
static and axisymmetric spacetime whose axis of symm
lies along they direction, namely, the three-brane metric
spherically symmetric.

We denote the perturbed metric byg̃ab5gab1hab . At the
level of linear perturbations, it is advantageous to use
Randall-Sundrum gauge defined by

hyy5hmy50, ~2.3!

h m;n
n 50, h m

m 50, ~2.4!

because the linear perturbation equations in this gauge
the simple form@5#

Lhmn[@a22h (4)1]y
224l 22#hmn50, ~2.5!

and all components are decoupled. However, when we c
sider second order perturbations, we cannot impose
transverse-traceless condition~2.4! in addition to ~2.3!.
Hence, we need to abandon the condition~2.4! in second
order perturbations. As a consequence, the second order
turbation equations are inevitably coupled.

Here, instead of requiring~2.4!, we start with the assump
tion of the diagonal form of the metric

ds25a2@2eA(r ,y)dt21eB(r ,y)dr2

1eC(r ,y)r 2~du21sin2 udw2!#1dy2, ~2.6!

which is manifestly compatible with the gauge conditio
~2.3!, and does not lose generality under the restriction to
static and axial-symmetric case. Furthermore, we can ex
that this assumption is also compatible with the condit
~2.4! at the linear order according to the result obtained
Ref. @5#. For the assumed metric form~2.6!, the conditions
~2.4! at the linear level become, respectively,

A (1)1B (1)12C (1)50, ~2.7!

and

] r~r 2B (1)!22rC (1)50, ~2.8!

where we have expandedA, B, andC to second order as

A~r ,y!5 (
J51,2

A (J)~r ,y!. ~2.9!

Hereafter, we neglect higher order terms without mention
it.

Before we start to solve the five-dimensional Einste
equation, we would like to mention the boundary conditi
at y→`. An important point which we must mention here
that we are to find a solution which is regular aty→`. If we
allow the violation of regularity at infinity, the dynamics o
the RS brane-world model is not uniquely determined. Th
such a model cannot be a candidate for the model that
scribes our Universe. Hence, we require that the metric c
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SECOND ORDER PERTURBATIONS IN THE RANDALL- . . . PHYSICAL REVIEW D 64 084022
verges to AdS5 asymptotically. To guarantee this asympto
condition, we simply require that the metric functionsA, B,
andC go to 0 aty→`. With this choice, the residual gaug
degrees of freedom are completely fixed. Under this c
straint, it is still possible to extend the coordinates throu
out the bulk maintaining the diagonal form of the metric. W
refer to this gauge choice throughout as the RS gauge
cause we see later that the first order quantitiesA (1), B (1),
andC (1) in this gauge satisfy both the conditions~2.7! and
~2.8! @although the quantities at the second order do not
isfy the transverse-traceless condition~2.4!#.

A. 5D Einstein equations in the bulk

We consider the five-dimensional Einstein equations
derive the perturbation equations up to second order. S
the trace of metric perturbations vanishes in the RS gaug
linear order, it is convenient to introduce

2c (J)[A (J)1B (J)12C (J). ~2.10!

By using this quantity, the trace of metric perturbations
expressed as

g̃mnhmn52 (
J51,2

c (J)2
1

2
@~A (1)!21~B (1)!212~C (1)!2#.

~2.11!

Hence the traceless condition at first order is simply given
c (1)50.

The five-dimensional vacuum Einstein equation with t
cosmological term is equivalent to the following set of equ
tions for the Ricci tensor:

Ry
y1

4

l 2
5 (

J51,2
S 2

l
c ,y

(J)2c ,yy
(J) D2Qyy50, ~2.12!

Rt
t1

4

l 2
5

1

2l (
J51,2

~2c ,y
(J)14A ,y

(J)2 lA ,yy
(J)

2 la22nA (J)!2
1

2a2
S50, ~2.13!

Rr
y5

1

2r (
J51,2

F 1

r 2
~r 3B (J)! ,ry22~rc ,y

(J)! ,r1A ,y
(J)G

1
1

2
c ,r

(1)B ,y
(1)2Qry50, ~2.14!

wheren[( i 51
3 ] i

2 and we have defined

S~r ,y![2
1

r 2
] r~r 2A ,r

(1)B (1)!1a2c ,y
(1)A ,y

(1)1c ,r
(1)A ,r

(1) ,

~2.15!
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Qmn~r ,y![
1

4
~A ,m

(1)A ,n
(1)1B ,m

(1)B ,n
(1)12C ,m

(1)C ,n
(1)!. ~2.16!

Note that no other equations for the remaining compone
are independent.

First we consider the trace partc (J), which can be evalu-
ated by integrating Eq.~2.12!. From the requirement of the
boundary condition,c (J) must go to 0 aty→`. Thus, we
obtain

c (J)~r ,y!52e (J) Èy

dy9e2y9/ l Èy9
dy8e22y8/ lQyy .

~2.17!

where we have introduced a symbole (J) that is defined by
e (1)50 ande (2)51 to represent the first and second ord
equations in a single expression. As is anticipated above
can see from Eq.~2.17! that the traceless condition at linea
order is actually satisfied, while that at second order can
longer be imposed in general.

