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Second order perturbations in the radius stabilized Randall-Sundrum two branes model.
II. Effect of relaxing strong coupling approximation
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We discuss gravitational perturbations in the Randall-Sundrum two branes model with radius stabilization.
Following the idea by Goldberger and Wise for the radius stabilization, we introduce a scalar field which has
potentials localized on the branes in addition to a bulk potential. In our previous paper we discussed gravita-
tional perturbations induced by static, spherically symmetric and nonrelativistic matter distribution on the
branes under the condition that the values of the scalar field on the respective branes cannot fluctuate due to its
extremely narrow brane potentials. We call this case the strong coupling limit. Our concern in this paper is to
generalize our previous analysis relaxing the limitation of taking the strong coupling limit. We find that new
corrections in metric perturbations due to relaxing the strong coupling limit enhance the deviation from the 4D
Einstein gravity only in some exceptional cases. In the case that matter fields reside on the negative tension
brane, the stabilized radion mass becomes very small when the new correction becomes large.
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I. INTRODUCTION

Understanding the role of extra dimensions has long b
a focus of research. Recent developments in string the
stimulate a new possibility in a way to realize our Univers
i.e., the ‘‘braneworld.’’ The braneworld scenario sugge
that our Universe is realized on a brane embedded in a hi
dimensional spacetime@1–3# ~see also@4–6#!.

The explicit models introduced by Randall and Sundr
~RS! are simple but have attractive features@2,3#. The two
branes model, which was proposed earlier, is constructe
orbifold compactification of the 5D anti–de Sitter~AdS!
spacetime, in which the two flat branes are on theZ2 sym-
metric fixed points. The single brane model, which was p
posed later, is obtained by pushing the second brane to in
ity in the first model.

Since the bulk geometry of these models is warped,
behavior of gravity is not so trivial, and various interesti
aspects of gravity in these models have been discu
@7–15#. One fundamental but remarkable fact is that in t
RS single brane model 4D linearized Einstein gravity on
brane is derived from 5D Einstein gravity@3,9,12#. Also in
the RS two branes model, 4D linearized Einstein gravity
restored@10,14# if the distance between branes, which w
refer to as radius, is stabilized@16–28#. Although 4D Ein-
stein gravity is approximately recovered in both models,
corrections arise in different manners. In the single bra
model, the leading correction to Newtonian potential appe
in the form of an inverse cubic potential, and therefore
correction is long ranged. This is because the mass spec
of the Kaluza-Klein modes is continuous starting w
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(mass)250. On the other hand, in the two branes model,
mass spectrum is discrete, and hence the correction beco
short ranged. As was pointed out in Ref.@13#, the leading
correction to the metric perturbation can be relatively lar
in amplitude but it is proportional to the local energy dens
of the distributed matter on the branes.

The gravity beyond linear perturbations is also an int
esting subject to study. For the single brane model, to st
non-perturbative aspects of gravity, many authors have
cussed black holes in the braneworld@29–43#. However, any
black hole solutions that can be thought of as a state a
gravitational collapse on the brane have not been found
On the other hand, there are studies of compact star on
brane@44,45#. A pioneering work of numerically solving a
relativistic star on the brane was done by Wiseman@46#.
Another direction of research is to study higher order pert
bations. Second order perturbations have been studied,
4D Einstein gravity was proven to be restored under cer
restrictions@47,48#.

For the two branes model, the recovery of 4D Einste
gravity is also concluded in our previous paper@49# under
some assumptions. However, the mechanism for the reco
in each model is not so clearly understood as in the cas
linear perturbations.

The basic assumptions taken in the second order pe
bations of the two branes model are that the radius is st
lized by the mechanism proposed by Goldberger and W
~GW! @16#, and that the matter distribution on the brane
static, spherically symmetric and non-relativistic. In the G
model for radius stabilization, a bulk scalar field is intr
duced. This scalar field has potentials localized on the bra
as well as a bulk potential. A further technical assumpt
taken in the previous analyses@10,49# is that the values of
the scalar field on the respective branes are stuck to fi
values due to extremely narrow brane potentials. We refe
©2003 The American Physical Society11-1
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this simplified setup as the strong coupling limit. In this p
per we generalize our previous analyses of linear and sec
order perturbations@49# relaxing the restriction of the stron
coupling limit @51#, and study whether there arise observa
effects and/or no pathological feature in the metric pertur
tions.

The paper is organized as follows. In Sec. II we brie
review the formulation developed in Ref.@49#, which we call
paper I, summarizing the notations and the basic equati
We do not give the explicit form of all the necessary form
las that are already presented in paper I to avoid repetit
of rather lengthy expressions. We quote the equations in
per I such as~I-1.1!. Throughout this paper, we use the sam
notations as those in paper I except for the subscripts ‘‘p
and ‘‘l, ’’ which are introduced in Eq.~13!. In Sec. III, we
study the corrections caused by the finiteness of the coup
strength. Section IV is devoted to the summary.

