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Improvement on the metric reconstruction scheme in the Regge-Wheeler-Zerilli formalism
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We study master variables in the Regge-Wheeler-Zerilli formalism. We show that a specific choice of new
variables is suitable for studying perturbation theory from the viewpoint of radiation reaction calculations. With
explicit definition of the improved master variables in terms of components of metric perturbations, we present
the master equations, with source terms, and metric reconstruction formulas. In the scheme using these new
variables, we do not need any time and radial integrations except for solving the master equation. We also show
that the master variable for even parity modes which satisfies the same homogeneous equation as the odd-
parity case, obtained via Chandrasekhar transformation, does not have the good property in this sense.
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I. INTRODUCTION

Black hole perturbation is a powerful tool for the evalu
tion of gravitational waves from a binary system when
mass ratio is large@1–3#. Although any systematic method t
calculate the radiation reaction to the particle motion has
been established so far, there are various new developm
in this field @4–17#. A formal prescription to extract the self
force was developed in@4#, generalizing the work of DeWitt
and Brehme@18# on the electromagnetic self-force to includ
the gravitational case. These results were further verified
an independent, and different, axiomatic approach by Qu
and Wald@5#. The prescription can be summarized as f
lows. The retarded field can be obtained in terms of Gree
functions which can be formally decomposed into ‘‘direc
and ‘‘tail’’ parts. Roughly speaking, the ‘‘direct’’ part of the
field is that part which has support only on the future lig
cone, emanating from the source point. The ‘‘tail’’ part
composed of contribution due to curvature scattering wh
pervades inside the future light cone of the source point.
analysis presented in@4,5# indicates that, the particle motion
after taking into account the self-force, follows a geodesic
the geometry perturbed by adding the ‘‘tail’’ part to the orig
nal background spacetime.

The actual isolation of the ‘‘tail’’ part is not an easy tas
There are ways to calculate the ‘‘full’’ Green’s function b
there is no direct method to compute the ‘‘tail’’ part alon
Hence, the standard prescription that has emerged in the
few years is to subtract the ‘‘direct’’ part from the ‘‘full’’
metric perturbation. Here lies the well known ‘‘gauge pro
lem.’’ In the standard methods for constructing full metr
perturbation, we first solve the equation for master variab
and then from these master variables we reconstruct the
ric perturbations. The result is naturally written in a spec
gauge such as Regge-Wheeler~RW! @19,20# or radiation
gauge@21–23#. On the other hand, the ‘‘direct’’ part is evalu
ated in the harmonic gauge associated with the particle
jectory. Therefore, before any meaningful subtraction
need to relate these expressions which are in diffe
0556-2821/2003/67~10!/104018~9!/$20.00 67 1040
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gauges. This is by no means an easy task since we do
know the necessary gauge transformationa priori. This ad-
ditional task to find the appropriate choice of the gauge
rameters makes the problem much harder to solve; this is
aforementioned ‘‘gauge problem.’’ The attempts for subtra
tion of the ‘‘direct’’ part in the RW gauge were reported b
Mino @6# and Sagoet al. @16#.

In this paper we would like to revisit the problem of me
ric perturbations reconstruction from the master variables
case of Schwarzschild background. In this approach, ba
on Regge-Wheeler-Zerilli formalism, the problem of metr
reconstruction is relatively well understood@19,20#. What we
would like to discuss here are possibilities of improveme
on this formalism.

It is well known that in the Schwarzschild case the o
and the even parity perturbations naturally decouple due
spherical symmetry. Assuming a time dependence of
form exp(2ivt), the perturbations of a Schwarzschild bla
hole can be described by a master equation, for each pa
wave mode decomposed in terms of spherical harmonics

d2z

dr* 2
1~v22V!z5S~Tmn!. ~1.1!

Herez is the master variable,S is the source term compose
of the matter energy momentum tensorTmn and r * 5r
12M ln(r/2M21) is the usual tortoise radial coordinat
The metric components in the RW gauge,hRW, are obtained
by applying certain differential operators on the master va
able and on the energy-momentum tensor as

hRW5ĥ(M )~z!1ĥ(T)~Tmn!. ~1.2!