Let us now turn toB (J). Integrating Eq.~2.14!, we obtain

B (J)~r ,y!52
1

r 3E r 2A (J)dr1
2

r 3
e (J)S E drr 2~rc (2)! ,r

1 Èy

dyE drr 3Qry D . ~2.18!

As before, the integration constant is fixed by the bound
condition aty→`. Now, combined with Eq.~2.7!, it is easy
to see that Eq.~2.8! holds at linear order. Hence, it is con
firmed that our choice of gauge is equivalent to the
gauge.

So far, we obtained the relations between the metric fu
tionsA (J), B (J), andC (J). Substituting these into Eq.~2.13!,
we obtain a single equation forA (J),

L@a2A (J)#5e (J)@2a2l 21c ,y2S#. ~2.19!

The source terms are absent at linear order, as they are
posed of a quadratic in linear order quantities. Sincec (1)

50, S defined in Eq.~2.15! simplifies as

S~r ,y!5
1

r 2
] r~r 2A ,r

(1)B (1)!. ~2.20!

B. Boundary condition

In the previous subsection, we obtained the master eq
tion for the metric functions in the bulk up to second ord
To solve this equation, we need to know the boundary c
dition to be imposed on the three-brane. The boundary c
dition on the three-brane is specified by Israel’s junction c
dition @31#. However, in the RS gauge defined above, t
y-constant surface is, by construction, chosen so that the
ric functions go to 0 aty→`. After fixing the y-constant
surface for largey, coordinates are extended to the regi
near the three-brane. Therefore, we can no longer expect
the location of the three-brane coincides with they50 sur-
face in general@5#. In such coordinates, the junction cond
tion is not so trivial. Thus it will be convenient to introduc
other coordinatesx̄a, in which the location of the three-bran
2-3
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HIDEAKI KUDOH AND TAKAHIRO TANAKA PHYSICAL REVIEW D 64 084022
stays atȳ50 but the metric form is still kept diagonal. W
associate an overbar with the quantities written in these
ordinates, say,Ā. We denote this choice of coordinates b
the Gaussian normal~GN! gauge. By construction,h̄mnu ȳ50
gives the four-metric induced on the three-brane.

The junction condition on the three-brane is simply wr
ten in the GN gauge as2

g̃̄gn~x!]y@a22~y!h̄mn~x!#52k5S T m
g 2

1

3
d m

g T l
l D ~x!

~at y501 !. ~2.21!

As mentioned earlier, we assume the energy-momentum
sor of the perfect fluid form ~2.2!. Then, the four-
dimensional energy-momentum conservationT m;n

n 50 be-
comes

@r~r !1P~r !#] rĀ(1)~r ,0!12] r P~r !50, ~2.22!

and hence we find thatP(r ) is a second order quantity. Thi
equation represents the force balance between pressure
gravity acting on the matter field.

Taking into account thatP(r ) is second order and ex
pandingr asr5r (1)1r (2), the explicit junction conditions
for the metric functions become

]yĀ(J)5k5S 2

3
r (J)1e (J)PD ,

]yB̄(J)5]yC̄(J)52
k5

3
r (J) ~at y501 !. ~2.23!

The boundary condition obtained above is written
terms of the variables in the GN gauge. To interpret the c
ditions ~2.23! in terms of the variables in the RS gauge, w
consider the gauge transformation between these two gau
which is defined by

g̃̄ab~ x̄!dx̄adx̄b5g̃ab~x!dxadxb, ~2.24!

with x̄a5xa1ja(x). Since hym and hyy vanish in both

gauges, the infinitesimal gauge transformationja5ja
(1)

1ja
(2)

between them is restricted to the following form:

jy
~J!

~r ,y!5 ĵy
~J!

~r !2e (J)F l

4a2
~ ĵ ,r

y
~1!

!2G , ~2.25!

2One may think that this equation should have been expresse

g̃̄gn~x̄!]ȳ@a
22~ȳ!h̄mn~x̄!#52k5ST m

g 2
1

3
d m

g T l
l D~x̄! ~at ȳ501 !,

because this is a relation for the quantities in the GN gauge. H

ever, f (x)uy5050 is obviously equivalent tof ( x̄)u ȳ5050 for any
function f. To stress this point, we always use the coordinates w
out overbar hereafter. The only exception is Eq.~2.24!.
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j r
~J!

~r ,y!5 ĵ r
~J!

~r !2
l

2a2
ĵ ,r

y
~J!

1e (J)ĵ ,r
y

~1!F l

2a2
S ĵ ,r

r
~1!

2
2
l ĵy

~1! D
1E

0

ydy8

a2
B̄(1)~r ,y8!G . ~2.26!

Functionsĵy
(J)

(r ) and ĵ r
(J)

(r ) are integration constants whic
appear as a result ofy integration. We discuss how thes
functions are determined later.

We denote the difference between the metric in the
gauge and that in the GN gauge as

dA (J)~r ,y![A (J)~r ,y!2Ā(J)~r ,y!. ~2.27!

The remaining metric functionsdB (J) anddC (J) are defined
in the same way. Then, the gauge transformations are g
by

dA (J)52
2

l
jy
~J!

1e (J)@Ā,y
(1)jy

~1!

1Ā,r
(1)j r

~1!

