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Second order perturbations in the radius stabilized Randall-Sundrum two branes model
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The nonlinear gravitational interaction is investigated in the Randall-Sundrum two branes model with the
radius stabilization mechanism. As the stabilization model, we assume a single scalar field that has a potential
in the bulk and a potential on each brane. We develop a formulation of the second order gravitational pertur-
bations under the assumption of a static and axial-symmetric five-dimensional metric that is spherically sym-
metric in the four-dimensional sense. After deriving the formal solutions for the perturbations, we discuss the
gravity on each brane induced by the matter on its own side, taking the limit of large coupling of the scalar
field interaction term on the branes. We show using the Goldberger-Wise stabilization model that four-
dimensional Einstein gravity is approximately recovered in the second order perturbations.
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I. INTRODUCTION the stabilization model. The essence in recovering the four-
dimensional Einstein gravity in linear perturbations is that
Many unified theories require spacetime dimensionghe massless mode of the scalar-type gravitational perturba-
higher than that observed in the Universe, and thus the extridon disappears due to the bulk scalar field, and only the
dimensions must be invisible by some mechanism. One ofensor-type perturbation continues to have a massless mode.
the possible schemes is known as Kaluza-Klein compactifivvhen the stabilization mechanism is turned off, the induced
cation. Recently, theories with extra dimensions have atgravity on the brane becomes of the Brans-Dicke type with
tracted considerable attention from the other viewpoint ofan unacceptable Brans-Dicke paramé&gr
providing a solution to the hierarchy problefi—5]. The A large number of studies have been made of gravity in
main idea to resolve the large hierarchy is that the smalthe brane world model29—37. Although the model does
coupling of four-dimensional gravity is generated by thenot have a drawback in linear perturbation, it is not a trivial
large physical volume of extra dimensions. These theorieguestion whether the second order gravitational perturbation
provide a novel setting for discussing phenomenologicalworks as well. For the second order perturbation in the RS
cosmological, and conceptual issues that are related to extgingle brane model without bulk scalar field, where the ten-
dimensions. sion of the brane is positive, it has been confirmed that there
The model that was introduced by Randall and Sundrumis no observable disagreement with four-dimensional Ein-
(RS is particularly attractive. The RS two branes model isstein gravity[38,39. However, the setting of the RS two-
constructed in a five-dimensional anti—de Siti®dS) space- brane model with stabilization mechanism is quite different
time [2]. The fifth coordinate is compactified @1/Z,, and  from that of the single brane model, and furthermore we are
the positive and negative tension branes are on the two fixeghainly concerned with the gravity on the negative tension
points. It is assumed that all matter fields are confined omrane. In this paper we study the second order gravitational
each brane and only the gravity propagates freely in the fiveperturbation of the RS two branes model with a stabilization
dimensional bulk. In this model, the hierarchy problem ismechanism due to a bulk scalar field. To simplify the analy-
resolved on the brane with negative tension if the separatiosis, we consider static and axisymmetric configurations,
of the branes is about 37 times the AdS radius. which means that the metric on the branes is spherically
Apart from the fine-tuning of the brane tension that issymmetric. After developing a formulation to calculate the
necessary to solve the cosmological constant problem, one gkcond order perturbation, we take the limit that the coupling
the significant points in discussing the consistency of thisof the scalar field interaction term on each brane is very
model is whether four-dimensional Einstein gravity is recov-large. In this limit, we find that four-dimensional Einstein
ered on the bran—12. Another point is to give a so-called gravity is approximately recovered.
radius stabilization mechanism that works to select the re- The paper is organized as follows. In Sec. Il we describe
quired separation distance between the two branes to resoltiee model that we will study, and derive the second order
the hierarchy without fine-tuninfl3—23. The stabilization  perturbation equations in the five-dimensional bulk. We also
mechanism not only is important to guarantee a stable hiediscuss the gauge transformations and the boundary condi-
archy, but also plays an important role in the recovery oftions. In Sec. Il we explain our approximation scheme, and
four-dimensional Einstein gravity in linear ordgf,12] and  give the formal solutions. In Sec. IV we review the results
of the correct cosmological expansif?d—28. The discus- for linear perturbations, giving their explicit expressions fol-
sion of the recovery is almost independent of the details ofowing the notation of this paper, and explain the setup of the
problem that we study in the present paper. In Sec. V we
analyze the second order metric perturbations induced on
*Email address: kudoh@yukawa.kyoto-u.ac.jp each brane. We show that the four-dimensional Einstein
TEmail address: tanaka@yukawa.kyoto-u.ac.jp gravity is recovered with some small corrections. These re-
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sults are summarized in Sec. VI. where we have expanded the metric functions up to second
order as
Il. PERTURBATION EQUATIONS IN THE RS MODEL
We consider the second order perturbations in the RS two- A:J; , AL (2.6

branes model with a five-dimensional scalar field introduced
to stabilize the distance between the two branes. Accordin
to the warped compactification of the RS model, the unper
turbed metric is supposed to be

9he other metric function¥ and are expanded in the same
way. Henceforth we neglect higher order terms without men-
tioning it, and we omit the superscript indicating the order
d<2=q..dx@dx’=dv2+ a2 dxdx?, 27 when it is obvious. We impose the same condltlons_ as Eq.
Gab y )7 @1 (2.5 onA®), B andCc® so thatB™® andC™ are derived
from A® once it is solved. Since the trace of the metric is

where 7, is the four-dimensional Minkowski metric with given by

(—+++) signature. They direction is bounded by two
branes located gt=y, andy=y_, whose tensions are as-
sumed .to be positive {(,)>0) and negative.A(._)<O), a,wh = —A— 29— E(A2+BZ+2C2), 2.7
respectively. On these two bran&s, symmetry is imposed, " 2
and we adopt the conventign.<y_. To generate the hier-
archy between Planck and electroweak scales, we need the trace part at linear order ig™), while %(® does not
correspond to the trace part at second order. Hence the sec-
a, 6 ond order counterpart of the conditid®.5 does not mean
Z~1G ’ (220 that A®@ is the transverse-traceless perturbation, but we ex-
tensively refer to these metric functions as the TT part é&nd
wherea,=a(y.). as the trace part. Later we will show thétoincides withy)y
In this paper we investigate the gravity induced by non-in & linear perturbation, and thus this metric assumption is
relativistic matter fields confined on each brane whosdhe same at least in linear perturbation as the “Newton
energy-momentum tensor is given in the perfect fluid form: gauge” condition.
The Lagrangian for the bulk scalar field is

TiV:aEAdiag{_pI !Pi ,Pi,P:}_ (23)

— _ _qab ~ ~N_ -~ _
The warp factor in the definition of the energy-momentum £ 29 ®a®p Ve(e) [,Zi Ve (9) 3y =Yo),
tensor(2.3) is incorporated for the following reason. In the (2.9
present analysis, we adopt the normalization that any physi-
cal quantities are always mapped onto and measured by thehereVg andV/., are the potential in the bulk and that on
length scale ag=y, . Since the length scale is warped by athe corresponding brane. For most of the present analysis, we
warp factora(y), physical quantities such @s. andP_ are  do not need to specify the explicit form of the potentidls
scaled by a factoa”*. andV(.,. The scalar field is expanded up to second order as
To simplify the analysis, we restrict our consideration to a
static and axisymmetric spacetime whose axis of symmetry (1Y) =do(y)+ oD(r,y)+ oA(r,y), 2.9
lies alongy direction. We denote the perturbed metric by
Jab=Jab+ Nap. The four-dimensional perturbatidn,, is di-  where¢, is the background scalar field configuration, which
vided into a trace part and a transverse-trace(@33 part.  depends only ory.
According to this decomposition, we assume that the per- From the five-dimensional Einstein equations with the
turbed metric has the diagonal form cosmological termA and the equation of motion for the
A2 2V dy2 4 a2(y)[ — AN HEN g2 scalar field, we obtain the background equations as
B(r.y)—4(r.y)dr24 C(r.y) = 4(r.y) 24 () 2 . K.
+e dre+e r<dQ ] (24) H(y):_g(f’é()’),
Here A, B, and C correspond to the TT part, angd to the

trace part. The TT condition to linear order is given in terms 5 k(1., .
of A, B, andC as HA(Y)= 5| 5%0(Y) = Ve(do(y) —x A |,
1 . : )
AD(ry)=—=g[r*BM(ry)], bo(y) +4H(Y) do(y) —Ve(do(y))=0,  (2.10
r

