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Improvement on the metric reconstruction scheme in the Regge-Wheeler-Zerilli formalism
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We study master variables in the Regge-Wheeler-Zerilli formalism. We show that a specific choice of new
variables is suitable for studying perturbation theory from the viewpoint of radiation reaction calculations. With
explicit definition of the improved master variables in terms of components of metric perturbations, we present
the master equations, with source terms, and metric reconstruction formulas. In the scheme using these new
variables, we do not need any time and radial integrations except for solving the master equation. We also show
that the master variable for even parity modes which satisfies the same homogeneous equation as the odd-
parity case, obtained via Chandrasekhar transformation, does not have the good property in this sense.
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[. INTRODUCTION gauges. This is by no means an easy task since we do not
know the necessary gauge transformatiopriori. This ad-

Black hole perturbation is a powerful tool for the evalua- ditional task to find the appropriate choice of the gauge pa-
tion of gravitational waves from a binary system when itsrameters makes the problem much harder to solve; this is the
mass ratio is largfl—3]. Although any systematic method to aforementioned “gauge problem.” The attempts for subtrac-
calculate the radiation reaction to the particle motion has nofion of the “direct” part in the RW gauge were reported by
been established so far, there are various new developmerlino [6] and Sageet al. [16]. o
in this field[4—17]. A formal prescription to extract the self- N this paper we would like to revisit the problem of met-
force was developed i], generalizing the work of Dewitt '1C perturbations reconstruction from the master variables in
and Brehmd 18] on the electromagnetic self-force to include ¢ase of Schwarzschild background. In this approach, based
the gravitational case. These results were further verified b§n Regge-Wheeler-Zerilli formalism, the problem of metric
an independent, and different, axiomatic approach by Quinfeconstruction is relatively well understoptd,2(. What we
and Wald[5]. The prescription can be summarized as fo|_woulc_l like to c_ilscuss here are possibilities of improvements
lows. The retarded field can be obtained in terms of Green'§n this formalism. . _
functions which can be formally decomposed into “direct” It is well known that in the Schwarzschild case the odd
and “tail” parts. Roughly speaking, the “direct” part of the and the even parity perturbations naturally decouple due to
field is that part which has support only on the future lightSPherical symmetry. Assuming a time dependence of the
composed of contribution due to curvature scattering whictole can be described by a master equation, for each partial
pervades inside the future light cone of the source point. Th&ave mode decomposed in terms of spherical harmonics, as
analysis presented [@,5] indicates that, the particle motion, )
after taking into account the self-force, follows a geodesic on d“¢ +H(@2=V)=8(T,,)
the geometry perturbed by adding the “tail” part to the origi- dr*? wr
nal background spacetime.

The actual isolation of the “tail” part is not an easy task. Here/ is the master variable is the source term composed
There are ways to calculate the “full” Green’s function but of the matter energy momentum tens®y,, and r*=r
there is no direct method to compute the “tail” part alone. +2M In(r/2M —1) is the usual tortoise radial coordinate.
Hence, the standard prescription that has emerged in the paBEhe metric components in the RW gau@&, are obtained
few years is to subtract the “direct” part from the “full” by applying certain differential operators on the master vari-
metric perturbation. Here lies the well known “gauge prob-able and on the energy-momentum tensor as
lem.” In the standard methods for constructing full metric R R
perturbation, we first solve the equation for master variables hRW=hM(2)+h((T ). 1.2
and then from these master variables we reconstruct the met- ) o
ric perturbations. The result is naturally written in a specific Then, the formulas for the metric reconstruction in the
gauge such as Regge_Whee(ﬂV\/) [19,2(] or radiation scheme presented in the Original padd@,Zq containw in
gaugd 21-23. On the other hand, the “direct” part is evalu- the denominator of the expressions fol). Although w is
ated in the harmonic gauge associated with the particle trgust a number in the frequency domain, if in denominator it
jectory. Therefore, before any meaningful subtraction wecan be an obstacle in computing the metric in the vicinity of
need to relate these expressions which are in differena particle orbiting a black hole. Suppose that the particle
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moves betweem,;, andr.x. The appearance @ in the  neous master equation is discussed. We briefly summarize
denominator means th&l(T) is no |0nger |Oca|ized on the the results obtained in this paper in Sec. IV, with a Specula-

radial shell where the particle orbit lies. Instead, the source i§0n towards an alternative method to compute the regular-
distributed continuously in the region betweep, and ized self-force subtracting the direct part at the level of the