II. BRIEF REVIEW OF THE FORMULATION

In this section, we briefly review the formalism and th
results presented in paper I. We consider second order
turbations in the RS two branes model assuming that ma
distribution is confined on one of the branes and it is sta
and spherically symmetric.

A. Notation and assumption

The Lagrangian for the scalar fieldw̃ introduced for the
radius stabilization is

L52
1

2
g̃abw̃ ,aw̃ ,b2VB~ w̃ !2 (

s56
V(s)~ w̃ !d~y2ys!,

~1!

whereVB and V(6) are the bulk potential and the potenti
on each brane, respectively.

In analyzing metric perturbations in the bulk, we use t
‘‘Newton gauge,’’ in which

ds25e2Y dy21a2@2eA2c dt21eB2c dr21eC2cr 2 dV2#,
~2!

where the metric functionsA, B, C, Y, and c depend
only on y and r, and a(y) is the warp factor that is deter
mined by solving the background equations~I-2.10!. The
metric functions and the scalar field are expanded up to
second order as

A~r ,y!5A(1)~r ,y!1A(2)~r ,y!, ~3!

w̃~r ,y!5f0~y!1w (1)~r ,y!1w (2)~r ,y!, ~4!

wheref0 represents the background scalar field configu
tion, which depends only ony. The metric functionsA, B,
andC are related to each other by the relations~I-2.5! so that
they compose the transverse-traceless part at the linear l

Our interest is the gravity induced by non-relativistic m
ter fields confined on the positive and the negative tens
branes, which are located aty5y1 and y5y2(.y1), re-
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spectively. The energy-momentum tensors of these fields
assumed to be given in the perfect fluid form as

T6n
m5a6

24 diag$2r6 ,P6 ,P6 ,P6%. ~5!

The warp factora6ªa(y6) in the definition of the energy-
momentum tensors is incorporated so thatr and P become
the physical quantities measured by using the metric on
positive tension brane.

The 5D Einstein equations give four independent pert
bation equations. The two equations are the constraint e
tions for c (J) and w (J), which relate them toY(J) @Eqs. ~I-
2.12! and ~I-2.13!#:

c (J)~r ,y!5Y(J)1e (J)D21Sc , ~6!

w (J)~r ,y!5
3

2kḟ0a2
]y~a2Y(J)!

1
3

2kḟ0

e (J)@Sw1]yD
21Sc#, ~7!

where we have introducede (J) defined bye (1)50 ande (2)

51. Hence, as for the scalar type perturbation, once
solve the perturbationY(J), other variablesc (J) andw (J) are
also known. The other two equations are the master eq
tions for A(J) andY(J) @Eqs.~I-2.14! and ~I-2.15!#:

F 1

a2 ]ya
4]y

1

a2 1
1

a2
DG ~a2A(J)!5e (J)SA , ~8!

Fa2ḟ0
2]y

1

a2ḟ0
2
]y2

2k

3
ḟ0

21
1

a2DG ~a2Y(J)!5e (J)SY . ~9!

To solve the master equations, we must specify
boundary conditions on the branes. The boundary condi
for A(J) is given by Israel’s junction condition, whereas th
boundary condition for the scalar type perturbation is deriv
by integrating the equation of motion for the scalar fie
across the branes. It is well known that these junction c
ditions are easily obtained in Gaussian normal coordinatex̄a

in which a brane is located atȳ5const hypersurface. Her
we associate an over-bar with quantities written in Gauss
normal coordinates. The boundary conditions in the New
gauge are derived by applying infinitesimal gauge trans
mationsx̄a5xa1ja to those written in Gaussian normal co
ordinates. These transformations are described in Sec. II
paper I.

The boundary condition for the scalar type perturbation
given by @Eq. ~I-2.37!#

w (J)2ḟ0 ĵ

~J!

6
y5

l6

2 S 7
3

ka6
2 ḟ0

DY(J)1e (J)Sjun
6 D

~at y5y6!, ~10!

where we have introduced a coupling constant
1-2
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l6ª
2

V(6)9 72~f̈06 /ḟ06!
. ~11!

An over-dot denotes differentiation with respect toy, and
f06ªf0(y6). Note that the explicit expression forSjun is
given in Eq.~I-2.39!. The parameter of the gauge transfo
mation in y direction, ĵ6

y (r ), is a function ofr, and it is
related to the energy-momentum tensor on the correspon
brane by Eq.~I-2.34!.

In paper I, the problem was simplified by taking th
strong coupling limit. The condition of the strong coupling
that V(6)9 is sufficiently large. Taking this limit, we obtain

l6→0. ~12!

In this paper we discuss the effects due to the terms that a
by considering non-vanishingl6 . For brevity, we refer to
these terms as interaction terms.