Then, the formulas for the metric reconstruction in t
scheme presented in the original papers@19,20# containv in
the denominator of the expressions forĥ(T). Although v is
just a number in the frequency domain, if in denominato
can be an obstacle in computing the metric in the vicinity
a particle orbiting a black hole. Suppose that the parti
©2003 The American Physical Society18-1
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moves betweenr min and r max. The appearance ofv in the

denominator means thatĥ(T) is no longer localized on the
radial shell where the particle orbit lies. Instead, the sourc
distributed continuously in the region betweenr min and
r max. Therefore, the metric components are not comple
determined by the notion of the master variables in this
gion even if the concerned field points are off the shell.
the computation of the self-force, the gravitational field e
actly on this shell is unnecessary. A limiting value evalua
along, e.g., the outer radial direction is sufficient for the p
pose of computing the self-force. If we can modify the fo

mulation so thatĥ(T) is localized on the shell, then we ca
apply the formula for the metric reconstruction outside
source, which is much simpler. For the even parity case
improved master variable has already been introduced
Moncrief ~@24#, see also@25#1!. We give here the genera
metric reconstruction formulas in the presence of sourc
which have not been given explicitly yet, as far as we kno
We show thatv can be removed from the denominator
using Moncrief’s master variable. Same argument follo
for the odd parity case, i.e., by introducing a new improv
master variable, we can remove appearance ofv in the de-
nominator. Complete expressions for the metric reconst
tion are also presented for this case.

Another complication which arises is from the we
known fact that the potentials for odd and even parity ca
differ from each other. The potential for the even parity ca
is, relatively, much more complicated. Hence, it would
useful if we could formulate the even parity perturbations
satisfy the same master equation with the odd parity c
Chandrasekhar has already given a unified approach, kn
as Chandrasekhar transformations, and shown the rela
between RW and Zerilli equations@26# ~for a comprehensive
review see@27#!. In this paper we also derive the full metr
reconstruction formulas for the even parity perturbation
using the master variable obtained via the Chandrase
transformation. Under the requirement for this new mas
variable to satisfy the RW equation in vacuum, we can s
modify its definition by adding a combination of the metr
components which appear on the left hand side of Eins
equations, since it is zero in vacuum. Examining all the p
sibilities of such a modification, we have concluded that
cannot eliminatev from the denominator in the expressio
for ĥ(T). Unfortunately, as it turns out, no dramatic simpli
cation happens by reformulating the formulas solely in ter
of the variable obtained via Chandrasekhar transformat
although the importance of this transformation is not redu
at all by this fact.

The paper is organized as follows. In Sec. II we disc
the equations for both odd and even parity cases. We h
provided the explicit expressions for source terms co
sponding to the new master variables. In Sec. III the e
parity master variable which satisfies odd parity homo

1We thank Dr. Tomohiro Harada for informing us about this re
erence. After finishing our paper, we noticed that the new varia
for odd parity case was also introduced in this reference before
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neous master equation is discussed. We briefly summa
the results obtained in this paper in Sec. IV, with a specu
tion towards an alternative method to compute the regu
ized self-force subtracting the direct part at the level of
master variables.

II. IMPROVED MASTER VARIABLES

We begin with reexamining the Regge-Wheeler-Zer
~RW! formulation. In this formalism a master equation for
master variable is derived, which are called the RW equa
and the RW variable, respectively. Once we know the so
tion for the RW variable, all the components of the met
perturbation can be derived from it. This scheme is w
known. What we have shown here is that it can be improv
in the sense discussed earlier, by introducing alternative m
ter variables.

We consider the Schwarzschild metric,

ds252S 12
2M

r Ddt21S 12
2M

r D 21

dr2

1r 2~du21sin2udw2!, ~2.1!

as the background. The 10 metric components can be dec
posed into ‘‘odd’’ and ‘‘even’’ parity modes. We use the no
tation in which, after harmonic decomposition for the ang
lar dependence,H0 ,H1 ,H2 ,h0

(e) ,h1
(e) ,K and G are the

components of metric perturbations for the even pa
modes, andh0 ,h1 andh2 are for the odd parity modes. Her
we assume that the time dependence is given
exp(2ivt). Similarly, the components of the energy mome
tum tensor can be decomposed into odd and even pa
modes.A(0),A(1),A,B(0),B,G(s) andF are the expansion co
efficients for the even parity modes, andQ(0),Q and D are
for the odd parity modes~we follow throughout notation of
Zerilli for the metric perturbation and the energy-momentu
tensor with slight modifications; see@16# for the basic equa-
tions such as the law of gauge transformation and the d
nitions of the harmonic expansion coefficients of the ene
momentum tensor!.