I'max. Therefore, the metric components are not completelynaster variables.

determined by the notion of the master variables in this re-

gion even if the concerned field points are off the shell. In

the computation of the self-force, the gravitational field ex- Il. IMPROVED MASTER VARIABLES

actly on this shell is unnecessary. A limiting value evaluated

along, e.g., the puter radial direction is sufficient for the pur-(RW) formulation. In this formalism a master equation for a
pose _Of computlpg the self-.force. If we can modify the for- master variable is derived, which are called the RW equation
mulation so thah(™ is localized on the shell, then we can and the RW variable, respectively. Once we know the solu-
apply the formula for the metric reconstruction outside thetion for the RW variable, all the components of the metric
source, which is much simpler. For the even parity case, aBerturbation can be derived from it. This scheme is well
improved master variable has already been introduced bynown. What we have shown here is that it can be improved,

Moncrief ([24], see alsg25]"). We give here the general in the sense discussed earlier, by introducing alternative mas-
metric reconstruction formulas in the presence of sourceser variables.

which have not been given explicitly yet, as far as we know. \We consider the Schwarzschild metric,
We show thatw can be removed from the denominator by
using Moncrief’s master variable. Same argument follows

We begin with reexamining the Regge-Wheeler-Zerilli

for the odd parity case, i.e., by introducing a new improved 2M -1

master variable, we can remove appearance a@f the de- ds’=— ( 1- T)dt2+ ( 1- T) dr?
nominator. Complete expressions for the metric reconstruc-

tion are also presented for this case. +r2(d6?+sirfode?), (2.1

Another complication which arises is from the well
known fact that the potentials for odd and even parity cases
differ from each other. The potential for the even parity casess the background. The 10 metric components can be decom-
is, relatively, much more complicated. Hence, it would beposed into “odd” and “even” parity modes. We use the no-
useful if we could formulate the even parity perturbations totation in which, after harmonic decomposition for the angu-
satisfy the same master equation with the odd parity casgar dependenceHq,H;,H,,h{® ,h{® K and G are the
Chandrasekhar has already given a unified approach, knowtymponents of metric perturbations for the even parity
as Chandrasekhar transformations, and shown the relatiqfjoges, and,,h, andh, are for the odd parity modes. Here
between RW and Zerilli equatioi26] (for a comprehensive e assume that the time dependence is given by
review see[_Z?]). In this paper we also derive the full metric exp(iwt). Similarly, the components of the energy momen-
reconstruction formulas for the even parity perturbation byy,m tensor can be decomposed into odd and even parity
using the master variable obtained via the Chandrasekhah,gesA@® AM A BO B GO andF are the expansion co-
transformation. Under the requirement for this new masteggficients for the even parity modes, agd®,Q andD are
variable to satisfy the RW equation in vacuum, we can stillqr the odd parity modegwe follow throughout notation of
modify its definition by adding a combination of the metric zeyjjji for the metric perturbation and the energy-momentum
components which appear on the left hand side of Einsteigensor with slight modifications; sé&6] for the basic equa-
equations, since it is zero in vacuum. Examining all the poStigns such as the law of gauge transformation and the defi-
sibilities of such a modification, we have concluded that weyjtions of the harmonic expansion coefficients of the energy
cannot eliminatas from the denominator in the expression ,omentum tensor
for h(M. Unfortunately, as it turns out, no dramatic simplifi-
cation happens by reformulating the formulas solely in terms
of the variable obtained via Chandrasekhar transformation, A. Odd parity

although the importance of this transformation is not reduced First, we consider the odd parity case. The RW gauge

