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Second order perturbations in the radius stabilized Randall-Sundrum two branes model.
II. Effect of relaxing strong coupling approximation
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We discuss gravitational perturbations in the Randall-Sundrum two branes model with radius stabilization.
Following the idea by Goldberger and Wise for the radius stabilization, we introduce a scalar field which has
potentials localized on the branes in addition to a bulk potential. In our previous paper we discussed gravita-
tional perturbations induced by static, spherically symmetric and nonrelativistic matter distribution on the
branes under the condition that the values of the scalar field on the respective branes cannot fluctuate due to its
extremely narrow brane potentials. We call this case the strong coupling limit. Our concern in this paper is to
generalize our previous analysis relaxing the limitation of taking the strong coupling limit. We find that new
corrections in metric perturbations due to relaxing the strong coupling limit enhance the deviation from the 4D
Einstein gravity only in some exceptional cases. In the case that matter fields reside on the negative tension
brane, the stabilized radion mass becomes very small when the new correction becomes large.
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. INTRODUCTION (massf=0. On the other hand, in the two branes model, the
mass spectrum is discrete, and hence the correction becomes
Understanding the role of extra dimensions has long beeshort ranged. As was pointed out in Rgf3], the leading
a focus of research. Recent developments in string theoryorrection to the metric perturbation can be relatively large
stimulate a new possibility in a way to realize our Universe,in amplitude but it is proportional to the local energy density
i.e., the “braneworld.” The braneworld scenario suggestsof the distributed matter on the branes.
that our Universe is realized on a brane embedded in a higher The gravity beyond linear perturbations is also an inter-
dimensional spacetim -3] (see alsd4-6]). esting subject to study. For the single brane model, to study
The explicit models introduced by Randall and Sundrumnon-perturbative aspects of gravity, many authors have dis-
(RS) are simple but have attractive featuf@s3]. The two  cussed black holes in the branewdr®—43. However, any
branes model, which was proposed earlier, is constructed tylack hole solutions that can be thought of as a state after
orbifold compactification of the 5D anti—de SittéAdS)  gravitational collapse on the brane have not been found yet.
spacetime, in which the two flat branes are onZesym-  On the other hand, there are studies of compact star on the
metric fixed points. The single brane model, which was probrane[44,45. A pioneering work of numerically solving a
posed later, is obtained by pushing the second brane to infifelativistic star on the brane was done by Wisenidf].
ity in the first model. Another direction of research is to study higher order pertur-
Since the bulk geometry of these models is warped, theations. Second order perturbations have been studied, and
behavior of gravity is not so trivial, and various interesting 4D Einstein gravity was proven to be restored under certain
aspects of gravity in these models have been discusseadstrictions[47,48.
[7-15. One fundamental but remarkable fact is that in the For the two branes model, the recovery of 4D Einstein
RS single brane model 4D linearized Einstein gravity on thegravity is also concluded in our previous papé8] under
brane is derived from 5D Einstein gravif$,9,12. Also in  some assumptions. However, the mechanism for the recovery
the RS two branes model, 4D linearized Einstein gravity isin each model is not so clearly understood as in the case of
restored[10,14 if the distance between branes, which welinear perturbations.
refer to as radius, is stabiliz§d 6—28. Although 4D Ein- The basic assumptions taken in the second order pertur-
stein gravity is approximately recovered in both models, thebations of the two branes model are that the radius is stabi-
corrections arise in different manners. In the single brandized by the mechanism proposed by Goldberger and Wise
model, the leading correction to Newtonian potential appear§GW) [16], and that the matter distribution on the brane is
in the form of an inverse cubic potential, and therefore thestatic, spherically symmetric and non-relativistic. In the GW
correction is long ranged. This is because the mass spectrumodel for radius stabilization, a bulk scalar field is intro-
of the Kaluza-Klein modes is continuous starting with duced. This scalar field has potentials localized on the branes
as well as a bulk potential. A further technical assumption
taken in the previous analys€$0,49 is that the values of
*Electronic address: kudoh@yukawa.kyoto-u.ac.jp the scalar field on the respective branes are stuck to fixed
"Electronic address: tanaka@yukawa.kyoto-u.ac.jp values due to extremely narrow brane potentials. We refer to
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this simplified setup as the strong coupling limit. In this pa-spectively. The energy-momentum tensors of these fields are
per we generalize our previous analyses of linear and secorassumed to be given in the perfect fluid form as
order perturbationf49] relaxing the restriction of the strong

coupling limit[51], and study whether there arise observable T.,#=a.* diag—p. ,P. ,P. ,P.}. ©)
effects and/or no pathological feature in the metric perturba- _ .
tions. The warp factora. :=a(y.) in the definition of the energy-