B. Derivative expansion

Formal solutions for perturbation equations~8! and ~9!
were derived in paper I. The transverse-traceless pertu
tions A are decomposed to massless zero modeA0 and mas-
sive modeAS . Using the zero mode truncation approxim
tion, the long-ranged part of the transverse-tracel
perturbationA0 is evaluated@Eq. ~I-3.5!#. The remaining part
AS @Eq. ~I-3.9! and ~I-3.12!#, which arises due to the contr
bution from massive Kaluza-Klein modes, is evaluated
using a derivative expansion method. In this method,
expand perturbation variables in terms of the expansion
rameter (Hr !)21;H21] r assuming that the typical lengt
scaler ! of perturbations is much longer than the 5D curv
ture scaleH21

ª(ȧ/a)21. It is important to stress that thi
derivative expansion method is valid only when the mass
the first excited mode is sufficiently large. In the limity2

→`, the excited mass spectrum becomes continuous,
therefore the derivative expansion method is no longer va
~See Secs. III B.1 and IV B in paper I for more details.!

As for the scalar type perturbation, there is no zero mo
owing to the stabilization mechanism@10#. To discuss the
contributions from massive modes, we expand the pertu
tion variables by using the derivative expansion. Althou
the massive modes seem to give only the short-ranged pa
turns out that the formal solution of the lowest order in t
expansion includes long-ranged metric perturbations. He
we refer to this part as the pseudo-long-ranged part.
formal solution of the next order, which is obtained by
iteration, is referred to as the short-ranged partYS . ~See Sec.
III C in paper I.!

The pseudo-long-ranged part includes the contribut
from the interaction terms that are higher order in derivat
expansion as the short-ranged part. Hence we further di
the pseudo-long-ranged part into two pieces; the contribu
from the interaction terms, which we denoteYl , and the
remaining terms, which we denoteYpse. We quote the ex-
plicit expression for the pseudo-long-ranged part@see Eqs.
~I-3.21! and ~I-B.6!#,
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Y(J)5Ypse
(J)1Yl

(J)1YS
(J) ,

DYpse
(J)~r ,y6!52

kN

3 (
s56

as
4Ts

(J)7
kH

3
a6

2 T6
(J)

2e (J)~Sc12Ha6
2 Sj

6!

22Ne (J)F (
s56

sas
4Sj

s

1E
y1

y2

dyS a2v6DSw

1
3u6

2kḟ0
2
DSY2a2ScD G ,

DYl
(J)~r ,y6!522NDS (

s56
s

Ls
(J)

Hs
1

L6
(J)

a6
2 N

D , ~13!

where

Ls
(J)~r !5H~ys!F2s

3ls

2kḟ0
2
DY(J)1e (J)as

2S ls

2ḟ0

Sjun
s

2
f̈0w2

2ḟ0
3

1
3wDY

2ka2ḟ0
3D G

y5ys

. ~14!

HereN is the normalization factor defined by

N21
ª2E

y1

y2

a2 dy, ~15!

andu6 is given by

u6~y!ª122Hv6 , v6~y!ª
1

a2Ey7

y

a2dy8. ~16!

We mention that the source termSjun
6 that is defined in Eq.

~10! containsV(6)9 and V(6)- , and hencel6Sjun
6 does not

vanish even in the limit~12!. However, it was shown that th
combination that appears in Eq.~14! vanishes in the strong
coupling limit. Namely, we have

L6
(J)'0 ~ for l6→0!. ~17!

Note also that, in Eq.~13!, the number ofr derivatives on
the right hand side is larger by two than that on the left ha
side. This fact is manifest for linear perturbations, and it a
turns out to be the case for the second order. Hence, whe
evaluateYl

(J) iteratively, the leading term with respect to gr
dient expansion is obtained by substituting pseudo-lo
ranged partYpse

(J) into Y(J) on the right hand side of Eq.~14!.
Although the short-ranged partYS

(J) also contains interaction
terms, we do not discuss them in this paper because they
even higher order inr !

22.
1-3
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At the linear level, the transverse traceless part compo
of A, B, andC does not have interaction terms. The para

eter of the gauge transformationĵ6
y

(1)

is also unaltered by the
effect of non-vanishingl6 . On the other hand,w (1) is re-
lated toY(1) and changes according to the change inY(1).

By repeating the derivation of the expression for the te
poral component of the metric perturbation induced on
branes~I-5.1! starting with the equation for gauge transfo
mation ~I-2.25!, we will find Eq. ~I-5.1! is slightly modified
as

DĀ0
(J)~r ,y6!58pG~r6

(J)13P6
(J)!2D@ĵ6

y Ā6,y1 ĵ6
r Ā6,r

1Ḣ~ ĵ6
y !2#12N(

s
sas

4~Sj
s2SS

s !

12NE
y1

y2

dyFa2~SA62Sc6!1a2v6DSw6

1
3u6

2kḟ0
2
DSY6G2DYl

(J) . ~18!

For the spatial components, it is convenient to take the
tropic gauge. We simply quote Eq.~I-3.15! in which the iso-
tropic gauge is taken inJth order:

DB̄(J)~r ,y6!52
1

2
DĀ(J)7

kH

2
a6

2 T6
(J)2

3

2
DY(J)

2
3

2
e (J)S 2

3
DSB1Sc12Ha6

2 Sj
6D . ~19!

The explicit additional term in these equations is only t
last term in Eq.~18!, but there are implicit changes throug
Y(J), w (J), andĀ(J). The explicit expressions for the sourc
termsS* andS* are given in Eqs.~I-2.16!, ~I-2.18!, ~I-2.19!,
~I-2.21!, ~I-2.33!, ~I-2.35! and ~I-3.14!.