at all by this fact. choice corresponds to settindy '=0. Here, the variables

The paper is organized as follows. In Sec. Il we discuss . : o )
the equgti?)ns for t?oth odd and even parity cases. We ha ith a superscripRW means the quantities are in the RW
gauge. The nontrivial set of Einstein equations for the odd

provided the explicit expressions for source terms corre i de |
sponding to the new master variables. In Sec. Il the eve®2"y MOde IS

parity master variable which satisfies odd parity homoge- RW
AR RV | o 2 pRW ﬂ—2(1+>\) L
Orr 1r rot r r(r—2Mm)
We thank Dr. Tomohiro Harada for informing us about this ref- 8 2
L . . m r
erence. After finishing our paper, we noticed that the new variable = Q) (2.2
for odd parity case was also introduced in this reference before. J1I+A F—2M
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RW, : 1 RW o2 RW ~RW 1 2M
—a)zhl +Iwh0r +2)\(r—2M)—3—|th0 hO =— E 1- T (r(O)X),,
’ r
8T r—2m)Q 2.3 LS 2.10
= — r— , . .
V1+\ V2N(A+1)
oM oM\ -1 oM For h?w reconstruction is straightforward since there is only
(1_ _) hEWtiw| 1- _) hRW+ _zthW h™)_ In reconstructedh}" first term in the square brackets
' ' corresponds th™) and second term i&(™. The trouble
8i with the expression foh(" is the presence ab in denomi-
=————1r2D. (2.9 nator, as anticipated earlier. Even if we rewrite this expres-
V2N (1+N) sion using conservation law
From the above equations, and using the conventional gauge B wr? ) aM
invariant master variablé&) y VD = 5 QU 3 1~ |QH(r=2M)Q,;.
(2.1)
©)y= r-2m hRW, (2.5)  this w cannot be removed. This fact implies that we need
r2 time integration of the source term in the reconstruction of
metric perturbation. Hence the reconstructed metric is not
we can derive a second order differential equation as solely determined by the master variable even when the
energy-momentum tensor vanishes on the spherical shell
[arz* + 2= VRY(1)] (O)XZS(O)X- (2.6) containing a given field point.

We, therefore, introduce a new gauge invariant variable

(o) i
This is the well known Regge-Wheeler equat[d®]. Here ¢ defined by

r 2
(0r— _ | i KRW_LRW, T RW
2(A+1) 6M {=—5x| Tohi"=ho "+t —hg ™. (212

2M
VRW:(l— T) 5 = | (2.7

r r

Using the definition(2.5 with one of the odd-parity field

. ) ~ equations, we can verify that
is the Regge-Wheeler potential and the source term is given

by 8ir (r—2M)Q
—i ¢ (0)r— (0) P A
iw 9=+ . (2.13
2NV1+N
(O)X— 87T| ZM 2M
S = N 1-+ " Q Hence, )7 is equivalent totime integral of the original

variable (' y outside the source distribution. The expression
applicable to an arbitrary gauge has the same functional form

+ (2.8 as in the RW gauge:

r (r—ZM
|——D

—
van o

Here\ is defined in terms of, the total angular momentum
of the spherical harmonics, as

Or=— 1| “ioh,—h +Eh 2.1
(== x| ~tehi=ho + —hol. (2.14

Substituting Eq(2.13 into Eq. (2.6), we recover

£=1)(€+2)

A 2

(2.9 [0 + 02— VRY(1)] =57 (2.19

) with new source term
Once the master variable and the energy-momentum tensor

are given, we can reconstruct the metric perturbations. To ), 8m(r—2M) o
distinguish these reconstructed variables from the original t= m[me—ﬁr(fQ( N (218
ones, we associate them with an overhat in the same way as

A and (M. Combining the Einstein equations using the Here we have used conservation 1&v11) to simplify the
definition of the master variable, the necessary formulas foéxpression. The source tefi”¢ does not have a time inte-

the reconstruction can be derived as gral although(®¢ is a time integral of the original variable
) (©y . This is expectea priori. If the source term forl®¢
fRW_ T () has an integration constant then it is not uniquely deter-
! r—2Mm X mined, which contradicts the fact that it is a gauge invariant
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variable. Here, in order to illustrate the way how we found
the new variable, we took rather lengthy steps to obtain the
master equatiori2.15 passing through the equation for the
original master variablé2.6). But, of course, one can di-
rectly verify the final result by combining first two odd-
parity equation$2.2) and(2.3).

