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Second order perturbations in the radius stabilized Randall-Sundrum two branes model
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The nonlinear gravitational interaction is investigated in the Randall-Sundrum two branes model with the
radius stabilization mechanism. As the stabilization model, we assume a single scalar field that has a potential
in the bulk and a potential on each brane. We develop a formulation of the second order gravitational pertur-
bations under the assumption of a static and axial-symmetric five-dimensional metric that is spherically sym-
metric in the four-dimensional sense. After deriving the formal solutions for the perturbations, we discuss the
gravity on each brane induced by the matter on its own side, taking the limit of large coupling of the scalar
field interaction term on the branes. We show using the Goldberger-Wise stabilization model that four-
dimensional Einstein gravity is approximately recovered in the second order perturbations.
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I. INTRODUCTION

Many unified theories require spacetime dimensio
higher than that observed in the Universe, and thus the e
dimensions must be invisible by some mechanism. One
the possible schemes is known as Kaluza-Klein compac
cation. Recently, theories with extra dimensions have
tracted considerable attention from the other viewpoint
providing a solution to the hierarchy problem@1–5#. The
main idea to resolve the large hierarchy is that the sm
coupling of four-dimensional gravity is generated by t
large physical volume of extra dimensions. These theo
provide a novel setting for discussing phenomenologic
cosmological, and conceptual issues that are related to e
dimensions.

The model that was introduced by Randall and Sundr
~RS! is particularly attractive. The RS two branes model
constructed in a five-dimensional anti–de Sitter~AdS! space-
time @2#. The fifth coordinate is compactified onS1/Z2, and
the positive and negative tension branes are on the two fi
points. It is assumed that all matter fields are confined
each brane and only the gravity propagates freely in the fi
dimensional bulk. In this model, the hierarchy problem
resolved on the brane with negative tension if the separa
of the branes is about 37 times the AdS radius.

Apart from the fine-tuning of the brane tension that
necessary to solve the cosmological constant problem, on
the significant points in discussing the consistency of t
model is whether four-dimensional Einstein gravity is reco
ered on the brane@6–12#. Another point is to give a so-calle
radius stabilization mechanism that works to select the
quired separation distance between the two branes to res
the hierarchy without fine-tuning@13–23#. The stabilization
mechanism not only is important to guarantee a stable h
archy, but also plays an important role in the recovery
four-dimensional Einstein gravity in linear order@7,12# and
of the correct cosmological expansion@24–28#. The discus-
sion of the recovery is almost independent of the details
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the stabilization model. The essence in recovering the fo
dimensional Einstein gravity in linear perturbations is th
the massless mode of the scalar-type gravitational pertu
tion disappears due to the bulk scalar field, and only
tensor-type perturbation continues to have a massless m
When the stabilization mechanism is turned off, the induc
gravity on the brane becomes of the Brans-Dicke type w
an unacceptable Brans-Dicke parameter@6#.

A large number of studies have been made of gravity
the brane world model@29–37#. Although the model does
not have a drawback in linear perturbation, it is not a triv
question whether the second order gravitational perturba
works as well. For the second order perturbation in the
single brane model without bulk scalar field, where the te
sion of the brane is positive, it has been confirmed that th
is no observable disagreement with four-dimensional E
stein gravity@38,39#. However, the setting of the RS two
brane model with stabilization mechanism is quite differe
from that of the single brane model, and furthermore we
mainly concerned with the gravity on the negative tens
brane. In this paper we study the second order gravitatio
perturbation of the RS two branes model with a stabilizat
mechanism due to a bulk scalar field. To simplify the ana
sis, we consider static and axisymmetric configuratio
which means that the metric on the branes is spheric
symmetric. After developing a formulation to calculate t
second order perturbation, we take the limit that the coupl
of the scalar field interaction term on each brane is v
large. In this limit, we find that four-dimensional Einste
gravity is approximately recovered.

The paper is organized as follows. In Sec. II we descr
the model that we will study, and derive the second or
perturbation equations in the five-dimensional bulk. We a
discuss the gauge transformations and the boundary co
tions. In Sec. III we explain our approximation scheme, a
give the formal solutions. In Sec. IV we review the resu
for linear perturbations, giving their explicit expressions fo
lowing the notation of this paper, and explain the setup of
problem that we study in the present paper. In Sec. V
analyze the second order metric perturbations induced
each brane. We show that the four-dimensional Einst
gravity is recovered with some small corrections. These
©2002 The American Physical Society34-1
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sults are summarized in Sec. VI.

II. PERTURBATION EQUATIONS IN THE RS MODEL

We consider the second order perturbations in the RS t
branes model with a five-dimensional scalar field introduc
to stabilize the distance between the two branes. Accord
to the warped compactification of the RS model, the unp
turbed metric is supposed to be

ds25gabdxadxb5dy21a2~y!hmndxmdxn, ~2.1!

wherehmn is the four-dimensional Minkowski metric with
(2111) signature. They direction is bounded by two
branes located aty5y1 andy5y2 , whose tensions are as
sumed to be positive (L (1).0) and negative (L (2),0),
respectively. On these two branes,Z2 symmetry is imposed
and we adopt the conventiony1,y2 . To generate the hier
archy between Planck and electroweak scales, we need

a1

a2
;1016, ~2.2!

wherea6[a(y6).
In this paper we investigate the gravity induced by no

relativistic matter fields confined on each brane who
energy-momentum tensor is given in the perfect fluid for

T6n
m 5a6

24diag$2r6 ,P6 ,P6 ,P6%. ~2.3!

The warp factor in the definition of the energy-momentu
tensor~2.3! is incorporated for the following reason. In th
present analysis, we adopt the normalization that any ph
cal quantities are always mapped onto and measured by
length scale aty5y1 . Since the length scale is warped by
warp factora(y), physical quantities such asr2 andP2 are
scaled by a factora2

24.
To simplify the analysis, we restrict our consideration to

static and axisymmetric spacetime whose axis of symm
lies alongy direction. We denote the perturbed metric
g̃ab5gab1hab . The four-dimensional perturbationhmn is di-
vided into a trace part and a transverse-traceless~TT! part.
According to this decomposition, we assume that the p
turbed metric has the diagonal form

ds25e2Y(r ,y)dy21a2~y!@2eA(r ,y)2c(r ,y)dt2

1eB(r ,y)2c(r ,y)dr21eC(r ,y)2c(r ,y)r 2dV2#. ~2.4!

Here A, B, and C correspond to the TT part, andc to the
trace part. The TT condition to linear order is given in term
of A, B, andC as

A(1)~r ,y!52
1

r 2
] r@r 3B(1)~r ,y!#,

C(1)~r ,y!5
1

2r
] r@r 2B(1)~r ,y!#, ~2.5!
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where we have expanded the metric functions up to sec
order as

A5 (
J51,2

A(J). ~2.6!

The other metric functionsY andc are expanded in the sam
way. Henceforth we neglect higher order terms without m
tioning it, and we omit the superscript indicating the ord
when it is obvious. We impose the same conditions as
~2.5! on A(2), B(2), andC(2) so thatB(J) andC(J) are derived
from A(J) once it is solved. Since the trace of the metric
given by

g̃mnhmn524c22c22
1

2
~A21B212C2!, ~2.7!

the trace part at linear order isc (1), while c (2) does not
correspond to the trace part at second order. Hence the
ond order counterpart of the condition~2.5! does not mean
that A(2) is the transverse-traceless perturbation, but we
tensively refer to these metric functions as the TT part anc
as the trace part. Later we will show thatY coincides withc
in a linear perturbation, and thus this metric assumption
the same at least in linear perturbation as the ‘‘New
gauge’’ condition.

The Lagrangian for the bulk scalar field is

L52
1

2
g̃abw̃ ,aw̃ ,b2VB~ w̃ !2 (

s56
V(s)~ w̃ !d~y2ys!,

~2.8!

whereVB andV(6) are the potential in the bulk and that o
the corresponding brane. For most of the present analysis
do not need to specify the explicit form of the potentialsVB
andV(6) . The scalar field is expanded up to second orde

w̃~r ,y!5f0~y!1w (1)~r ,y!1w (2)~r ,y!, ~2.9!

wheref0 is the background scalar field configuration, whi
depends only ony.

From the five-dimensional Einstein equations with t
cosmological termL and the equation of motion for th
scalar field, we obtain the background equations as

Ḣ~y!52
k

3
ḟ0

2~y!,

H2~y!5
k

6S 1

2
ḟ0

2~y!2VB„f0~y!…2k21L D ,

f̈0~y!14H~y!ḟ0~y!2VB8 „f0~y!…50, ~2.10!

where H(y)ªȧ(y)/a(y)('2A2L/6) and the five-
dimensional Newton’s constant isG55k/8p. An overdot de-
notes differentiation with respect toy.
4-2
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SECOND ORDER PERTURBATIONS IN THE RADIUS . . . PHYSICAL REVIEW D 65 104034
A. 5D Einstein equations in the bulk

In this subsection we derive the master equations forA(J)

andY(J) from the five-dimensional Einstein equations. Fro
the (r ,r ), (u,u), and (r ,y) components of the Einstein equ
tions, we obtain two independent equations:

] r@D~c (J)2Y(J)!#5e (J)] rSc ,

w (J)5
3

2kḟ0

~]yc
(J)12HY(J)1e (J)Sw!, ~2.11!

where D[( i 51
3 ] i

2 . Here Sc and Sw are the second orde
source terms that are constructed from the first order qua
ties, and the explicit forms are given below. We have int
duced the symbole (J) that is defined bye (1)50 and e (2)

51 to represent the first and the second order equations
single expression. These equations are reduced to

c (J)~r ,y!5Y(J)1e (J)D21Sc , ~2.12!

w (J)~r ,y!5
3

2kḟ0a2
]y~a2Y(J)!