C. Corrections

As we have done in paper I, we assume that matter fie
reside on one of the two branes. By this simplification,
sum of the Newton potentialsF6 , which are defined by
DF6(r )5kNr6

(1)/2, is replaced as

(
s

Fs→F6 ~y5y6!. ~20!

Then, the long-ranged part of the transverse traceless m
perturbations is given by~I-4.7! and ~I-4.8! as

@Ā06
(1)~r ,y6!#SC52@B̄06

(1)~r ,y6!#SC52F6 , ~21!

where@•••#SC means the quantity in thel6→0 limit. The
index6 associated with the metric functions~not with l and
L) specifies the side on which matter fields are distribute
04401
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To obtain an approximate estimation for the short-rang
part, we assume that the back reaction of the bulk scalar fi
to the background geometry is weak;uḢu/H2!1. In this case
the metric approximately takes the AdS form

a~y!'e2uyu/,, ~22!

where, is the curvature radius of the bulk. For later conv
nience, we evaluateN in this weak back reaction case. It
approximately given by

N21'2
1

H1
S 11

Ḣ1

2H1
2 D , ~23!

taking into account the fact that the integral~15! is domi-
nated aroundy5y1 . The second term in the round bracke
is the leading order correction due to the back reaction. He
after we seta151.

Under the assumption of weak back reaction, it w
shown that@10,49#

@AS6
(1)~r ,y6!#SC5b6O~r !

2DF6!, ~24!

where the suppression factors are

b15
,2

r !
2

, b25
,2

a2
4 r !

2
5S 0.1 mm

r !
D 2S 10216

a2
D 4S ,

,Pl
D 2

.

~25!

The short-ranged part for the scalar type perturbation is s
larly suppressed as

@YS6
(1)~r ,y6!#SC5

a2
2 b6

mS
2,2

O~r !
2DF6!, ~26!

wheremS
2 is the mass squared of the so-called radion, wh

is the mode corresponding to the radius fluctuation, in
strong coupling limit. To be precise, the radion is defined
the mode with the lowest mass eigenvalue in the scalar t
perturbation. SincemS

2&O(a2
2 ,22), which is given by Eq.

~29! below withl650, the corrections from the scalar typ
perturbation tend to be larger than those from the Kalu
Klein modes in the tensor type perturbation.

On the positive tension brane, the short-ranged par
suppressed when the typical length scaler ! of perturbations
is much larger thana2mS

21 . On the negative tension bran
the short-ranged part is suppressed forr !*0.1(a2 /mS,)
mm, where the ratioa1 /a2 is set to 1016, the value to solve
the hierarchy between Planck and electroweak scales.
may think that this effect is potentially observable especia
on the negative tension brane. As we have mentioned in
Introduction, however, the short-ranged part is proportio
to the local matter energy densityr6

(1)}DF6 . Therefore, the
short-ranged part dose not contribute to the force outside
matter distribution, and it is not observed as a change of
Newton’s law. Not the force but the change of the met
1-4
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perturbation due to the short-ranged part becomes signifi
on the negative tension brane only whenr2

(1)

*(mS
2,2/a2

2 )O(TeV4).
Extending the linear analysis mentioned above, sec

order perturbations were investigated in paper I. In the c
that matter fields are confined on the negative tension br
the long-ranged part at the second order contains correc
to 4D Einstein gravity with relative amplitude ofO(b2 /a2

2 )
compared to the ordinary post-Newtonian terms. The rela
amplitude of the corrections at the second order looks
suppressed by an extra factor of 1/a2

2 than that at the linea
order. However, in the strong coupling limit, it was show
that these enhanced corrections are completely cancele
the contributions from the short-ranged part, and the rec
ery of 4D Einstein gravity was confirmed. In the case th
matter fields are confined on the positive tension brane,
corrections in second order perturbations are relativ
O(b1 /a2

2 ) compared to the usual post-Newtonian term
However, the appearance of the enhancement by the fact
1/a2

2 is very likely to be an artifact due to the gradient e
pansion method. Since the condition that the typical len
scale of spatial gradient is larger than that of the chang
the fifth direction becomes (,2/a2

2 r !
2)5(b1 /a2

2 )!1 near
the negative tension brane,b1 /a2

2 appears as an expansio
parameter.

III. CONTRIBUTIONS DUE TO NON-VANISHING lÁ

In the analysis taking the strong coupling limit, we n
glected the terms that vanish whenl6 is set to zero. Here we
consider the effect of non-vanishingl6 to remove this tech-
nical limitation. We first discuss linear perturbations, and
ter that we study second order perturbations.