#,

dB (J)52
2
l jy

~J!

12j ,r
r

~J!

1e (J)@B̄,y
(1)jy

~1!

1B̄,r
(1)j r

~1!

2~j ,r
r

~1!

!2

1e2y/ l~j ,r
y

~1!

!2#,

dC (J)52
2

l
jy
~J!

1
2

r
j r
~J!

1e (J)F C̄,y
(1)jy

~1!

1 C̄,r
(1)j r

~1!

2S 1

r
j r
~1!D 2G .

~2.28!

Now we are ready to derive the equation that determi
ĵy(r ). We evaluate the identityc ,y5c̄ ,y1dc ,y at y50. The
expression for the left hand side is obtained by means of
~2.17!, while the right hand side is evaluated by substituti
Eqs. ~2.23!, ~2.25!, ~2.26!, and ~2.28!. After tedious but
straightforward computation, we obtain

n ĵy
~J!

5
k5

6
T(J)1e (J)@J~r !2c ,yuy50# ~2.29!

with

J~r ![n f tF1
l ~ ĵy

~1!

!21 È r

ĵ ,r 8
y

~1!

B (1)~r 8,0!dr8G2
3
l ~ ĵ ,r

y
~1!

!2

1 ĵ r
~1!

] rn ĵy
~1!

1
l
2 ~ ĵ ,rr

y
~1!

!21
l

r 2
~ ĵ ,r

y
~1!

!2. ~2.30!

The gauge freedom for the radial coordinate in the G
gauge has not been fixed. Although the simplest cho

might be to takej r
(J)

to vanish on the brane, for later conve
nience we impose the isotropic gauge condition on the th
brane,B̄5 C̄ at ȳ50. Rewriting this condition by usingB and
C with the substitution of Eq.~2.28!, we obtain

as

-

-

2-4
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j r
~1!

52
r

4
B (1). ~2.31!

Here we show the result only for the first order, because

do not need the explicit expression forj r
(2)

in the following
discussion.

Once we obtain an explicit expression forĵy
(J)

, it is easy to
derive the boundary condition for the metric functions in t
RS gauge from the junction condition in the GN gau
~2.23!. In particular, the boundary condition required to sol
the master equation~2.19! is deduced by substituting th
relations obtained above into the right hand side of the eq
tion A,y5Ā,y1dA,y . Imposing this boundary condition i
equivalent to adding ad-function source localized on th
three-brane. The five-dimensional master equation~2.19! in-
cluding the boundary condition becomes

@L14l 21d~y!#~a2A (J)!

52k5S (J)~r !d~y!1e (J)@2a2l 21c ,y2S#,

~2.32!

where

S (J)~r ![k5
21]yA (J)uy50

5
2

3
r (J)1e (J)@P1k5

21]y~dA (2)!uy50#.

~2.33!

By using the Green function which satisfies

@L14l 21d~y!#G~x,y;x8,y8!5d~y2y8!d3~x2x8!
~2.34!

the formal solution for the master equation~2.32! is given by

a2A (J)~r ,y!52k5E dx83G~x,y;x8,0!S (J)

22e (J)E d3x8E
0

`

dy8G~x,y;x8,y8!

3FS~r 8,y8!1
2

l Èy8
a2~y9!Qyy~r 8,y9!dy9G .

~2.35!

The factor 2 in the second term of Eq.~2.35! comes fromZ2
symmetry. In Sec. III we discuss some basic aspects of
Green function, and solve the above equation at linear or
In Sec. IV we extend our analysis to the second order.

III. GREEN FUNCTION AND FIRST ORDER
PERTURBATIONS

A. Green function

We need the Green function to evaluate explicitly the f
mal solution~2.35!. In the static case the Green function i
08402
e

a-

e
r.

-

G~x,y;x8,y8!52
1

4p lR S a2~y!a2~y8!

1 l E
0

`

um~y!um~y8!e2mRdmD , ~3.1!

whereum(y) is the mode function, and we have introduc
the notation

R[ux2x8u.

The explicit form of the mode function is given in term
of Bessel functions as

um~y!5Nm@J1~ml!Y2~ml/a!2Y1~ml!J2~ml/a!#, ~3.2!

with Nm5Aml/A2@J1(ml)21Y1(ml)2#. It is orthonormal-
ized as

2E
0

`dy

a2
umum85d~m2m8!. ~3.3!

In particular, settingm850, we have

E
0

`

dyum50 ~mÞ0!. ~3.4!

The first term on the right hand side of Eq.~3.1! is the
contribution from the zero mode whose four-dimension
mass eigenvalue is zero (m50). We denote this part o
Green function byG0. The second term corresponds to t
propagator due to the Kaluza-Klein states which have n
zero mass eigenvalues (m.0). This term is denoted byGK .
Thus,G5G01GK .

For large separationR@ l , the existence of the facto
e2mR in the second term in Eq.~3.1!, i.e., GK , implies that
the integral overm is dominated by the contribution from
small m. When the source is on the three-brane (y850), we
can approximately evaluateGK by expanding Bessel func
tions takingml as small, but here the Bessel function wi
the argumentml/a is to be kept unexpanded becausea can
be exponentially small. Then, the integration overm can be
performed for the leading power ofm explicitly. The result is
given by @5#

G~x,y;x8,0!'2
a3

8p l

~2a2R213l 2!