The paper is organized as follows. In Sec. Il we brieflyMomentum tensors is incorporated so thaind P become
review the formulation developed in R¢9], which we call the 'p'hysmal quantities measured by using the metric on the
paper |, summarizing the notations and the basic equationBOSitive tension brane. _ _

We do not give the explicit form of all the necessary formu- ~ The 5D Einstein equations give four independent pertur-
las that are already presented in paper | to avoid repetition@ation equations. TrJ‘e two equations are the constraint equa-
of rather lengthy expressions. We quote the equations in paions for ¢% and ¢, which relate them tor® [Egs. (I-

per | such agl-1.1). Throughout this paper, we use the same2-12 and(1-2.13)]:

notations as those in paper | except for the subscripts “pse”

(J9) =YD DAL
and “\,” which are introduced in Eq(13). In Sec. Ill, we Yrry)=Yo+etATTS,, )
study the corrections caused by the finiteness of the coupling
strength. Section IV is devoted to the summary. eI(r,y)=— 2ﬁy(azY(J))
2K¢Oa
Il. BRIEF REVIEW OF THE FORMULATION 3
In this section, we briefly review the formalism and the + 2 e[S, +a,A7"S,], (7)
KPo

results presented in paper I. We consider second order per-

turbations in the RS two branes model assuming that mattef, ..o \we have introduced? defined bye®=0 and e?

distribution is confined on one of the branes and it is static_ ;- Hence, as for the scalar type perturbation, once we
and spherically symmetric.

solve the perturbatio!”), other variables)™” and ¢ are
. ] also known. The other two equations are the master equa-
A. Notation and assumption tions for A and Y [Egs.(1-2.14) and (1-2.15)]:

The Lagrangian for the scalar fielgl introduced for the

radius stabilization is (a?AD)=¢eV)s, | 8

4 1 1
;5),8. (?y; +;A

1~ab~ P P ¢
L=— Eg (P,a(P,b_VB((P)_ Z+ V(U)(()D)g(y_yo)!

. 1 2k . 1
242, _~ o K42 = 2v()y = ()
- + = .
1) a ¢o3ya2¢gf7y 3 ®o azA (@%Y")=€"Sy. (9
whereVg andV . are the bulk potential and the potential . .
on each brane, respectively. To solve the master equations, we must specify the
In analyzing metric perturbations in the bulk, we use thePoundary conditions on the branes. The boundary condition
“Newton gauge,” in which for AY) is given by Israel’s junction condition, whereas the
boundary condition for the scalar type perturbation is derived
ds?=e?" dy?+a?[—e ¥ dt?+eB ¥ dr2+e® ¥r?2 d0?], by integrating the equation of motion for the scalar field

(2)  across the branes. It is well known that these junction con-
ditions are easily obtained in Gaussian normal coordingtes

only ony andr, anda(y) is the warp factor that is deter- in which a brane is located g_rtz const hypersurface. Here
yony ’ y P we associate an over-bar with quantities written in Gaussian

m:;?ig f%cstfioolxlsngntget}hgascckg;?ﬂ‘?g degrléagiﬁi&gg Jhet}o thnormal coordinates. The boundary conditions in the Newton
P P Sauge are derived by applying infinitesimal gauge transfor-

second order as . 2 a. sa . . .
mationsx®=x?+ £2 to those written in Gaussian normal co-

where the metric function®\, B, C, Y, and ¢ depend

A(r,Y)=ADr y)+A@(r,y), (3)  ordinates. These transformations are described in Sec. Il B in
paper .
~ _ (1 2 The boundary condition for the scalar type perturbation is
e(r,y)=do(y) + e (r,y) + o= (r,y), 4 given by[Eq. (1-2.37)]
where ¢, represents the background scalar field configura- J)
tion, which depends only og. The metric functionsA, B, OB Y= A - 3_ AY(J)_,’_E(J)SjiLn

andC are related to each other by the relatidh2.5) so that 2 ka4 ¢g
they compose the transverse-traceless part at the linear level.