A. Mass spectrum

Before discussing metric perturbations induced by ma
fields, we study the change of mass eigenvalues for the sc

type perturbations due to the effect ofl6 . Settingĵ6
y 50 in

Eq. ~I-2.41! with J51, we obtain an eigenvalue equation f
Y(1) as

Fa2ḟ0
2]y

1

a2ḟ0
2
]ya

22
2k

3
a2ḟ0

2

1m2S 112(
s

lsd~y2ys! D GY(1)50, ~27!

where the 4D Laplacian operatorD was replaced with the
mass squaredm2. A general solution for smallm2 ignoring
boundary conditions aty5y6 was approximately con
structed in Ref.@10# as
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Y(1)5
N
a2

1•••,

2kw (1)

3ḟ0

5
1

a2ḟ0
2
]y~a2Y(1)!

5N F E
y1

y S 2k

3a2
2

m2

a4ḟ0
2D dy81cG1•••, ~28!

where c is a constant andN is a normalization constant
Imposing the boundary condition~10! on this approximate
solution, we find thatc52l1m2/ḟ01

2 a1
4 and a mass eigen

value close to zero is given by

m2'S 2k

3 E
y1

y2dy8

a2 D S E
y1

y2 dy8

a4ḟ0
2

1(
s

ls

as
4ḟ0s

2 D 21

.

~29!

Using Eq.~I-B22! with the assumption of weak back rea
tion, the above expression is approximately rewritten as

m2'mS
2F11

3

2 (
s

asS a2

as
D 4S mS

2

a2
2 N2D G21

, ~30!

where we have introduced non-dimensional parameters
lated to the couplingl6 by

a6ª
2N3l6

kḟ06
2

52
2N3l6

3Ḣ6

. ~31!

When l1*mS
22,21, the expansion~28! is no longer valid

since the correction that comes from the constantc becomes
larger thanN/a2. In such cases, instead, we can consider
largel1 limit keepingm2l1 finite. Since we can neglectm2

term in the bulk whenm2!mS
2 , we find that an approximate

solution to the above equation is given byY(1)'u1(y) in
this limit. From the condition~10! at the boundaryy5y1 the
mass eigenvalue corresponding to this mode is determine

m25
2Ḣ1v1~y1!

l1u1~y1!
'

2

l1,
, ~32!

where we used Eq.~I-B3! with the aid of Eq.~23!.
Whenl1 ~or l2) takes a large negative value, we can s

that the above mode of small mass becomes tachyonic,
hence such a model is manifestly unstable. As we decre
ul6u starting withl652`, the absolute value ofm2 in the
expression ~30! increases fromm250 and diverges to
u2`u when l6 is a certain negative valueL6 , which de-
pends on the details of stabilization model, e.g.,ḟ06

2 . Then
the mass eigenvalue returns from1` to mS

2 asl6 increases
1-5
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from L6 . However, this does not directly indicate that t
tachyonic mode disappears forl6.L6 . This is because Eq
~30! is no longer valid for relatively largeum2u. For large
n2
ª2m2, one can solve Eq.~27! by using the WKB ap-

proximation as

Y(1)'C1en*ydy8/a(y8)1C2e2n*ydy8/a(y8), ~33!

whereC1 andC2 are constants. Imposing the boundary co
ditions ~10! at y5y6 , we obtain (l1n2a1)(l2n2a2)
2exp@2n*y1

y2a21 dy#(l1n1a1)(l2n1a2)'0. Without loss of

generality we can assume thatn is positive. Then the expo
nential factor exp@2n*y1

y2a21 dy# is very large, and hence

solution to the above equation is approximately obtain
when eitherl1 or l2 is negative as

n'max~2a1l1
21 ,2a2l2

21!. ~34!

This eigenmode is the anticipated tachyonic mode, wh
remains to exist for any small negative value ofl1 or l2 .
Although the values ofl6 depend on the details of the st
bilization model, it is natural to consider the case in whi
ul6u is less than or equal toO(,), and it must be positive
To conclude, we find that the model has tachyonic mod
l1 or l2 is negative.

B. Linear perturbation

From Eq.~18!, the temporal component of the linear pe
turbation is given by

Ā06
(1)~r ,y6!5@Ā06

(1)#SC2Yl
(1) . ~35!

As for the spatial part, we obtain from Eqs.~19! and ~35!

B̄06
(1)~r ,y6!5@B̄06

(1)#SC2Yl
(1) . ~36!

Substituting Eq.~13! into Eq. ~14!, we can evaluateL6
(1) by

iteration. Keeping up to the orderr !
22 , we obtain

L6
(1)

H6
52

a6

2N3
DF S H6

a6
2 N

D F66(
s

FsG . ~37!

Then Eq.~13! is evaluated by using Eq.~23! as

Yl2
(1) ~r ,y2!'2NF2

L1
(1)

H1
1

L2
(1)

H2
S 11

a1
2 H2

a2
2 H1

D G
5b2O~r !

2DF2!@a2
4 a11a2#, ~38!

Yl1
(1) ~r ,y1!'2NF S Ḣ1

3H1
2 D L1

(1)

H1
1

L2
(1)

H2
G

5b1O~r !
2DF1!F S Ḣ1

3H1
2 D 2

a11a2G . ~39!