1
3

2kḟ0

e (J)@Sw1]yD
21Sc#. ~2.13!

The equations forA(J) and Y(J) are obtained from the
(r ,r ) and (y,y) components of Einstein equations as

F L̂ (TT)1
1

a2
DG ~a2A(J)!5e (J)SA , ~2.14!

@ L̂ (Y)1D#Y(J)5e (J)SY , ~2.15!

where

L̂ (TT)
ª

1

a2 ]ya
4]y

1

a2 ,

L̂ (Y)
ªa2ḟ0

2]y

1

a2ḟ0
2
]ya

22
2k

3
a2ḟ0

2 .

The second order source termsSA and SY are given later.
After simplification using the linear order equations~2.12!,
~2.13!, ~2.14!, and~2.15!, Sc andSw are written down as

] rSc~r ,y!5
3

8r 6
] r@r 8~DB!2#1B,r S 14

3
DB1

5

4
r ] rDB

2
11

6r
B,r D1

9

4r 8/3
] rH r 8/3

Y,r~DY! ,r

ka2ḟ0
2 J

1
1

a2
]yS 22a4Y,rB,y1

3

2r 8/3
] r H r 8/3

a2Y,rw ,r

ḟ0
J D ,

~2.16!

and

Sw5Sw2
w

a2ḟ0

S DY2
ka2f̈0

3
w D , ~2.17!
10403
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Sw5
2

3E S B,yA,r1
r

8
B,yr~3A,r1B,r ! Ddr

2E B,yY,rdr1
1

a2ḟ0
E w ,rDYdr1HY2

2
k

3
]y~w2!. ~2.18!

In the derivation of Eq.~2.16!, we used Eq.~B14!. The un-
derline in Eq.~2.16! is attached for convenience of our e
planation. So is the double underline below. Using E
~2.16!, SA is given by

SA52
8

r
BB,r2

17

3
~B,r !

22
1

r 6
] r~r 7BB,rr !

2E drS r

2
~B,rr !

21
7

r
~B,r !

2D23E dr

r S Y,r~DY! ,r

ka2ḟ0
2 D

1
1

a2
]yF3a4YA,y1E dr~a4Y,rB,y!

22E dr

r

a2Y,rw ,r

ḟ0
G , ~2.19!

where we again used Eq.~B14!. The complete expression fo
SY is slightly complicated. For later convenience we divi
SY as

SY5SY2ḟ0
2a2]yS 1

ḟ0
2 @Sw1]yD

21Sc# D , ~2.20!

whereSY is given by

SY52
a2

8 S ~A,y!21~B,y!21
2

3
A,yB,yD

2E H DBS 7r

3
DB1

r 2

2
~DB! ,r14B,r D1

5r

6
B,r~DB! ,r

1
~B,r !

2

3r
1

a2H

3
@A,r~3A1B! ,y2rB ,rB,ry#

1FY,r S DB1
8B,r

r D2B~DY! ,r22B,rDYG13Y,rDY

1S Y1
4Hw

ḟ0
D ~DY! ,r1

2k

3
@w ,rDw2w~Dw! ,r #

22a4B,yS Y,r

a2 D
,y
J dr2

9~DY!2

4ka2ḟ0
2

2a2ḢY2. ~2.21!
4-3
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B. Boundary condition

In the previous subsection, we derived master equat
for the metric functions in the bulk up to second order.
solve these equations we must determine the boundary
ditions on the branes. It is well known that the bounda
condition is given by Israel’s junction condition@40#, which
is easily obtained in Gaussian normal coordinates. On
other hand, the Newton gauge simplifies the master eq
tions for the perturbations. Therefore we consider the ga
transformation between them.

In Gaussian normal coordinatesx̄a, the metric becomes

ds25dȳ21a2~ ȳ!@2eĀd t̄21eB̄dr̄21eC̄r̄ 2dV2#, ~2.22!

with ȳ5const on either the positive or negative tensi
brane. Note that we introduced two sets of Gaussian nor
coordinates; one is the coordinate set in which the posi
tension brane is located atȳ5 ȳ1 , and the other is that in
which the negative tension brane is located atȳ5 ȳ2 . Cor-
responding to these two different Gaussian normal coo
nates, there are two infinitesimal gauge transformationsx̄a

5xa1j6
a (x) between the Newton gauge and the Gauss

normal gauge, respectively. To satisfy the restriction on

metric form in both gauges, the gauge parametersj6
a 5 j

(1)

6
a

1 j
(2)

6
a associated with each brane must take the form of

j
~J!

6
y ~r ,y!5E

y6

y

dy8S Y(J)1
1

2
e (J)FY22

1

a2 S j
~1!

,r
y D 2G D

1 ĵ

~J!

6
y ~r !, ~2.23!

j
~J!

6
r ~r ,y!5E

y6

y

dy8S 2
1

a2
j

~J!

6,r
y

1
e (J)

a2
j

~1!

6,r
y [ B̄2Y12H j

~1!

6
y 1 j

~1!

6,r
r ] D 1 ĵ

~J!

6
r ~r !,

~2.24!

where we simplified the integrand of the equation for t
second order perturbation by using the result for a lin
perturbation. The functions ofr, ĵ6

r , and ĵ6
y , arise as inte-

gration constants. The arbitrariness ofĵ6
r is due to a residua

gauge degree of freedom of the coordinate transformatio
the radial direction, whileĵ6

y is determined with the aid o
the junction conditions as we will see below.

The gauge transformations for each metric component
given by

Ā(J)~r ,y!5A(J)2c (J)22H j
~J!

6
y

2e (J)@ j
~1!

6
y Ā,y

(1)1 j
~1!

6
r Ā,r

(1)1Ḣ~ j
~1!

6
y !2#,
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B̄(J)~r ,y!5B(J)2c (J)22H j
~J!

6
y 22 j

~J!

6,r
r

2e (J)F j
~1!

6
y B̄,y

(1)1 j
~1!

6
r B̄,r

(1)2~ j
~1!

6,r
r !2

1
1

a2
~ j

~1!

6,r
y !21Ḣ~ j

~1!

6
y !2G ,

C̄(J)~r ,y!5C(J)2c (J)22H j
~J!

6
y 2

2

r
j

~J!

6
r

2e (J)F j
~1!

6
y C̄,y

(1)1 j
~1!

6
r C̄,r

(1)2
1

r 2 S j
~1!

6
r D 2

1Ḣ( j
~1!

6
y )2G . ~2.25!

As for the scalar field, its gauge transformation is given b

f̄0~y!5f0~y!,

w̄ (J)~r ,y!5w (J)~r ,y!2dw (J)~r ,y!, ~2.26!

where

dw (J)~r ,y!5ḟ0 j
~J!

6
y 1e (J)S j

~1!

6
y w ,y

(1)1 j
~1!

6
r ~w (1)2ḟ0 j

~1!

6
y ! ,r

2
1

2
@ḟ0~ j

~1!

6
y !2# ,yD . ~2.27!

As mentioned earlier, we assume the energy-momen
tensor to be of the perfect fluid form~2.3!. The four-
dimensional energy-momentum conservationT6;n

nm50 be-
comes

~r61P6!] r Ā
(1)~r ,y6!12] r P650, ~2.28!

and hence we find thatP6 is a second order quantity. Thi
equation represents the force balance between pressure
gravity acting on the matter field.

Now we consider the boundary conditions. Israel’s jun
tion conditions on the three-branes are given by

6 g̃̄nl]y~ g̃̄ml!52kFTm
n 2

1

3
dm

n TG
6

2kFTm
(w)n2

1

3
dm

n T(w)G
6

2
k

3
dn

mL (6) ~at y5y6! ~2.29!

where L (6) is the tension on each brane, andTmn
(w) is the

energy-momentum tensor for the scalar field. Here and h
after, when we evaluate the value aty5y6 , we take the
value aty5y66« in the e→0 limit. Since, by assumption
the scalar field dose not have a kinetic term on the brane
4-4
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energy-momentum tensor on the brane is given byTm
(w)n

52V(6)dm
n . Then, Eq.~2.29! gives at the lowest order

7H5
k

6
V(6)1

k

6
L (6) ~y5y6!. ~2.30!

The potentialV(6) must be chosen to satisfy this conditio
The (t,t) component of the junction condition~2.29! gives

6]yĀ
(J)52kS T0

02
1

3
TD

6

(J)

7
2k

3 S w̄ (J)ḟ̄01
e (J)

4
]y@~ w̄ (1)!2# D

~y5y6!. ~2.31!

The junction condition in the Newton gauge is obtained
applying the gauge transformation to this equation.We de
S6

(J) as the jump of the derivative of a metric function in th
Newton gauge:

k

a6
2

S6
(J)[6A,y

(J)uy5y6
52kS T0

02
1

3
TD

6

(J)

7e (J)SS
6

~y5y6!, ~2.32!

whereSS
6 is given by the substitution of Eqs.~2.10!, ~2.15!,

~2.17!, and~2.26! as

SS
65

2k

3 S w̄ (2)fG 01
1

4
]y@~ w̄ (1)!2# D2~A,y

(2)2Ā,y
(2)!~y5y6!