Our interest is the gravity induced by non-relativistic mat- (at y=vy.), (10)
ter fields confined on the positive and the negative tension

branes, which are located g=y, andy=y_(>y.), re- where we have introduced a coupling constant
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2 YO =YD+ v+ v$),
)\i = .. A . (11)
V(:)"‘ 2(¢o+1po+)

AYOry.)=— s > a4T(J)Iﬂa§T(+J)
An over-dot denotes differentiation with respect yoand P N 3 o= 3 77
¢o-=o(y+). Note that the explicit expression &, is
given in Eq.(I-2.39). The parameter of the gauge transfor-
mation iny direction,%Yt(r), is a function ofr, and it is
related to the energy-momentum tensor on the corresponding —2Ne
brane by Eq(l-2.34).
In paper I, the problem was simplified by taking the y
strong coupling limit. The condition of the strong coupling is + f _dy( azviAS(P

—e)(s,+2Ha%s;)

> a'ang

o==x

that ’(’i) is sufficiently large. Taking this limit, we obtain Y
Ae—0. (12) ¢ 3 s, s
2k’ v

In this paper we discuss the effects due to the terms that arise

by considering non-vanishiny.. . For brevity, we refer to LA LO
these terms as interaction terms. AYD(ry.)=—2NA Uzi O'HL(T'FaZ_N) : (13

B. Derivative expansion
where

Formal solutions for perturbation equatiof® and (9)
were derived in paper I. The transverse-traceless perturba-
tions A are decomposed to massless zero mgland mas- LO(m)=H(y,)
sive modeAg. Using the zero mode truncation approxima-

-0 3)\.02 AYOD + a2 kSﬂm
2k g 2¢9

tion, the long-ranged part of the transverse-traceless o A

perturbation, is evaluatedEq. (I-3.5)]. The remaining part _ ¢°_‘P n 3¢ Y (14)

As [Eq. (I-3.9) and (1-3.12)], which arises due to the contri- 243 2xka’P3) |

bution from massive Kaluza-Klein modes, is evaluated by Yo

using a derivative expansion method. In this method, We4ereN is the normalization factor defined by

expand perturbation variables in terms of the expansion pa-

rameter Hr,) 1~H 19, assuming that the typical length y_

scaler, of perturbations is much longer than the 5D curva- N~* —ZJV a® dy, (15
+

ture scaleH ~':=(a/a) 1. It is important to stress that this
derivative expansion method is valid only when the mass ofnqu. is given by
the first excited mode is sufficiently large. In the linyit
—o, the excited mass spectrum becomes continuous, and 1 (y
therefore the derivative expansion method is no longer valid. U.(y):=1-2Hv ., vt(y)==—2f a’dy’. (16)
(See Secs. llIB.1 and IV B in paper | for more details. aJys

As for the scalar type perturbation, there is no zero mode ] . ) ) )
owing to the stabilization mechanisfi0]. To discuss the e mention that the source ter8y,, that is defined in Eq.
contributions from massive modes, we expand the perturbd10 containsV(., and V({.,, and hence\.S;,, does not
tion variables by using the derivative expansion. Althoughvanish even in the limi€12). However, it was shown that the
the massive modes seem to give only the short-ranged part,@@mbination that appears in E€L4) vanishes in the strong
turns out that the formal solution of the lowest order in thecoupling limit. Namely, we have
expansion includes long-ranged metric perturbations. Hence, %
we refer to this part as the pseudo-long-ranged part. The LY’~0 (for A\.—0). 17
formal solution of the next order, which is obtained by an ] o
iteration, is referred to as the short-ranged Yayt (See Sec. Note also that, in E(13), the number of derivatives on
Il C in paper 1) the nght_ hand §|de |s_Iarger b)_/ two than that on the Ieft_ hand

The pseudo-long-ranged part includes the contributiorside. This fact is manifest for linear perturbations, and it also
from the interaction terms that are higher order in derivativell/NS out to be the case for the second order. Hence, when we
expansion as the short-ranged part. Hence we further divid@valuate{” iteratively, the leading term with respect to gra-
the pseudo-long-ranged part into two pieces; the contributioflient expansion is obtained by substituting pseudo-long-
from the interaction terms, which we denotg, and the ranged par‘%into Y on the right hand side of E¢14).
remaining terms, which we deno¥,s.. We quote the ex- Although the short-ranged par)) also contains interaction
plicit expression for the pseudo-long-ranged daege Eqs. terms, we do not discuss them in this paper because they are
(1-3.21) and(I-B.6)], even higher order im; 2.
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At the linear level, the transverse traceless part composed To obtain an approximate estimation for the short-ranged
of A, B, andC does not have interaction terms. The param-part, we assume that the back reaction of the bulk scalar field
(1) ; | 142 ;
Ay to the background geometry is wegki|/H=<1. In this case
eter of the gauge tre_msformatl@@’ is also unalter?d_by the ihe metric approximately takes the AdS form
effect of non-vanishing\ . . On the other handp™) is re-

lated toY®) and changes according to the change/i. a(y)~e~ W 22)