L where H(y):=a(y)/a(y)(~—V—A/6) and the five-
(1) _ - 2p(1) dimensional Newton’s constant@s;= /8. An overdot de-
cry) 2r LBy, @9 notes differentiation with respect §o
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A. 5D Einstein equations in the bulk where

In this subsection we derive the master equationg\for >
andY® from the five-dimensional Einstein equations. From S :_J (B A+ LB (3A,+B r))dr
the (r,r), (0,6), and {,y) components of the Einstein equa- ‘3 v ey ' '
tions, we obtain two independent equations:

GIA(YI—YN)]=eDg s, —f B,yY,rdr+az¢ j @ AYdr+HY?
0
3
D=— (9P +2HYD+ DS ), (2,10
O e 2 ~ 5082, (2.18

where A=3? ,57. Here S, and S, are the second order

source terms that are constructed from the first order quantin the derivation of Eq(2.16), we used Eq(B14). The un-
ties, and the explicit forms are given below. We have intro-derline in Eq.(2.16 is attached for convenience of our ex-
duced the symbok that is defined bye®=0 ande®  planation. So is the double underline below. Using Eq.
=1 to represent the first and the second order equations in@.16), S, is given by

single expression. These equations are reduced to

Dr,y)=YD+eNA-1g 2.1 8 17 1
R v 212 s lBB, - (B La(BE,)
) - 2v(J)
e (ry)=————dy(a’Y"’)
2kpga? ¥ r A dr (Y (AY),
—f dr{ 5(Bm)™+ (B, _BJT ——
t3 5 e[S, +a,A71S,].  (2.13
K®q 1
+—dy 3a4YAy+f dr(av,B,)
The equations forA® and Y are obtained from the at | L
(r,r) and {y,y) components of Einstein equations as )
N dr ay ¢, (2.19
I:(TU+¥A (a?AW) =g, | (2.14 roge | '
[LM+A]YD=eDs, (219  where we again used E(B14). The complete expression for
Sy is slightly complicated. For later convenience we divide
where S, as
~ 1 1
L(TT)==—2(3’ a*o —,
ac " Ya W 2.2 1 . 1
Sy=Sy— pZaa, ?[sq,wyA S|, (220
A . 2k . 0
L(Y)::az(ﬁgﬁyaz—é{)z(?yaz— ?a2¢(2).
0 whereSy is given by
The second order source ter8g and Sy are given later. 2 5
After simplification using the linear order equatiof&s12), Sy=— a_((A )2+ (B )2+ A B y)
(2.13, (2.14, and(2.15, S, andS, are written down as 8 ’ ’ 3 7
3 8 ) 14 5 7r r? 5r
0r8¢(r,y)=$ﬁr[r (AB)*]+B,| 5 AB+ ;rdAB —f AB| 5 AB+ 5 (AB),+4B, |+ 5B (AB),
11 9 Y (AY), (B,)? a°H
— B, |+ 1R o2 _
or r) PYCE r[ Py + o T 3 [A«(3A+B),~1B B ]
2
Lol Coaty B g | e Y + Y, aB+ ’r)—B(AY),—ZB AY|+3Y ,AY
27y LY 8/3°r : ) ’ , , .
a 2r bo
21 4H ¢ 2k
(219 v+ = @)+ S le b e e(ae),]
and 0
¢ xa? g . (Y) oAy .
=S — — —-2a"B,| — dr— ——a‘HY~. (2.21
S,=5S, a2¢O(AY 3¢ (2.17 ) 2 ) pyey
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B. Boundary condition ) )

BW =@ _ 0 y _ r
In the previous subsection, we derived master equations BH(ry)=8 v 2HEx—26%,

for the metric functions in the bulk up to second order. To
solve these equations we must determine the boundary con- —ed
ditions on the branes. It is well known that the boundary
condition is given by Israel’'s junction conditidd0], which l

(1) —u (1) —u (1) 5
gYBY+ 1BP-(¢£L )

is easily obtained in Gaussian normal coordinates. On the +i((?y )2+H((?y)2
other hand, the Newton gauge simplifies the master equa- a2 =
tions for the perturbations. Therefore we consider the gauge

transformation between them. D 20

In Gaussian normal coordinate8, the metric becomes CO(r,y)=CO—yD—2H ¢¥ - T £l

d?=dy?+a(y)[—erdt?+eBdr2+eCrad0?],  (2.22

I N 2
—e glCPr eLC -S| €L

with y=const on either the positive or negative tension
brane. Note that we introduced two sets of Gaussian normal (1)
coordinates; one is the co_orcﬂnate set in which the positive +H( £Y)?
tension brane is located =y, , and the other is that in

which the negative tension brane is located/aty . Cor- o
.As for the scalar field, its gauge transformation is given b
responding to these two different Gaussian normal coordi- gaug 9 y

nates, there are two infinitesimal gauge transformatichs Eo(y)=¢o(y)
=x2+ &% (x) between the Newton gauge and the Gaussian
normal gauge, respectively. To satisfy the restriction on the

(2.2

M O y)=eW(ry)=seW(ry), (226
metric form in both gauges, the gauge parametérs &3
) where
+ ¢48 associated with each brane must take the form of
G @O EY
0 y 1 1/ SeI(ry)=do L+ eD| %o+ EL(eM—goel),
EL(ry)=| dy'| YO+ eI y2——| £ |2
- Y+ 2 a2 '
- G
O —5ldo( € K)Z],y) : (2.2
+&%(r), (2.23
As mentioned earlier, we assume the energy-momentum
3 y 10 tensor to be of the perfect fluid forng2.3). The four-
&L (r y)—f dy'| — = &%, dimensional energy-momentum conservatién’“=0 be-
a comes
EONES @ @ ) —
+— &L AB=Y+2H %+ €5 1|+ EL(r), (p=+P)aAN(ry.)+24,P.=0, (2.28
a

(2.24 and hence we find tha® .. is a second order quantity. This
equation represents the force balance between pressure and

where we simplified the integrand of the equation for thegralll”ty acting on éhe nh1at'lt)er f'eald g <rael
second order perturbation by using the result for a linear, NOW We consider the boundary conditions. Israel's junc-

tion conditions on the three-branes are given b
perturbation. The functions aof §+ . andg arise as inte- 9 y

gration constants. The arbltrarlnessgbf is due to a residual -~ 1 1
gauge degree of freedom of the coordinate transformation in=9" 0y(9,m) K| T, — 3 STl — | TP - 3 5,VLT(‘P)}
the radial direction, while’, is determined with the aid of - -
the junction conditions as we will see below. K

The gauge transformations for each metric component are - 55’51\&) (aty=y.) (2.29

given by
) where A (. is the tension on each brane, a'rﬁg‘;) is the
A (1 y)=AD — gD _2H ¢V energy-momentum tensor for the scalar field. Here and here-
' * after, when we evaluate the value yty. , we take the
1 (1 . value aty=y. *¢ in the e—0 limit. Since, by assumption,
1 1 —
— e ELAD+ L AL H(£%)2, the scalar field dose not have a kinetic term on the brane, its
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energy-momentum tensor on the brane is givenTtéff)”
=—V(+)d, . Then, Eq.(2.29 gives at the lowest order

K K

The potentiaV .y must be chosen to satisfy this condition.
The (t,t) component of the junction conditiai2.29 gives

) )

2k €D —
?( eV po+ Tﬁy[(w(l))z])

1
To-=T

iﬁyK(J)Z—K( 3

<+

(y=y=+). (2.3)

PFBICAL REVIEW D 65 104034

+

Se

3
By| A= 5Y,

e

+(B—Y—2H54+%;ar)A%§+%§AY)
AY

Y \2
+f (0= oél) 5 Y
<P_¢0§¥:

a% 0
Let us consider the junction conditions for the scalar field.
Integrating the equations of motion for the scalar field across
the branes, we obtain the junction conditions for the scalar
field as

r
+gByr(3A,+B))

4

3&L AY
+ 2

*

(g+ . 3, (B+Y+HEL)

(2.39

iz‘ZO:V(/i)(gO)v

The junction condition in the Newton gauge is obtained by

applying the gauge transformation to this equation.We define

E(j) as the jump of the derivative of a metric function in the
Newton gauge:
K 1\ .
—53P=xA0|,_, (Tg— §T) +esg
(y=y:), (2.32

whereS§ is given by the substitution of Eq&2.10), (2.15),
(2.17, and(2.26 as

i_ZK
5= 3

- 1 —_
@ epo+ Zay[w(”)ﬁ) —(AD-AD)(y=y.)