Now we consider the reconstruction of the metric compo-
nents from this master variabl®¢. There are two non-
vanishing components§"’ andhf" in the RW gauge. They
are to be solely determined frof?¢, if the metric pertur-
bation satisfies Einstein equations. From E23) and the
definition of (7, we immediately have

4qir3

A\/1+>\Q'

iwr?
r—2M

RRW.

AW ©) 4

(2.17)

(r—2M)

Once we knowh?", we can reconstrudi" by using Eq.
(2.4) as

A 1
hiW=(r—2Mm) (®§J+?J®§+
(2.18

This time, theh(™ part does not have in the denominator.
Therefore, one can simply set the source terms to zero to
obtain the formulas for the reconstruction of the metric per-

turbation in vacuum region. We notice here théf) is also

free from annoying factow. These two facts are actually .
related. By definition, the defining expression for a gaugd ©
invariant master variable does not havein the denomina-
tor. Otherwise, the gauge invariant variable would be am-
biguous due to integration constant, and information of met-
ric perturbations in the vicinity of a spherical shell, specified
by t andr, will be insufficient to determine the corresponding
gauge invariant variable there. Let us assume 44t also
does not have in the denominator. In the vacuum case, we
can consider a cycle of operations starting withgoing
through the master variable, and again coming badk Iy
usingh™). Throughout this cycle, there is no in the de-
nominator. Hence, if a homogeneous solution of metric per-
turbations including its derivatives near a spherical shell is
given, this cycle should reproduce the original metric pertur-
bations. The formulas composing this cycle will not change
even if there exists matter source away from the spherical
shell. If A hasw in the denominator, this term gives an
additional contribution even if matter source does not exist

there. This is a contradiction. Henceh™) does not have»
in the denominator, neither do&s".

B. Even parity

Next, we look at the even parity case. The RW gauge
choice corresponds to settihg?R"=h{PRW=GRW=0. The
set of field equations for the even parity modes, with the
source terms, is

104018-4
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|

= —87A®,

2M

al

1

1
S

5M
_ FKt?rW

r

1——

1 A
- RW_  wRW\ _ RW R
r2(H2 KRW) r2(H2 +KRW)

(2.19

M

r(r—2M)K

1
—in?W—in(KRW—Hg\N)-}—iw RW

87 @

(1+N)
_ ; HlRW:

(2.20

2
1 ) r

BTV

M
KRW—(l—T)KﬁWJrzin?W

(r—2Mm) 1
+——Hg "+ S (HZY KR

(1+N) (KRW—H(F;W)

—87A,
(1

HEW

(2.21

2M
e

ZM)
1—-——
r

X(Hz"—Hg ") =

81 o

1+
(2.22
M

)

W tiw
,r

(HRWH KRW) =

1

|

2M
(HYW—KRW) + r—2H§W+ —|1-—

8

V1+A

(r—2M)B, (2.23

2M
1—7)[K??’V—H§?’Y

M\ 2 2(r—M)
+ 1= 2| ZkRW_ 9j Rw_. v W Rw
1 r>rK’r 2ioH7; Iwr(r—ZM) 1
1 M 1 M
—F<1—T)H§}’V—F 1+ —|Hg,"
(1+N)
———5—(H3"—Hg"
=8\27G), (2.24
167
He = H5W=——=r?F. (2.29
N YE RS Y|
The original Zerilli's master variableR,,,, is defined by
1 1(r=2M\[ ior?
=_(e, - RW, RW
Rim=% iw()\r+3M r—2Mm H s
(2.26
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and has an ambiguity due to an integration constant. We will r(r—2Mm) rn+3M