~a2R21 l 2!3/2
. ~3.5!

For a small separationR! l , the Green function is dominate
by the contribution from modes with largem. In this limit,
the Green function behaves as the ordinary five-dimensio
one'21/4p2@R21 l 2(12a21)2#.

When we discuss second order perturbations later, we
the following inequalities:

0<2G~x,y;x8,0!<
a2~y!

4p lR2
~R1 l !. ~3.6!
2-5
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FIG. 1. We calculated numeri
cally G and a2(R1 l )/(4p lR2)
1G to show the inequalities of
~3.6!. Since there appears no loga
rithmic divergence,G and a2(R
1 l )/(4p lR2)1G are positive
definite at least in the region
shown in the figures.
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This inequality is suggested by the asymptotic form of
Green function, and it is confirmed by numerical calculatio
as shown in Fig. 1.

B. Linear perturbations

We start with linear perturbations. From Eq.~2.35!, A (1)

is given by

a2A (1)5
4k5

3 E d3x8G~x,y;x8,0!r (1)~r 8!. ~3.7!

Suppose thatr * is the radius of the star. When we consid
the metric at a point outside the starr 2r * @ l or far from the
three-brane, we can safely replaceG by the approximation
~3.5! with the relative error ofO( l 2/r

*
2 ).3 Furthermore, at a

field point far from the star, the matter distribution can
replaced with a point source. Then, we obtainA (1)(r ,y);
24G4Ma(2a2r 213l 2)/3(a2r 21 l 2)3/2. By using Eq.~2.18!,
we find B (1)(r ,y);4G4Ma/3Aa2r 21 l 2.

On the other hand, if we are interested in the metric
duced on the brane, we can also sety50. Even if we con-
sider the interior of the star, the inequality~3.6! implies that
the contribution to A (1) from GK is, at most, of
O„(k4M* /r * )( l 2/r

*
2 )log(l/r* )…, whereM* [4p*r 2r(r )dr.

Hence, it is small by a factor ofO„( l 2/r
*
2 )log(l/r* )… com-

pared with the leading term. Then, neglecting the collecti
of this order or higher, we obtain

A (1)~r ,0!'
8

3
f, ~3.8!

B (1)~r ,0!'2
8

3r
] rn

21f, ~3.9!

wheren21 is the inverse of the Laplacian operator, and
have introduced the Newtonian potential

f[4pG4n21r. ~3.10!

3Here r * in the denominator is just inserted to adjust the dime
sionality. It can ber instead ofr * .
08402
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These are transformed to the isotropic GN gauge by us
Eq. ~2.28! with

ĵy
~1!

52
lf
3 , j r

~1!

'
2
3 ] rn

21f, ~3.11!

which are derived from Eqs.~2.29! and ~2.31!, respectively.
Finally, the resulting metric functions turn out to be

2Ā(1)~r ,0!'B̄(1)~r ,0!5 C̄(1)~r ,0!'22f~r !, ~3.12!

which agree with the result for the four-dimensional Einste
gravity.

IV. SECOND ORDER PERTURBATIONS

For later convenience, we quote the result obtained in
preceding section as

A (2)~r ,0![AS1AS1AQ2
2

l
n21E

0

`

dy8a2Qyy , ~4.1!

where

AS52k5E dx83G~x,0;x8,0!S (2),

AS52E d3x8E
0

`

dy8G~x,0;x8,y8!
1

r 82
] r 8„r 82A ,r 8

(1)
~r 8,y8!

3B (1)~r 8,y8!…,

AQ5
4

l E d3x8E
0

`

dy8F Èy8
G~x,0;x8,y9!dy9Ga2~y8!

3Qyy~r 8,y8!. ~4.2!

The source termS (2) for AS is given in Eq.~2.33!. The third
term in Eq.~2.35! is separated into two pieces,AQ and the
last term in Eq.~4.1!, by performing integration by parts. T
obtain the expression of this last term, we have also u
*d3x8*0

`Gdy85*d3x8*0
`G0dy85(1/2)n21. Here the first

equality follows from Eq.~3.4!.
-

2-6
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Since we are interested in the metric induced on the th
brane, we also write down the expression forĀ(2) at y50.
Combining Eq.~2.25!, ~2.28!, ~2.29!, and~4.1!, we obtain

Ā(2)~r ,0!5AS1AS1AQ1
k4

3 n21T(2)

1F2l n21J2
1
2 ~j ,r

y
~1!

!22Ā,y
(1)jy

~1!

2Ā,r
(1)j r

~1!G
y50

.

~4.3!

Here we note that the last term in Eq.~4.1! is canceled with
a term which arises from the gauge transformation.

The terms in the square brackets are evaluated jus
substituting the estimate at first order, and the first termAS

has structure similar to first order perturbations, i.e.,
source term is localized on the brane. Thus, the evaluatio
these terms is straightforward. What needs detailed inve
gation is the evaluation ofAS and AQ . Since the source
terms ofAS and AQ , which are quadratic in the linear pe
turbation quantities, distribute through the five-dimensio
bulk, it is necessary to evaluate a convolution of three fi
dimensional Green functions.