5
2

3E H B,yS A,r2
3

2
Y,r D1

rB ,yr

8
~3A,r1B,r !

1
3ĵ6,r

y DY

2a6
2 J dr2A,y~Y24H ĵ6

y !2 ĵ6
r A,ry

1
1

a6
2
„ĵ6

y DA2H~ ĵ6,r
y !21 ĵ6,r

y ~A2Y! ,r…

2E dr
~w2ḟ0ĵ6

y !2

2a6
2 ḟ0

] rS DY

w2ḟ0ĵ6
y D . ~2.33!

Taking the trace of the junction condition and using E
~2.13! and the formulas for the gauge transformation,
obtain the equation which determinesĵ6

y :

1

a6
2

D ĵ

~J!

6
y 56

k

6
T6

(J)1e (J)Sj
6 , ~2.34!

where we introduced
10403
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3E H B,yS A,r2
3

2
Y,r D1

r

8
B,yr~3A,r1B,r !

1
3ĵ6,r

y DY

2a6
2 J dr1

1

a6
2
„ĵ6,r

y ] r~B1Y1H ĵ6
y !

1~B2Y22H ĵ6
y 1 ĵ6

r ] r !Dĵ6
y 1 ĵ6

y DY…

1E dr
~w2ḟ0ĵ6

y !2

a6
2 ḟ0

] rS DY

w2ḟ0ĵ6
y D . ~2.35!

Let us consider the junction conditions for the scalar fie
Integrating the equations of motion for the scalar field acr
the branes, we obtain the junction conditions for the sca
field as

62fG 05V(6)8 ~f̄0!,

62wG (J)5w̄ (J)V(6)9 ~f̄0!1
1

2
e (J)@~ w̄ (1)!2V(6)- ~f̄0!#

~2.36!

at y5y6 . By using Eqs.~2.13!, ~2.15!, and~2.26!, the junc-
tion conditions for the scalar field in the Newton gauge a
obtained as

62ḟ05V(6)8 ~f0!,

2

l6
S w (J)2ḟ0 ĵ

~J!

6
y D 57

3

ka2ḟ0

DY(J)1e (J)Sjun
6 ,

~2.37!

where we have defined

l6ª
2

V(6)9 72~f̈0 /ḟ0!
~2.38!

and

Sjun
6 5~dw (2)2ḟ0 j

~2!
y!V(6)9 2

1

2
~w (1)2ḟ0

~1! j
~1!

y!2V(6)-

62F2]y~dw (2)2ḟ0 j
~2!

y!2
ḟ0

2 S Y22
~j ,r

y !2

a2 D
1

3

2ka2ḟ0

SY1ḟ0]yS f̈0w2

2ḟ0
3

2
3wDY

2ka2ḟ0
3D G

~y5y6!. ~2.39!

A more explicit expression is given in Appendix B 2.
Incorporating the boundary conditions~2.32! and ~2.37!,

the master equations become

FL (TT)1
1

a2
DG ~a2A(J)!52k (

s56
Ss

(J)d~y2ys!1e (J)SA ,

~2.40!
4-5
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@ L̂ (Y)1D#Y(J)5 (
s56

s
2kḟ0

2

3
d~y2ys!Ks

(J)1e (J)SY ,

~2.41!

with

Ks
(J)~r !ª2as

2F ~J!1 ĵs
y 2s

3lsDY(J)

2kas
2ḟ0

2
1

e (J)

ḟ0
S ls

2
Sjun

s

2
3

2kḟ0

@Sw1]yD
21Sc# D G

y5ys

.

Solving these equations forA(J) and Y(J) as well as Eq.
~2.34! for ĵ6

y , and using the gauge transformation Eq.~2.25!

with the aid of Eq.~2.5!, we obtain Ā(J), B̄(J), and C̄(J),
which represent the metric perturbations induced on
branes.

III. GRADIENT EXPANSION

A. Green’s function

We can write down the formal solution of Eq.~2.40! by
means of the Green’s function,

a2A(J)52k (
s56

E d3xGASs
(J)12e (J)E d3xE

y1

y2

dyGASA ,

~3.1!

where theGA(x,y;x8,y8) is the Green’s function for the TT
part in the static case. The factor 2 in the second term refl
the Z2 symmetry of this brane world model. In the stat
case, the Green’s function is given by

GA~x,y;x8,y8!52E d3k

~2p!3
eik(x2x8)

3FNa~y!2a~y8!2

k21e2
1(

i

wi~y!wi~y8!

mKi
2 1k2 G ,

~3.2!

wherewi(y) is the mode function and its orthonormal co
ditions are given by

E
y1

y2

widy50, 2E
y1

y2wiwj

a2
dy5d i j . ~3.3!

The normalization factorN is defined by

NªF2E
y1

y2

a2dyG21

. ~3.4!

The first term on the right-hand side of Eq.~3.2! is the con-
tribution from the zero mode whose four-dimensional m
eigenvalue is zero. The second term corresponds to
propagator due to the Kaluza-Klein~KK ! excitations whose
ith excitation has the discrete mass eigenvaluemKi . We refer
to these modes as KK modes.
10403
e

ts
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As for the scalar-type perturbations, it has been proved
linear perturbation by considering the source free equa
that there is no physical mode with a zero eigenvalue of
four-dimensional D’Alembertian@7#. This means that the
massless scalar-type mode disappears when the stabiliz
mechanism is taken into account. The explicit mode funct
for the lightest mass mode is found in Ref.@7#.

B. Transverse-traceless perturbation

1. Temporal component

By the zero mode truncation, in which we substitute on
the first term in Eq.~3.2! into Eq. ~3.1!, we obtain

DA0
(J)~r ,y!522kN (

s56
as

4 S T0
02

1

3
TD

s

(J)

12Ne (J)F E
y1

y2

a2SAdy2 (
s56

sas
4SS

s G ,
~3.5!

where we did not assume any truncation for the source te
SS

6 and SA . We assigned the label 0 to indicate the ze
mode truncation.

To evaluate the contribution from the second term in E
~3.2! for the TT part of the metric perturbations, we follo
the strategy that is used in Ref.@7#. Rewrite the part coming
from KK modes in the Green’s function as

E d3k

~2p!3
eik(x2x8)(

i

wiwi

mKi
2 1k2

5(
i

wiwi

mKi
2

d3~x2x8!2(
i

wiwi

mKi
2 E dk3

~2p!3

k2eik„xÀx8…

mKi
2 1k2

.

~3.6!

Under the condition thatk2/mKi
2 !1 holds, the first term on

the right-hand side gives the dominant contribution. Not
that the first term is nothing but the Green’s function for E
~2.14! with D50. Thus to pick up this part of the Green
function is equivalent to solving the equation forA(J) by
setting D50 from the beginning. SubstitutingA(J)[A0

(J)

1AS
(J) , whereA0 is the zero mode part andAS is the KK

mode part, into Eq.~2.40! and neglecting theD term for the
KK mode contribution, we obtain

L̂ (TT)~a2AS
(J)!'22k (

s56
Ss

(J)@Nas
22d~y2ys!#

1e (J)SA , ~3.7!

where

SAªSA22NE
y1

y2

a2SAdy. ~3.8!

Applying the integration operator*ya24*2y
y dya2, this equa-

tion is formally solved as
4-6
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AS
(J)~r ,y!522kN (

s56
as

2Ss
(J)S E

y2s

y

dy8
vs

a2
2CsD

1e (J)F E
y1

y dy8

a4 Ey1

y8
dy9a2SA2D~r !G , ~3.9!

whereC1 andC2 are constants andD(r ) is a function ofr,
which are determined later. The functionv6(y) is defined by

v6~y!ª
1

a2E
y7

y

dy8a~y8!2. ~3.10!

From the orthogonality of Eq.~3.3!, AS
(J) must be orthogona

to the zero mode function. This condition fixes the consta
C6 and the functionD(r ) as

Cs52NE
y1

y2

dya2E
y2s

y

dy8
vs

a2
,

D~r !52NE
y1

y2

dya2E
y1

y dy8

a4 Ey1

y8
dy9a2SA . ~3.11!

Integrating by parts and takingy5y6 , Eq. ~3.9! is reduced
to

AS
(J)~r ,y6!524kN2 (

s56
as

2Ss
(J)E

y1

y2

dy8vs
2

62kNa7
2 S7

(J)E
y1

y2v7

a2
dy

12Ne (J)E
y1

y2

dy8
v6

a2 Ey1

y8
dy9a2SA , ~3.12!

where we used Eqs.~B1! and ~B3!.
The approximation method that we have used is a kind

derivative expansion method, in which the typical wav
length of perturbations is supposed to be long. This exp
sion is valid only when the smallest mass of the KK exci
tions is sufficiently large. We can obtain the higher ord
corrections by iteration, in which theD term, which we have
neglected in the above discussion, is incorporated as
source term. For the TT part, we do not consider furt
iteration than Eq.~3.9!. As we will see later, in the scalar
type perturbations, we need to consider one iteration of thD
term to obtain results accurate to the same order.

