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The 3a orthogonality condition model using the Pauli-forbidden bound states of the Buck, Friedlich, and
Wheatly aa potential can yield a compact 3a ground state with a large binding energy, in which a small
admixture of the redundant components can never be eliminated.
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As a typical example of quantum-mechanical three-body
systems, the three-alpha-particles3ad model for 12C has
been extensively studied from various viewpoints[1]. It is
well known that the microscopic structure of thea cluster
plays an important role to create damped inner oscillations in
the relative wave functions of the twoa clusters, which can
be described phenomenologically as the short-range repul-
sive core in the 2a system. In the 3a system, the amplitudes
of these inner oscillations can be enhanced by the existence
of the thirda cluster, resulting in the formation of the com-
pact shell model like ground state of12C [2]. On the other
hand, the loosely bound nature of the 2a pair is still pre-
served in the excited 0+ state atEx=7.65 MeV, for which
much interest is recently paid as a possible candidate of thea
condensation state[3,4]. This structure change of the 3a sys-
tem can most easily be simulated in the orthogonality condi-
tion model(OCM), first proposed by Saito[5].

In a separate publication[6], we have discussed a new
type of the Faddeev formalism for the 3a system, in which
pairwise a clusters interact via the Buck, Friedlich, and
Wheatly potential(BFW potential) [7]. In this model, the
Pauli-forbidden states between the twoa clusters are com-
posed of the lowest twoS-wave bound states and one
D-wave bound state of the BFW potential. We found that the
3a ground-state energy is −19.897 MeV for this potential,
which is contradictory to the very small binding energy,
E3a=−0.26 MeV, from the variational calculations carried
out by Tursunov, Baye, Descouvemont, and Daniel in Refs.
[8,9]. The same situation also happens when we neglect the
Coulomb force betweena clusters. Namely, we have ob-
tained E3a=−27.748 MeV, while theirs −6.003 MeV[10].
These authors comment that our result for the 3a ground-
state solution, using the BFW bound-state Pauli-forbidden
states, does not completely eliminate the Pauli-forbidden
components. Unlike their work our Faddeev solution con-
tains a small admixture of the redundant components. Sup-
poseC=wa+wb+wg be the total wave function of the 3a

system, composed of the three Faddeev componentswa, wb,
andwg. If one setsfu=kuuCl with u being one of the Pauli-
forbidden bound-state solutions,NR=oukfuuful for all three
Pauli-forbidden states is onlys2.6–2.7d310−4. This is a big
contrast to the result for the harmonic oscillator(h.o.) Pauli-
forbidden statesuul, since in this caseNR,10−12 [6]. The
purpose of this brief report is to show that, if one wants to
keep the shell-model like compact 3a ground state, one can-
not help but allowing a small admixture of the redundant
components. In other words, it is impossible to eliminate this
small admixture in the present framework without giving up
the solution with the dominant shell-model like[3] (04) com-
ponent with the total h.o. quantaN=8. This implies that their
solution corresponds to our second(excited-state) solution.
The energy of this second solution is about −6 MeV, and it
has a small(04) component andNR,10−6.

A main problem arises from the second[21]-symmetric
component in the 3a Faddeev equation, which now becomes
no longer an exact redundant component, but “an almost
redundant component” of the Faddeev equation. Here we use
the Faddeev terminology and the notations used in our pre-
vious publications, Refs.[11,6], but the same analysis is also
possible in the various variational approaches. In Ref.[11],
we first solve the eigenvalue equation of the rearrangement
matrix

kuuSuuftl = tuftl, s1d

where S=s123d+s123d2 and uftl is normalized askftuft8l
=dt,t8. The solutionuftl with t=−1 gives af21g-symmetric
redundant solutionwt=G0uuftl of the Faddeev equation,
whereG0 is the free three-body Green function. The Fad-
deev componentwt trivially satisfies

lsEdw = G0T̃Sw, with lsEd = 1, s2d

due to the orthogonality property,T̃G0uul=−uul, of the re-

dundancy freeT̃-matrix and the commutabilityG0S=SG0.
For this reason we add an extra term as in Eq.s9d below, and
determine the bound-state energyE with lsEd=1. After E is*Electronic address: fujiwara@ruby.scphys.kyoto-u.ac.jp
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determined in this way, we again solve the Faddeev equa-
tion, Eq. s2d, without this second term. Then we get three
lsEd=1 solutions; one is a real solution and the others are
the dual complex solutions having RehlsEdj,1 with a
small imaginary part of the order of 10−2. The appearance
of the complex eigenvalues having opposite signs in the
imaginary part is not excluded since we are working with