A. Odd parity

First, we consider the odd parity case. The RW gau
choice corresponds to settingh2

RW50. Here, the variables
with a superscriptRW means the quantities are in the RW
gauge. The nontrivial set of Einstein equations for the o
parity mode is

h0,rr
RW1 ivh1,r

RW1 iv
2

r
h1

RW1F4M

r
22~11l!G h0

RW

r ~r 22M !

5
8p

A11l

r 2

r 22M
Q(0), ~2.2!le
8-2
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2v2h1
RW1 ivh0,r

RW12l~r 22M !
h1

RW

r 3
2 iv

2

r
h0

RW

52
8p i

A11l
~r 22M !Q, ~2.3!

S 12
2M

r Dh1,r
RW1 ivS 12

2M

r D 21

h0
RW1

2M

r 2
h1

RW

52
8p i

A2l~11l!
r 2D. ~2.4!

From the above equations, and using the conventional ga
invariant master variable(o)x

(o)x5
r 22M

r 2
h1

RW, ~2.5!

we can derive a second order differential equation as

@] r*
2

1v22VRW~r !# (o)x5S (o)x. ~2.6!

This is the well known Regge-Wheeler equation@19#. Here

VRW5S 12
2M

r D S 2~l11!

r 2
2

6M

r 3 D , ~2.7!

is the Regge-Wheeler potential and the source term is g
by

S (o)x5
8p i

Al11
S 12

2M

r D F S 12
2M

r DQ

1
r

A2l
] r S r 22M

r
D D G . ~2.8!

Herel is defined in terms of,, the total angular momentum
of the spherical harmonics, as

l[
~,21!~,12!

2
. ~2.9!

Once the master variable and the energy-momentum te
are given, we can reconstruct the metric perturbations.
distinguish these reconstructed variables from the orig
ones, we associate them with an overhat in the same wa
ĥ(M ) and ĥ(T). Combining the Einstein equations using t
definition of the master variable, the necessary formulas
the reconstruction can be derived as

ĥ1
RW5

r 2

r 22M
(o)x,
10401
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ĥ0
RW52

1

iv S 12
2M

r D F ~r (o)x! ,r

1
8p ir 2

A2l~l11!
DG . ~2.10!

For h1
RW reconstruction is straightforward since there is on

ĥ(M ). In reconstructedh0
RW first term in the square bracket

corresponds toĥ(M ) and second term isĥ(T). The trouble
with the expression forĥ(T) is the presence ofv in denomi-
nator, as anticipated earlier. Even if we rewrite this expr
sion using conservation law

A2lD5
vr 2

r 22M
Q(0)1S 32

4M

r DQ1~r 22M !Q,r ,

~2.11!

this v cannot be removed. This fact implies that we ne
time integration of the source term in the reconstruction
metric perturbation. Hence the reconstructed metric is
solely determined by the master variable even when
energy-momentum tensor vanishes on the spherical s
containing a given field point.

We, therefore, introduce a new gauge invariant varia
(o)z defined by

(o)z52
r

2l F2 ivh1
RW2h0,r

RW1
2

r
h0

RWG . ~2.12!

Using the definition~2.5! with one of the odd-parity field
equations, we can verify that

2 iv (o)z5 (o)x1
8p ir ~r 22M !Q

2lA11l
. ~2.13!

Hence, (o)z is equivalent totime integral of the original
variable (o)x outside the source distribution. The expressi
applicable to an arbitrary gauge has the same functional f
as in the RW gauge:

(o)z52
r

2l F2 ivh12h0,r1
2

r
h0G . ~2.14!

Substituting Eq.~2.13! into Eq. ~2.6!, we recover

@] r*
2

1v22VRW~r !# (o)z5S (o)z, ~2.15!

with new source term

S (o)z5
8p~r 22M !

2lA11l
@vrQ2] r~rQ (0)!#. ~2.16!

Here we have used conservation law~2.11! to simplify the
expression. The source termS (o)z does not have a time inte
gral although(o)z is a time integral of the original variable
(o)x. This is expecteda priori. If the source term for(o)z
has an integration constant then it is not uniquely de
mined, which contradicts the fact that it is a gauge invari
8-3
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variable. Here, in order to illustrate the way how we fou
the new variable, we took rather lengthy steps to obtain
master equation~2.15! passing through the equation for th
original master variable~2.6!. But, of course, one can di
rectly verify the final result by combining first two odd
parity equations~2.2! and ~2.3!.

