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I. INTRODUCTION

The QCD-inspired spin-flavor SU6 quark model for the
baryon-baryon interaction, proposed by the Kyoto-Niigata
group, is a unified model for the complete baryon octet(B8
=N, L, S andJ), which has achieved very accurate descrip-
tions of the nucleon-nucleonsNNd and hyperon-nucleon
sYNd interactions[1–3]. In particular, theNN interaction of
the most recent model fss2[2] is accurate enough to compare
with the modern realistic meson-exchange models. These
quark-model interactions can be used for realistic calcula-
tions of few-baryon and few-cluster systems, once an appro-
priate three-body equation is formulated for the pairwise in-
teractions described by the resonating-group method(RGM)
kernels. The desired three-cluster equation should be able to
deal with the nonlocality and the energy dependence intrin-
sically involved in the quark-exchange RGM kernel. Further-
more, the quark-model description of theYN and hyperon-
hyperon sYYd interactions in the full coupled-channel
formalism sometimes involves a Pauli forbidden state at the
quark level, which excludes the most compacts0sd6 spatial
configuration, resulting in the strongly repulsive nature of the
interactions in some particular channels. We have recently
formulated a three-cluster equation which uses two-cluster
RGM kernels explicitly[4]. This equation exactly eliminates
three-cluster redundant components by requiring the or-
thogonality of the total wave function to the pairwise two-
cluster Pauli-forbidden states. The explicit energy depen-
dence inherent in the exchange RGM kernel is self-
consistently treated. This equation is entirely equivalent to
the Faddeev equation which uses a singularity-freeT matrix
(which we call the RGMT matrix) generated from the two-
cluster RGM kernel.

We first applied this formalism to three di-neutron and
three-alpha systems, and obtained complete equivalence be-
tween the Faddeev calculations and variational calculations
using the translationally invariant harmonic-oscillator(h.o.)
basis[4,5]. This formalism was also applied to the Faddeev
calculation of the three-nucleon bound state[6], employing
the off-shellT matrices which are derived from the nonlocal
and energy-dependent RGM kernels for our quark-modelNN
interactions, fss2 and FSS. The model fss2 yields the triton
binding energyBt=8.519 MeV in the 50 channel calculation,
when thenp interaction is employed for all theNN pairs in
the isospin basis[7]. The effect of the charge dependence of
the two-bodyNN interaction is estimated to be −0.19 MeV
for the triton binding energy[8]. This implies that our result
is not overbinding in comparison with the empirical value,
Bt

exp=8.482 MeV. If we attribute the difference, 0.15 MeV,
to the effect of the three-nucleon force, it is by far smaller
than the generally accepted values, 0.5,1 MeV [9], pre-
dicted by many Faddeev calculations employing modern re-
alistic meson-theoreticalNN interactions. The charge rms
radii for 3H and3He are also correctly reproduced. The non-
local description of the short-range repulsion in the quark
model is essential to reproduce the large binding energy and
the correct size of the three-nucleon bound state without re-
ducing theD-state probability of the deuteron.

Here we apply our quark-modelNN andYN interactions
to the hypertritonsL

3 Hd with the small separation energy of
the L particle,BL

exp=130±50 keV. Since theL particle is
far apart from the two-nucleon subsystem, the on-shell prop-
erties of theLN andSN interactions are expected to be well
reflected in this system. In particular, this system is very
useful to determine the relative strength of1S0 and3S1 inter-
actions in our framework. We will be able to fine tune the
quark model interaction to the hypertriton binding energy.
This enables firmer quark-model predictions for the1S0 and*Electronic address: fujiwara@ruby.scphys.kyoto-u.ac.jp
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3S1 phase shifts. In fact, Refs.[10–12] showed that it is not at
all trivial to bind the hypertriton as most meson-theoretical
interactions fail to bind the hypertriton, except for the
Nijmegen soft-core potentials NSC89[13], NSC97f and
NSC97e[14]. It is also pointed out in Refs.[10,12] that a
small admixture of theSNN components less than 1% is
very important for this binding.

In the next section, the Faddeev equation of the hypertri-
ton system, using the quark-modelNN andYNRGM kernels,

is discussed, paying a special attention to theLN-SN T̃ ma-
trix. The results are given in Sec. III and the summary in Sec.
IV. The Appendix gives some essential points to derive the
Faddeev equation, whose solution exactly satisfies the or-
thogonality conditions.