On the negative tension brane, this new correction beco
important compared to that from the short-ranged part w
04401
-

d

h

if

es
n

the factor in the square brackets on the right hand s
exceeds O(a2

2 /mS
2,2). In particular, when a2

4 a1@1,

Eq. ~32! applies and we find m2'4N4/(3a1uḢ1u)
!a2

4 H1
2 /(,2uḢ1u). Because of the factora2

4 , the mass of
the stabilized radion becomes even smaller. On the pos
tension brane, the first term in the square brackets on
right hand side is suppressed only by the factorḢ1 /H1

2 ,
which is small but is not hierarchically suppressed. As lo
as l1 takes the natural order of magnitude smaller than,,
a1 is at most O(H1

2 /Ḣ1). Then, the correction to
Yl1(r ,y1) stays less thanO(b1)O(r !

2DF1). However,
when l1 is much larger than,, the correction become
larger by the factor ofl1 /, than that in the strong coupling
limit. Although these choices of parameters are not natu
the possibility of the enhanced correction without chang
the order of radion mass might be interesting.

C. Second order perturbation

1. Temporal component

Let us discuss the contribution due to interaction terms
second order perturbations. In the strong coupling limit,
leading terms in second order perturbations are shown to
identical to that given by 4D Einstein gravity;

@DĀ06
(2)#SC58pG~r6

(2)13P6
(2)!24F6DF6

1OS 1

a2
2 a6

2 r !
4D . ~40!

We will show that the corrections due to interaction terms
similarly suppressed asO(1/a2

2 a6
2 r !

4), where and hereafte
we assume thatl6 is not hierarchically enhanced and hen
a6 is at mostO(1). In thefollowing discussion we concen
trate on the terms ofO(r !

24) with respect to the derivative
expansion, neglecting the higher order terms thanO(r !

26).

For simplicity, we adoptĵ
(1)

r50 as a choice of radial gaug
in linear perturbations, keeping second order perturbati
still in the isotropic gauge.

We quote the dependence of the first order perturba
variables on the warp factor from Eq.~I-5.4!:

A06
(1);a0, Ypse6

(1) ,wpse6
(1) ;

a7
2

a2
11, ĵ6

y ;
1

a6
2

. ~41!

As for u6 andv6 , we have Eqs.~I-4.11! and ~I-4.12! as

u6;
a7

2

a2
11, v6;

a7
2

a2
21. ~42!

We list the perturbation variables of the first order th
have a correction due to non-vanishingl6 . As we have
discussed, there is correction toY(1), which is denoted by
Yl

(1) in Eq. ~13!. Sincew (1) is related toY(1) by Eq.~I-2.13!,
w (1) also has correction accordingly, which we denote
1-6
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wl
(1) . In the following discussion, the values ofwl

(1) evalu-
ated aty5y6 are necessary. They are obtained from Eq.~10!
as

wl
(1)~y6!57

3l6

2ka6
2 ḟ06

DYpse
(1)~y6!1OS 1

r !
4D . ~43!

Although the source terms for second order perturbations
mostly written in terms of the variables in the Newton gau
the expressionĀ,y

(1) in Gaussian normal coordinates is al
necessary. From Eq.~I-2.31!, we can read the interactio
term in Ā,y

(1) as

]yĀl
(1)57

2kḟ0

3
wl

(1) ~at y5y6!, ~44!

where we usedw̄l
(1)(y6)5wl

(1)(y6), which follows from the
fact that the gauge transformation~I-2.26! of w (1) is not al-
tered by the effect of non-vanishingl6 . Also for the vari-
ablesYl

(1) andwl
(1) , we give the dependence ona2 andr !.

From Eqs.~13! and ~43!, we obtain

Yl2
(1) ~y6!,wl2

(1) ~y6!;
1

a6
4 r !

2
. ~45!

For later use, we quote the relations~I-B12! and ~I-B13! in
the notation of present paper as

Ypse
(1)12H6 ĵ6

y
~1!

5
2

3 (
s56

Fs ~at y5y6!,

Ypse
(1)1

2H6

ḟ0

wpse
(1)5

2

3 (
s56

Fs ~at y5y6!.

~46!

We begin with the case that matter fields are confined
the negative tension brane. We discuss the contributions f
each term in Eq.~18! one by one. The second term on th
right-hand side of Eq.~18! gives

2D@ĵ2
y Ā2,y1 ĵ2

r Ā2,r1Ḣ~ ĵ2
y !2#

5@•••#SC1
2kḟ02

3
D@ĵ2

y wl2~y2!#1OS 1

a2
2 r !

4D .

~47!

The contribution from the source termsSj andSS is evalu-
ated by using the expressions given in Eqs.~I-2.33! and ~I-
2.35! as

2N(
s

sas
4~Sj

s2SS
s !522Na2

4 @Sj
22SS

2#SC

1OS F2

r !
2

Yl2~y2!D 1OS 1

a2
2 r !

4D .

~48!
04401
re
,

n
m

As for (SA2Sc), the underlined terms in Eqs.~I-2.16! and
~I-2.19! give the leading correction as

2NE
y1

y2

a2~SA2Sc!5@•••#SC1OS F2

r !
2

Yl2~y2!D
1OS 1

a2
2 r !