Now we consider the reconstruction of the metric comp
nents from this master variable(o)z. There are two non-
vanishing componentsh0

RW andh1
RW in the RW gauge. They

are to be solely determined from(o)z, if the metric pertur-
bation satisfies Einstein equations. From Eq.~2.3! and the
definition of (o)z, we immediately have

ĥ1
RW52

ivr 2

r 22M
(o)z1

4p ir 3

lA11l
Q. ~2.17!

Once we knowĥ1
RW, we can reconstructĥ0

RW by using Eq.
~2.4! as

ĥ0
RW5~r 22M !S (o)z ,r1

1

r
(o)z1

4pr 2

lA11l
Q(0)D .

~2.18!

This time, theĥ(T) part does not havev in the denominator.
Therefore, one can simply set the source terms to zer
obtain the formulas for the reconstruction of the metric p
turbation in vacuum region. We notice here thatĥ(M ) is also
free from annoying factorv. These two facts are actuall
related. By definition, the defining expression for a gau
invariant master variable does not havev in the denomina-
tor. Otherwise, the gauge invariant variable would be a
biguous due to integration constant, and information of m
ric perturbations in the vicinity of a spherical shell, specifi
by t andr, will be insufficient to determine the correspondin
gauge invariant variable there. Let us assume thatĥ(M ) also
does not havev in the denominator. In the vacuum case, w
can consider a cycle of operations starting withh, going
through the master variable, and again coming back toh by
using ĥ(M ). Throughout this cycle, there is nov in the de-
nominator. Hence, if a homogeneous solution of metric p
turbations including its derivatives near a spherical shel
given, this cycle should reproduce the original metric pert
bations. The formulas composing this cycle will not chan
even if there exists matter source away from the spher
shell. If ĥ(T) hasv in the denominator, this term gives a
additional contribution even if matter source does not e
there. This is a contradiction. Hence, ifĥ(M ) does not havev
in the denominator, neither doesĥ(T).

B. Even parity

Next, we look at the even parity case. The RW gau
choice corresponds to settingh0

(e)RW5h1
(e)RW5GRW50. The

set of field equations for the even parity modes, with
source terms, is
10401
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S 12
2M

r D F S 12
2M

r D S K ,rr
RW2

1

r
H2,r

RWD1S 32
5M

r D1

r
K ,r

RW

2
1

r 2
~H2

RW2KRW!2
l

r 2
~H2

RW1KRW!G528pA(0),

~2.19!

2 ivK ,r
RW2 iv

1

r
~KRW2H2

RW!1 iv
M

r ~r 22M !
KRW

2
~11l!

r 2
H1

RW52
8p i

A2
A(1), ~2.20!

1

~r 22M ! F2v2
r 2

~r 22M !
KRW2S 12

M

r DK ,r
RW12ivH1

RW

1
~r 22M !

r
H0,r

RW1
1

r
~H2

RW2KRW!

1
~11l!

r
~KRW2H0

RW!G
528pA, ~2.21!

F S 12
2M

r DH1
RWG

,r

1 iv~HRW1KRW!5
8p i

A11l
rB (0),

~2.22!

ivH1
RW1S 12

2M

r D ~H0
RW2KRW! ,r1

2M

r 2
H0

RW1
1

r S 12
M

r D
3~H2

RW2H0
RW!5

8p

A11l
~r 22M !B, ~2.23!

v2S 12
2M

r D 21

~KRW1H2
RW!1S 12

2M

r D @K ,rr
RW2H0,rr

RW#

1S 12
M

r D 2

r
K ,r

RW22ivH1,r
RW2 iv

2~r 2M !

r ~r 22M !
H1

RW

2
1

r S 12
M

r DH2,r
RW2

1

r S 11
M

r DH0,r
RW

2
~11l!

r 2
~H2

RW2H0
RW!

58A2pG(s), ~2.24!

H0
RW2H2

RW5
16p

A2l~11l!
r 2F. ~2.25!

The original Zerilli’s master variable,Rlm , is defined by

Rlm5
1

v
(e)x5

1

iv S r 22M

lr 13M D F ivr 2

r 22M
KRW1H1

RWG ,
~2.26!
8-4
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and has an ambiguity due to an integration constant. We
work, instead, with its gauge invariant form(e)x. With the
field equations above it obeys the wave equation@20#

@] r*
2

1v22VZ~r !# (e)x5S ( (e)x). ~2.27!