Deferring the estimate of this convolution until Sec. IV
let us turn to the spatial components of the second o
metric perturbations. Although each spatial component

pends on the choice ofj r
(2)

, the gauge invariant combination

$B̄(2)2] r~r C̄(2)!%y50

5$B (2)2] r~rC (2)!2dB (2)1] r~rdC (2)!%y50

5H r

2
Ā,r

(2)1
r

2
] rdA (2)2dB (2)1] r~rdC (2)!J

y50

2r E
0

`

dy Qyr ~4.4!

does not containj r
(2)

. Here we have used Eqs.~2.10! and
~2.18! with y50 to eliminateB andC. Taking the isotropic
gaugeB̄(2)5 C̄(2), the left hand side becomes2r B̄,r

(J) . Inte-
grating this equation with respect tor, we obtain the expres
sion for B̄(2)(5 C̄(2)). Here we note that the terms in th

square brackets in Eq.~4.4! contain j r
(2)

, from which a term
with y integration,

2
3

l E0

`

dy a2Qyy ,

arises. Combined with the last term withy integration in Eq.
~4.4!, this term is reduced to the expression that does
containy integration. The detail of calculation is explained
Appendix A. Here we just quote the final result:
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B̄(2)~r ,0!52
1

2
Ā(2)1n21S k4

2
T(2)1

3

l
J1

1

2
Qyy

2
3

16
~A ,r

(1)!2D1BS ~at y50!, ~4.5!

where

BS[2
3
4 ~ ĵ ,r

y
~1!

!21E dr
1
r ~ ĵ ,r

y
~1!

!21
lk4

4 n21

3F ~3A,y
(1)1B,y

(1)!S (1)

2
1

r 3
~3B,y

(1)1A,y
(1)!E r 2S (1)drG

y50

.

We find that the expression is reduced to a closed form w
ten solely in terms of the quantities on the three-brane exc
for Ā(2)(r ,0).

A. Recovery of the four-dimensional Einstein gravity

In this subsection, we evaluate the metric induced on
three-brane at the leading order inl /r * , and show that the
result completely agrees with the one predicted by the fo
dimensional Einstein gravity.

As for AS , since the source term is localized on the thre
brane, we can approximate it as

AS'2k4n21S (2), ~4.6!

which is justified for the same reason explained in evaluat
the induced metric at the linear order.

As mentioned earlier, the point that needs careful analy
is the computation ofAS andAQ . To evaluate these terms w
need to evaluate a convolution of the five-dimensional Gr
functions. SinceG is composed ofG0 and GK , the contri-
bution from these terms is decomposed into several pie
depending on which combination of three propagators
used. For example, there is a mode coupling in which a z
mode propagatorG0 propagates the second order source p
duced by a product of KK mode contributions. We deno
this mode coupling as

@K,K;0#,

and similar labels are assigned for the other mode couplin
too.

Here in the present subsection, we simply neglect
pieces containing the KK propagatorGK . That is, we just
take into accountAS[0,0;0] andAQ[0,0;0] . The justification of
this approximation is given in the next subsections, wh
we prove that the neglected pieces inAS andAQ containing
GK are actually suppressed by a factor
O„( l 2/r

*
2 )log(r* /l)….

As long as only the contributions from the zero mode a
concerned, the first order metric functions are all constan
y. Since the source term ofAQ contains differentiation of the
2-7
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first order metric functions with respect toy, we find that
AQ[0,0;0]'0. As for AS[0,0;0] , after they integration, we find
that it is reduced to

AS'n21
1

r 2 ] r~r 2A ,r
(1)B (1)!. ~4.7!

Now that the evaluation ofĀ(2)(r ,0) is straightforward.
Substituting the evaluations of the first order quantities p
sented in Sec. III B, we finally obtain

Ā(2)~r ,0!'k4n21~r (2)22fr (1)13P!, ~4.8!

and

B̄(2)~r ,0!5 C̄(2)~r ,0!'2n21@k4~r (2)22fr (1)!1~f ,r !
2#.

~4.9!

It must be noted thatBS in Eq. ~4.5! gives only higher order
correction ofO( l 2k4

2) as is easily shown by using Eq.~2.23!,
~2.28!, ~2.29!, and~2.31!. These results agree with those f
the four-dimensional Einstein gravity, whose brief derivati
is given in Appendix B.

B. Suppression of the KK mode propagation

In the preceding subsection the terms inAS andAQ con-
taining a KK mode propagator were neglected. Here
show that the contribution from these terms is in fact ne
gible. We begin with discussing rather general things. As
AS , the termsAS[0,0;K] , AS[0,K;0] , and AS[K,0;0] vanish be-
cause of the orthogonality~3.4!. Hence the terms to be in
vestigated are~1! AS[K,K;0] , AS[0,K;K] , AS[K,0;K] , and
AS[K,K;K] . As for AQ , the situation is a little simpler. Reca
the fact mentioned above that the zero mode contributio
the first order metric functions isy independent. Thus we ca
say thatAQ[0,* ;* ] and AQ[ * ,0;* ] vanish. Therefore, all the
terms that we need to consider forAQ are ~2! AQ[K,K;0] and
AQ[K,K;K] .