2. Spatial component

Let us turn to the spatial components of the TT part. Sin
each spatial component depends on the gauge choice ofĵ r , it
is convenient to deal with the gauge invariant combinat
@38#
10403
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@] r~rC̄ (J)!2B̄(J)#y5y6

52r ] rF1

2
Ā(J)1

3

2
~c (J)12Hj

~J!
y !1e (J)SBG
~y5y6!, ~3.13!

where we used Eqs.~2.5! and ~2.25!, andSB is given by

SB52
ĵy

2
~B,y12kḟ0w!2

ĵ r

2
@B13~Y12H ĵy!# ,r

2
3

2
Ḣ~ ĵy!21

~ ĵ r !2

r 2
1

1

r
] rF ~ ĵy!2

a2
2~ ĵ r !2G

1E dr

r H ĵ r~C̄2B̄! ,r1 ĵyF rB ,ry

2
2

2

a2

3S ĵ ,rr
y 2

1

r
ĵ ,r

y D G1~ ĵ ,r
r !22

~ ĵ r !2

r 2
2

~ ĵ ,r
y !2

a2 J . ~3.14!

To fix the gauge degrees of freedom corresponding to
choice of the radial coordinate, we adopt the isotropic ga
that is defined byB̄5C̄ on each brane. With this choice o
gauge, the left-hand side of Eq.~3.13! becomesr ] r B̄, and we
immediately obtain the spatial componentB̄ (5C̄) in
Gaussian normal coordinates:

DB̄(J)~r ,y6!52
1

2
DĀ(J)7

kH

2
a6

2 T6
(J)2

3

2
DY(J)

2
3

2
e (J)F2

3
DSB1Sc12Ha6

2 Sj
6G .

~3.15!

It is also necessary to specify the explicit form of the rad

gauge parameter at first order,ĵ

(1)

6
r , since the second orde

perturbationsĀ(2) and B̄(2) depend on it. Substituting Eq

~2.25! into the isotropic gauge condition,ĵ

(1)

6
r is determined

as

ĵ

~1!

6
r ~r !52

r

4
B(1)~r ,y6!. ~3.16!

C. Scalar-type perturbation

As mentioned earlier, there is no zero mode in the sca
type perturbation. To evaluate the contribution from mass
modes, we apply the same technique that we used in
preceding subsection for the KK modes of the TT part. F
we consider the equation forY(J) by settingD50. The ho-
mogeneous solutions of Eq.~2.15! with D50 are given by

u6~y!5122H~y!v6~y!, ~3.17!
4-7
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wherev6(y) is defined in Eq.~3.10!. The Green’s function
GY , which satisfies

1

a2ḟ0
2
L̂ (Y)S GY

a2 D 52d~y2y8!, ~3.18!

is constructed as

GY~y;y8!5
3Na2~y!a2~y8!

k
@u2~y!u1~y8!u~y82y!

1u2~y8!u1~y!u~y2y8!#. ~3.19!

Then using this Green’s function, Eq.~2.41! with D50 is
solved as

Y(J)~r ,y!52N (
s56

sus~y!

3FKs
(J)1e (J)E

ys

y 3u2sSY

kḟ0
2

dy8G . ~3.20!

We assign the label 0 because this term gives a contribu
to the metric perturbation at the same order as the zero m
in the TT part of the perturbation, although it is related
massive scalar-type modes.

Using Eqs.~B5! and ~B17!, it becomes

DY0
(J)~r ,y!52

kN

3 (
s56

as
4Ts

(J)us~y!2e (J)Sc

22N(
s

s
us~y!

H~ys!
DLs

(J)22Ne (J)(
s

sus~y!

3Fas
4Sj

s1E
ys

y

dy

3S a2v2sDSw1
3u2s

2kḟ0
2
DSY2a2ScD G , ~3.21!

where

Ls
(J)~r !ªH~ys!F2s

3ls

2kḟ0
2
DY(J)

1e (J)as
2S ls

2ḟ0

Sjun
s 2

f̈0w2

2ḟ0
3

1
3wDY

2ka2ḟ0
3D G

y5ys

.

~3.22!

As we can see from the first term of Eq.~3.21!, this mode of
the scalar-type perturbation partly gives long-ranged con
butions, as we anticipated. We refer to this part of the sca
type perturbation as the pseudo-long-ranged part to dis
guish the remaining short-ranged correction. We use
subscriptS to represent the short-ranged part, although i
also used for the KK mode.
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The source term for the next order correctionYS is given
by DY0, which we neglected in the calculation of th
pseudo-long-ranged part. Since the Green’s functionGY is
already known, we easily obtain

YS
(J)~r ,y!5

3N

k (
s56

sus~y!E
ys

y u2sDY0
(J)

ḟ0
2

dy8.

~3.23!

Settingy5y6 and using Eqs.~B3! and~B6!, the expressions
for Y0 andYS are summarized as

DY0
(J)~r ,y6!52

kN

3 (
s56

as
4Ts

(J)7
kH

3
a6

2 T6
(J)

2e (J)@Sc12Ha6
2 Sj

6#22Ne (J)F (
s56

sas
4Sj

s

1E
y1

y2

dyS a2v6DSw1
3u6

2kḟ0
2
DSY2a2ScD G

22N(
s

s
us~y6!

H~ys!
DLs

(J) , ~3.24!

YS
(J)~r ,y6!5

3N

k E
y1

y2u6DY0
(J)

ḟ0
2

dy8. ~3.25!

D. Large coupling limit

In the preceding sections, we derived the formal solutio
to evaluate the second order perturbations. However, the
sult is very complicated. To simplify the analysis, we assu
uV(6)9 u@uf̈0 /ḟ0u, and take the limit

l6→0. ~3.26!

In the case of the Goldberger-Wise stabilization model@13#,
this limit corresponds to their large coupling constant.

In this limit, the junction condition~2.37! for J51 be-
comes

w (1)~r ,y6!'ḟ0 ĵ

~1!

6
y . ~3.27!

Here we mention that the source termSjun
6 which is given by

Eq. ~2.37! containsV(6)9 andV(6)- . Hencel6Sjun
6 does not

vanish even in this limit, and it is reduced to

l6

2
Sjun

6 '~dw (2)2ḟ0 j
~2!

y!, ~3.28!

where we used Eq.~3.27!. Therefore the junction condition
for the scalar field in this limit is summarized as

w (J)2dw (J)'0 ~y5y6!. ~3.29!

Under this condition, the last terms in Eqs.~2.33! and~2.35!
vanish. In particular, Eq.~3.28! gives
4-8
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l6

2ḟ0

Sjun
6 5S f̈0w2

2ḟ0
3

2
3wDY

2ka2ḟ0
3D

y5y6

,

and then we obtain the approximation for~3.22!

L6
(J)'0. ~3.30!

IV. RECOVERY OF THE 4D EINSTEIN GRAVITY: FIRST
ORDER

A. Linear perturbation

We review the results for linear perturbations in terms
the notation of the present paper. From Eq.~3.5!, the zero
mode truncation of the TT part is given by

A0
(1)5

8

3 (
s56

Fs , B0
(1)52

8

3r
] rD

21 (
s56

Fs ,

~4.1!

where we have introduced the Newton potential by

DF6~r !ª4pGr6
(1)~r !, ~4.2!

and G is the induced four-dimensional Newton’s consta
defined by

8pGªkN. ~4.3!

From Eq. ~3.21!, the pseudo-long-ranged part in th
scalar-type perturbation is obtained as

Y0
(1)5

2

3 (
s56

us~y!Fs~r !,

~4.4!

w0
(1)5

2

3
ḟ0 (

s56
vs~y!Fs~r !,

and the gauge transformation is

ĵ6
y 57

F6

3Na6
2

. ~4.5!

In this paper we concentrate on the gravity on one of
Z2 symmetric branes that carries matter fields on it a
source of gravitational field. We assume that the ener
momentum tensor of the matter fields on the other br
vanishes. By this simplification, the sum ofF1 and F2 is
replaced by

(
s

Fs→F6 , ~4.6!

in each case. Here we note that, to avoid confusion in sh
ing the formulas for two different situations simultaneous
we are using a different convention for the physical len
scale from that used in Ref.@7#.

Substituting the above formulas into Eq.~2.25!, we obtain
10403
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Ā06
(1)~r ,y6!52F6 , ~4.7!

where we attached a subscript6 on the perturbation quanti
ties to specify in which case we are working. For instan
Ā1 represents the value ofĀ when only the matter fields on
the positive tension brane are taken into account. The
maining metric functions turn out to be

B̄06
(1)5C̄06

(1)522F6 ~4.8!

in the isotropic gauge~3.16!. These results coincide with th
results for four-dimensional Einstein gravity.

B. Correction to the leading term

To obtain an approximate estimate for the corrections
to the KK mode or the short-ranged part of the scalar-ty
perturbations, it is useful to consider cases in which the b
reaction of the bulk scalar field on the background geome
is weak; namely,

uḢu

H2
5

kḟ0
2

3H2
,

is not as large as unity. In a weak back reaction, the metri
approximately given by the pure anti–de Sitter form

a~y!'e2y/ l , ~4.9!

and we set

y150, y25d. ~4.10!

Here l is the curvature radius of AdS5.
If we substitute this warp factor, Eqs.~3.10! and~3.17! are

approximated as

u6~y!'
a7

2

a2
, v6~y!'

l

2 S a7
2

a2
21D . ~4.11!