Here,

VZ~r !5S 12
2M

r D
3

2l2~l11!r 316l2Mr 2118lM2r 118M3

r 3~rl13M !2

~2.28!

is the Zerilli potential and the source term takes the form

S( (e)x)5
~r 22M !2

~rl13M !A11l
B,r

(0)

1
~r 22M !~212M219Mr 1r 2l!

rA11l~rl13M !2
B(0)

2A2l
~r 22M !2

~rl13M !2
A(1)1vF2

r 2

~rl13M !
A(0)

1
~r 22M !2

~rl13M !
A1

~r 12M !2

~rl13M !A11l
B

2A2
~r 22M !

Al~11l!
FG . ~2.29!

The formulas for the metric reconstruction are derived
combining the Einstein equations using the definition of
master variable. Since this is a known result, we just qu
here the explicit reconstruction formula forKRW as an ex-
ample:

K̂RW5
1

v F2S 12
2M

r D (e)x ,r

1
r 2l1~rl13M !~rl12M !

r 2~rl13M !
(e)xG

2
r ~r 22M !

v~rl13M ! S 1

A2
A(1)1

1

A11l
B(0)D .

~2.30!

As in the odd parity case, the first term isĥ(M ) and the
second term isĥ(T). The presence ofv in denominator in the
expression forĥ(T) is a signal that this(e)x is not the most
convenient choice of the master variable.

Analogous to the odd parity case we now define a n
time integratedvariable using vacuum field equations as
10401
ill

y
e
te

w

(e)z5
r ~r 22M !

~l11!~lr 13M ! FH2
RW2rK ,r

RW1
rl13M

r 22M
KRWG .

~2.31!

In fact, the same variable has been introduced earlier
Moncrief @24# ~see also Gleiseret al. @28#!. It can be easily
checked that(e)z satisfies a similar wave equation

@] r*
2

1v22VZ~r !# (e)z5S (e)z, ~2.32!

with a modified source term

S (e)z5
r 22M

~11l!~rl13M ! F r 2A,r
(0)2r S rl12M

r 22M

2
rl19M

rl13M DA(0)2v
r 2

A2
A(1)1~11l!~r 22M !A

1A11l~r 22M !B2A2~11l!

l
~rl13M !FG .

~2.33!

Here, for simplification, we have used the three constra
equations, corresponding toTn;m

m 50, which are

A,r
(1)5

1

r 22M F2
A2vr 2

r 22M
A(0)22S 12

M

r DA(1)

1A2~11l!B(0)G , ~2.34!

A,r5
1

r 22M F vr 2

A2~r 22M !
A(1)2

Mr

~r 22M !2
A(0)

1
M22r

r
A1A11lB1A2G(s)G , ~2.35!

B,r5
1

r 22M F vr 2

r 22M
B(0)2S 32

4M

r DB1A2lF

2A2~11l!G(s)G . ~2.36!

As explained in the odd parity case, the source term fo
gauge invariant variable does not havev in denominator.
Now we come to the reconstruction of the metric comp
nents using this new master variable(e)z in the RW gauge.
There are four nonvanishing components in the even pa
case, namely,KRW, H1

RW, H0
RW andH2

RW. We can rewrite
them in terms of the gauge invariant variable(e)z as

K̂RW5
l~l11!r 213lMr 16M2

r 2~rl13M !
(e)z1S 12

2M

r D (e)z ,r

2
8pr 3

~l11!~rl13M !
A(0),
8-5
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Ĥ1
RW52 iv

lr ~r 22M !2M ~rl13M !

~r 22M !~rl13M !
(e)z2 ivr (e)z ,r

1 iv
r 5

~11l!~rl13M !~r 22M !
A(0)

1 i
r 2

A2~11l!
A(1),

Ĥ2
RW5

1

rl13M F S 2v2r 2
~rl13M !

r 22M
1l21

3M2

r 2

1
l~r 2l16M2!

r ~rl13M ! D (e)z2S M

r
~rl13M !2l~2M

2r ! D (e)z ,r2
1

11l H S rl

rl13M
2

M

r 22M D r 3A(0)

1
1

A2
vr 4A(1)2~r 22M !r 2@B1~11l!A#

1A2

l
r 2~rl13M !FJ G ,

Ĥ0
RW5H̄2

RW1
16p

A2l~11l!
r 2F. ~2.37!

These reconstruction formulas are local and do not req
any time integrations.