4D , ~49!

where we have used the fact thatwl2(y2)/ḟ02

5O„H2
21Yl2(y2)…. The leading order correction fromSw

comes from the last two terms in Eq.~I-2.18!. These terms
are rewritten as in Eq.~I-5.7!, in which we did not assume
the strong coupling limit. The underlined terms on the rig
hand side of Eq.~I-5.7! give the leading order correction a

2NE
y1

y2

dy a2v2DSw5@•••#SC2
2k

3
@wpse2wl2#y5y2

22NDE dyFa2u2

2
~Y22Ypse

2 !G
1OS F2

r !
2

Yl2~y2!D 1OS 1

a2
2 r !

4D .

~50!

The last term cancels the contribution fromSY that is given
by

DSY5@DSY#SC1
k

3
a2ḟ0

2D~Y22Ypse
2 !1OS 1

a2
2 r !

4D ,

~51!

where again the leading correction comes from the und
lined terms in Eq.~I-2.21!. The second term in Eq.~47! and
that in Eq.~50!, which potentially give enhanced correctio
to Ā0

(2) of O(,2F2
2 /r !

2a2
6 ), cancel each other with the aid o

Eq. ~I-3.27!. The terms ofO„r !
22F2Yl2(y2)… are smaller

by the factor ofF2 than the correction we have found fo
linear perturbations.

Now we consider the last term of Eq.~18!, i.e., the con-
tribution fromYl

(2) . To evaluateYl
(2) , we studyL2 given in

Eq. ~14!. According to the dependence~41!, some terms have
possibility to give an enhanced correction toDYl

(2) of order
O(1/a2

6 r !
4). Note that the terms ofO(1/a2

4 r !
4) in DL2 give

the terms ofO(1/a2
6 r !

4) in DYl
(2) , while the contribution

from DL1 does not change its order with respect toa2 . In
the following discussion, we keep only the relevant ter
that might give enhanced contributions ofO(1/a2

6 r !
4) to

DYl
(2) .
Keeping the terms ofO(1/a2

6 r !
2), the source termSjun

2 in
Eq. ~14! becomes
1-7
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l2

2ḟ0

Sjun
2 2

f̈0w2

2ḟ0
3

1
3wDY

2ka2
2 ḟ0

3

'2l2F ~ ĵ2,r
y !2

2a2
2

1
3

2ka2
2 ḟ02

2 ~SY1a2
2 ḢY2!G

y5y2

,

~52!

where we used the expression given in Eq.~I-B18!. Here the
term of SY is evaluated by using Eq.~I-2.21!. Keeping the
terms ofO(1/a2

4 r !
2), we obtain

SY1a2
2 ḢY2'2E F3Y,rDY1

2Hw

ḟ0

~DY! ,r1
2k

3
„w ,rDw

2w~Dw! ,r…14a2B,yS 2HY,r1Ḣ
w ,r

ḟ0
D Gdr,

~53!

where we have used Eq.~46!. The right hand side of Eq.~14!
also containsY(2). To obtain the lowest order correction, th
Y(2) can be replaced withYpse

(2) . We can neglect the contribu
tion from Ypse

(2)(r ,y1) in Eq. ~13!, which is not enhanced with
respect to the factor ofa2 . The relevant terms in
DYpse

(2)(r ,y2) areO(1/a2
4 r !

2), which are

DYpse
(2)~r ,y2!'

k

3
D~w2

2 !2~Sc12Ha2
2 Sj

2!, ~54!

where the first term comes from the integration ofSw . Using
Eq. ~I-2.16!, Sc in the second term can be explicitly writte
down. The relevant contribution comes from only the und
lined terms in Eq.~I-2.16!. With the aid of Eqs.~I-2.10!,
~I-2.13!, ~I-B14! and the fact that (a4B,y) ,y5O(a2/r !

2), we
obtain

Sc'E drH 4a2B,yS HY,r1Ḣ
w ,r

ḟ0
D

1
1

r 8/3
] rF r 8/3S 3

2
Y,r

2 1kw ,r
2 D G J . ~55!

As for Sj
2 , we can read from Eq.~I-2.35! as

a2
2 Sj

2'2E @a2
2 B,yY,r1 ĵ2

y ~DY! ,r #dr2 ĵ2
y DY2H~ ĵ2,r

y !2,

~56!

where we have again used Eqs.~46!. Substituting all the
results into Eq.~14!, we obtain
04401
-

L2
(2)

H2
'

3a2

4N3E drFk

3
„w ,r

2 2~ḟ0ĵ ,r
y !2

…,r

1
2H~DY! ,r

ḟ0

~w2ḟ0ĵy!1
2

r
„Y,r

2 2~2H ĵ ,r
y !2

…

12H ĵ ,r
y D~Y12H ĵy!G . ~57!

Further application of Eqs.~43! and ~46! reduces the orde
with respect to eithera2

21 or r !. Therefore we findL2
(2)

5a2O(,2F2
2 /r !