an eigenvalue problem of the nonsymmetric kernel,G0T̃S.
These three solutions are characterized by the following
threeSU3 components;f21g2s20d, f21g4s40d, andf3g8s04d,
in the notationuffgNslmdl or ffgslmd with N=l+2m. How-
ever, this classification is for the Faddeev componentw. If
we make C,s1+Sdw, all of these threeC’s become
f3g-symmetric total wave functions for the 3a system, as
long as they are nonzero. Ifuul are the h.o.s0sd, s1sd, and
s0dd states, the first twof21gs20d and f21gs40d states ex-
actly vanish by thes1+Sd operation, which means that
these are trivial solutions of Eq.s2d with lsEd=1. How-
ever, if we use the bound stateuul of the BFW potential,
the latterf21gs40d state becomes almost redundant.sThe
same situation also happens for the firstf21gs20d state, but
the residual component after thes1+Sd operation is very
small and less than 10−5.d In such a case, we can construct
the normalized state

ft
f3g =

s1 + Sduuftl
Î3s1 + td

. s3d

fNote thats1+Sd2=3s1+Sd.g This becomesf3gs04d dominant
state. This can be confirmed by expandinguuftl in the h.o.
basis and calculating the overlap offt

f3g with the shell-model
state, uf3g8s04dl, in the 3a-cluster representationf11g.
Here we use a rather compacta cluster with the h.o. width
parametern=0.281 25 fm−2. In Table I, theft

f3g state gen-
erated from the secondf21g4s40d dominant solutionuuftl
with t=−0.999 037involves thef3g8s04d component with
the amplitude0.865 401.This overlap is obtained from the
third overlap in Table I through

kf3g8s04duft
f3gl =

kf3g8s04dus1 + Sduuftl
Î3s1 + td

=Î 3

1 + t
kf3g8s04duuftl, s4d

sinceS†=S. The normalization factor 1/Î3s1+td is the rea-

son for this large overlap. This immediately reminds us of
our old experience of the almost forbidden statef12g in
two-cluster systems. In that case, the almost forbidden
state is the cluster excited state, but in the present case it
is the real f3gs04d state, which is generated by the 3a
symmetrization from the almost redundant solution of Eq.
s1d, with the dominant f21g-symmetric configuration
uf21g4s40dl.

It is interesting to note that the transition fromN=4 to 8
takes place, since[3](04) is the only Pauli-allowed state with
the lowest h.o. quantaN=8. The reason for this transition is
naturally understood if we recall how we construct the Pauli-
forbidden states in the pairwise OCM for the 3a system. Let
us assume for the time being thatuul is the h.o. Pauli-
forbidden states. We first enumerate the translationally in-
variant[3]-symmetric h.o. states by the Moshinsky rule[13].
The elimination of the Pauli-forbidden state by the diagonal-
ization procedure for the projection operatorP=oauualkuau
gives that the lowest Pauli-allowed state of the 3a system is
only (04) for N=8, and(62) and(24) for N=10, etc.[14] On
the other hand, the construction of the 3a Pauli-forbidden
states in Eq.(1) is exactly equivalent to this elimination pro-
cedure of the Pauli-forbidden state, as long as the
[3]-symmetric basis states are concerned. Since the
[3]-symmetric Pauli-forbidden states are already enumerated
by Eq.(3) for the solutions of Eq.(1) with t.−1 in the h.o.
limit, ft

f3g with t,−1 should be an extra state which is or-
thogonal to all of these[3]-symmetric Pauli-forbidden states.
Therefore,ft

f3g in Eq. (3) generated from the small deviation
from the pure h.o. limit should be the[3]-symmetricallowed
state with the smallest number of oscillations, namely,N=8
(04) state.

To be more specific, let us expand the Faddeev compo-
nentw by the following basis states.

[21]-symmetric basis:f−1
f21g= uuf−1l and the other or-

thonormalized basisfa
f21g.