III. EVEN PARITY MASTER VARIABLE VIA
CHANDRASEKHAR TRANSFORMATION

In this section we have examined the even parity ma
variable that satisfies the same homogeneous master equ
as the odd parity one. The method to obtain such an e
parity master variable is well known as the Chandrasek
transformation@26#. Here, we give a short derivation of th
transformation, and discuss the metric reconstruction sch
using this new variable(e)z̃. As mentioned earlier, a part o
motivation is the usefulness of master variables which sa
fies the same master equation for both the parities. In
ticular, the master equation is much simpler for the odd p
ity case. Another point is the appearance of the fac
1/(lr 13M ) in the RW potential in the even parity cas
which is absent in the odd parity case. This factor ma
ematically means the existence of a singularity
r 523M /l in the master equation. However, this singular
will not be a physical one because of the symmetry betw
even and odd parity cases. This factor 1/(lr 13M ) is inher-
ited in many places of the whole reconstruction scheme.
though not a serious obstacle in actual computation, we
expect that the reconstruction scheme might simplify a lot
using the new variable(e)z̃.

Our quick derivation of (e)z̃ is based on the fact tha
the Weyl scalar contracted with null tetra
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ambl cmd satisfies the same homogeneous eq

tion irrespective of the parity@29#. Here l a andma are out-
going and angular null tetrad vectors, respectively. For
plicit calculations, we use (l a)5(r 22M )21(r ,r
22M ,0,0), and (ma)5(A2r sinu)21(0,0,sinu,i). The fol-
lowing formulas are obtained just by plugging in the expli
metric form into the definition ofc:

(o)c5
i

2r 2~r 22M !
F ~r 22M !h1,r

RW1rh0,r
RW2 ivrh1

RW

1
~2M1 ivr 2!

r 22M
h0

RWG , ~3.1!

and

(e)c52
~H1

RW1H2
RW!

r ~r 22M !
. ~3.2!

Here the angular dependence, which is given by the s
weighted spherical harmonics, is suppressed for brevity.
use the same notation( i )c to represent the coefficients o
Fourier harmonic decomposition, but it will not cause a
confusion.

Substituting Eqs.~2.17! and ~2.18!, we can rewrite Eq.
~3.1! in vacuum as

(o)c5
2

r 3~r 22M !2
@$v2r 41 ivr 2~r 23M !

1~3M2~l11!r !~r 22M !% (o)z~r !

1r ~ ivr 213M2r !~r 22M ! (o)z ,r~r !#. ~3.3!

Here we have used the field equations for simplificatio
From the equation above and with the aid of Eq.~2.15! in
vacuum, we can express the master variable(o)z in terms
of(o)c and its derivative as

(o)z~r !5z@ (o)c#5
r 2

2„3ivM1l~l11!…
@$v2r 325ivMr

24M1r 1l~2M2r !% (o)c~r !2~r 22M !~ ivr 2

13M2r ! (o)c ,r~r !#. ~3.4!

Then, with an arbitrary constantC,

(e)z̃5Cz@ (e)c# ~3.5!

should satisfy the RW equation, i.e., the same equation
(o)z satisfies except for the source term. After a straightf
ward calculation, we obtain

(e)z̃~r !52~r 22M !S H2
RW2rK ,r

RW1
rl

~r 22M !
KRWD ,

~3.6!

with

C54„3ivM1l~11l!…, ~3.7!
8-6
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which is known as the Starobinsky constant@27#. It is also
easy to check directly that this new master variable satis
the homogeneous RW equation with the sameV as the usual
RW potential.

In a general case with the source term, we have
ve
t

im
n

a
n
in
it-

or
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2
1v22VRW~r !# (e)z̃5S (e) z̃, ~3.8!

with
S
(e) z̃5~r 22M !F22rA ,r

(0)12
M2r ~11l!

r 22M
A(0)1A2vrA (1)12

@6M2r ~11l!#~r 22M !

r 2
A

12
@6M2r ~11l!#~r 22M !

A11lr 2
B22A2

@6M22lr 2~11l!#

A~11l!lr 2
F26A2

rM ~r 22M !

A~11l!lr
F ,r G . ~3.9!

The metric reconstruction formulas for the(e)z̃ are given by

K̂5
16

uCu2
F2r ~11l!~rl13M !A(0)1

3

r
A11lM ~r 22M !2$B1A11lA%2

3

A2
vrM ~r 22M !A(1)

23
A2~11l!M ~r 22M !~rl13M !

rAl
F1

@~11l!$3M ~r 22M !1rl~rl13M !%2rO#

2r 3
(e)z̃

1
~rl13M !~r 22M !~11l!