2a2
2 )1O(1/r !

4). Although we have not dis-
cussed the contributions associated with the factora1 in
detail, it is manifest that they do not have any enhancem
with respect to the hierarchy factor of 1/a2 . Therefore the
interaction terms in second order perturbations become

DĀ02
(2)~r ,y2!5@DĀ02

(2)~r ,y2!#SC1OS b2F2
2

r !
2 D

3@O~a2
4 a1!1O~a2!#, ~58!

which are suppressed compared to the correction at the li
order by the factor ofF2 .

Next we consider the case that the matter distribution
concentrated on the positive tension brane. In this case,
first order quantities listed in Eqs.~41! and~42! do not suffer
enhancement with respect to the factor of 1/a2 . The factor
1/a2 arises only throughYl1(y2) and wl1(y2), both of
which areO(1/a2

2 ). Note also that the terms withl1 are

always associated withu1(y1)5O(Ḣ1 /H1
2 ). From these

observations, we find

DĀ01
(2)~r ,y1!5@DĀ01

(2)~r ,y1!#SC1OS b1F1
2

r !
2 D

3F S Ḣ1

H1
2 D 2

O~a1!1OS a2

a2
2 D G . ~59!

The amplitude of this second order correction is not sim
suppressed by the factor ofF1 compared to the correction a
the linear order. There is a difference with respect to
power ofa2 in the term witha2 . In paper I, we have met a
similar phenomenon in the analysis of correction due
Kaluza-Klein modes at the second order. As was discus
there, this phenomenon is a natural consequence of our
dient expansion approximation.

2. Spatial component

Finally, we comment on the spatial component. The l
two terms on the right hand side of Eq.~19! are evaluated in
the same manner as was done forDĀ06

(2) . The source terms
except for SB have been already computed in evaluati
DĀ06

(2) . The contribution fromSB is given by
1-8
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DSB'@DSB#SC2kḟ0D@ĵ6
y ~w2ḟ0ĵ6

y !#, ~60!

which is similar to that given in Eq.~47!. Combining all, we
obtain

B̄5@B̄#SC1O~Ā06
(2)2@Ā06

(2)#SC!, ~61!

and therefore the correction is the same order as that o
temporal component.

IV. SUMMARY

We have discussed metric perturbations in the Rand
Sundrum two branes model with radius stabilization. As
mechanism for radius stabilization, we have assumed a sc
field with a potential in the bulk and that on each brane.
our previous work~paper I!, we took the strong coupling
limit, in which the brane potential is extremely narrow
that the values of the scalar field on the branes cannot fl
tuate. In this paper, we extended the previous analysis re
ing the limitation of taking the strong coupling limit.

In the strong coupling limit, it is known that the mas
squared of the stabilized radion tends to be hierarchic
small asmS

25O„(a2 /a1)2,22
…, where, is the bulk curva-

ture scale and (a2 /a1) is the ratio of the values of the war
factor on the respective branes. First we examined the s
of this mass eigenvalue when we relax the limitation of ta
ing the strong coupling limit. We have shown that a tach
onic mode appears when either of the coupling constantsl6

defined in Eq.~11! is negative. Hence, the models with su
parameters are unstable. When bothl1 andl2 are positive,
we derived formulas for the mass squared of the stabili
radion in Eq.~32! for l1@mS

22,21 and in Eq.~30! for l1

!mS
22,21. The mass squared of the stabilized radion is

fected by l2 when l2*, while l1 only when l1

*mS
22,21. These are rather exceptional cases since the

der of l6 is typically less than or equal toO(,).
Next, we have examined the effects on metric pertur

tions induced on the branes by matter fields up to sec
order, assuming that the matter distribution confined on
tt

.
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branes is static and spherically symmetric. For simplicity,
assumed that matter fields reside on either of the two bra
The results for the case that the matter fields are on
negative tension brane are summarized by Eqs.~38! and
~58!, wherea6 andb6 are defined in Eq.~31! and Eq.~25!,
respectively. The correction due to the finite coupling b
comes important compared to that already existing in
strong coupling limit only when the mass of the stabiliz
radion is significantly reduced by the effect of nonvanishi
l6 . The results for the case that the matter fields reside
the positive tension brane are summarized by Eqs.~39! and
~59!. It is possible that the correction due to the finite co
pling becomes important whenl1 becomes much large
than , without changing the mass of the stabilized radio
The corrections are enhanced by the factor ofl1 /, com-
pared to those present in the strong coupling limit. The re
for second order perturbations~59! seems to show that th
correction associated withl2 are enhanced by a factor o
a1

2 /a2
2 . However, this is an artifact due to the limitation o

the present approximation using gradient expansion meth
In conclusion, under the assumption that the matter dis

bution is static and spherically symmetric, we have co
firmed that 4D Einstein gravity is approximately recover
up to second order perturbations relaxing the limitation
taking the strong coupling limit. The condition that the co
rections due toa6 ,b6 , and radion mass are sufficientl
suppressed gives a consistency check for any stabiliza
model to use the scalar field of Eq.~1! @50#.
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