Here one remark is in order. The above expression foru1 is
not a good approximation near the positive tension br
becauseu1(y1) depends on the difference betweenN de-
fined in Eq. ~3.4! and H at y5y1 . The value ofN in the
weak back reaction limit isH(a1

2 2a2
2 )21, and the differ-

ence betweenH and N is hierarchically suppressed. How
ever, unless we consider an extreme case, the deviatio
the value ofN from this limiting value is not hierarchically
small. As a result, we have

u1~y1!5O~1!, ~4.12!

instead ofO(a2
2 ). This also means that they dependences o

Y01
(1) andY02

(1) are different. If the single mode with the low
est mass eigenvalue dominates the scalar-type perturba
they dependence must be the same for both cases. There
we find that the modes with higher mass eigenvalues a
contribute to the behavior ofY01

(1) near the positive tension
brane.
4-9



e

de
th

on
s

th
s
r

e
e
e

t
he
ve
l,

bu
.
yp

rtur-
d

.
ss
ode
the

lar

pa-

n
te
e

ct,
q.

.

old-

of
ason
and
ur-
nd
tors

rge
st
o-

rive
d by
r

HIDEAKI KUDOH AND TAKAHIRO TANAKA PHYSICAL REVIEW D 65 104034
Let us consider the KK mode contribution~3.9! in the
linear perturbation. A straightforward calculation shows@7#

AS6
(1)~r ,y!'2

l 2DF6

3 Fa7
2

a4
2

2

a2
1S 4d

l
2

1

a6
D G ,

~4.13!

where we have assumedd/ l @1. Hence, on the brane wher
the matter fields reside, it becomes

AS1
(1)~r ,y1!'

l 2~324d/ l !

3a1
4 DF1 ,

AS2
(1)~r ,y2!'2

l 2

3a2
4

DF2 . ~4.14!

To compare the KK mode contribution with the zero mo
one, we evaluate the ratio between them. Then we find
the KK mode contribution is suppressed by the factor

b6ª
l 2

a6
4 r !

2

55
l 2

r !
2 ~y5y1!,

S 0.1 mm

r !
D 2S 10216

a2
D 4S l

l Pl
D 2

~y5y2!,

~4.15!

where we introduced a typical length scaler !, and performed
a replacement likeD'r !

22.
On the positive tension brane the KK mode contributi

is suppressed atr !@ l at linear order. Note that, if one take
the limit d/ l→`, the KK mode~4.14! seems to diverge. In
this limit the lowest KK mode mass goes to zero, and
mass spectrum becomes continuous. Then, our expan
scheme which we call a gradient expansion, is no longe
good approximation. Hence, this divergence in the largd
limit is just due to the breakdown of our expansion schem

On the negative tension brane the KK mode becom
dominant only at the length scale&0.1 mm when the AdS
curvature lengthl and the hierarchya1 /a2 are set to the
Planck lengthl Pl and 1016, respectively. One may think tha
the deviation from four-dimensional Einstein gravity at t
submillimeter scale provides an observable effect. Howe
in the KK mode contribution to the gravitational potentia
F6 appears only in the form of (4pG)21DF6 , which is
equal to the matter energy densityr6 . Hence, the KK mode
does not contribute to the force outside the matter distri
tion. Therefore, this effect appears to be hard to observe

Next, we consider the short-ranged part of the scalar-t
perturbation. The short-ranged part~3.23! in the weak back
reaction limit is evaluated as
10403
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YS
(1)~r ,y!'3Na2

2 a1
2 DY0

(1)E
y1

y2 dy

a4kḟ0
2

'
1

a2
2 m̃S

2
DY0~r ,y!, ~4.16!

wherea2Y0
(1)'const is used~Appendix B 3!. Here we intro-

duced the lowest mass eigenvalue in the scalar-type pe
bationmSªa2m̃S , whose order of magnitude is determine
by the last equality@7#. We refer tomS as the radion mass
The reason whymS defined above gives the lowest ma
eigenvalue can be understood as follows. Suppose the m
with the lowest mass squared dominates perturbations in
long-wavelength limit. Then the propagator for the sca
perturbation should be proportional to 1/(D2mS

2). In our
approximation of a gradient expansion, this massive pro
gator is expanded as (1/mS

2)1(D/mS
4)1•••. The first term

gives Y0
(1) and the secondYS

(1) . Hence, the ratio betwee
them isD/mS

2 . However, again this simple-minded estima
is not correct forYS1

(1) near the positive tension brane for th
same reason that the approximate expression foru1 @Eq.
~4.11!# is not valid near the positive tension brane. In fa
the value ofYS1

(1) on the brane can be evaluated by using E
~3.25!. Substituting the estimate given in Eqs.~B24!, we ob-
tain YS1

(1)(r ,y1)'DY01
(1)/m̃S

2 . Taking this into account, we
guess that the formula~4.16! should be modified as

YS6
(1)~r ,y!'

1

m̃S
2a6

2 a2
DF6~r !. ~4.17!

We give a justification of this formula in Appendix B 3
Then, the ratioYS6

(1)(r ,y6)/A06
(1)(r ,y6), where we compare

the short-ranged part to the Newtonian potential, is

g6ª
1

a6
4 m̃S

2r !
2

5b6S 1

m̃Sl
D 2

. ~4.18!

When the radius stabilization mechanism proposed by G
berger and Wise works most efficiently, the massm̃S be-
comesO( l 21) @7,13#. In this case the short-ranged part
the scalar-type perturbation is suppressed for the same re
as the KK mode. We have shown than the zero mode
pseudo-long-ranged part reproduce the correct fo
dimensional Einstein gravity. The remaining KK mode a
the short-ranged part accompany extra suppression fac
b6 andg6 , respectively.

V. RECOVERY OF THE 4D EINSTEIN GRAVITY:
SECOND ORDER

We discuss the second order perturbations in the la
coupling limit discussed in Sec. III D. As in the case of fir
order perturbation, we iteratively solve the equations of m
tion by using gradient expansion. In the equations we de
below, we neglect the terms that are relatively suppresse
the factor of 1/r !

4 compared to the leading contribution. Fo
4-10
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convenience, we quote the contribution from the zero-ty
coupling, which is obtained by substituting Eqs.~2.12!,
~2.23!, ~2.34!, ~3.5!, and~3.24! into Eq. ~2.25!:

DĀ06
(2)~r ,y6!58pG~r6

(2)13P6
(2)!2D@ĵ6

y Ā6,y1 ĵ6
r Ā6,r

1Ḣ~ ĵ6
y !2#62Na6

4 ~Sj
62SS

6!

12NE
y1

y2

dyH a2~SA62Sc6!1a2v6DSw6

1
3u6

2kḟ0
2
DSY6J . ~5.1!

Here we have used the fact thatSj and SS on the brane
without matter distribution vanish, which is easily verifie

just by noticing that ĵ

(1)

7
y 50 andĀ6,y

(1) (y7)50. The contri-
bution fromS-type coupling is

DĀS6
(2)~r ,y6!5D@AS6

(2)~r ,y6!2YS6
(2)~r ,y6!#, ~5.2!

with AS
(2)(r ,y6) given by Eq.~3.12!, andYS

(2)(r ,y6) by Eq.

~3.25!. Once we knowĀ(2) andYS
(2) , the spatial componen

of the metric perturbationsB̄(2) is obtained from Eqs.~3.15!,
~3.24!, and~3.25! as

DB̄6
(2)~r ,y6!52

1

2
DĀ6

(2)14pG6a6
2 T6

(2)2DSB613N

F6a6
4 Sj

61E
y1

y2

dyS a2v6DSw6

1
3u6

2kḟ0
2
DSY62a2Sc6D G2

3

2
DYS6

(2) .

~5.3!

To identify the order of magnitude of various terms in t
second order perturbations, we have to keep track of
powers of bothr ! and a2 . Terms with additional inverse
powers ofr ! are basically suppressed for long-waveleng
perturbations. However, as we have seen for the KK m
and the short-ranged part in the analysis of the linear per
bations, a complication arises due to the existence of a l
nondimensional hierarchy factor 1/a2 . Here we continue to
use the conventiona151. The dependences of the perturb
tion variables on the warp factor and onr ! are summarized
as

A06
(1);a0, Y06

(1) , w06
(1);

a7
2

a2
11, ĵ6

y ;
1

a6
2

, ~5.4!

and
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AS1
(1);

1

a2r !
2

, AS2
(1);

1

a4r !
2

, YS6
(1) , wS6

(1);
1

a6
2 a2r !

2
.

~5.5!

In the following subsection, we first evaluate the term
from the zero-type coupling, classifying them into thr
parts: the part to recover the four-dimensional Einstein gr
ity, the manifestly suppressed corrections, and the uns
pressed corrections. The unsuppressed correction is
shown to be canceled by the contribution from the terms
S-type. We stress that a weak back reaction is assumed
when we roughly estimate the dependence onr ! anda2 .

A. Ā0

Let us considerĀ0 given in Eq.~5.1!. From Eqs.~2.33!
and ~2.35! with the large coupling limit~3.29!, (Sj

62SS
6)

becomes

a6
4 ~Sj

62SS
6!5a6

2 S 3a6
2 E drB,yY,r23E dr ĵ ,r

y DY

1a6
2 A,y~Y24H ĵy!1 ĵyDY22H~ ĵ ,r

y !2D
1a6

2 @~2ĵ ,r
y ] r2Dĵy!~Y12H ĵy!1BDĵy

2 ĵyDA1 ĵ ,r
y ~B2A! ,r1 ĵ r~a6

2 A,y1Dĵy! ,r #

2a6
4 E S 2B,yA,r1

r

4
B,ry~B13A! ,r Ddr.

~5.6!

As for Sw , the last two terms in Eq.~2.18! are rewritten as

~a2v6!S HY22
k

3
]y@w2# D5]yFa2

2

w

ḟ0

Y2
ka2

3
w2v6G

1
3YDY

4kḟ0
2

2
1

2
a2u6Y2. ~5.7!