1. AS†K,K;0‡ , AS†K,0;K‡
, and AS†0,K;K‡

The source term ofAS is rewritten as

1

r 2 ] r~r 2A ,r
(1)B (1)!

5
1

r
*
2 F H S r

*
2 ] r

22
r
*
2

r
] r DA (1)J S 2

1

r 3E r

drr 2A (1)D
2S r

*
2

r
] rA (1)DA (1)G . ~4.10!

Each source term has the form of

~O r
[1]A (1)!~O r

[2]A (1)! ~4.11!

with O r
[1,2]51, (r

*
2 /r )] r , r

*
2 ] r

2 , or r 23*0
r drr 2. By using the

orthonormal condition~3.3!, we obtain the formula
08402
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E
0

`

dya22 GK~x1 ,y;x2,0!GK~x3 ,y;x4,0!

5
1

2~4p!2R12R34

m~R121R34!, ~4.12!

whereRAB[uxA2xBu and

m~s![E
0

`

dmum~0!2e2ms. ~4.13!

The functionm(s) is bounded by

0<m~s!,
l

2s~s1 l !
. ~4.14!

We begin withAS[K,K;0]1AS[K,K;K] . We can derive an
upper bound for the absolute value of each term as

U 2

r
*
2 E d3x8E

0

`

dy8G~x,0;x8,y8!

3@Or 1

[1]A K
(1)~r 1 ,y8!Or 3

[2]A K
(1)~r 3 ,y8!# r 15r 35r 8U

,
1

8p lr
*
2 E d3x8E

0

`

dy8
a2~y8!

R2
~R1 l !

3@$Or 1

[1]A K
(1)~r 1 ,y8!1Or 1

[2]A K
(1)~r 1 ,y8!%2

1$Or 1

[1]A K
(1)~r 1 ,y8!2Or 1

[2]A K
(1)~r 1 ,y8!%2# r 15r 8 ,

~4.15!

whereA K
(1) is a part ofA (1) propagated by the KK mode

propagator, and we have used Eq.~3.6!. Below, we show that
each term on the right hand side of the above inequality i
mostO„l 2log(r* /l)…. We express the appropriate term as

1

r
*
2 E d3x8

R1 l

R2 @Or 1

[1]Or 3

[2]v~r 1 ,r 3!# r 15r 35r 8 , ~4.16!

with

v~r 1 ,r 3![ l 21E
0

`

dya2A K
(1)~r 1!A K

(1)~r 2!

5
k4

2l

2r 1r 3
E

0

r
* dr2r 2S (1)~r 2!E

0

r
* dr4r 4S (1)~r 4!

3E
ur 12r 2u

r 11r 2
dR12E

ur 32r 4u

r 31r 4
dR34m~R121R34!,

~4.17!

wherev(r 1 ,r 3) has been rewritten by using Eq.~4.12!. In-

troducingU(s)[2*0
sds8*`

s8ds9m(s9),
2-8
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v~r 1 ,r 3!52
k4

2l

2r 1r 3
E

0

r
* dr2r 2S (1)~r 2!E

0

r
* dr4r 4S (1)~r 4!

3„U~r 11r 21r 31r 4!

2U~ ur 12r 2u1r 31r 4!2U~r 11r 21ur 32r 4u!

1U~ ur 12r 2u1ur 32r 4u!…. ~4.18!

By construction,U(0)50. The inequality~4.14! indicates
that

0<U~s!<
1

2 Fs logS 11
l

sD1 l logS 11
s

l D G . ~4.19!

As long as s&r * , we find that U(s) is at most
O„l log(r* /l)….

Let us consider the action of differentiation once or twi
with respect tor 1 on U. Sincer 1 appears in the arguments o
U only in the combination ofr 11r 2 or ur 12r 2u, the differ-
entiation with respect tor 1 can be replaced with that with
respect tor 2. Then, integrating by parts, finally the differen
tiation can be moved so that it acts on the source te
r 2S (1)(r 2). As long as the first or second derivative is co
cerned, differentiation ofU does not appear as the bounda
term. The same thing is true for the pair ofr 3 and r 4. Now,
using the bound forU obtained above, we can conclude th
Or 1

[1]Or 3

[2]v(r 1 ,r 3) is at mostO„l 2log(r* /l)… for r 1 ,r 3&r * .

Whenr 1 ,r 3*r * , the argument ofm cannot be small. Then
we can use the bound m(s), l /2s2. Therefore,
Or 1

[1]Or 3

[2]v(r 1 ,r 3) is O( l 2) for r 1 ,r 3*r * .

To conclude that AS[K,K;0]1AS[K,K;K] is at most
O„( l 2/r

*
2 )log(r* /l)…, we have to examine whethe

@Or 1

[1]Or 3

[2] v(r 1 ,r 3)] r 15r 35r behaves well atr→` and atr

→0 so that the operation of*d3x8R22(R1 l ) is well de-
fined.