By repeating the derivation of the expression for the tem- '
poral component of the metric perturbation induced on thehere ¢ is the curvature radius of the bulk. For later conve-
branes(I-5.1) starting with the equation for gauge transfor- piance e evaluathl in this weak back reaction case. It is
mation (I-2.25), we will find Eq. (I-5.1) is slightly modified approx,imately given by
as

Ay — ap — 1
AAR(ry.)=8mG(pY+3PD) —A[ELAL \+ELAL N~ —
:

H.
1+ —|, (23
2H%
1 EY N2 4/ o__ o
TH(E) HZN; 78,(S¢—S5) taking into account the fact that the integab) is domi-
nated aroung =y, . The second term in the round brackets

+2ny_d 2(Sn. —Syu)+a% L AS is the leading order correction due to the back reaction. Here-
v Y| @°(Sax— Sy VB0 after we seta, =1. _ . _
Under the assumption of weak back reaction, it was
3u. shown tha{10,49
+——ASy. [—AYY. (18
210 [AD(r,y.)lsc=B.O(r2Ad ), (24)

For the spatial components, it is convenient to take the isoynere the suppression factors are
tropic gauge. We simply quote E€-3.15) in which the iso-

tropic gauge is taken idth order: 02 02 _(O.l mm)z 1016

4 ¢ 2
et

— 1 . «kH 3
AB(J)(r,yi)=—EAA(J)ITaziT(iJ)—EAY(J) (25)

3 ) 2 - The short-ranged part for the scalar type perturbation is simi-
—5€7| 348t S, +2HalS, |. (19 jarly suppressed as

2
a’B.
[YE2(r,y-)lsc=—5 5 O(riAd..), (26)
mgf
S

The explicit additional term in these equations is only the
last term in Eq.(18), but there are implicit changes through

YO, ¢ andAY). The explicit expressions for the source
termsS, ands, are given in Eqsil-2.16), (I-2.18), (1-2.19),  \yherem? is the mass squared of the so-called radion, which

(1-2.22), (1-2.33), (1-2.35 and(l-3.14). is the mode corresponding to the radius fluctuation, in the
strong coupling limit. To be precise, the radion is defined by
C. Corrections the mode with the lowest mass eigenvalue in the scalar type

. . 2 2 72 . . .
As we have done in paper I, we assume that matter ﬁe|d%lzertubrblatlon._ i'nc‘*jss Oh(al )’.Wh'(;h 'S gr:ven bly Eq.
reside on one of the two branes. By this simplification, the(29 Pelow with\.=0, the corrections from the scalar type

sum of the Newton potential® ., which are defined by E?e:}rtirr%a(l)tijoens tiﬁntcri\etotetr)wiolfr'glzre tg:rr;utrrl]o%?i% rl‘rom the Kaluza-
_ 1 : .

A(Dt(r)_KNp(t 12, is replaced as On the positive tension brane, the short-ranged part is

suppressed when the typical length saglef perturbations

D D, D (y=ya). (200 is much larger tham_mg*. On the negative tension brane,

7 the short-ranged part is suppressed fQe0.1(a_ /mgf)

mm, where the rati@, /a_ is set to 18%, the value to solve

"tfie hierarchy between Planck and electroweak scales. One

may think that this effect is potentially observable especially

on the negative tension brane. As we have mentioned in the
[AS2(r,y)]sc=—[BS(r,y:)lsc=2®., (21)  Introduction, however, the short-ranged part is proportional

to the local matter energy densjzli@)ocAfI)i . Therefore, the

where[ - - - J]sc means the quantity in the.—0 limit. The  short-ranged part dose not contribute to the force outside the

index = associated with the metric functiofisot withA and  matter distribution, and it is not observed as a change of the

L) specifies the side on which matter fields are distributed.Newton’s law. Not the force but the change of the metric

Then, the long-ranged part of the transverse traceless met
perturbations is given b{l-4.7) and(l-4.8) as
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perturbation due to the short-ranged part becomes significant N
on the negative tension brane only whep® Y= —+..,
=(m2t?/a?)0(TeV?). a

Extending the linear analysis mentioned above, second
order perturbations were investigated in paper I. In the case 2™
that matter fields are confined on the negative tension brane, S~ = 52
; ; 3o a¢p
the long-ranged part at the second order contains corrections
to 4D Einstein gravity with relative amplitude 6f(3_/a?) /\/[ Jy ( 2k m2

dy(a?ym))

compared to the ordinary post-Newtonian terms. The relative dy’+c|+---, (28
amplitude of the corrections at the second order looks less
suppressed by an extra factor of/than that at the linear
order. However, in the strong coupling limit, it was shown Wherec is a constant andV' is a normalization constant.
that these enhanced corrections are completely canceled HjPosing the boundary conditiofi0) on this approximate
the contributions from the short-ranged part, and the recovsolution, we find that=—X . m?/ ¢35, a% and a mass eigen-
ery of 4D Einstein gravity was confirmed. In the case thatvalue close to zero is given by

matter fields are confined on the positive tension brane, the
corrections in second order perturbations are relatively 2k (y-dy’' y_ dy’ Ay -1
m2~ f - f =Y |-
y+ a ¢O a arr¢0(r
(29