The expression~5.1! starts with terms ofO(1/r !
2); hence

we start our discussion with these leading order terms. H
to understand the absence of terms ofO(r !

0), we need to
notice that]yA

(1) and]yB
(1) do not have contributions from

the zero mode, and hence they areO(1/r !
2). Let us identify

the dependence on the hierarchya2 of each term, concen
trating on the case that the matter fields are on the nega
tension brane. For this purpose, we can use Eq.~5.4!. As for
]yA

(1) and]yB
(1), we use Eq.~5.5! instead because the zer

mode contribution exactly vanishes. The terms in the sec
line of Eq. ~5.1! possess ay integration. This integration is
basically dominated by the contribution from the neighb
hood of the negative tension brane. One exception is the
in which the integrand has the quadratic form of the ze
mode contribution of the TT variables (A0 andB0 multiplied
by a2 as a2A03A0). This integration does not have an
4-11
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inverse powers ofa2 . The other exception is the case
which the integrand contains the factor ofu2 /kḟ0

2. The for-
mulas for this case are summarized in Eqs.~B24! and we
find that only the terms with the integrand proportional
u2

3 /kḟ0
2 give a correction that behaves as 1/a2

6 . The other
terms are at mostO(1/a2

4 ). Hence, we can pick up the term
with a large power of 1/a2 just by looking at the behavior o
the integrand near the negative tension brane. Then, we
that, among the terms ofO(1/r !

2), the terms associated wit
a single underline or with double underlines behave as 1a2

4

or 1/a2
2 . Since the usual post-Newtonian correction in fo

dimensional Einstein gravity is ofO(a2
0 /r !

2), we expect that
the terms with underlines cancel each other, and we s
that, in fact, this is the case. The terms with a single und
line completely cancel each other. For example, the te
a2ḢY2 in SY is canceled with the last term of Eq.~5.7!. Here,
it is worth mentioning that the cancellation occurs separa
within the terms of different types: the terms quadratic in
TT variables, those bilinear in the TT variables and t
scalar-type variables (Y, w, andjy), and those quadratic in
the scalar-type variables. The terms with double underli
do not vanish completely, but they are, in total, combined
terms of O(a2

0 /r !
2) with the aid of Eqs.~B12! and ~B13!

when we consider the long-ranged part. The contributi
from the short-ranged part cannot be combined to reduce
power of the warp factor, but they are at mostO( l 2/a2

4 r !
4).

After a straightforward calculation, the remaining terms g
the usual post-Newtonian term in four-dimensional Einst
gravity ~Appendix C!. This result also applies for the cas
that the matter field is on the positive tension brane beca
any term ofO(1/r !

2) irrespective of the power ofa2 was not
discarded in the above computation; namely, we obtain in
isotropic gauge~3.16!

DĀ06
(2)~r ,y6!58pG~r6

(2)13P6
(2)!24F6DF61OS l 2

r !
4D .

~5.8!

Next, we consider the terms ofO(1/r !
4). Again, we begin

by considering the case that the matter fields are on the n
tive tension brane. As we did for the terms ofO(1/r !

2), we
can identify the dependence on hierarchya2 of these terms
using the estimates~5.4!, ~5.5!, and ~B24!. Then, the terms
with the highest inverse power ofa2 start with 1/a2

6 , which
we refer to asF terms. They are given by

F6ª2D~ĵ6
y Ā,y!1FSw ,SY6 , ~5.9!

FSw ,SY652NDE dydrH 3u6

2kḟ0
2 F S 2k

3
w] rDw23Y,rDYD

1Y~DY! ,r12a4BS,yS Y,r

a2 D
,y
G

2a2v6BS,yY,rJ ,
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where we have taken into account Eqs.~B12! and~B13!. The
first term in the curly brackets inFSw ,SY6 comes fromSY and

the second term fromSw . The remaining terms are at mo
O( l 2/a2

4 r !
4). The relative amplitude of these remaining term

compared to the ordinary post-Newtonian corrections
O(b2) or O(g2). Therefore, only theF terms have the pos
sibility of introducing a non-negligible correction. Howeve
we will show in the succeeding subsection that the contri
tion from the F terms is also completely canceled by th
from couplings of theS-type.

Now we consider the case that the matter fields are on
positive tension brane. In counting the order of each te
with respect toa2 , we will notice that the inverse power o
a2 can appear only from a contribution near the negat
tension brane. Furthermore, from the estimates~5.4! and
~5.5!, we find that the variables in the first order perturbati
are at most ofO(1/a2

2 ), and such enhanced variables a
associated with the factor 1/r !

2. With this notion and the es
timate~B24!, it will be easy to verify that all the terms qua
tic in 1/r ! in DĀ01

(2) are, at most,O( l 2/a2
2 r !

4); namely, they
are suppressed compared to the ordinary post-Newto
corrections by the factor ofO(b1 /a2

2 ) or O(g1 /a2
2 ).

The suppression factors that we encounter at the sec
order are not as small as those in the linear perturbation,b1

andg1 . This is a natural consequence of our approximat
of gradient expansion. Near the negative tension brane,
conditions that the scale of the spatial gradient is larger t
the typical length scalesl and mS

21 , respectively, become

(b1 /a2
2 )5( l 2/a2

2 r !
2)!1 and (g1 /a2

2 )5(1/m̃S
2a2

2 r !
2)!1.

Although the correction seems to become large when
consider the case with large 1/a2 , we think that this is an
artifact due to the limitation of the present approximatio
When we do not have a bulk scalar field, has been pro
that the correction to the four-dimensional Einstein gravity
the (1/a2)→` limit stays small@6#.

B. AS and YS

In this subsection, we discuss the termsAS
(2) and YS

(2) .
The contribution of these terms completely cancels the c
rection due to theF terms.

From Eq.~3.9!, we obtain

AS6
(2)~r ,y6!54N2a6

4 FkS P6
(2)1

2

3
r6

(2)D6SS
6)G E

y1

y2

v6
2 dy8

12NE
y1

y2

dy8
v6

a2 Ey7

y8
dy9a2SA6

2~2N!2S E
y1

y2

v6
2 dyD E

y1

y2

a2SA6dy, ~5.10!

where we have performed an integration by parts by us
Eqs. ~B1!, and also we have used again the fact thatSS on
the vacant brane is zero, as well as Eqs.~B2! and ~B3!.

First, we concentrate on the case with the matter fields
the negative tension brane. The first term in the square br
ets in Eq.~5.10! is suppressed by a factor ofl 2/r !

2 compared
4-12
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with the first term on the right hand side in Eq.~5.8!, and
hence can be neglected. The other terms inDAS2

(2) are quartic
in 1/r ! or smaller. Hence, we have only to study the ter
that give a correction ofO( l 2/a2

6 r !
4). Neglecting the terms

higher order in 1/r !, the contribution fromSS
2 becomes

24N2a2
2 S E v2

2 dyD S 2E B2,yY2,rdr23Y2A2,y

1
2

a2
4 E 1

r
Y2,r ĵ2,r

y dr D 1OS l 2

a2
4 r !

2D , ~5.11!

where we dropped the terms proportional toY12H ĵy be-
cause Eq.~B13! shows that this combination becomes high
order in 1/a2 . As for the terms containingSA in Eq. ~5.10!,
the contribution ofO„l 2/(a2

6 r !
4)… comes from the terms with

underlines in Eq.~2.19!. For these terms, the integral o
a2SA2 can be performed explicitly as

E
y1

y

a2SA2dy5a2S 3a2Y2A2,y1E dra2B2,yY2,r

22E dr

r
Y2,r

w2,r

ḟ0
D . ~5.12!

Here, note that the contribution from the boundary aty
5y1 vanishes. Using Eq.~5.12!, we find that the last term in
Eq. ~5.10! cancels the leading order contribution fromSS

2 of
Eq. ~5.11!. Then, the remaining parts in Eq.~5.10! give

DAS2
(2)~r ,y2!52NDE

y1

y2

dyv2S 3a2Y2A2,y

1E dra2B2,yY2,r22E dr

r
Y2,r

w2,r

ḟ0
D

1OS l 2

a2
4 r !

4D . ~5.13!

The other correction that we have not considered
comes fromYS2

(2) . To evaluate the expression presented
Eq. ~3.25!, first we need to evaluateDY0 given in Eq.~3.21!.
Only the leading terms ofO(1/a2

4 r !
2) in DY0 are relevant,

and they are evaluated as

2DY02
(2)~r ,y!'E drF 3

2r 8/3
] r H r 8/3S ~Y2,r !

21
2k

3
~w2,r !

2D J
22a2B2,yY2,yrG12Na2(

s
sus~y!

3FDS Y2w2

2ḟ0
2

2
kw2

2

3
v2s~y!D
10403
s

r

t
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1E drS 2a2Y2,rB2,y

2
3

2r 8/3
] rH r 8/3Y2,r

w2,r

ḟ0
2 J D G . ~5.14!

Note that the terms fromSj
s in Eq. ~3.21! cancel the terms

obtained by settingy5ys after the y integration in Eq.
~3.21!. Substituting Eq.~5.14! into Eq. ~3.25!, we obtain

2DYS2
(2)~r ,y2!53NDH Ey1

y2

dydr
u2

kḟ0
2 F S 3Y2,rDY2

2
2k

3
w2] rDw2D1

4k

3r
~w2,r !