[3]-symmetric basis:ft
f3g with t.−1, given in Eq.(3),

and the other orthonormalized basisfb
f3g. Here it is important

to construct these as

kft
f3gufb

f3gl = 0 ∀ t . − 1 andb. s5d

We expandw in Eq. (2) with lsEd=1 as

w = C−1
f21guuf−1l + o

a

Ca
f21gfa

f21g + o
t.−1

Ct
f3gft

f3g + o
b

Cb
f3gfb

f3g,

s6d

and multiply the resultant equation bykuu from the left.

Then, because of the basic relationship,kuuG0T̃=−kuu, the
f21g-symmetric part vanishes bykuus1+Sduf21gl=0, and we
obtain

0 = kuuCl = kuus1 + Sduwl

= o
t.−1

Ct
f3gÎ3s1 + tduftl + o

b

3Cb
f3gkuufb

f3gl. s7d

Here we further take the matrix element with some particular
kftu with t.−1. Then the basis construction in Eq.s5d gives

TABLE I. Some important overlap amplitudes of the lowest
three solutions of Eq.(1) with the shell-model states, when the
bound-stateuul of the BFW potential are used for the 2a Pauli-
forbidden states. The h.o. width parametern=0.281 25 fm−2 is used
for the shell-model wave functions.

t −1.00000 −0.999037 −0.099510

kf21g2s20duuftl 0.985929 0.098412 0.000873

kf21g4s40duuftl 0.000764 0.593663 0.024228

kf3g8s04duuftl 0.000657 0.015506 0.001921

kf3g8s04duft
f3gl 0.865401 0.003506
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that the last term of Eq.s7d disappears and we are left with

Ct
f3gÎ3s1 + td = 0 ∀ t . − 1. s8d

This implies that the exact solution of Eq.s2d with lsEd=1
should not contain any of theft

f3g components witht.−1;
namely, the 3a Pauli-forbidden components. However, this
is correct only within the accuracy of numerical calculations.
For the solution witht far apart from −1,Ct

f3g,0 is certainly
true. But, for the second solution of Table I with
t=−0.999 037,Ct

f3g could be appreciably large, sinceCt
f3g

30.054=0.sNote that the imaginary part of the dual com-
plex eigenvalues for the Faddeev equation is of the order
of 10−2.d In fact, we have a good reason to believe that our
ground-state solution has a dominantft

f3g component with
t=−0.999 037,since both of them have a largef3gs04d
component. In a practical calculation, we can classify this
uuftl solution to the complete redundant state witht=−1
and solve a “modified” Faddeev equation

lsEdw = G0FT̃S− o
t,−1

uuftl
1

kuftuG0uuftl
kuftuGw. s9d

fOtherwise, we obtain unstable complex solutions and the
energy withlsEd=1 is not precisely determined.g The 3a
ground-state energy obtained by this prescription is
E3a=−27.625 MeV, which is very close to the exact value
−27.748 MeVobtained by solving an improved equation,
Eq. s14d or Eq. s22d. In this case, the relationship in Eq.
s8d is modified to

kuftuCl = kuftu1 + Suwl = Ct
f3gÎ3s1 + td = − kuftuwl.

s10d

For the normalizedw with 3kwu1+Suwl=1, the last matrix
element of Eq.s10d for the ground state is found to be
0.1604310−1. This leads to the valueCt

f3g=−0.2984, which
yields the amplitude of theft

f3g component contained in
the total wave functionC as

kft
f3guCl =Î 3

1 + t
kuftuCl = 3Ct

f3g = − 0.8952. s11d

If we assumeC,3Ct
f3gft

f3g, we can approximate the redun-
dant amplitudes as

uful = kuuCl , 3Ct
f3gkuuft

f3gl = Ct
f3gÎ3s1 + tduftl, s12d

and the redundant component admixed in the ground state is
given by

kfuuful , Ct
f3g23s1 + td = kuftuwl2 = 0.263 10−3, s13d

which agrees very well with the numbers2.6–2.7d310−4,
obtained by solving Eq.s22d.

From the definition offb
f3g in Eq. (5), it is apparent that

none of thefb
f3g has the large[3](04) component. Therefore,

if one rejects the secondft
f3g in the [3]-symmetric model

space, one misses the dominant[3](04) component, and con-

sequently one obtains a broad solution with a smaller binding
energy. This is the situation which happens in Refs.[8] and
[9].