2

2 {B,Y(A,,_;Y,r) ;

3
3. AY
+ _f_,rz ]dr
2as

,r+ B,r)

A (Y—4HE)-E.A,,

+%(&Y:AA—H(%&,r)%ér(A—Y),r)
at
Y \2
Jd (9= doél) N A_YA (2.33
2a% ¢ ¢~ pot

Taking the trace of the junction condition and using Eq.
(2.13 and the formulas for the gauge transformation, we

obtain the equation which determing :

STO 4 O]

6 (2.39

where we introduced

_ 1 _ _
=260 =0OV(, (o) + 5 €M)V ) (¢0)]
(2.36
aty=y. . By using Eqs(2.13, (2.15, and(2.26), the junc-

tion conditions for the scalar field in the Newton gauge are
obtained as

+2¢0=V(+)($0),

2 _ (f)
E(<p<”—¢o§yt)= . ¢OAY(J’+6“’Sﬁn,
(2.37)
where we have defined
Nai= ; (2.38
-V )+2(¢0/¢0)

and

1 oy
Sjun = (89— g d’o 5 Vi~ §(<P(1)_ P & N2V

2 (&))?
a<5¢<2>—¢o§y)—@ Y2- 52)
boe®  3pAY
" oxal, Syt dod y( 283 2xalPl
(y=y=+). (2.39

A more explicit expression is given in Appendix B 2.
Incorporating the boundary conditiori®.32 and (2.37),
the master equations become

1
LD+ 24 (@2AD) =2k >, 3D5(y—y,)+eVs,,
==

(2.40
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2

K

53— S YK +eds,,
(2.41)

. 2
[LM+AIYO= &

o==x

with

KD(r):=2a2 (J)+§y—a'

3\ AY(J) eV [\,
— SJ”un
(rd)O ¢0

——[S¢+ﬁyA18,,,])
2k 0 y=y

Solving these equations foA” and YO as well as Eq.

(2.34 for &, , and using the gauge transformation E2j25
with the aid of Eq.(2.5, we obtainA®, B, and CY,

which represent the metric perturbations induced on the

branes.

IIl. GRADIENT EXPANSION
A. Green'’s function

We can write down the formal solution of ER.40 by
means of the Green'’s function,

a’AV =2k >,

o==x

y_
d yGASA ’

d3XGAEE;])+26(J)f d3x
Y+
(3.1

where theG,(x,y;x’,y’) is the Green’s function for the TT d3k
part in the static case. The factor 2 in the second term reflects 3€

. : (27)
the Z, symmetry of this brane world model. In the static

case, the Green’s function is given by

Ga(x,y;x’ y’)=_f s elk(x=x")
o (2m)®
" N«'sl(y)za(y’)zJr wi(y)wi(y")
k2+ €2 T omZ+k?
(3.2)

PHYSICAL REVIEW D 65104034

As for the scalar-type perturbations, it has been proved in
linear perturbation by considering the source free equation
that there is no physical mode with a zero eigenvalue of the
four-dimensional D’Alembertiar{7]. This means that the
massless scalar-type mode disappears when the stabilization
mechanism is taken into account. The explicit mode function
for the lightest mass mode is found in RET].

B. Transverse-traceless perturbation

1. Temporal component

By the zero mode truncation, in which we substitute only
the first term in Eq(3.2) into Eq. (3.1), we obtain

o 1\

AAY(r,y)=—2«N ; a’

o

+2Ne

j 2SAdy ca, Sy
Y+

(3.5

where we did not assume any truncation for the source terms
Sy and S,. We assigned the label 0 to indicate the zero
mode truncation.

To evaluate the contribution from the second term in Eq.
(3.2 for the TT part of the metric perturbations, we follow
the strategy that is used in R¢T]. Rewrite the part coming
from KK modes in the Green'’s function as

W;W,
elk(x— x") !
zi: mg; + k2
Wi W, wiw; [ dk® k2elke=x)
_E I(??(X X ) E I2 If 3 2 2 "
mgi omi ) (2m)° mitk
(3.6)

Under the condition thak?/m3,<1 holds, the first term on
the right-hand side gives the dominant contribution. Notice
that the first term is nothing but the Green’s function for Eq.
(2.14 with A=0. Thus to pick up this part of the Green’s
function is equivalent to solving the equation faf) by

wherew;(y) is the mode function and its orthonormal con- getting A=0 from the beginning. Substitutind@=AY)

ditions are given by

y- Y- W;W;
f w;,dy=0, 2f —-dy=§;; 3.3
Y+ Y+ a
The normalization factoN is defined by
y_ -1
N:=|2 f a’dy (3.9
Y+

The first term on the right-hand side of E&.2) is the con-
tribution from the zero mode whose four-dimensional mass
eigenvalue is zero. The second term corresponds to the
propagator due to the Kaluza-Kle{KK) excitations whose

ith excitation has the discrete mass eigenvatye. We refer
to these modes as KK modes.

+AY, whereA, is the zero mode part anlls is the KK
mode part, into Eq(2.40 and neglecting thé term for the
KK mode contribution, we obtain

LOD(@AD)~ -2k X, SP[NaZ-s(y-y,)]

+ G(J)SA y

(3.7

where

y_
Sa:=Sp— 2N J a’Sudy. (3.9
Y+

Applying the integration operatdrya"‘f‘iydyaz, this equa-
tion is formally solved as

104034-6
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Y Vo 9, (rc®)—BM7], _

A (ry)=—2kN X aﬁggg)( dy’—z—Cg) [ar( ly-y.
o= Yoo a :I.—.J 3 3 J) 3

=19 AV + S (¥ +2HE Y ) + 5

+ eV

ydy’ [y’
f = |” dy'azsa-p(n)|,
y. a Y+

(3.9

(y=y:), 3.13

whereC, andC_ are constants and(r) is a function ofr,  here we used Eq$2.5) and(2.25, andSg is given by
which are determined later. The function(y) is defined by

y r
1(y Sg= g (B +2K¢0<P)—§—[B+3(Y+2H§y)]r
v (y) ==;f dy’a(y’)?. (3.10
Y= -
B EH(% 2 (fr)2 (5”)2 ()2
From the orthogonality of Eq(3.3), AY) must be orthogonal 2 r? T
to the zero mode function. This condition fixes the constants
i dar|. — — .| rB 2
C. and the functiorD(r) as +f—{§r(C— oy By 2
r ’ 2 a2
c =2Njy’dya2jy dy’’e (¥ )2 ()2
7 Vi L, a? gy ——gy +(g )2— ] (3.19

y- y dy’ To fix the d f freed ding to th
_ 2 " a2a gauge degrees of freedom corresponding to the
D(r)=2N v dya L+ at y+dy aBa. (1Y choice of the radkil cgordinate, we adopt the isotropic gauge
that is defined byB=C on each brane. With thi_s choice of
Integrating by parts and taking=y- , Eq. (3.9 is reduced gauge, the left-hand side of E®.13 becomes_arB, and we

to immediately obtain the spatial componeBt (=6) in
Gaussian normal coordinates:

y_
AD(ry.)=—4xN2 Y, a23O) [ dy'v?