2

22a4B2,yS Y2,r

a2 D
,y

2Y2] rDY2G
1E

y1

y2

dydr
u2

kḟ0
2 FY2] rDY21

H

ḟ0

Ã„w2~DY2! ,r1Y2~Dw2! ,r…

2
2

r
Y2,rS Y2,r1

2Hw2,r

ḟ0
D G J

1OS l 2

a2
4 r !

4D . ~5.15!

From Eq.~B12! the terms inside the second integral turn o
to beO( l 2/a2

4 r !
4).

Combining Eqs.~5.9!, ~5.13!, and~5.15!, we obtain

F21D~AS2
(2)2YS2

(2) !

5DH 2 ĵ2
y Ā2,y14NE dyFu2E dr

r

~w2,r !
2

ḟ0
2

1v2S 3

2
a2Y2A2,y2E dr

r
Y2,r

w2,r

ḟ0
D G J

1OS l 2

a2
4 r !

4D . ~5.16!

After writing the above expression in terms ofu2 andv2 ,
we can perform the integration with respect toy by using Eq.
~B1!. Then, with the aid of Eq.~B3!, we find that Eq.~5.16!
reduces to terms higher order in 1/r !

2 or those ofO( l 2/a2
4 r !

4).
Hence, our conclusion is

F21D~AS2
(2)2YS2

(2) !5OS l 2

a2
4 r !

4D . ~5.17!

The weak back reaction was assumed only for evaluating
order of the residual terms.
4-13
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In the case with the matter fields on the positive tens
brane, the corrections both fromAS1

(2) and fromYS1
(2) are sup-

pressed by either (b1 /a2
2 ) or (g1 /a2

2 ) for the same reason
as before.

C. Spatial components of TT part

Now the evaluation ofB̄(2) in the isotropic gauge is
straightforward. Substituting the first order quantities and
result of Ā(2) into Eq. ~5.3!, we basically obtain

DB̄(2)~r ,y6!528pGr6
(2)14F6DF62~F6,r !

21•••,
~5.18!

which is identical to the result for the four-dimensional Ei
stein gravity in isotropic coordinates except for the resid
denoted by (•••) @38#.

In the case with the matter field on the negative tens
brane, these residual terms are

FSB21
3

2
~FSw ,SY22DYS2

(2) !1OS l 2

a2
4 r !

4D , ~5.19!

where we introduced

FSB65
1

9N2a6
6

DF E dr

r
~F6,r !

2G . ~5.20!

In the same way as forĀ(2), cancellation occurs for the lead
ing order in 1/a2 as

Eq. ~5.19!5DH FSB213NE
y1

y2

dydrF2u2

ḟ0
2

~w2,r !
2

r

2a2v2B2,yY2,r G J 1OS l 2

a2
4 r !

4D 5OS l 2

a2
4 r !

4D .

~5.21!

In the case with the matter fields on the positive tens
brane, the residual terms represented by (•••) in Eq. ~5.18!
are, at most,O( l 2/a2

2 r !
4) as before. To conclude, the fou

dimensional Einstein gravity is approximately recovered
der the assumption of the large coupling limit. The corre
tions to four-dimensional Einstein gravity are suppressed
the factor ofO(b6 /a7

2 ) or O(g6 /a7
2 ).

VI. SUMMARY

In this paper, we have considered the second order gr
tational perturbations in the RS two branes model with
radius stabilization mechanism. As a model for the rad
stabilization, we have assumed a scalar field that has a
tential in the bulk and a potential on the brane. From
five-dimensional Einstein equations, the master equations
the TT part of the metric perturbations and for the scalar-t
perturbation are derived assuming static axisymmetric c
figurations. We have presented formal solutions of th
equations by means of the Green’s function. We have sh
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an iterative scheme to obtain approximate solutions by
plying the derivative expansion method for the mass
modes. For the validity of the derivative expansion, t
physical mass of the massive modes must be sufficie
large on the respective branes. This sets a limitation on
scheme. Taking infinite separation distance between
branes is beyond the framework of the present analysis
cause the mass of the lowest KK mode becomes zero.

We have shown the recovery of four-dimensional Einst
gravity in the second order perturbations in the followi
limit: ~1! The coupling between the scalar field and t
branes is infinitely large@see Eq.~3.26!#. ~2! We consider the
perturbations induced by the matter fields on one br
where we reside, and neglect the effects caused by the m
fields on the other brane@see Eq.~4.6!#.

When we consider the case in which the matter fields
on the negative tension brane, the correction to the fo
dimensional Einstein gravity appears at the relative orde
O„(a1 /a2)4( l /r !)2

…, wherel is the AdS curvature scale,r !

is the typical length scale of the perturbation, and (a1 /a2)
is the ratio between the warp factors on the positive and
negative tension branes. When this ratio (a1 /a2) is
O(1016), the hierarchy between Planck and electrowe
scales can be explained. With this choice of the hierarchy,
correction to the metric in the linear perturbation becom
comparable to the usual Newtonian potential whenr !

&0.1 mm. However, this correction does not give a con
bution to the force outside the matter distribution. Hence
seems to be harmless in reproducing the predictions of fo
dimensional Einstein gravity. We have not confirmed if th
feature remains in the second order perturbation, but the
rection is suppressed by the above factor compared to
usual post-Newtonian correction. Hence, the effect due
this correction is almost impossible to detect.

When we consider the case in which the matter fields
on the positive tension brane, the correction to the fo
dimensional Einstein gravity in the linear perturbation a
pears at the relative order ofO„( l /r !)2

…, while the correction
in the second order perturbation isO„(a1 /a2)2( l /r !)2

…

compared to the usual post-Newtonian terms. Hence
seems that the deviation from four-dimensional Einst
gravity appears at a larger scale in the second order pe
bation. However, this is very likely to be an artifact due
the limitation of our approximation scheme.

To give a complete proof of the recovery of the fou
dimensional Einstein gravity, further extension of the pres
analysis will be necessary. Here we considered the large
pling limit. It will be interesting to evaluate the dependen
of the correction on the coupling strength. Furthermore,
take into account the contributions from the matter fields
the other brane will be interesting. To investigate these
sues, a formulation along the line of this paper will be pro
ising. Through this second order calculation, we have
countered many miraculous cancellations. This might be
to our possibly bad choice of gauge. We would like to de
pursuing a more simplified derivation to a future publicatio
in which we will discuss the unsolved issues mention
above.
4-14
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APPENDIX A: 4D EINSTEIN GRAVITY

We have used the isotropic gauge~3.16! to fix the radial
gauge coordinates because it is easy to compare with
four-dimensional Einstein gravity. However the calculati
of the second order perturbation becomes slightly easie
taking j r50, although we do not previously know the co
responding four-dimensional Einstein gravity. In this appe
dix we derive the expression for the result of the met
perturbations in four-dimensional Einstein gravity in an ar
trary choice of the radial gauge, which corresponds to
various choice ofĵ r in Eq. ~2.25!.

In general, the radial gauge transformation from the i
tropic gaugeĀIS to an arbitrary gaugeĀjr is given by

Ājr
(2)

5ĀIS
(2)2z r ĀIS,r

(1) , ~A1!

where the generatorz r is related to the quantities at the fir
order perturbation by the gauge transformation law,

Ājr
(1)

2B̄jr
(1)

5ĀIS
(1)2B̄IS

(1)12z ,r
r . ~A2!

On the other hand, these bared quantities are also relate
the quantities in the Newton gauge as

Ājr
(1)

2B̄jr
(1)

22j ,r
r 5A(1)2B(1)5ĀIS

(1)2B̄IS
(1)22j IS,r

r ,
~A3!

wherej IS
r is defined by Eq.~3.16!. Therefore, we find thatz r

is simply given byz r5j r2j IS
r . Substituting this relation

into Eq. ~A1!, we obtain

Āj
(2)5ĀIS

(2)1ĀIS,r
(1) ~j IS

r 2j r !. ~A4!

By this equation, the metric perturbation of the fou
dimensional Einstein gravity in an arbitrary gaugej r is de-
termined.

APPENDIX B: USEFUL FORMULAS

In the calculation of the second order perturbations,
often use some relations and results that are easily der
from the original definitions and equations, but we have
derived them explicitly. It is convenient to summarize su
results, and so we devote this appendix to giving the us
relations and formulas.

1. uÁ and vÁ

We give some properties of the functionsu6 and v6

which are defined by Eqs.~3.10! and~3.17!. The differentia-
tion of these functions with respect toy are
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]y~a2u6!522a2Ḣv6 , ]y~a2v6!5a2, ]yv65u6 .

~B1!

The last equation is particularly useful to integrateSw andSY
with respect toy. From the definition,v1 andv2 are related
as

v22v15
1

2Na2
. ~B2!

On the branesu6 andv6 become

u6~y6!516
H~y6!

a6
2 N

, u6~y7!51,

v6~y6!57
1

2a6
2 N

, v6~y7!50. ~B3!

From Eqs.~B1! and ~B3!, we obtain

E
y1

y2

dyu6v6
2 5

1

24N3a6
6

. ~B4!

The sums of1 and2 modes are

(
s

sus~y!5
H

Na2
, (

s
svs~y!52

1

2Na2
,

(
s

sus~y!u2s~y!50, (
s

sus~y!v2s~y!5
1

2Na2
,

~B5!

and also

(
s56

us~y6! f ~ys!56
H

a6
2 N

f ~y6!1 (
s56

f ~ys!,

N (
s56

sas
2us~y6! f ~ys!

5H~y6! f ~y6!1N (
s56

sas
2 f ~ys!,

(
s

sv6~ys! f ~ys!52
f ~y6!