work, instead, with its gauge invariant forf?y. With the @ 7= T 1) =3V HEV—rK ?W+ WKRW _
field equations above it obeys the wave equaf2e] (2:30)
[0+ w?—VE(r)]@y=5("%, (2.27  In fact, the same variable has been introduced earlier by
Moncrief [24] (see also Gleisegt al. [28]). It can be easily
Here, checked that®¢ satisfies a similar wave equation
2M (75 +w?=VH(r)]©r=5", (2.32
Vz(r) = ( 1— T)
with a modified source term
2N2(N+1)r3+6A2Mr2+ 18\M?r +18M3
X 3 2 s®= r—2 r2p0) ¢ r+am
FE(rA+3M) EESNIGTEEIY)) r—2M
(2.28
IAOMY o) r2 "
is the Zerilli potential and the source term takes the form T IN+3M AT - ‘*’EA +(I+HN)(r—2M)A
¢ (r—2m)? 201+ N)
s@n= B(0) B B
(rh+3M) Tan +J1+A(r—2M)B X (rA+3M)F .
_ _ 2 2
+(r 2M)(—12M +9M:+rA)Bw) (2.33
FV1+A(rA+3M) Here, for simplification, we have used the three constraint
(r—2M)? r2 equations, corresponding 4. ,=0, which are
—JoON——— A E— ()
(r\+3M)?2 (rA+3M) 1 V2wr? M
A(rl): — A _2|1—- —|aAD)
(r_ZM)Z (r+2M)2 ' r—2M r—2m r
_|._
(rA+3M) rA\+3M)y1+\
( ) +12(1+1)BO, (2.39
r—2Mm
SN ALY (229
\/7\(1+?\) 1 wr? Mr
A, = —Y \/_ AL — —ZA(O)
The formulas for the metric reconstruction are derived by 2(r=2M) (r=2Mm)
combining the Einstein equations using the definition of the _or
master variable. Since this is a known result, we just quote A+ J1+AB+ 2G|, (2.35
here the explicit reconstruction formula & as an ex-
ample:
1
= O _(g3—- —
~ 1 oM Br r—2m r—2MB (3 B+ V2\F
RRW=— _(1_ _> (e)X ;
w r '
—V2(1+1N)GE|. (2.36

As explained in the odd parity case, the source term for a
gauge invariant variable does not hawein denominator.
B(°)> Now we come to the reconstruction of the metric compo-

PPN+ (rN+3M)(rh+2M)
+ (e)X
r2(rn+3M)

r(r—2Mm)

=7 (1)
(TN 3M) *

1
—A
J2 NEESY

nents using this new master variabf¢ in the RW gauge.
There are four nonvanishing components in the even parity

(230 case, namelykRW, HFY, HEWandHY™. We can rewrite
them in terms of the gauge invariant variabfe as

As in the odd parity case, the first term M) and the
second term i6(M. The presence ab in denominator in the RRW_ N+ 1)r?+ 3>\MT+GM2(e)

Sy e +[1- 2o
expression foh(™ is a signal that this®y is not the most r2(rA+3M) r !
convenient choice of the master variable. 3

Analogous to the odd parity case we now define a new . 8 A®©)
time integratedvariable using vacuum field equations as (A+1)(rA+3M) '
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crw . AF(r=2M)-— M(r)‘+3M)(e) e = —C(,,lbcdlambl"md satisfies the same homogeneous equa-
Hi"=—-lw (r—2M)(rr+3M) {—lor™, tion irrespective of the parit}29]. Herel? andm? are out-
going and angular null tetrad vectors, respectively. For ex-
rd © plicit calculations, we wuse I{)=(r—2M) (rr
w(1+)\)(r)\+3M)(r—2M)A —2M,0,0), and ) =(y2r sin6)~%0,0,sing,i). The fol-
lowing formulas are obtained just by plugging in the explicit
r2 metric form into the definition of}:
+i— AW
V2(1+))
© = —————| (r=2M)h{+ rhg"~iorhT
caw 1 ,(rA+3M)  3M? 2ri(r—2m)
= sam || @ e M 2 @M +iord)
+—r—2M o (3.0
A(r°A+6M?) © (M
TN+ 3M) 4 ; (rA+3M)—A(2M and

ra M 34(0) (e),p:_w (3.2
ni3M r—am) A r(r—2Mm)