1 xH
o== Vs ABY(r, y+)——§AA(J)_ 5 ak 270 AY(J)
+2xNa2zt) f —.d 3 w|? +
«Naz 23 yoa? —5€V3A8+8,+2Hals; |.
(3.195
J) Vs [y 1" A2Q
+2Ne L dy'— a2 dy"aSa, (312 It is also necessary to specify the explicit form of the radial

+ Y+ (l)

where we used Eq$B1) and (B3). gauge parameter at first ordef,",, since the second order

The approximation method that we have used is a kind operturbationsA® and B®) depend on ('}) Substituting Eq.
derivative expansion method, in which the typical wave- _ _ . . . .
length of perturbations is supposed to be long. This expan(—2'25) into the isotropic gauge condmorg = Is determined
sion is valid only when the smallest mass of the KK excita-2S
tions is sufficiently large. We can obtain the higher order
corrections. by iteration, in vyhich thﬁe te.rm., which we have E ()= ——BWO(r.y.) (3.16
neglected in the above discussion, is incorporated as the = 4 e '
source term. For the TT part, we do not consider further
iteration than Eq(3.9). As we will see later, in the scalar-

type perturbations, we need to consider one iteration oithe

(1)

C. Scalar-type perturbation

term to obtain results accurate to the same order. As mentioned earlier, there is no zero mode in the scalar-
type perturbation. To evaluate the contribution from massive
2. Spatial component modes, we apply the same technique that we used in the

L h | fthe TT Si receding subsection for the KK modes of the TT part. First
et us turn to the spatial components of the TT part. SINCqyq congider the equation fof®) by settingA=0. The ho-

each spatial component depends on the gauge choie iof mogeneous solutions of ER.15 with A=0 are given by
is convenient to deal with the gauge invariant combination

[38] u=(y)=1-2H(y)v(y), (3.1

104034-7
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wherev . (y) is defined in Eq(3.10. The Green'’s function
Gy, which satisfies

1
a?¢s

is constructed as

Gy
L‘Y)(g) =—ay-y’), (3.18

3Na*(y)a’(y’)
Gy(y;y' ) =—————[u_(Y)u,(y)Hely' -y)

Fu_(yHu(y)ety—y"]. (3.19
Then using this Green’s function, ER.41) with A=0 is
solved as

YO(r,y)=-N2 ou,(y)

y3Uu_,
yu’ K¢O

(3.20

We assign the label 0 because this term gives a contribution
to the metric perturbation at the same order as the zero mode
in the TT part of the perturbation, although it is related to

massive scalar-type modes.
Using Eqgs.(B5) and(B17), it becomes

N
AYg)J)(r,Y):_ 3 2

o=*

STOu,(y)— Vs,

ug(y)
H(Y,)

—2N2 oo

ALD—2NeD D) au,(y)

4 oo y
a;Si+ | dy

X
Yo
, .. 3u
x| a%_,AS,+ ——2A5,—a%s,||, (3.2)
where
3\,
LO(r)=H(y,)| —o—5AYD)
W
s enge| e g _ bos®, 3eAY
jun 3 2,3
2¢>0 2¢y 2Kka“gy y=y
(3.22

As we can see from the first term of E®.21), this mode of

PHYSICAL REVIEW D 65104034

The source term for the next order correctiégis given
by AY,, which we neglected in the calculation of the
pseudo-long-ranged part. Since the Green’s func@gnis
already known, we easily obtain

3N yu_,AY§
YO y)=— 2 aug(y)f —dy

.
(3.23

Settingy=y- and using Eqs(B3) and(B6), the expressions
for Y, andYg are summarized as

kN kH
AYgJ)(r,yt)=—? Z alTWx— 3 a 219

— e[S, +2Ha%S; ]-2Ne

> O'af,Sg

o==

y- ) Lo 38U
+ dy| a“v+AS,+ 5 ;ASy—ass,
Y+

—ZNE "(;h) L), (3.24)
o 3N [y-u-AYE)
Ye'(r,y«)=— dy’. (3.29

2
K Jy, ¢o

D. Large coupling limit

In the preceding sections, we derived the formal solutions
to evaluate the second order perturbations. However, the re-
sult is very complicated. To simplify the analysis, we assume

[V{-)|>[ o/ hol, and take the limit

A.—0. (3.26

In the case of the Goldberger-Wise stabilization mqdé],
this limit corresponds to their large coupling constant.

In this limit, the junction condition2.37) for J=1 be-
comes

(1)
eD(r,y.)~ o £ (3.27)

Here we mention that the source teﬁmn which is given by

Eq. (2.37 containsV(., and V(" . Hence . SJun does not
vanish even in this limit, and it is reduced to

Ao L ) )

~ Siun=(86® = o £), (3.28

where we used E(q3.27). Therefore the junction condition

the scalar-type perturbation partly gives long-ranged contrifor the scalar field in this limit is summarized as

butions, as we anticipated. We refer to this part of the scalar-
type perturbation as the pseudo-long-ranged part to distin-
guish the remaining short-ranged correction. We use the

subscriptS to represent the short-ranged part, although it isUnder this condition, the last terms in E¢2.33 and(2.35

also used for the KK mode.

104034-8
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AR(ry.)=20., 4.7)

where we attached a subscripton the perturbation quanti-
ties to specify in which case we are working. For instance,
and then we obtain the approximation 1822 A. represents the value & when only the matter fields on
the positive tension brane are taken into account. The re-

Ne _(&o(pz 3pAY
200 "\ 205 2xd’p)

() ~ o . .
L=~0. (330 maining metric functions turn out to be
IV. RECOVERY OF THE 4D EINSTEIN GRAVITY: FIRST B{Y=C{)=-20. (4.9
ORDER

_ _ in the isotropic gaugé3.16). These results coincide with the
A. Linear perturbation results for four-dimensional Einstein gravity.
We review the results for linear perturbations in terms of
the notation of the present paper. From E85), the zero B. Correction to the leading term

mode truncation of the TT part is given by To obtain an approximate estimate for the corrections due

to the KK mode or the short-ranged part of the scalar-type
(1)— 2 d,, B(l)— - —(9 AL E D, perturbations, it is useful to consider cases in which the back
T reaction of the bulk scalar field on the background geometry

4. is weak; namely,
where we have introduced the Newton potential by “-_” m'ﬁz
_ 0
AD.(r):=4mGp(r), (4.2 HZ  3H?’
and G is the induced four-dimensional Newton’s constantis not as large as unity. In a weak back reaction, the metric is
defined by approximately given by the pure anti—de Sitter form
87G:=«N. 4.3 a(y)~e Y, (4.9

From Eg. (3.21), the pseudo-long-ranged part in the and we set
scalar-type perturbation is obtained as

y+=0, y_=d. (4.10
(1) 2 . .
Yo =3 Z+ U (Y)D (1), Herel is the curvature radius of AdS
7= If we substitute this warp factor, Eg®8.10 and(3.17) are
(4.4 approximated as
w2 s o
®o _§¢o(r:i vo’(y) o’(r); a% | a%
Ue(y)=—, ve(y)=5| 5 1] (4.1
a a

and the gauge transformation is

P Here one remark is in order. The above expressionufois
= (4.5) not a good approximation near the positive tension brane
3Na> becauseu, (y,) depends on the difference betweknde-
fined in Eq.(3.4) andH aty=y, . The value ofN in the
In this paper we concentrate on the gravity on one of theveak back reaction limit isd(a2 —a2)~?, and the differ-
Z, Symmetric branes that carries matter fields on it as @&nce betweemH and N is hierarchica”y Suppressed_ How-

source of gravitational field. We assume that the energyever, unless we consider an extreme case, the deviation of
momentum tensor of the matter fields on the other brangne value ofN from this limiting value is not hierarchically

vanishes. By this simplification, the sum &, and®_ is  small. As a result, we have
replaced by

-

ui(y+)=0(1), (4.12
> b, D, (4.6)

~ x instead of®(a?). This also means that thedependences of
Y§H andY{! are different. If the single mode with the low-
in each case. Here we note that, to avoid confusion in showest mass eigenvalue dominates the scalar-type perturbation,
ing the formulas for two different situations simultaneously,they dependence must be the same for both cases. Therefore,
we are using a different convention for the physical lengthwe find that the modes with higher mass eigenvalues also
scale from that used in R€f7]. contribute to the behavior df’(l) near the positive tension

Substituting the above formulas into E@.25, we obtain  brane.