II. FORMULATION

We start from the three-cluster equation of theLNN-
SNN system interacting via two-cluster RGM kernels

PfE − H0 − V12
RGMs«12d − V31

RGMs«31d − V32
RGMs«32dgPC = 0,

s1d

where E is the negative three-body energy measured from
the LNN threshold, and the free HamiltonianH0=H8+Dm3
is composed of the kinetic-energy operatorsH8=h31+h2̄,
etc., and the mass termDm3. In the following, the two nucle-
ons are numbered 1 and 2, theL or S is numbered 3. The
equation actually implies the 232 matrix form andPC is
the two-dimensional vectors composed of the upper compo-
nent with LNN configuration and the lower oneSNN. The
mass termDm3 is, therefore, a diagonal matrix whose matrix
elements are zero for theLNN channel andDMSL=MSc2

−MLc2 for theSNN channel. HereML andMS are theL and
S masses, respectively. The RGM kernelVij

RGMs«i jd=VDi j

+Gij +«i jKij consists of the direct potentialVDi j , the sum of
the exchange kinetic energy and interaction kernels,Gij
=Gij

K +Gij
V, and the exchange normalization kernelKij multi-

plied with the center-of-mass energy«i j of the i j subsystem
for the relative motion. These are also 232 matrices. For
example,

«31 = S«LN 0

0 «SN
D = S«LN 0

0 «LN−DMSL

D ,

K31 = SKLN,LN KLN,SN

KSN,LN KSN,SN
D . s2d

The two-cluster RGM equation is expressed as

f«31 − h31 − V31
RGMs«31dgx = 0. s3d

The necessity of the projection operatorP in Eq. (1) is re-
lated to the existence of the eigenstate of theLN-SN nor-
malization kernel;K31uu31l=guu31l with the eigenvalueg=1.
This is the most compacts0sd6 spin-singlet configuration
with the flavor SU3 quantum number s11ds; uu31l
= us0sd6; s11ds

1S0l. We seek for the Pauli-allowed state of the
LNN-SNN system by diagonalization

o
i=1,2

uu3ilku3iuCll = luCll s4d

in the antisymmetric model space,Cls123d=−Cls213d,
which we denote asClP f11g in the following. The projec-
tion operator on the Pauli-allowed space,P, is defined by
taking the model space spanned by the eigenvectors withl
=0

P = o
l=0

uCllkClu. s5d

The three-cluster Faddeev equation, which is completely
equivalent to Eq.(1), is derived by using some nice proper-
ties satisfied byP, which is briefly discussed in the Appen-
dix. The total wave function of the hypertriton system is
expressed as a superposition of two independent Faddeev
componentsc andf: PC=c+s1−P12df with cP f11g. The
coupled-channel Faddeev equation reads

c = G0sEdT12sE,«12ds1 − P12df,

f = G0sEdT̃31sE,«31dsc − P12fd, s6d

where P12 is the exchange operator of particles 1 and 2,
G0sEd=1/sE−H0d is the three-body free Green function for
the negative energyE,0, T12sE,«12d is theNN T matrix in

the three-body space, andT̃31sE,«31d is the redundancy-free

LN-SN T̃ matrix in the coupled-channel formalism. TheseT
matrices are generated from theNN and YN RGM kernels
VNN

RGMs«NNd and VYN
RGMs«YNd, respectively, according to the

prescription essentially given in Ref.[4]. The energy depen-
dence involved in these kernels is treated self-consistently by
calculating the matrix elements of the two-cluster Hamil-
tonian, which will be discussed in some detail.