First we consider the larger limit. Since r 2 and r 4 are
bounded by the radius of the star,m(R121R34) can be re-
placed withm(r 11r 3)' l /(r 11r 3)2 for large r 1 and/or r 3,
and hencev(r 1 ,r 3)' l 2(k4M* )2/r 1r 3(r 11r 3)2. The opera-
tion of O r 1

[1] andO r 3

[2] does not make the fall off worse. Fo

small r 1,

v~r 1 ,r 3!5
k4

2l

r 3
E

0

r
* dr2r 2S (1)~r 2!E

0

r
* dr4r 4S (1)~r 4!

3E
ur 32r 4u

r 31r 4
dR34S m~r 21R34!

1
r 1

2

6
m9~r 21R34!1O~r 1

4! D
5

k4
2l

r 3
E

0

r
* dr2F S 11

r 1
2

6
] r 2

2 1O~r 1
4! D r 2S (1)~r 2!G
08402
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3E
0

r
* dr4r 4S (1)~r 4!E

ur 32r 4u

r 31r 4
dR34m~r 21R34!.

~4.20!

Therefore,O r 1

[1]v(r 1 ,r 3) is finite at r 1→0.

For AS[K,0;K] , a similar expression is obtained as

AS[K,0;K]5
2

r
*
2 E dr8r 8@Or 3

[1]w~r 1 ,r 2 ,r 3!# r 15r , r 25r 35r 8

3Or 8
[2]A 0

(1)~r 8!, ~4.21!

with

w~r 1 ,r 2 ,r 3![r 2E dV2E
0

`

dy8GK~x1,0;x2 ,y8!A K
(1)~r 3 ,y8!

5
k4l

4r 1r 3
E

0

r
* dr4r 4S (1)~r 4!E

ur 12r 2u

r 11r 2
dR12

3E
ur 32r 4u

r 31r 4
dR34m~R121R34!, ~4.22!

and A 0
(1) represents the part ofA (1) propagated byG0. In

the same way, we can show thatAS[K,0;K] is at most
O„( l 2/r

*
2 )log(r* /l)….

2. AQ†K,K;0‡ and AQ†K,K;K‡

AQ[K,K;0] andAQ[K,K;K] are also bounded as

uAQ[K,K;0]1AQ[K,K;K] u

,
1

2p l E d3x8
R1 l

R2 E
0

`

dya4~y!Qyy~x,y!

<
1

8p l E d3x8
R1 l

R2 H uA ,y
(1)A K

(1)1B ,y
(1)B K

(1)

12C ,y
(1)C K

(1)uy501U E
0

`

dy„~a4A ,y
(1)! ,yA K

(1)

1~a4B ,y
(1)! ,yB K

(1)12~a4C ,y
(1)! ,yC K

(1)
…UJ .

~4.23!

The first term in the curly brackets is at mo
O„( l 3/r

*
4 )log(r* /l)…. By using the relations obtained from

Eq. ~2.32!,

1

a4 ~a4A ,y
(1)! ,y52a22nA (1)12k5S (1)d~y!, ~4.24!

1

a4 ~a4B ,y
(1)! ,y5a22

1

r
] rA (1)2

2k5

r 3 E drr 2S (1)d~y!,

~4.25!
2-9
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and C (1)52(A (1)1B (1))/2, the second term is reduced
the form in Eq. ~4.16!. Therefore, the contribution toAQ

from this term is at mostO„( l 2/r
*
2 )log(r* /l)… for the same

reason.

V. SUMMARY

In this paper we developed second order perturbation
the RS single brane model, restricting the configuration
the static axisymmetric one. From the five-dimensional E
stein equations, we derived the master equations for sec
order perturbations. At the level of linear perturbations,
can use the RS gauge, in which all perturbation equations
decoupled. Since the transverse-traceless condition cann
imposed on the second order, the second order perturb
equations are inevitably coupled. As we have shown, h
ever, the four-dimensional spatial components of the sec
order metric functionB (2) and C (2) turned out to be con-
cisely represented by the temporal componentA (2) with the
first order metric functions. Therefore, the problem was
duced to solving a single differential equation forA (2). Once
we solve forA (2), the other metric functionsB (2) andC (2)

follow from it. Further, to discuss the metric induced on t
three-brane, we introduced the GN gauge in which a hyp
surface with constant fifth-coordinate coincides with the
cation of the three-brane. we gave the second order ga
transformations between the RS gauge and the GN ga
explicitly.

Based on this formulation, we first discussed the z
mode truncation for second order perturbations. It w
shown that the metric induced on the three-brane evalu
by using the approximation of the zero mode truncation
actly agrees with that for the four-dimensional Einstein gr
ity.

Next, we evaluated the contribution to the metric fun
tions from the KK modes. Since the mode-by-mode analy
shows a pathological feature even at the level of linear p
turbations, it is necessary to sum up all the mass eigenva
to handle the KK mode interactions. Performing such
analysis, we have confirmed that the correction due to
KK mode coupling on the induced metric is suppressed b
factor of O„( l 2/r

*
2 )log(r* /l)…, and there appears no path

logical behavior. We therefore conclude that second or
perturbations in the RS single brane model behave well
the result basically agrees with the prediction by fo
dimensional Einstein gravity. The relative order of the c
rection isO„( l 2/r

*
2 )log(r* /l)…. In the language of the post

Newtonian ~PN! analysis of the four-dimensional Einste
gravity, the order ofA (2) andB (1) is 1PN, and that ofB (2)

is 2PN. According to the parametrized post-Newton
~PPN! formalism, the PPN parameters at the 1PN orderb
and g, are observationally constrained to the accuracy
about 0.1% or so@32#. Although this accuracy might be im
proved in the future, there will be no chance, unfortunate
to find the evidence for the large extra dimension from
precision test of the solar system since the predicted de
tion in b, g is O„( l 2/r

*
2 )log(r* /l)….