104034-9
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Let us consider the KK mode contributidi8.9) in the

: ; ; : 1 2,2 |’ dy
linear perturbation. A straightforward calculation shaw$ Y& (r,y)~3Na2aZ Ay e
Yy @K 0
AD(ry) 12Ad, a2 2 .\ 4d 1 1
se(OY)~———=— |2~ 177/ ~—=5AY,(r,Y), (4.16
3 |24 a a. a’m3

(4.13
WhereaZYgl)wconst is usedAppendix B 3. Here we intro-
where we have assumeldl >1. Hence, on the brane where duced the lowest mass eigenvalue in the scalar-type pertur-

the matter fields reside, it becomes bationms:=a_ms, whose order of magnitude is determined
by the last equality7]. We refer tomg as the radion mass.
12(3—4d/) The reason whymg defined above gives the lowest mass
A(Slj(r,yng 4 eigenvalue can be understood as follows. Suppose the mode
+ with the lowest mass squared dominates perturbations in the
long-wavelength limit. Then the propagator for the scalar
i |2 perturbation should be proportional to AKX mg). In our
Ag(ry_)~— QAQD_ : (4.149  approximation of a gradient expansion, this massive propa-

gator is expanded as (f#)+(A/m&)+ - - -. The first term

o gives YV and the secon?). Hence, the ratio between
To compare the KK mode contribution with the zero modeyhay isA/m3. However, again this simple-minded estimate

ohne, we evaluate the ratio between them. Then we find that o correct fory) near the positive tension brane for the
the KK mode contribution is suppressed by the factor same reason that the approximate expressionuforEq.

(4.11] is not valid near the positive tension brane. In fact,
the value ofY{!) on the brane can be evaluated by using Eq.

B ::a"' 12 (3.25. Substituting the estimate given in E¢B24), we ob-
= tain Y&)(r,y.)~AY{Y/m2. Taking this into account, we
2 guess that the formulgt.16) should be modified as
E (y:)’+): 1
] /0.1 mm2[10716)4/ | |2 YR(ry)~ =555 AD(r). (4.17)
S o

(4.15 We give a justification of this formula in Appendix B 3.
Then, the ratioY(Slt)(r,yi)/Aglt)(r,yi), where we compare

where we introduced a typical length scale and performed the short-ranged part to the Newtonian potential, is

a replacement like\~r 2. 1 1\2
On the positive tension brane the KK mode contribution Yiim————— = +( - ) (4.18
is suppressed at,>| at linear order. Note that, if one takes Toatmir? T\ md

the limit d/| — o, the KK mode(4.14) seems to diverge. In

this limit the lowest KK mode mass goes to zero, and the/Vhen the radius stabilization mechanism proposed by Gold-

mass spectrum becomes continuous. Then, our expansi®erger and Wise works most efficiently, the ma~B§ be-

scheme which we call a gradient expansion, is no longer @omesO(I 1) [7,13]. In this case the short-ranged part of

good approximation. Hence, this divergence in the laige the scalar-type perturbation is suppressed for the same reason

limit is just due to the breakdown of our expansion schemeas the KK mode. We have shown than the zero mode and
On the negative tension brane the KK mode becomepseudo-long-ranged part reproduce the correct four-

dominant only at the length scale0.1 mm when the AdS dimensional Einstein gravity. The remaining KK mode and

curvature length and the hierarchya, /a_ are set to the the short-ranged part accompany extra suppression factors

Planck length 5 and 168, respectively. One may think that 3. andy. , respectively.

the deviation from four-dimensional Einstein gravity at the

submillimeter scale provides an observable effect. However, |, RECOVERY OF THE 4D EINSTEIN GRAVITY:

in the KK mode cpntribution to the gr_aI/itationaI pptential, SECOND ORDER
.. appears only in the form of (A#G) “Ad_, which is
equal to the matter energy density . Hence, the KK mode We discuss the second order perturbations in the large

does not contribute to the force outside the matter distribucoupling limit discussed in Sec. llID. As in the case of first
tion. Therefore, this effect appears to be hard to observe. order perturbation, we iteratively solve the equations of mo-
Next, we consider the short-ranged part of the scalar-typgon by using gradient expansion. In the equations we derive
perturbation. The short-ranged p#&Bt23 in the weak back below, we neglect the terms that are relatively suppressed by
reaction limit is evaluated as the factor of /% compared to the leading contribution. For

104034-10
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convenience, we quote the contribution from the zero-type

. T . . 1 1 1
coupling, which is obtained by substituting Eq®.12), A ~——, AP~—=, Y, ofd~——0u.
(2.23, (2.34), (3.5, and(3.24) into Eq.(2.25: aTry ary asatr,
(5.9
AAR(ry.)=8mG(p?P+3PP) —A[&LA. +EA., In the following subsection, we first evaluate the terms

from the zero-type coupling, classifying them into three
parts: the part to recover the four-dimensional Einstein grav-
ity, the manifestly suppressed corrections, and the unsup-
y_ X S
+2NJ dy[ az(SAi—S¢i)+a2viAS¢i pressed corrections. The unsuppressed correction is later

+H(&)?]*2Nal(S; - %)

shown to be canceled by the contribution from the terms of
Stype. We stress that a weak back reaction is assumed only
when we roughly estimate the dependence panda._ .

Y+

+ ——ASy. ;. (5.0

2kl Y‘} _
A. A,

Here we have used the fact th8t and Sy on the brane Let us consideﬁo given in Eq.(5.1). From Egs.(2.33

without matter distribution vanish, which is easily verified and (2.35 with the large coupling limit(3.29, (S; —S%)

) o (})y ~) ) becomes
just by noticing thaté % =0 andA%"(y=)=0. The contri-

bution from Stype coupling is P
al(s;-si)=al

3a§fdrB,yY,r—3f dr&AY

AAD(r,y ) =A[AQ(ry.)-Y&(ry.)], (5.2
+aA (Y—4H éy)+éyAY—2H(&¥r)2)

with A& (r,y.) given by Eq.(3.12, andYZ)(r,y..) by Eq.

(3.25. Once we knowA® and Y, the spatial component +a2[(28,0,— A& (Y+2HE)+BAY
of the metric perturbationB‘® is obtained from Eqg3.15), - - - -
(3.24), and(323 as | —PAA+E(B-A)  +E(aZA TAD) ]
r
1 —aif 2B,yA,,+—B,ry(B+3A),r)dr.
ABR(ry.)=— ZAA® 447G, a2 T®— ASy. + 3N 4
* 1JE 2 * R e *
(5.6
taiS§+ fydy( a2v+AS¢+ As for S,, the last two terms in Eq2.18) are rewritten as
+ .. +A5,
2 2
2 2_ K oo | Py KA
¢ M Nsmazs, | |- Save. (a ”*)(HY 3¢ ])_ay 2 5 3 e
2K¢g Y=+ (/s 2 S+ 0
5.3 3YAy 1
©3 — —5a’u.Y? (5.7)
4rdy 2