2r 2
(e)z̃ ,r G ,

Ĥ15
16

uCu2
F2 iv

Pr 2~rl13M !

~r 22M !
A(0)1 i

@3Mv2r 1l2~l11!#r 2

A2
A(1)13ivMP~r 22M !H A1

B

A11l
J

23A2iv
MP~rl13M !

A~11l!l
F1 iv

@r 2O13MP~r 22M !#

2r 2~r 22M !
(e)z̃1 iv

~rl13M !P
2r

(e)z̃ ,r G ,

Ĥ25
16

uCu2
F r 2O
~r 22M !

A(0)1v
lr 2P
A2

A(1)2l~r 22M !P$~11l!A1A11lB%1A2~11l!lP~rl13M !F

1
@O2l~v2r 31M ~11l!!#P

2~r 22M !r 2
(e)z̃2

O
2r

(e)z̃ ,r G ,

Ĥ05H̄21
16p

A2l~11l!
r 2F. ~3.10!
odi-
ma-

of
e-
Here, P53M2r (11l) and O53Mv2r 21l(l11)(3M
2r ). If we are working in frequency domain only, the abo
choice of master variable is not a bad one because of
common potential in master equation, whereas, in the t
domain we will need time integrations for the metric reco
struction due to the factoruCu22.

We can modify the master variable by adding combin
tions of metric components which appear on the left-ha
side of the Einstein equations. Let us denote these comb
tions byG( i ) so that the Einstein equations are formally wr
ten asG( i )5T( i ) ( i 51,2, . . . ,7),whereT( i ) represents each
component of the energy momentum tens
$A(1),A,B,A(0),B(0),G(s),F%. SinceG( i ) vanishes identically
he
e
-

-
d
a-

,

outside the source, the homogeneous equation for the m
fied master variable should be unaltered by the transfor
tion,

(e)z̃→ (e)z̃1(
i 51

7

ciG( i ) . ~3.11!

Now one may think that the factoruCu22 from the expression
for ĥ(T) can be eliminated by using this degree of freedom
modifying the master variable. However, we will prove b
low that it is impossible.
8-7
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As a result of the transformation above,K̂ (T) is modified
as

K̂ (T)→K̂ (T)2K̂ (M )F(
i 51

7

ciT( i )G . ~3.12!

SinceK̂ (M )@ (e)z̃ # contains(e)z̃ ,r , we cannot eliminateT( i ),r

from K̂ (M )@(ciT( i )# unlessci50 for i>4. For $A(1),A,B%,
one can use the conservation law~2.34! to eliminateT( i ),r .
Thus the condition thatuCu2K̂ (M )@(ciT( i )#'0 requiresci
'0 for i>4, where' means the equality modulouCu2.
Then, we find thatB(0) andG(s) arises in the expression fo
the modifiedK̂ (T) only from ( i<3ciT( i ),r . Hence, the condi-
tions for the coefficients ofB(0) andG(s) to vanish modulo
uCu2 become c1'2„vr 2/A2(11l)(r 22M )…c3, and c2

'A(11l)c3, respectively. Thus a possible modificatio
which might eliminate the factoruCu22 from the expression
for ĥ(T) is restricted to

K̂ (T)→K̂ (T)2K̂ (M )@ f ~r !~2@vr 2/A2~11l!~r 22M !#A(1)

1A~11l!A1B!#, ~3.13!

with an arbitrary functionf (r ). Then, a straightforward cal
culation shows that the factoruCu22 cannot be eliminated by
this transformation. Thus, the idea of introducing a new m
ter variable for even parity modes satisfying the RW eq
tion does not work well for the purpose of metric reconstru
tion in the time domain.

IV. DISCUSSION

In this paper we have introduced new master variables
the odd and the even parity cases. We call them, respecti
the modified Regge-Wheeler and Zerilli variables. The
variables satisfy the same Regge-Wheeler or Zerilli equa
except for the source terms, which are composed of the m
ter energy momentum tensor. We have given the explicit
pressions for the source term. The metric perturbation in
RW gauge is expressed in terms of the master variables
the matter energy momentum tensor. The explicit formu
for the metric reconstruction were also written down. T
important aspect of these modified variables lies in the
that the frequencyv does not appear in the denominator
all the formulas to obtain the metric perturbation. Hen
there is no time integration except for the step solving
master equation. The most crucial point will be thatĥ(T), the
contribution to the reconstructed metric perturbation fro
the matter energy-momentum tensor, does not havev in the
denominator. Therefore, the perturbed metric around a fi
point (t,r ) is solely written in terms of the master variabl
if the energy-momentum tensor vanishes in the vicinity
the spherical shell containing this field point. This fact w
be useful in the program to calculate the regularized s
force acting on a particle orbiting in the Schwarzsch
spacetime.