1+
1 Here the angular dependence, which is given by the spin
+ —wrAW—(r —2M)rB+(1+\)A] weighted spherical harmonics, is suppressed for brevity. We
J2 use the same notatiof s to represent the coefficients of
Fourier harmonic decomposition, but it will not cause any
2 confusion.
2
+ \[)\r (”\+3M)F} ’ Substituting Eqs(2.17 and (2.18), we can rewrite Eq.
(3.1 in vacuum as

N 16w
HEW=HE"+ ——r?F. 2.3 .
0 2 V2A(1+N) (2:39 ©)y= r3(r—2M)2[{w2r4+lwr2(r_3M)
These reconstruction formulas are local and do not require +(3M—()\+1)r)(r—2M)}(°)§(r)

any time integrations.
+rior?2+3M—r)(r—2M)©¢ (r)]. (3.3
Ill. EVEN PARITY MASTER VARIABLE VIA . . . e .
CHANDRASEKHAR TRANSFORMATION Here we have _used the field equatlons_for S|mpI|f|qat|on.
From the equation above and with the aid of E&.15 in
In this section we have examined the even parity mastevacuum, we can express the master variad8lé in terms

variable that satisfies the same homogeneous master equatioff® s and its derivative as
as the odd parity one. The method to obtain such an even
parity master variable is well known as the Chandrasekhar , o (0) g 2 3
transformatior{ 26]. Here, we give a short derivation of this {n=d"yl= 2BioM+N(\+ 1))[{“’ '
transformation, and discuss the metric reconstruction scheme ©) o
using this new variablé®Z. As mentioned earlier, a part of ~AMATHAZM =)} = (r—2M) (i or
motivation is the usefulness of master variables which satis- +3M—1) Oy ()] (3.4
fies the same master equation for both the parities. In par- ’
ticular, the master equation is much simpler for the odd parThen, with an arbitrary constagt
ity case. Another point is the appearance of the factor
1/(\r +3M) in the RW potential in the even parity case, ©7=c{ @y (3.5
which is absent in the odd parity case. This factor math-
ematically means the existence of a singularity atSh0U|d satisfy the RW equation, i.e., the same equation that
r=—3M/\ in the master equation. However, this singularity 0/ satisfies except for the source term. After a straightfor-
will not be a physical one because of the symmetry betweetard calculation, we obtain
even and odd parity cases. This factor\X/¢- 3M) is inher-
ited in many plac_es of the who!e reconstruction s_cheme. Al- @F(r)=2(r—2M) HZRw_rKF:w A KRW
though not a serious obstacle in actual computation, we can ' (r—=2M)
expect that the reconstruction scheme might simplify a lot by (3.6)

using the new variablé®7. with

Our quick derivation of®7 is based on the fact that
the Weyl scalar contracted with null tetrad C=4@ioM+N\(1+N)), (3.7

2

—5iwMr
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which is known as the Starobinsky constd®7]. It is also [{92*+w2_VRW(r)](e)'Z:S(e)Z 3.9
easy to check directly that this new master variable satisfies ' '
the homogeneous RW equation with the savres the usual
RW potential.
In a general case with the source term, we have with