To identify the order of magnitude of various terms in the
second order perturbations, we have to keep track of the The expressiori5.1) starts with terms of9(1/r2); hence
powers of bothr, anda_. Terms with additional inverse e start our discussion with these leading order terms. Here,
powers ofr, are basically suppressed for long-wavelengthis ynderstand the absence of termsc(ir®), we need to
perturbations. However, as we have seen for the KK modg tice thato. A® andd.B® do not have contributions from
and the short-ranged part in the analysis of the linear pertuty,o ;arg méde, and hyence they @€1/r2). Let us identify

bations, a gompliqation arises due to the existence_ of a largg dependence on the hierarchy of each term, concen-
nondlmen3|onal_h|erarchy factoral/ . Here we continue to trating on the case that the matter fields are on the negative
use the.convent|oa+=1. The dependences of the per,turba'tension brane. For this purpose, we can use(&d). As for
ggn variables on the warp factor and op are summarized O—’yA(l) anda'yB(f), We use Eq(5.5) instead becau;e the zero
mode contribution exactly vanishes. The terms in the second
line of Eq. (5.1) possess & integration. This integration is
2 . basically dominated by the contribution from the neighbor-
Af~a® YRR, oft~ —; +1, &~—, (54  hood of the negative tension brane. One exception is the case
a 8+ in which the integrand has the quadratic form of the zero
mode contribution of the TT variableg\y andB, multiplied
and by a? as a?AyxA,). This integration does not have any
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inverse powers oh_. The other exception is the case in where we have taken into account E@®12) and(B13). The

which the integrand contains the factorwof / k3. The for- ~ firstterm in the curly brackets ifis s, . comes fronby and
mulas for this case are summarized in E@®24) and we the second term frorfi,. The remaining terms are at most
find that only the terms with the integrand proportional to @(1%/a* r%). The relative amplitude of these remaining terms
u®/k¢2 give a correction that behaves am®l/ The other compared to the ordinary post-Newtonian corrections is
terms are at mosP(1/a®). Hence, we can pick up the terms O(B-) or O(vy_). Therefore, only thé terms have the pos-
with a large power of H_ just by looking at the behavior of S|b|I|ty of mtrqducmg a non-r_1egl|g|ble correction. Howev_er,
the integrand near the negative tension brane. Then, we fint{€ will show in the sucpeedmg subsection that the contribu-
that, among the terms @(1/r2), the terms associated with tion from the F terms is also completely canceled by that

a single underline or with double underlines behave a$ 1/ fror’:: (\:/\(/)l\;lvplmgi c;;tl:ﬁtype. that the matter fields are o th
or 1/a2. Since the usual post-Newtonian correction in four- oW we consider the case that the matter fields are on the

dimensional Einstein gravity is @d(a°/r2), we expect that positive tension brane. In counting the order of each term

. > with respect taa_ , we will notice that the inverse power of
the terms with underlines cancel each other, and we sho P P

; L : ; _ can appear only from a contribution near the negative
t_hat, in fact, this is the case. The terms with a single underfension brane. Furthermore, from the estimatgs) and
line completely cancel each other. For example, the ter

o ) M5.5), we find that the variables in the first order perturbation
a’HY<in Sy is canceled with the last term of EG.7). Here, 410 at most of(1/a%), and such enhanced variables are
it is worth mentioning that the cancellation occurs separately, ssociated with the factorrg. With this notion and the es-

within the terms of different types: the terms quadratic in the,; B24) it will ifv that all th .
TT variables, those bilinear in the TT variables and th:tlmate( ), it will be easy to verify that all the terms quar

scalar-type variablesY(, ¢, and&’), and those quadratic in tic in 1/r, in AK((Q are, at mOStO(IZ/aZ—.rf); namely, they .
the scalar-type variables. The terms with double underline@'® Suppressed compared to th% ordinary post-Newtonian
do not vanish completely, but they are, in total, combined tg°0Téctions by the factor ab(B, /a~) or O(y, /aZ).

terms of @(a°/r2) with the aid of Egs.(B12) and (B13) The suppression factors that-we en.counter at the second
when we consider the long-ranged part. The contributionQrder are not as small as those in the linear perturbagon,
from the short-ranged part cannot be combined to reduce tHdd Y+ - This is a natural consequence of our approximation
power of the warp factor, but they are at mai%/a* r?). of grg@ent expansion. Near the negatlve tgnspn brane, the
After a straightforward calculation, the remaining terms givecondlthns that the scale of the s_platlal grad|_e ntis larger than
the usual post-Newtonian term in four-dimensional Einsteirf€ tyPical length scaleb and ms ™, respectively, become
gravity (Appendix Q. This result also applies for the case (8+/a%)=(1%/a%r?)<1 and (y,/a%)=(1/mZar})<1.

that the matter field is on the positive tension brane becaus@lthough the correction seems to become large when we
any term of©(1/r?) irrespective of the power af_ was not ~ consider the case with largeal/, we think that this is an
discarded in the above computation; namely, we obtain in thartifact due to the limitation of the present approximation.

isotropic gauge3.16 When we do not have a bulk scalar field, has been proved
) that the correcti_on_ to the four-dimensional Einstein gravity in
ARB (1 y-)=87G(p@+3PD)— 4D AD. +O :_4) the (1A_)—o limit stays small[6].
(5.9 B. Agand Yg
Next, we consider the terms @(1/r%). Again, we begin In this subsection, we discuss the terdg’ and Y.

by considering the case that the matter fields are on the neg&he contribution of these terms completely cancels the cor-
tive tension brane. As we did for the terms ©f1/r2), we  rection due to thd= terms.

can identify the dependence on hierarahy of these terms From Eq.(3.9), we obtain
using the estimate&.4), (5.5, and (B24). Then, the terms 2 y
with the highest inverse power af start with 14°, which A2)(r,y.)=4N?%a%| k| P®+ _p(f)) tsg)“ v2dy’
we refer to ad- terms. They are given by B N N -3 (2
=—A(&YA e vy L (y
Y+ a“Jyz
F ZNAfd ar| U (ZK g Ap—3Y AY)
5 g+ = N—— 5 - v y-
KR YN Seqz| 3 ®Re ™=t —(2N)2U vidy)J a’s,.dy, (5.10
Y+ Y+
+Y(AY) ,+2a%Bs Yr where we have performed an integration by parts by using
’ Y\ a2 y Egs.(B1), and also we have used again the fact thaton

the vacant brane is zero, as well as E@2) and (B3).
5 First, we concentrate on the case with the matter fields on
—a‘v.BgyY ¢, the negative tension brane. The first term in the square brack-
ets in Eq.(5.10 is suppressed by a factor B¥r? compared
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with the first term on the right hand side in EG.8), and
hence can be neglected. The other term&k@ are quartic

in 1/r, or smaller. Hence, we have only to study the terms

that give a correction 0©(1%/a°r%). Neglecting the terms
higher order in 1/,, the contribution fronS; becomes

fvz_dy)(—f B_,Y_,dr—3Y_A_,
|2
airf)’

where we dropped the terms proportional Yte- 2H& be-

—4N2a?

(5.11)

a’

2 (1 sy
+ _4f FY,Yrg,'rdr +0

PFBICAL REVIEW D 65 104034

2a°Y_,B_,

+fdr

@
) {rs’?’\(,r . (5.19

—,r
2r8/3 r ¢(2) ]) ’

Note that the terms fron$; in Eq. (3.2 cancel the terms
obtained by settingy=y, after they integration in Eq.
(3.21). Substituting Eq(5.14) into Eqg.(3.25, we obtain

Y- u_

Y+ K¢o

—Avg‘)(r,y_)zsNA[ (3Y_,rAY_

cause Eq(B13) shows that this combination becomes higher 2k

order in 1&_ . As for the terms containing, in Eqg. (5.10),
the contribution of0(1%/(a® r#)) comes from the terms with
underlines in Eq.(2.19. For these terms, the integral of
a®S,_ can be performed explicitly as

y
Jy a’s, dy=a?® 3a2Y,A,'y+f dra’B_,Y_,
N

dr
-2 —=Y_,

Y. 9”).
r bo
Here, note that the contribution from the boundaryyat
=y, vanishes. Using Eq5.12), we find that the last term in

Eq. (5.10 cancels the leading order contribution fr@a of
Eqg. (5.11). Then, the remaining parts in E(.10 give

(5.12

y_
AAZ (r,y_)=2NA | dyv_|3a%Y_A_,
Y+
dr _
+Jdra28_'yY_]r—2 —v_ 2 ’r)
r ®o
|2
+0 . (5.13
airf)

The other correction that we have not considered yet
comes fromY?) . To evaluate the expression presented in

Eq. (3.29), first we need to evaluatkY given in Eq.(3.2D.
Only the leading terms o®(1/a*r?) in AY, are relevant,
and they are evaluated as

3 2
—AY(()Z,)(r,y)mf dr ﬁ&r[ r8/3< (Yf,r)2+ ?K(ﬁo,r)z)]