Of course, since our discussion developed in the pre
paper is restricted to second order perturbations with sph
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cal symmetry, the gravity induced on the three-brane in
RS single brane model might deviate from the fou
dimensional Einstein gravity in a more general situatio
Hence, it would be necessary to develop a more comp
proof of the coincidence including all higher order term
Although we did not discuss the RS two brane model, it
also interesting to study the post-Newtonian correction
this model. The analysis is now in progress and will be
ported soon in a separate paper.
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APPENDIX A: DERIVATION OF B̄„2…

As was mentioned in the text below Eq.~4.4!, the expres-
sion given in the last line of Eq.~4.4! contains the terms with
y integration. They are explicitly written as

n21S 2
3

l E0

`

dya2Qyy1
1

r 2 ] rE
0

`

dy r2QyrD . ~A1!

The first integral comes fromĵy
(2)

contained indA (2), dB (2),
anddC (2). In obtaining the expression~4.5! from ~4.4!, how
to reduce these terms will be the only nontrivial manipu
tion. The rest of the computation is slightly complicated b
almost straightforward.

To rewrite the first integral, we use the relation

2
1

2
Qyy~r ,0!5

1

8E0

`

dy]y$a
26@~a4A ,y

(1)!21~a4B ,y
(1)!2

12~a4C ,y
(1)!2#%

5
3

l E0

`

dya2Qyy1
1

8E0

`

dy
1

a2
@~3A ,y

(1)1B ,y
(1)!

3~a4A,y
(1)! ,y1~3B ,y

(1)1A ,y
(1)!~a4B,y

(1)! ,y#,

where we have used the traceless conditionC (1)52(A (1)

1B (1))/2. On the other hand, the second part is rewritten

1

r 2 ] rE
0

`

dyr2Qyr52
1

2
Qrr 1

1

8E0

`

dy@~3A ,y
(1)1B ,y

(1)!nA (1)

1~3B ,y
(1)1A ,y

(1)!nB (1)#,

where again we have used the traceless condition. After
substitution of these relations and Eq.~4.24!, the remainingy
integration is just

1

8E0

`

dy~3B ,y
(1)1A ,y

(1)!Fn1
1

a2 ]ya
4]yGB (1). ~A2!
2-10
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We can derive

1

a2 ~a4B ,y
(1)! ,y52S nB (1)1

2

r
B ,r

(1)D2
2k5

r 3 E drr 2S (1)d~y!

~A3!

from Eq. ~4.25!, and (3B ,y
(1)1A ,y

(1))52rB ,ry
(1) from Eq.

~2.18!. With the aid of these relations, it is easy to see t
the remainingy integration~A2! can be performed.

APPENDIX B: SECOND ORDER PERTURBATIONS
IN THE 4D EINSTEIN GRAVITY

In this appendix, we give second order perturbations
the four-dimensional Einstein gravity for the comparis
with the zero mode truncation of the gravity in the RS sin
brane model. Although the results are well known as
second post-Newtonian analysis@33#, we present a brief deri
vation for the following two reasons.~1! Since we are work-
ing in a specific gauge, we need to consider a gauge tr
formation to compare our results with the express
presented in a different gauge.~2! To compute metric pertur
bations in our restricted situation from the beginning is mu
easier than to follow a literature in which unrestricted ca
are discussed.

We assume that the four-dimensional metric is static
isotropic,

ds252eA(r )dt21eB(r )dx2.

Up to the second order, the four-dimensional Einstein eq
tions with the energy-momentum tensor given in Eq.~2.2!
are
B

li,

ys

e

. D

08402
t

n

e

s-
n

h
s

d

a-

Rt
t5

1

2
~B21!nA2

1

4
A,r~A1B! ,r52

k4

2
~r13P!, ~B1!

Rr
r5

1

2
~B21!S n~A12B!2

2

r
~A1B! ,r D1

1

4
A,r~B2A! ,r

5
k4

2
~r2P!, ~B2!

Ru
u5

1

2
~B21!S nB1

1

r
~A1B! ,r D2

1

4
B,r~A1B! ,r

5
k4

2
~r2P!. ~B3!

We expandA andB to the second order as Eq.~2.9!. Solving
these equations at the linear order, we obtainA(1)52B(1)

52f, wheref(r ) is similarly defined as in Eq.~3.10!. Put-
ting these results into Eq.~B1!, the equation forA(2) be-
comes

nA(2)5k4~r (2)13P!24fnf, ~B4!

which agrees with Eq.~4.8!. Eliminating nA(2) andP from
Eqs.~B1!, ~B2!, and~B3!, we obtain

nB(2)52k4r (2)14fnf2~f ,r !
2. ~B5!

Hence it was shown that the result obtained by the zero m
truncation ~4.9! agrees with that for the four-dimension
Einstein gravity~B5!.
ys.
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