In order to formulate a precise 3a OCM equation with the
almost redundant Faddeev components, we writeft

f3g with

t,−1 as C0, and define a new projection operatorP̃
= uC0lkC0u+P with P=ol=0uFllkFlu. HereFl with l=0 are
the [3]-symmetric Pauli-allowed 3a states andPuC0l=0 is
satisfied. The 3a OCM equation solved in the present for-
malism is

P̃FE − H0 − o
a

Va
BFWGP̃C = 0. s14d

sOn the other hand, the original equation withP̃→P is
solved in Refs.f8,9g in the method of orthogonalizing
pseudopotentials.d This equation is equivalent with the fol-
lowing two equations:

kC0uE − H0 − o
a

Va
BFWuP̃Cl = 0, s15ad

PFE − H0 − o
a

Va
BFWGuP̃Cl = 0. s15bd

From Eq.(15a), we find

kC0uHuPCl = sE − E0dkC0uCl, s16d

whereH=H0+oaVa
BFW andE0=kC0uHuC0l. By multiplying

Eq. s15bd by kCu from the left and using Eq.s16d, we
immediately obtain

EkPCuPCl − kPCuHuPCl =
ukC0uHuPClu2

E − E0
. s17d

If uC0l is an approximate eigenstate of the full Hamiltonian
H, the coupling term in Eq.s16d is almost zero. In this case,
we find two solutions forE from a simple illustration of the
graph for Eq.s17d with respect toE; namely, one is the
C0-dominant ground state withE,E0 and the other the ex-
cited state withE,kPCuHuPCl / kPCuPCl and a small ad-
mixture of theC0 component.

It is also possible to derive a Faddeev equation which is
completely equivalent to Eq.(14). We assumeuul the bound-
state solution ofVBFW with the energy eigenvalue«B. For
VasEd=E−H0−LasE−H0−Va

BFWdLa with La=1−uualkuau,
one can prove

VasEd − Va
BFW = uualkuausE − hā − «Bduualkuau, s18d

wherehā is the kinetic-energy operator of the thirda par-
ticle. Owing to this relationship, we can replaceVa

BFW in Eq.
s15bd by VasEd. Following the same procedure as devel-

oped in Ref.f14g for P̃C=wa+wb+wg, we can derive

w = G0T̃Sw + o
t,−1

uuf̃tlkC0uP̃Cl, s19d

where f̃t=kuuC0l=Îs1+td /3ft. In the intermediate step,
we also find

BRIEF REPORTS PHYSICAL REVIEW C69, 037002(2004)

037002-3



FE − H0 − o
a

VasEdGP̃C = − o
a

uualkuauE − H0uwb + wgl.

s20d

We multiply this equation bykC0u from the left, and subtract
the resultant equation from Eq.s15ad. Then the symmetry of

the matrix elements yields kC0ufVasEd−Va
BFWguP̃Cl

=kua f̃a
t uE−H0uwb+wgl for eacha and t,−1, or ffrom Eq.

s18d and restoringVBFWg

kC0uP̃Cl =
kuf̃tusE − H0dSuwl

kuf̃tuE − H0 − VBFWuuf̃tl
. s21d

Using this relationship in Eq.s19d, we eventually obtain a
new type of Faddeev equation

w = G0T̃Sw + o
t,−1

uuftl
1

kuftuE − H0 − VBFWuuftl

3 kuftusE − H0dSuwl. s22d

The solutions of this equation are given in Ref.f6g, together
with the results of the direct variational calculations of Eq.
s14d, using the translationally invariant h.o. basis.

In summary, we probably cannot obtain the[3](04)-
dominant compact ground state without a small admixture of
the redundant components, which is related with the model
space character that no exact[21]-symmetric solution exists
in the model spaceuuftl, when the BFW bound-state solu-
tions are used foruul. If one insists mathematical rigorous-
ness that the forbidden components should be completely
eliminated from the exact solution, we have to say that there
is no compact bound state possible in the 3a problem for the
BFW aa potential. We, however, keep in mind that the or-
thogonality condition model is just a model which takes into
account the major roles of the Pauli principle among clusters.
From the microscopic viewpoint based on the resonating-
group method, a small admixture of the redundant compo-
nents is easily swept away by the effect of antisymmetriza-
tion. It is our opinion that the description of the physical
ground state of the 3a system with the compact shell-model
like structure is far more important than the strict demand to
eliminate the redundant components.
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