2 442
yr\3a° a“¢;g

3

O(B. /a%) compared to the usual post-Newtonian terms.
However, the appearance of the enhancement by the factor of
1/a? is very likely to be an artifact due to the gradient ex-
pansion method. Since the condition that the typical lengt
scale of spatial gradient is larger than that of the change i
the fifth direction becomest@/a®r?)=(B. /a>)<1 near
the negative tension brang, /a® appears as an expansion

Y+ a2

sing Eq.(I-B22) with the assumption of weak back reac-
tion, the above expression is approximately rewritten as

-1
parameter. s o .. 3 a |4 mg
mP=mg 1+ - ; | o (aZNZ) . (30
IIil. CONTRIBUTIONS DUE TO NON-VANISHING A where we have introduced non-dimensional parameters re-
lated to the coupling. . by

In the analysis taking the strong coupling limit, we ne-
glected the terms that vanish when is set to zero. Here we INEA PINEN
consider the effect of non-vanishing. to remove this tech- Q.= t_ = (31

nical limitation. We first discuss linear perturbations, and af- Kp3. 3H.
ter that we study second order perturbations.

When)\+zmg2€‘1, the expansion{28) is no longer valid
since the correction that comes from the constamécomes
larger thanV/a?. In such cases, instead, we can consider the

. . . o largeX .. limit keepingm?\ .. finite. Since we can neglent?
Before discussing metric perturbations induced by matte{irgrlnein*the buIEevf/)he%Inziﬁnz vie ?n dcfhate acnaapper%;lr)n“ate
Sy

fields, we study the change of mass eigenvalues for the Scal%lution to the above equation is given M~u, (y) in

type perturbations due to the effectiof . Settingg’. =0 in  thjs imit. From the conditiorf10) at the boundary =y, the

Eg-)(|-2-41) with J=1, we obtain an eigenvalue equation for mass eigenvalue corresponding to this mode is determined as
Y as

A. Mass spectrum

) 2_2H+U+(Y+)~ 2
K . - -~ ’
: aaz——azqﬁz Nus(ys) At
25279 3 0

a“dy

(32

"2
a’gady

where we used EdI-B3) with the aid of Eq.(23).

y(h=0, (27) When\ , (or A _) takes a large negative value, we can see
that the above mode of small mass becomes tachyonic, and
hence such a model is manifestly unstable. As we decrease
I\ | starting with\ . = —, the absolute value ah? in the

where the 4D Laplacian operatar was replaced with the €xpression(30) increases fromm?=0 and diverges to

+m?

1+22 xgé(y—y(,))

mass squareth?. A general solution for smatin? ignoring |~ whenX.. is a certain r?.ega.tive valug .., which de-
boundary conditions aty=y. was approximately con- pends on the details of stabilization model, e§, . Then
structed in Ref[10] as the mass eigenvalue returns frofw to mg as\ . increases
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from A .. However, this does not directly indicate that thethe factor in the square brackets on the right hand side
tachyonic mode disappears for. > A .. . This is because Eq. exceeds O(a2 /ms€2) In particular, when a*a,>1,

(320) is no longer valid for relatively Iarg¢mz| For large  Eq. (32 applies and we find m2~4N*/(3a,|H.|)
v?i=—m?, one can solve Eq27) by using the WKB ap- <a*H2/(¢3H,|). Because of the facta*, the mass of
proximation as the stabilized radion becomes even smaller. On the positive
tension brane, the first term in the square brackets on the

right hand side is suppressed only by the fadtor/H?

WhereCl andC2 are constants. |mpos|ng the boundary con- Wh|Ch is small but is not h|erarch|ca”y Suppressed As |Ol’lg
ditions (10) at y=y., we obtain §,v—a,)(A_v—a_) as\ , takes the natural order of magnitude smaller tifan
—exd2v ifafl dy](\. v+a.)(\_v+a_)~0. Without loss of @4 is at most O(H+/H+). Then, 2the correction to
.

generality we can assume thais positive. Then the expo- YH(r,y+)_ stays less tharO(,8+)O(r*A<I>+)_. However,
nential factor exf2v[*-a~1dy] is very large, and hence a when N, is much larger thar¢, the correction becomes

_ Ve T ; ~~ larger by the factor ok , /¢ than that in the strong coupling
solution to the above equation is approximately obtainedimit. Although these choices of parameters are not natural,
when eitherh . or A_ is negative as the possibility of the enhanced correction without changing
the order of radion mass might be interesting.