2Na6
2

,

u6~ys!5us~y6!. ~B6!

2. Equations

From Eqs.~2.14! and ~2.25! the derivatives ofĀ(1) with
respect toy are

Ā,y
(1)~r ,y!5A,y2

2k

3
ḟ0~w2ḟ0jy!, ~B7!
4-15
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Ā,yy
(1)~r ,y!5

D

a2
~Y2A!24HA,y2

4k

3
f̈0~w2ḟ0jy!,

~B8!

and using this result we obtain

]y@jyĀ,y1j r Ā,r #5A,y~Y24Hjy!1jy
D

a2
~Y2A!

2
1

a2
j ,r

y Ā,r1j r Ā,ry

2
2k

3
~ḟ0Y12f̈0jy!~w2ḟ0jy!.

~B9!

We have often evaluatedA,y andB,y on the brane, which are
determined by the junction condition~2.32!. These quantities
are purely KK mode contributions. Equation~3.9! gives

AS,y
(1)~r ,y!52

8

3a2 (
s

vsDFs ,

BS,y
(1)~r ,y!5

8

3ra2 (
s

vs] rFs , ~B10!

and, takingy5y6 ,

AS,y
(1)~r ,y6!56

4

3Na6
4

DF6 ,

BS,y
(1)~r ,y6!57

4

3Na6
4

1

r
] rF6 , ~B11!

which are the same as Eq.~2.32!.
As for the scalar mode, we obtain from Eqs.~4.4! and

~4.5!

Y0
(1)~r ,y!1

2H

ḟ0

w0
(1)~r ,y!5

2

3 (
s

Fs , ~B12!

~Y0
(1)12H ĵ6

y !y5y6
5

2

3 (
s

Fs . ~B13!

From Eqs.~2.13! and ~2.15!,

~Y,r
(1)!21

2k

3
~w ,r

(1)!25
1

a2
]yS a2Y,r

w ,r

ḟ0
D 1

3Y,r~DY! ,r

2ka2ḟ0
2

,

~B14!
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w ,y
(1)52

3DY

2ka2ḟ0

1ḟ0Y1
f̈0w

ḟ0

, ~B15!

w ,yy
(1)52

Dw

a2
1

6HDY

ka2ḟ0

12~f̈02Hḟ0!Y

1S 2k

3
ḟ0

21
f0
^

ḟ0
D w. ~B16!

Integrating by parts, we derive

E
ys

y

dy]y~a2u2s!S 3

2kḟ0
2
]yScD

5a2v2s~y!Sc2E
ys

y

dya2Sc . ~B17!

For reference, we give the explicit form of Eq.~2.39! for
Sjun

6 as

l6

2ḟ0

Sjun
6 2

f̈0w2

2ḟ0
3

1
3wDY

2ka2ḟ0
3

5
j r

ḟ0

] r~w2ḟ0jy!6
l6

ḟ0
H ḟ0

2a2
~j6,r

y !21
3j6

r ~DY! ,r

2ka2ḟ0

1
3~SY1a2ḢY2!

2ka2ḟ0

1
9~DY!2

4k2a2ḟ0
3

1F 3f̈0DY

2ka2ḟ0
3

1
6HDY

ka2ḟ0
2

2
Dw

a2ḟ0

1
~w2ḟ0jy!

2ḟ0

3]yS f̈0

ḟ0
D 1

j6,r
y

a2
] rG ~w2ḟ0jy!J

1~w2ḟ0jy!H 3DY

2ka2ḟ0
3

2~w2ḟ0jy!

3S l6

4ḟ0

V(6)- 1
f̈0

2ḟ0
3D J . ~B18!

3. Goldberger-Wise mechanism

In the text, we assumed that they integration containing
the factor 1/ḟ0

2 is dominated by the contribution near th
negative tension brane. To justify this assumption, we d
cuss the behavior of the bulk scalar fieldf0. For definite-
ness, we adopt the model proposed by Goldberger and W
@13#, in which the scalar field potentials are
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VB~ w̃ !5
M2w̃2

2
, V(s)~ w̃ !5gs@w̃22hs

2 #2, ~B19!

wherehs'w̃(ys). M and g are the mass and the couplin
constant, respectively. The scalar field is solved in the w
back reaction approximation as

f0~y!5B1en1y1B2en2y, ~B20!

where n152l 211A4l 221M2, n252l 212A4l 221M2,
and

B1'e2n1d@f0~y2!2en2df0~y1!#,

B2'f0~y1!2e2n1df0~y2!. ~B21!

According to Ref.@7#, the mass squared corresponding
the lowest eigenmode in scalar-type perturbation,mS

2 , is es-
timated by

NE
0

d

dy
1

ka4ḟ0
2
'

1

3a2
2 mS

2
. ~B22!

Sincekḟ0
2& l 22 for the assumption of the weak back rea

tion to be consistent,mS
2 is at mostO( l 22a2

2 ). The dominant
contribution to this integral comes from the minimum
(a4ḟ0

2) at y5yc5$ l log@n2B2 /(n1B1)#%/4A11(M2l 2/4) or y
5d when yc.d. For convenience, we define a quantity
O( l 22) by m̃S

2
ªa2

22mS
2 , absorbing the factora2

2 . Following
the argument given in Ref.@7#, we obtain the estimate

NE
y1

y2

dy
uaub

kḟ0
2

'
1

3aa
2ab

2m̃S
2

, ~B23!

wherea andb are1 or 2. Here we used the fact thata2u6

is a slowly changing function fory.yc in the weak back
reaction case. From this relation, with the aid of inequalit
u2&a2

22 anda2
2 ,u1&1, we obtain

NE
0

d

dy
u6

kḟ0
2

&OS 1

a2
2 a6

2 m̃S
2D ,

NE
0

d

dy
u2

i u1
j

kḟ0
2

&OS 1

a2
2i m̃S

2D ~ for i , j >0, i 1 j >2,!.

~B24!

The estimate for Eq.~4.17! can be obtained by approxima
ing Eq. ~3.23! as
10403
k

s

YS
(1)~r ,y!'3Nu7~y!E

y1

y2u6DY0
(1)

kḟ0
2

dy8 ~ for y"yc!.

~B25!

APPENDIX C: EXPLICIT EVALUATION OF THE
LEADING ORDER

To derive the leading order of Eq.~5.8!, we give the result
of the explicit evaluation of Eq.~5.1!. We use Eqs.~4.1!,
~4.4!,~4.5! and the junction condition~2.32! that is rewritten
in terms of the KK mode as Eq.~B11!. Keeping the terms of
O(r !

22), each term is given as follows:

2D@ĵ6
y Ā,y1 ĵ6

r Ā,r1Ḣ~ ĵ6
y !2#

52DF ĵ6
y Ā,y12F6,r ĵ6

r 1
Ḣ

9N2a6
4

F6
2 G ,

~C1!

62Na6
4 SS

65
16

9 E drH S 3F6,r

r 5
2

DF6

r 4 D E r 2F6dr

2
F6F6,r

r 2
1

F6DF

3r
1

4~F6,r !
2

3r

2F6,rDF61
F6,r~DF6! ,r

4 J 2
4

3
~F6,r !

2

24F6DF62
8

3
j r~DF6! ,r6

2H

9Na6
2

3F ~F6,r !
2226F6DF12E dr

3H 4

r
~F6,r !

21F6~DF6! ,r J G , ~C2!

62Na6
4 Sj

652
2

3
ĵ r~DF6! ,r7

4H

9Na6
2 E drH F6~DF6! ,r

1
6

r
~F6,r !

2J 1
64

9 E drH 2
F6F6,r

r 2

1
F6DF6

3r
2

~F6,r !
2

6r
1

F6,rDF6

2

1S 3F6,r

r 5
2

DF6

r 4
1

~DF6! ,r

4r 3 D E r 2F6drJ ,

~C3!
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2NE dya2SA65
64

9 E drH 2
5F6

2

3r 3
1

20F6F6,r

3r 2

2
3~F6,r !

2

2r
2

2F6DF6

r
1E r 2F6dr

3S 2

15E r 2F6dr

r 9
1

10F6

r 6
2

20F6,r

r 5

1
6DF6

r 4
2

~DF6! ,r

r 3
D J 1

16

3 S 16
H

Na2D
3S E ~F6,r !

2

6r
dr2F6DF6D1OS 1

r !
4D ,

~C4!

2NE dya2Sc65
64

9 E drH 3F6,rDF6

4
2

3~F6,r !
2

4r

2
F6DF6

4r
1

17F6F6,r

12r 2
2

5F6
2

3r 3

1F 3DF6

4r 4
2

17F6,r

4r 5
1

10F6

r 6
tt

ys

10403
2

15E r 2F6dr

r 9
G E r 2F6drJ

1S 16
H

Na2D
3S 2

3
~F6,r !

22
16

9 E dr

r
~F6,r !

2D
1OS 1

r !
4D , ~C5!

2NE
y1

y2

dy8a2v6DSw65D~F6
2 !H 2

9 S 16
H

a6
2 N

D 1
Ḣ

9N2a6
4

2
4N

9 E dya2u6
3 J 1OS 1

r !
4D ,

~C6!

3NE
y1

y2

dy8
u6DSY6

kḟ0
2

5
4ND~F6

2 !

9 E dya2u6
3 1OS 1

r !
4D .

~C7!

Substituting these results into Eq.~5.1!, we obtain the lead-
ing term of Eq.~5.8!.
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