o M—=r(1l+\ 6M—r(1+N)](r—2M
sY=(r-2m) —2rA(P)+2#A(O)+\/Eer(l)JrZ[ ( 2)]( 'a
' - r
[6M—r(1+\)](r—2M) [6M2—\r2(1+\)] rM (r—2M)
+2 B—22 —6y2——F,|. 3.9
J1+ar? V2 (1+N)Ar2 Ja+Nr 39
The metric reconstruction formulas for th&Z are given by
. 16 3 3
K=W —r(1+)\)(r)\+3M)A(0)+F\/1+)\M(r—2M)2{B+x/1+)\A}—EwrM(r—ZM)A“)
Q\/2(1+)\)M(r—2M)(r)\+3M)F+[(1+)\){3M(r—2M)+r>\(r7\+3M)}—r(9](e)z
- rva 2r3
+(r)\+3M)(r—2M)(1+)\)(e)z
2r2 Tl
. 16 Pre(rn+3M) [BMw?r +N2(N+1)]r? B
Hi=—| —i ©4j A+ 3iwMP(r—2M){ A+
e (r—2Mm) V2 oMP( A
MP(r\+3M r20+3MP(r—2M)], .~ rN+3M)P,
-3\2iw ( )F+iw[ ( )]<9>§+iw(—)<9>gr,
NEESYN 2r2(r—2M) 2r ’
A 16| r’o A4+ MZPAm A —2M)P{(1+N)A+ V1+AB}+ V2(1+N)ANP(rA+3M)F
=— | —N\(r— r
27 eplr—2m) T T
_ 2.3
+[(9 N w?r +M(1+)\))]P(e)~§_ Q(E)Zr |
2(r—2M)r? or ™
Blo=Hpt —"__r2p (3.10
= r<r. :
NS Y)

Here, P=3M—r(1+\) and O=3Mow?r>+\(\+1)(3M outside the source, the homogeneous equation for the modi-
—r). If we are working in frequency domain only, the above fied master variable should be unaltered by the transforma-
choice of master variable is not a bad one because of thion,

common potential in master equation, whereas, in the time

domain we will need time integrations for the metric recon- 7
struction due to the factdc| 2. @ (&%
We can modify the master variable by adding combina- (= §+i21 GG - (3.1

tions of metric components which appear on the left-hand
side of the Einstein equations. Let us denote these combina- ) _2 )
tions byG;, so that the Einstein equations are formally writ- Now one may think that the factge| ~* from the expression

ten asG;=T;, (i=1,2,...,7),whereT; represents each for h(M can be eliminated by using this degree of freedom of
component of the energy momentum tensor,modifying the master variable. However, we will prove be-
{AW A B,AL) B G F}. SinceG; vanishes identically low that it is impossible.
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As a result of the transformation abow™ is modified
as

PHYSICAL REVIEW D 67, 104018 (2003

cation. To obtain a sensible expression for the self-force, we
need to subtract the so-called “direct” part from the full

metric perturbation before evaluating the expression of the
force. But here is the “gauge problem.” The full metric per-
turbation is obtained in Regge-Wheeler gauge but the “di-
rect” part is evaluated in the harmonic gauge associated with
the particle trajectory.

Here we would like to propose an insight towards an al-
ternative method to handle this gauge issue in the case of the
Schwarzschild background. The basic idea is inspired by the
notion brought by Barack and Qi7]. They stressed that the
trajectory in the perturbed spacetime is gauge invariant al-
though the expression for the self-force depends on the
choice of gauge. On the other hand, the metric perturbations
tions for the coefficients 0B‘® and G to vanish modulo  reconstructed from this gauge invariant master variables de-
|C|? become ¢y~ — (wr?/y2(1+\)(r—2M))cs, and ¢, pend on the choice of gauge, but the concepts of the per-
~(1+\)cs, respectively. Thus a possible modification turbed geometry and hence of the geodesic on it are gauge
which might eliminate the factdiC| 2 from the expression invariant. Hence, naturally one may expect that the subtrac-
for h(D is restricted to tion at the level of gauge invariant master variables is pos-
sible.

A sketch of the new method is the following. The “direct”
part of the metric perturbatioh® can be calculated in the
harmonic gauge. We can use the recent observation by Det-
weiler and Whiting[15] thath® can be modified so that it
with an arbitrary functiorf(r). Then, a straightforward cal- satisfies the Einstein equations. Since the method for the har-
culation shows that the facté€] ~? cannot be eliminated by monic decomposition of the direct part is established by
this transformation. Thus, the idea of introducing a new masmino, Nakano and Sasakil4], the projection of this direct
ter variable for even parity modes satisfying the RW equapart to the gauge invariant master variabf@ is possible by
tion does not work well for the purpose of metric reconstruc-ysing the formulag2.14 and (2.26. On the other hand,
tion in the time domain. solving the RW equation, we can directly calculate the mas-
ter variable corresponding to the full metric perturbation,
(M Then we subtract the direct paft® from (V' to