YW~ ey aly") 4 c e vy aly"), (33

v~max —a,\;t,—a_N_1). (34)
This eigenmode is the anticipated tachyonic mode, which C. Second order perturbation
remains to exist for any small negative valuehaf or A _ . 1. Temporal component

Although the values of .. depend on the details of the sta- , o . )
Let us discuss the contribution due to interaction terms to

bilization model, it is natural to consider the case in which - HPH el
second order perturbations. In the strong coupling limit, the

|\.| is less than or equal t®(£), and it must be positive. ' - !
To conclude, we find that the model has tachyonic mode i{_eadlng terms in second order perturbations are shown to be

., or \_ is negative. identical to that given by 4D Einstein gravity;

(2) (2)
B. Linear perturbation [AAR]sc=87G(p?+3PP) —4d_ . AD.

From Eq.(18), the temporal component of the linear per- 1
turbation is given by +O| 5= (40)
a‘asr,
AS(ry ) =[Af]sc— Y. (35)

We will show that the corrections due to interaction terms are
As for the spatial part, we obtain from Eg4.9) and (35) similarly suppressed a®(1/a”a%r?), where and hereafter
we assume that . is not h|erarch|cally enhanced and hence
BN (r,y.)=[BM]sc— Y. (36) - is at mostO(1). In thefollowing discussion we concen-
o . " trate on the terms oD(r, %) with respect to the derivative
Substituting Eq(13) into Eq. (14), we can evaluate’ by  expansion, neglecting the higher order terms tfn; °).
iteration. Keeping up to the ordef ?, we obtain @)
For simplicity, we adopté "=0 as a choice of radial gauge

L(il) . H in linear perturbations, keeping second order perturbations
H., PINE 22 N ¢+—2 o, 37) still in the isotropic gauge.
- = We quote the dependence of the first order perturbation
Then Eq.(13) is evaluated by using Eq23) as variables on the warp factor from EQ-5.4):
L® LW a2H._ aZ ., 1
(1) N R A + W0 y@ @ % y .~
Y (r,y_)~2N H |1 2 Agi~a’,  Ypser »Ppser ) +1, & 2 (41)
=B_0(r’Ad )[a* a,+a_], (39 As for u. andv ., we have Eqgs(l-4.11) and(l-4.12) as
H, \L® @ a2 a2
YOy )=2N| | — | 57—+ — Us~—+1, ve~— -1 42
)\+( y+) _ 3Hi>H+ H, + a2 ’ U+ a ( )
. 2
H We list the perturbation variabl f the first order that
_ 2 + perturbation variables of the first order tha
=B O(rAdy) (3H2+ arta|. (39 pove a corection due to non-vanishing . As we have

discussed, there is correction ¥§*), which is denoted by
On the negative tension brane, this new correction becomeg{™ in Eq. (13). Sincee™ is related toy™ by Eq.(1-2.13),
important compared to that from the short-ranged part wherp!*) also has correction accordingly, which we denote by
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oM. In the following discussion, the values gt evalu-
ated aty=y.. are necessary. They are obtained from @&g)
as

3\
AY(y.)+O

Oy 43
@) (Y=) 2Ka+¢o+ (43)

4l
*

Although the source terms for second order perturbations are
mostly written in terms of the variables in the Newton gauge,

the expressiorﬂyl) in Gaussian normal coordinates is also
necessary. From Eql-2.31), we can read the interaction

term in A} as

(aty=y-), (44)

where we use«b)\ )(y )= <p(1)(y+) which follows from the
fact that the gauge transformatiéh2.26) of ¢) is not al-
tered by the effect of non-vanishing. . Also for the vari-
ablesY(" and (!, we give the dependence an andr,.

From Eqs (13) and (43), we obtain

YOy, e (ya)~ (45)

4.2°

=1 %

For later use, we quote the relatiofisB12) and (I-B13) in
the notation of present paper as

E(p

o==*

&
2H. &2

1
Y+

(at y=y.),

2H .