As mentioned earlier, in the Introduction, the full metr
perturbation contains a divergent piece near the particle
10401
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cation. To obtain a sensible expression for the self-force,
need to subtract the so-called ‘‘direct’’ part from the fu
metric perturbation before evaluating the expression of
force. But here is the ‘‘gauge problem.’’ The full metric pe
turbation is obtained in Regge-Wheeler gauge but the ‘
rect’’ part is evaluated in the harmonic gauge associated w
the particle trajectory.

Here we would like to propose an insight towards an
ternative method to handle this gauge issue in the case o
Schwarzschild background. The basic idea is inspired by
notion brought by Barack and Ori@7#. They stressed that th
trajectory in the perturbed spacetime is gauge invariant
though the expression for the self-force depends on
choice of gauge. On the other hand, the metric perturbat
reconstructed from this gauge invariant master variables
pend on the choice of gauge, but the concepts of the
turbed geometry and hence of the geodesic on it are ga
invariant. Hence, naturally one may expect that the subt
tion at the level of gauge invariant master variables is p
sible.

A sketch of the new method is the following. The ‘‘direct
part of the metric perturbationh(S) can be calculated in the
harmonic gauge. We can use the recent observation by
weiler and Whiting@15# that h(S) can be modified so that i
satisfies the Einstein equations. Since the method for the
monic decomposition of the direct part is established
Mino, Nakano and Sasaki@14#, the projection of this direct
part to the gauge invariant master variablez (S) is possible by
using the formulas~2.14! and ~2.26!. On the other hand
solving the RW equation, we can directly calculate the m
ter variable corresponding to the full metric perturbatio
z ( f ull ). Then we subtract the direct partz (S) from z ( f ull ) to
obtain the master variable that corresponds to the tail p
which we denote byz (tail ). Since bothz (S) andz ( f ull ) satisfy
the RW equation with the same source, their differencez (tail )

satisfies the homogeneous RW equation. Hence, we can
construct the metric perturbation corresponding to the
part from this regularized master variablez (tail ) by applying
the formulasĥ(M ). At this step the choice of gauge is unim
portant as is explained in the paper by Barack and Ori@7#.
Since the subtraction of the divergent part is done at the le
of the gauge invariant variables, we would like to call th
scheme thegauge invariant regularization.

In the new scheme, using the variables introduced in
paper, the part depending on the master variable in the m
reconstruction formulas,ĥ(M ), does not havev in the de-
nominator as well asĥ(T). Hence, when we know the behav
ior of the master variable corresponding to a homogene
solution of metric perturbations in the vicinity of a spheric
shell, we can reproduce the metric perturbations from
master variable there. Ifĥ(M ) containedv in the denomina-
tor, the local information of the master variables near
shell were not sufficient to reproduce the metric pertur
tions. Therefore, the use of the new variables introduced
this paper is crucial for the gauge invariant regularization

This scheme still has a subtle point which requires furt
investigation. The method for the reconstruction of the m
ric perturbation does apply only for a solution of vacuu
8-8
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Einstein equations. However, in the actual computation,
direct parth(S) is calculated in a power series expansion w
respect to the separationj between the source point and th
field point, and this expansion must be truncated at a cer
order ofj. Then, the truncated direct part does not satisfy
Einstein equations in general. Hence, we need a new in
tion to bypass this difficulty in order to realize this attracti
idea of the gauge invariant regularization. We would like
return to this challenging issue in a future publication.

In Sec. III we discussed the possibility of using a mas
variable for even parity modes which has the same poten
for the master equation as in the case of odd parity mo
Such a variable is obtained by using the Chandrasek
transformation. We wrote down the explicit definition of th
master variable in terms of the metric components, the m
ter equation with the source terms and the metric reconst
tion formulas. We found that the metric reconstruction f
mulasnecessarilycontain the Starobinsky constant includin
v in the denominator. Therefore, the use of the even pa
master variable that has the same homogeneous master
eo

s.
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tion as in the odd parity case unfortunately turned out no
be advantageous. However, the master variables consid
here are limited to those which are related via Chandrase
transformation. We expect an even wider class of trans
mations in which we might find a more suitable variable f
the purpose of metric reconstruction.
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