. . , obtain the master variable that corresponds to the tail part,
In this paper we have introduced new master variables fof, ;-1 we denote by Since botht(S and (" satisfy

the odd and the even parity cases. We call them, respective%e RW equation with the same source, their differeftad)

the_ modified_ Regge-Wheeler and Zerili variabl_e_s. The_“;esatisﬁes the homogeneous RW equation. Hence, we can re-
variables satisfy the same Regge-Wheeler or Zerilli equatioll,syr,ct the metric perturbation corresponding to the tail

except for the source terms, which are composed of the mab'art from this regularized master variafié®") by applying

ter energy momentum tensor. We have given the explicit ex- £ (M) . . . .
pressions for the source term. The metric perturbation in thd'€ formulash™. At this step the choice of gauge is unim-
rtant as is explained in the paper by Barack and[QJi

RW gauge is expressed in terms of the master variables arftf ; ; .
gaug P Since the subtraction of the divergent part is done at the level

of the gauge invariant variables, we would like to call this
§cheme thggauge invariant regularization

7

2 CiTey

=1

KM KM —KgM) : (3.12

SinceKM[ 7] contains®¢ ., we cannot eliminatd .,
from KM[=c¢;T;] unlessc;=0 fori=4. For{A" A B},
one can use the conservation 1&#34) to eliminateT g, .
Thus the condition thatC|?’KM[2¢;T(;)]~0 requiresc;
~0 for i=4, where~ means the equality modulft|?.
Then, we find thaB(®) andG®® arises in the expression for
the modifiedk ™ only from =, _5¢;T;),, . Hence, the condi-

RO RM—RM[(r)(—[wry2(1+N)(r—2M)]AD
+J(1+NA+B)], 3.13

IV. DISCUSSION

for the metric reconstruction were also written down. The
important aspect of these modified variables lies in the fac ) . . L
that the frequencys does not appear in the denominator in In the new scheme,_usmg the variables |_ntrodL_Jced n th'?
all the formulas to obtain the metric perturbation. Hence,PaPer the part depending on the master variable in the metric
there is no time integration except for the step solving theeconstruction formylash('\"), does not havew in the de-
master equation. The most crucial point will be th&p, the ~ nominator as well a&(™. Hence, when we know the behav-
contribution to the reconstructed metric perturbation fromior of the master variable corresponding to a homogeneous
the matter energy-momentum tensor, does not haie the solution of metric perturbations in the vicinity of a spherical
denominator. Therefore, the perturbed metric around a fiel§hell, we can reproduce the metric perturbations from the
point (t,r) is solely written in terms of the master variables master variable there. H™ containedw in the denomina-
if the energy-momentum tensor vanishes in the vicinity oftor, the local information of the master variables near the
the spherical shell containing this field point. This fact will shell were not sufficient to reproduce the metric perturba-
be useful in the program to calculate the regularized selftions. Therefore, the use of the new variables introduced in
force acting on a particle orbiting in the Schwarzschildthis paper is crucial for the gauge invariant regularization.
spacetime. This scheme still has a subtle point which requires further
As mentioned earlier, in the Introduction, the full metric investigation. The method for the reconstruction of the met-
perturbation contains a divergent piece near the particle lorc perturbation does apply only for a solution of vacuum
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Einstein equations. However, in the actual computation, théion as in the odd parity case unfortunately turned out not to
direct parth® is calculated in a power series expansion withbe advantageous. However, the master variables considered
respect to the separatiéghbetween the source point and the here are limited to those which are related via Chandrasekhar
field point, and this expansion must be truncated at a certaitransformation. We expect an even wider class of transfor-
order of¢. Then, the truncated direct part does not satisfy themations in which we might find a more suitable variable for
Einstein equations in general. Hence, we need a new inverthe purpose of metric reconstruction.

tion to bypass this difficulty in order to realize this attractive

idea of the_gauge invariant regglanzatlon. We \_/voqld like to ACKNOWLEDGMENTS

return to this challenging issue in a future publication.
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