(1)_

(at y=y.).

pse

3 2

(46)

We begin with the case that matter fields are confined on

PHICAL REVIEW D 67, 044011 (2003

As for (S,—S;), the underlined terms in Eq#l-2.16) and
(I-2.19) give the leading correction as

-, d_
2NL a“(Sa—=Sy)=["1sctO| 5 Yyr-(y-)

*

1
a’r4

+0 , (49

where we have used the fact thab,_(y_)/do-
=O(H-"Y,_(y-)). The leading order correction frotm,
comes from the last two terms in E(-2.18). These terms
are rewritten as in EqJ-5.7), in which we did not assume
the strong coupling limit. The underlined terms on the right
hand side of Eq(I-5.7) give the leading order correction as

y- 5 2k
2N y dyaU—Aszp:['"]SC_?[QDpse—‘P)\—]y:y,
azu_ 2 2
—ZNAJ dy > (Y _Ypse)
d_
+0 —ZY)\,(y,) +0 2274

(50)
The last term cancels the contribution fraip that is given
by
1
2r

4

*

ASy= [ASY]SCJF X a 2paA(Y?—

Se)+O

(51)

the negative tension brane. We discuss the contributions from

each term in Eq(18) one by one. The second term on the
right-hand side of Eq(18) gives

1

r

4

*

—A[& A +E A HHE)?

2K(-ﬁ0,

=[Jsct A[E @\ (Y- )]+O(a

(47)

The contribution from the source terr and Sy is evalu-
ated by using the expressions given in EGs2.33) and (I-
2.3H as

zNg cal(Sf—S7)=—2Na*[S; —S{ Isc

+0 +0

=l

d_
r_Y)\ (y-) 2
(48)

* *

where again the leading correction comes from the under-
lined terms in Eq(I-2.21). The second term in Eq47) and
that in Eq.(50), which potentially give enhanced correction
to A{?) of O(£2d2/r2a%), cancel each other with the aid of
Eq. ( I 3.27). The terms ofO(r, 2®_Y, _(y_)) are smaller
by the factor of® _ than the correction we have found for
linear perturbations.

Now we consider the last term of E(L8), i.e., the con-
tribution fromY{?). To evaluatey(?), we studyL _ given in
Eq. (14). According to the dependen¢él), some terms have
possibility to give an enhanced correctionAy{?) of order
0O(1/a%r%). Note that the terms o®(1/a*r?) in AL_ give
the terms ofO(1/a°r%) in AY(®, while the contribution
from AL, does not change its order with respectto. In
the following discussion, we keep only the relevant terms
that might give enhanced contributions 6f(1/a°r?) to
AY®.

Keeping the terms o®(1/a®
Eq. (14) becomes

2 — .
ry), the source terng;,, in
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No éz-So(pz 3pAY
2¢o " 243 2xa’pd
(& )2 3 .
~— S+ ————(Sy+a’HY?) :
2a% 2ka” ¢g_ _
y=y_
(52

where we used the expression given in HeB18). Here the
term of Sy is evaluated by using Eql-2.21). Keeping the
terms ofO(1/a*r?), we obtain

L 2Ho 2x
Sy+a? HY w—f 3Y, AY+¢—(AY) 5 (o e
0
—p(Ag) )+4a2B | 2HY  +HEL | [dr,
0
(53

where we have used E@6). The right hand side of Eq14)
also containg'(?). To obtain the lowest order correction, this
Y can be replaced with'(2.. We can neglect the contribu-
tion from Y(Se(r y.) in Eq. (13), which is not enhanced with

respect to the factor ofa_. The relevant terms in
AY@)r,y_) areO(1/a’r?), which are
K _
AY@Ar,y-) ~§A(¢%)—(s¢+2Ha2_s§), (54)

where the first term comes from the integratiorsgf Using
Eq. (I-2.16), S, in the second term can be explicitly written

down. The relevant contribution comes from only the under-

lined terms in Eq.(I-2.16). With the aid of Egs.(I-2.10),
(1-2.13), (1-B14) and the fact thatq*B,,) ,=O(a%/r?), we
HY +HEr

obtain
~f dr[AfaZB,y
0

it 8/3(§Y?,+K¢i>H.

As for S; , we can read from Eql-2.35 as

1
+ 5

5

a%s;wzj [a®B,Y ,+& (AY),Jdr—& AY-H(& )?
(56)

where we have again used Edd6). Substituting all the
results into Eq(14), we obtain

PHYSICAL REVIEW D 67, 044011 (2003

L& 3a_ K .
Tabrreed Il 3 (@7 (do)),
H(AY), :
+(—)(<p Bod)+ (Y2 (2HE)?)
bo
+2HPIA(Y+2HY)|. 57

Further application of Eq943) and (46) reduces the order
with respect to eithem~* or r,. Therefore we findL®
=a_0(£?®?/r?a®)+0(1/r%). Although we have not dis-
cussed the contributions associated with the faetqrin
detall, it is manifest that they do not have any enhancement
with respect to the hierarchy factor ofal/. Therefore the
interaction terms in second order perturbations become

B_Dd2
r?

x[O(ata,)+0(a )],

AR (r,y_ )=[AAR(r,y_)]sc+O

(58)

which are suppressed compared to the correction at the linear
order by the factor ofb _ .