—2a’B_,Y_, +2Na2§(:, au,(y)
Y_o_ chz,

X| A — — 5 U_g
207 3 (Y))

A 4k 5
— 3 e-dlde- *-gr(w-ﬂ)

—r

a2

~Y_3,AY_
Y

4
—2a B_,y(

H
Y_0,AY_+ —
bo

Y- u_
+ f dydrfz

Y+ Kby

X((p,(AY,)’r-FY,(A(p,)'r)
2

--Y_,
r ,

2qu_,,>
)
|2

&)

From Eq.(B12) the terms inside the second integral turn out
to beO(1%/a*r%).
Combining Egs(5.9), (5.13, and(5.15, we obtain

dr
ST
(P,r> ]
bo

. (5.16

Yo+

+0 (5.1

F_+AA2-YY)

(‘Pf,r)z

=A{—EVK_'),+4NJ dy

+v_

3, dr
Ea Y_A_’y_fTY_'r

|2

a‘r?

of

After writing the above expression in terms wf andv _,
we can perform the integration with respecitby using Eq.
(B1). Then, with the aid of Eq(B3), we find that Eq(5.16
reduces to terms higher order im3.br those of0(1%/a* r?).
Hence, our conclusion is
|2
a4rf) '

The weak back reaction was assumed only for evaluating the
order of the residual terms.

F+A(A(SZ)—Y(52))=(9( (5.17
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In the case with the matter fields on the positive tensioran iterative scheme to obtain approximate solutions by ap-
brane, the corrections both froAt?) and fromY?) are sup- plying the derivative expansion method for the massive
pressed by eitherd, /a%) or (v, /a%) for the same reason modes. For the validity of the derivative expansion, the
as before. physical mass of the massive modes must be sufficiently

large on the respective branes. This sets a limitation on our
C. Spatial components of TT part scheme. Taking infinite separation distance between two
_ —12) _ ) . branes is beyond the framework of the present analysis be-

Now the evaluation ofB™ in the isotropic gauge is .4 ,se the mass of the lowest KK mode becomes zero.
stralghtfclward. Substituting the first order quantities and the We have shown the recovery of four-dimensional Einstein
result of A®®) into Eq. (5.3, we basically obtain gravity in the second order perturbations in the following
=02) _ @) B 5 limit: (1) The coupling between the scalar field and the

AB(ry.)=—87Gp + 4D AL — (P )7+ -, branes is infinitely largésee Eq(3.26)]. (2) We consider the

(5.18 perturbations induced by the matter fields on one brane
which is identical to the result for the four-dimensional Ein- Where we reside, and neglect the effects caused by the matter

stein gravity in isotropic coordinates except for the residuafields on the other branesee Eq(4.6)].

denoted by (- -) [38]. When we consider the case in which the matter fields are
In the case with the matter field on the negative tensioron the negative tension brane, the correction to the four-
brane, these residual terms are dimensional Einstein gravity appears at the relative order of

O((a; la_)*(I/r,)?), wherel is the AdS curvature scale,
) (5.19 is the typical length scale of the perturbation, aad (a_)
atrd ’ ' is the ratio between the warp factors on the positive and the
negative tension branes. When this ratia,(a_) is
where we introduced O(10'%), the hierarchy between Planck and electroweak
scales can be explained. With this choice of the hierarchy, the
o 1 A{f ﬂ(q) )2 correction to the metric in the linear perturbation becomes
SB* 9N2a® roo o comparable to the usual Newtonian potential when

2

3 @
Foy-t 5(Fs,s,-~AY@)+0

. (5.20

y_
Eq. (5.19)=A[FSB+3N dydr
Y+

—a%v_B_,Y_,|{+0O

=0.1 mm. However, this correction does not give a contri-
In the same way as fox(®), cancellation occurs for the lead- bution to the force outside the matter distribution. Hence, it
ing order in 14_ as seems to be harmless in reproducing the predictions of four-
dimensional Einstein gravity. We have not confirmed if this
2u_ (¢_,)? feature remains in the second order perturbation, but the cor-
? r rection is suppressed by the above factor compared to the
0 usual post-Newtonian correction. Hence, the effect due to
12 12 this correction is almost impossible to detect.
ﬂ) =0l 7. When we consider the case in which the matter fields are
a.r, a.r, on the positive tension brane, the correction to the four-
(5.21) dimensional Einstein gravity in the linear perturbation ap-
pears at the relative order 6¥((1/r,)?), while the correction
In the case with the matter fields on the positive tensiorin the second order perturbation ©((a, la_)?(1/r,)?)
brane, the residual terms represented by-) in Eq.(5.19  compared to the usual post-Newtonian terms. Hence, it
are, at mostD(Izlaz_rf) as before. To conclude, the four- seems that the deviation from four-dimensional Einstein
dimensional Einstein gravity is approximately recovered ungravity appears at a larger scale in the second order pertur-
der the assumption of the large coupling limit. The correc-bation. However, this is very likely to be an artifact due to
tions to four-dimensional Einstein gravity are suppressed byhe limitation of our approximation scheme.
the factor ofO(B-./a%) or O(y-/a2). To give a complete proof of the recovery of the four-
dimensional Einstein gravity, further extension of the present
V1. SUMMARY ar)alys:is.will be_ necessary. Here we considered the large cou-
pling limit. It will be interesting to evaluate the dependence
In this paper, we have considered the second order gravef the correction on the coupling strength. Furthermore, to
tational perturbations in the RS two branes model with thgake into account the contributions from the matter fields on
radius stabilization mechanism. As a model for the radiughe other brane will be interesting. To investigate these is-
stabilization, we have assumed a scalar field that has a psues, a formulation along the line of this paper will be prom-
tential in the bulk and a potential on the brane. From thesing. Through this second order calculation, we have en-
five-dimensional Einstein equations, the master equations farountered many miraculous cancellations. This might be due
the TT part of the metric perturbations and for the scalar-typao our possibly bad choice of gauge. We would like to defer
perturbation are derived assuming static axisymmetric conpursuing a more simplified derivation to a future publication,
figurations. We have presented formal solutions of thesén which we will discuss the unsolved issues mentioned
equations by means of the Green’s function. We have showabove.
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The last equation is particularly useful to integrateandSy
W|th respect toy. From the definitionp , andv _ are related

1
APPENDIX A: 4D EINSTEIN GRAVITY V_—Uv,.= 5 (B2)
2Na

We have used the isotropic gau@@®16 to fix the radial
gauge coordinates because it is easy to compare with th@en the branesi. andv. become
four-dimensional Einstein gravity. However the calculation
of the second order perturbation becomes slightly easier by H(y.)
taking £ =0, although we do not previously know the cor- Us(ys)=1t— N u.(y=)=1,
responding four-dimensional Einstein gravity. In this appen- =
dix we derive the expression for the result of the metric
perturbations in four-dimensional Einstein gravity in an arbi-
trary choice of the radial gauge, which corresponds to the
various choice of" in Eq. (2.25.

In general, the radial gauge transformation from the isoFrom Egs.(B1) and (B3), we obtain

tropic gaugeA,s to an arbitrary gaugé\gr is given by

va(ys)==+ v+(ys)=0. (B3)

2a2N’

y_ 1
dyu.vi=——. (B4)
A=A~ A, (A1) v T NS

where the generatqf is related to the quantities at the first The sums of+ and — modes are
order perturbation by the gauge transformation law,

1 N H 1
K(gr)—gér):ﬂé)—gféu%fr. (A2) g UUU(y)zN_aZ' g ov(y)=—

2Na?’