Next we consider the case that the matter distribution is
concentrated on the positive tension brane. In this case, the
first order quantities listed in Eq&t1) and(42) do not suffer
enhancement with respect to the factor cd 1/ The factor
1/a_ arises only throughy, . (y_) and ¢, (y_), both of
which areO(1/a%). Note also that the terms with, are

always associated with+(y+)=O(H+/Hi). From these
observations, we find

AR (ry ) =[AAR(r,Y)]sctO

m@z)

*

%) ] . (59

The amplitude of this second order correction is not simply
suppressed by the factor &, compared to the correction at
the linear order. There is a difference with respect to the
power ofa_ in the term withe_ . In paper I, we have met a
similar phenomenon in the analysis of correction due to
Kaluza-Klein modes at the second order. As was discussed
there, this phenomenon is a natural consequence of our gra-
dient expansion approximation.

H,\?
H_2 O(a;)+0

+

X

2. Spatial component
Finally, we comment on the spatial component. The last
two terms on the right hand side of E3d.9) are evaluated in
the same manner as was done z&ﬂ,zi) . The source terms
except for Sg have been already computed in evaluating
A_(Z) . The contribution fronSg is given by
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~ — ke Y (o— bty branes is static and spherically symmetric. For simplicity, we
ASe=[ASslsc kPoAl &2 (0™ dot)]. (€0 assumed that matter fields reside on either of the two branes.
which is similar to that given in Eq47). Combining all, we  The results for the case that the matter fields are on the
obtain negative tension brane are summarized by E&8) and
o (58), wherea .. andB-. are defined in Eq(31) and Eq.(25),
B=[B]lsct O(N(,Q—[Kg@]sc), (61)  respectively. The correction due to the finite coupling be-

comes important compared to that already existing in the
and therefore the correction is the same order as that of thetrong coupling limit only when the mass of the stabilized
temporal component. radion is significantly reduced by the effect of nonvanishing
N- . The results for the case that the matter fields reside on
IV. SUMMARY the positive tension brane are summarized by E8®. and

We h di d . bati in the Rand II(59). It is possible that the correction due to the finite cou-
e have discussed metric perturbations in the Randallsjing pecomes important when, becomes much larger

S““drum two bfaf?es mod_gl W'th radius stabilization. As 8han ¢ without changing the mass of the stabilized radion.
mechanism for radius stabilization, we have assumed a scalgf . - rections are enhanced by the factonaf/¢ com-
field W'th. a poten}(lal in the bulk E’:mc:(t[lhat 0:1 each bra?e. Inpared to those present in the strong coupling limit. The result
our previous wor (paper ), we ook Ihe strong Coupling ¢, second order perturbatior{§9) seems to show that the
limit, in which the brane potgnnal is extremely narrow so correction associated with _ are enhanced by a factor of
that the values of the scalar field on the branes cannot ﬂuc—zl 2 S S
a‘/aZ . However, this is an artifact due to the limitation of

tuate. In this paper, we extended the previous analysis rela>§he resent approximation using aradient expansion method
ing the limitation of taking the strong coupling limit. P PP 99 P '

In the strong coupling limit, it is known that the mass In conclusion, under the assumption that the matter distri-

squared of the stabilized radion tends to be hierarchicall i:m(e)zg ;ﬁa‘;’tigc Eailrrllgtesir?hergi:/i”yissémr?g:(rilr%a':g/ Ie ?:ggv:roer:j-
small asmi=0((a_/a.)?¢ ), where( is the bulk curva- gravity 1S app y

. . up to second order perturbations relaxing the limitation of
ture scale andg_ /a,) is the ratio of the values of the warp b P g

. . . taking the strong coupling limit. The condition that the cor-
factor on the respective branes. First we examined the shi ctions due toa. ,B. , and radion mass are sufficiently
.Of this mass elgenva_lue \_Nh_en we relax the limitation of talk'suppressed give§ a Eonsistency check for any stabilization
ing the strong coupling limit. We have shown that a tachy-model to use the scalar field of E(.) [50]
onic mode appears when either of the coupling constants '
defined in Eq(11) is negative. Hence, the models with such
parameters are unstable. When bethand\ _ are positive, ACKNOWLEDGMENTS
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