On the other hand, these bared quantities are also related to
the quantities in the Newton gauge as

> aUL(YU_L(Y)=0, 2 au,(y)v_,(y)=

v v 2Na?’
K.(;)_E(g%)_zérr:A(l)_ B(l)le(é)_gl%)_ 2glrs,r ’ (BS)
(A3)
and also
whereé| is defined by Eq(3.16). Therefore, we find thaf'
is simply given by¢"=¢"— &, Substituting this relation H
into Eq. (A1), we obtain ° 2+ Ug(y)f(y,) = +a2 N flys)+ §+ f(Ye),

AP=AR+Al (s~ £). (Ad) )
_ _ _ | N2 oaju,(y:)f(y,)
By this equation, the metric perturbation of the four- o=*
dimensional Einstein gravity in an arbitrary gaugeis de-

termined. =H(Y)f(y2)+N 2 galf(y,),
o==*
APPENDIX B: USEFUL FORMULAS fy.)
e
In the calculation of the second order perturbations, we 2 oL (Y)f(y,)=— N
often use some relations and results that are easily derived 7 ax
from the original definitions and equations, but we have not _
derived them explicitly. It is convenient to summarize such Us(Yg) =Ug(Ys). (B6)
results, and so we devote this appendix to giving the useful
relations and formulas. 2. Equations

From Egs.(2.14 and (2.25 the derivatives ofA™® with

l.u.,andv. respect toy are

We give some properties of the functioms. and v - )
which are defined by Eq$3.10 and(3.17). The differentia- L) _p _ Sk sy

tion of these functions with respect yoare Ay (LYI=Ay= ol ¢~ bot), (B7)

104034-15



HIDEAKI KUDOH AND TAKAHIRO TANAKA PHYSICAL REVIEW D 65104034

A 4k . 3AY d)o(p
AD(ry)=—=(Y—A)—4HA ,— —do(o— do&’ W= — . Y+ B15
HIY=—(Y=A) v~ 3 Polo— dot). = peati + oY+ . (B15)
(B8)
and using this result we obtain Ao GHAY
W= — + ——+2(do—He)Y
B B A go,yy az Ka2¢0 (¢0 d’O)

0y[§yAyy+§’A'r]=A,y(Y—4H§V)+gy;(Y—A) by
—¢0+—° 0. (B16)

o

j(— _
- ;f,yrA,r‘F grA,ry
Integrating by parts, we derive

2k . . .
- ?(¢0Y+ 2¢08") (9= o).

3
(B9) f dydy(a u(,)( 2 50 S¢)
0
We have often evaluatedl, andB , on the brane, which are
determined by thejunction_ conditic(ﬂ.32). These quantities =a2v,g(y)8¢,— fydyazsw- (B17)
are purely KK mode contributions. Equati¢.9) gives Yo
L For reference, we give the explicit form of E@®.39 for
AGY(T, y)———E v AD,, st
3 ]un
Ne . doe®  3eAY
BEY(TY)=3 o (B10) = Sun~ 53 Ve
2¢0 2¢y  2ka‘gy
and, takingy=vy. , _ & ¢o BEL(AY),
o o) S e
o o 2ka’ g
4
AT y-) =t ——AD., 3(Sy+a2HY?)  9(AY)?2
3Nal N -
8 2kaldy  AKPQ2H
0 4 3$oAY+6HAY (cp boé)
BTy g e B 2l R b 2be
i ¢o §
which are the same as E@.32. _ Xay| — |+ =20, |(¢— ¢0§y)
As for the scalar mode, we obtain from Edd.4) and
(4.5
+(— ¢o§y>[ " 53— (0= ¢o)
1 2H d’o
YUy + ——efry)=3 E ®,, (B12 .
¢0 u ¢O
v(ﬂ — - (B18)
) 4¢ 2¢q
(Y +2HE )y =3 2 @, (B13)
B 7 3. Goldberger-Wise mechanism
From Egs.(2.13 and(2.15, In the text, we assumed that tlydntegration containing
the factor 1{}3 is dominated by the contribution near the
24 1 3V (AY) negative tension brane. To justify this assumption, we dis-
(Y(P)24 ((P(l))zz i (aZY rﬂ + (— cuss the behavior of the bulk scalar fiefg). For definite-
’ az”’ "o 2Ka2¢§ ness, we adopt the model proposed by Goldberger and Wise

(B14) [13], in which the scalar field potentials are
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272 (1)
~ [ ~ ~ y-U-AY
Ve(@)= =5 V(@) =rle’=h71% (B19  YE(ry)=3Nu=(y) f —(.ﬁf

Y+ K®q

dy’ (for ysy.).
(B25)

whereho.magb(yg). M and y are the mass and the coupling
constant, respectively. The scalar field is solved in the weak

. . . APPENDIX C: EXPLICIT EVALUATION OF THE
back reaction approximation as

LEADING ORDER

To derive the leading order of E(b.8), we give the result

boly) =B +Bye"?, (B20)  of the explicit evaluation of Eq(5.1). We use Egs(4.1),
(4.4),(4.5 and the junction conditiofi2.32 that is rewritten
where v;=21"1+ 472+ M?,  »,=21"1= 472+ M?,  in terms of the KK mode as EB11). Keeping the terms of
and O(r; ?), each term is given as follows:

Bi~e "1 do(y_) —e"2%pg(y )],

Bo~ ¢o(y+) —€ "eho(y-). (B21) — A

According to Ref[7], the mass squared corresponding to

the lowest eigenmode in scalar-type perturbat'mé, is es- (€D
timated by
4 oNg . 16 q 30, , AdD. 20 d
0 katy? 3almd
Q.D. N ¢, AD N 4D p)?

Since kp2=<1"?2 for the assumption of the weak back reac- r2 3r 3r
tion to be Consistenmg is at mostO(l ~2a?). The dominant
contribution to this integral comes from the minimum of ®. AD O, (ADL) | 4 )

442 N =N +t __(q)t,r)
(a*¢d) at y=y.={l log[v,B,/(v:B) /41 + (M?I?/4) ory 4 3

=d wheny.>d. For convenience, we define a quantity of
O(1~2) by m&:=a~2m3, absorbing the facta? . Following
the argument given in Ref7], we obtain the estimate

4D AD 85’(A(I> ) * 2H
+ + 3 + ,r—gNazt

Y- U,lg 1 X (CDin)Z—Z&I)iACI)JrZJ' dr
N dy ~ (B23)

v keh  3aiazmi

X

4
_(q)i r)2+q)i(ACDi) rHa (CZ)
wherea andB are+ or —. Here we used the fact thafu . r ' '

is a slowly changing function foy>y, in the weak back
reaction case. From this relation, with the aid of inequalities
u_<a_2 anda®<u, =1, we obtain L2, 4H

+2Nals; = - §§'(A¢i),r19N—J dri®.(AD.),

al
d 1
Nf dy—=0| 5 —5=5/ 6 ,| 64 DD,
0 " key acaimg +F(¢i*’) ty driy — 2

P.AP. (P )? N Q. AD,

d uul 1 +
Nf dy .;so( 2i~2) (for i,j=0, i+j=2). 3r ér 2
0 Kg asmg
B24 3b. AD . AD .
(B29 | —= - 4‘+( . ;)’r>fr2d>+dr :
r r r
The estimate for Eg4.17 can be obtained by approximat-
ing Eq.(3.23 as (C3
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Nfd 26 effd 507 200.D.
Ya=ne"g ) & 3r3 i 3r?

3(P.,)? 20.AD.
3@ 20 *+fr2fbidr

2r r

2
15fr o, dr 100, 200,
X\ - 9 + (6 N 5

r

H

1+_

Na?

1
ré)’

(C4

BAD .
+—

(ML), || 16

r3 3

r

D, )2
x(f( —")dr—cbiA@i
6r

+0

e 64 3D, AD.  3(D. )2
ZNJ dya Sebr:?f dr 4 - 4r'

¢tA®i+1WDgD:r 52
A 122 3

300, 170, 10D,

+ —
4rt 4r® ré
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15f r2d . dr
v 2
5 fr d_.dr
H
+|1+x—
Na?
2 16 ( dr
z 2_ | 22 2
X 3(¢)i,f) 9 r +or )
1
+0 —), (CH
r*
oN | L=A(D2) + H
a?v.AS,. = * —
yi vy 9\ "7aN/  onZat

——fdyau+

_4
*

(C6)
Y- u.ASy. ANA(PZ 1
SNJ dy' — _ZY*: ( )fdyazu?iJr(’) il
Yo K M
(C7)

Substituting these results into E¢.1), we obtain the lead-
ing term of Eq.(5.9).
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