For the NN sector, T12sE,«12d in the LNN and SNN
spaces are given by the two-bodyT matrix tsv ,«d through a
simple replacement of the starting-energy argument

T12sE,«12d = StNN
L 0

0 tNN
S D ,

tNN
L = tNNSE −

"2

MN

zL + 2

4 zL

q2,«NND ,

tNN
S = tNNSE − DMSL −

"2

MN

zS + 2

4 zS

q2,«NND , s7d

whereMN is the nucleon mass,zb=Mb /MN is the mass ratio
for b=L or S, andq is the momentum of the residualL or
S. The NN relative energy in the three-body space,«NN, is
determined from

«NN = kPCuhNN + VNN
RGMs«NNduPCl, s8d

which is actually the sum of theLNN andSNN components.
For theYNsector, the situation is more complicated since

the LN-SN coupling involves a complete Pauli forbidden
stateuu31l in the three-body space and the difference of the
momentum dependent starting energies in theLN and SN
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channels is not constant because of the two types of reduced
masses betweenYN andN. In fact, the equation satisfied by

T̃31sE,«31d can never be reduced to the two-cluster coupled-
channel equation in the free space. We request

T31sE,«31d = V31
RGMs«31d + V31

RGMs«31dG0sEdT31sE,«31d,

T̃31sE,«31d = T31sE,«31d − sE − H0duu31l

3fE − «31 − h2̄ − Dm3g−1ku31usE − H0d. s9d

However, this equation is not actually satisfied, since the
derivation is based on the unrealistic assumptions

(1) fE−«31−h2̄−Dm3g is channel independent,
(2) f«31−h31−V31

RGMs«31dguu31l=0 is satisfied.
The second condition is only approximately satisfied since,
in the strict RGM framework, it is not possible to use the
empirical internal energies of clusters and reduced masses
for the relative kinetic-energy operators. In fact, the correct
expression for(2) is

f«0 − h0 − V31
RGMs«0dguu31l = 0, s10d

where «0=«LN−Eint with Eint being the calculated internal
energies, andh0 uses the calculated reduced mass unlikeh31.
We can choosesEintdL=0 for the LNN channel, butsEintdS

=DMSL is only approximately satisfied in our quark models,
fss2 and FSS. This difficulty also takes place when we try to

derive the basic orthogonality condition of theT̃31sE,«31d

ku31uf 1 + G0svdT̃31sE,«31dg = 0, s11d

which is essential to yield the orthogonality of the total wave
function through the second equation, Eq.(6); ku3i uc+s1
−P12dfl=0 si =1,2d.

Fortunately, these problems are completely solved by sim-
ply adding a small correction term to the RGM kernel, which
is a procedure developed in Ref.[15] for making it possible
to use the empirical values of the internal energies and re-
duced masses in the RGM formalism. In Ref.[15], we have
slightly modified the original two-cluster RGM equation
f«0−h0−V31

RGMs«0dgx=0 and considered the following RGM
equation in the OCM(orthogonality condition model) form:

Lf« − h0
exp− VRGMs«0dgLx = 0. s12d

From here on, we omit the subscript 31 orYN as much as
possible, in order to simplify the notations. For example,
VRGMs«0d=V31

RGMs«0d andL=L31=1−uulkuu with uul= uu31l in
Eq. (12). Furthermore,«=«LN−Eint

exp in Eq. (12) uses the em-
pirical internal energy,Eint

exp=Dm3, and the relative kinetic-
energy operator,h0

exp=h31=−s"2/2mexpd¹2, uses the empiri-
cal reduced mass,mexp=mLN

exp or mSN
exp. On the other hand, we

need to use«0 with the calculated internal energies in the
RGM kernel. It is shown in Ref.[15] that Eq.(12) is con-
verted to Eq.(3) by simply addingDG to VRGMs«0d; i.e.,
V31

RGMs«31d=VRGMs«0d+DG. The explicit expression ofDG is
given in the paper[or D«=0 case in Eq.(16) below]. We use
the same idea to eliminate the channel dependence offE
−«31−h2̄−Dm3g in (1). Let us start from the off-shell exten-

sion of theLN-SN coupled-channel RGM equation in the
following OCM form:

Lf v − h0
exp− VRGMs«0dgLx + uulsv − «dkuuxl = 0. s13d

The solution of this equation satisfies the orthogonality,
kuuxl=0 for vÞ«. The various energies in Eq.(13) are usu-
ally channel dependent; namely, if we use the labelb=L or
S to specify theLN or SN channel, the diagonal matrix
elements of these energies are given by

v = E −
"2

2MN

zb + 2

zb + 1
q2 − Eint

exp,

« = «LN −
"2

2MN
S zb + 2

zb + 1
−

zL + 2

zL + 1
Dq2 − Eint

exp,

«0 = «LN − Eint, s14d

whereE is the negative three-body energy,q this time is the
momentum of the residual nucleon. We can prove that Eq.
(13) is equivalent to the following Schrödinger-type RGM
equation:

vx = f h0
exp+ VRGM

mod s«dgx, s15d

where a newly defined RGM kernelVRGM
mod s«d is given by

VRGM
mod s«d = VRGMs«0d + DG,

DG = LsDEint + D« + Dh0dL − sDEint + D« + Dh0d,

DEint = Eint
exp− Eint, Dh0 = h0

exp− h0,

D« =
"2

2MN
S 1

zb + 1
−

1

zL + 1
Dq2. s16d

The RGM T matrix T̃31sE,«31d is therefore formulated for
this modified RGM kernelVRGM

mod s«d. By repeating the same
process as to derive Eq.(9) with respect toVRGM

mod s«d, we can
find that Eq.(9) [and also Eq.(11)] is just valid if we replace
(see Appendix for details)

V31
RGMs«31d → VRGM

mod s«d,

fE − «31 − h2̄ − Dm3g−1 → fE − «LN − sh2̄dLg−1. s17d

In order to determine«LN or «0, we approximatev in Eq.
(15) as

v =1E −
"2

2MN

zL + 2

zL + 1
q2 0

0 E −
"2

2MN

zS + 2

zS + 1
q2 − DMSL

2
→ S«LN 0

0 «SN
D s18d

with keeping the relationship«SN=«LN−DMSL in the free
space, and first calculate aLN-SN averaged value
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«YN= kPCu h0
exp+ VRGM

mod s«duPCl. s19d

Then, from «YN=«LN kC uClL+«SN kC uClS and DMSL

=«LN−«SN, we find

«LN = «YN+ DMSL PS,

«SN = «YN− DMSLs1 − PSd, s20d

wherePS=kC uClS is the probability of theSNN component
admixed in the hypertriton wave function.

III. RESULT

The angular-momentum states of theNN-Y channel are
specified byufslsdI ,s, 1

2
d jg 1

2 ;fs 1
2

1
2

dt ,tg0l, whereslsdI stands
for the two-nucleon state,2s+1lI, and t is the isospin value
t=0 for L andt=1 for S. Due to the antisymmetric property
of the two nucleons,s−dl+s+t=−1, we find that the3E and1O
states contribute to theLNN channel and the1E and 3O
states contribute to theSNN channel. For theYN-N channel,
the angular-momentum states are specified by
ufs,1s1dI1,s,2

1
2

d j1g 1
2 ;fst 1

2
d 1

2 , 1
2
g0l. Since the isospin of the hy-

pertriton is zero, only the isospinT=1/2 sector of theLN-
SN interaction contributes to the hypertriton calculation. All
the partial waves of the orbital angular momentum are pos-
sible for each of theLNN andSNN channels, which makes
the number of channels for a particular partial-wave trunca-
tion just three times larger than in the triton Faddeev calcu-
lation. The hyperon species of theYNN channels are
uniquely specified by the isospin valuet=0 or 1. For the
orbital part, the parity conservation requiress−1dl+,

=s−1d,1+,2=1. The channel truncation is specified by the
maximum value of the total angular momenta of the pairwise
baryons,I andI1, which we denoteJ. As an example, all the
channels of the standard 15-channel calculation withSandD
waves are listed in Table I.

For the numerical calculation, we discretize the continu-
ous momentum variablep (or q) for the Jacobi coordinate
vectors, using the Gauss-Legendren1- (or n2-) point quadra-
ture formula, for each of the three intervals of 0–1 fm−1,
1–3 fm−1 and 3–6 fm−1. The small contribution from the
intermediate integral overp beyondp0=6 fm−1 in the two-
bodyT-matrix calculation is also taken into account by using
the Gauss-Legendren3-point quadrature formula through the
mappingp=p0+tanhps1+xd /4j. [Thesen3 points for p are
not included for solving the Faddeev equation Eq.(6), since
it causes a numerical inaccuracy for the interpolation.] The
momentum regionq=6 fm−1−` is also discretized by the
n3-point formula just as in thep discretization case. We take
n1-n2-n3=10-10-5 as is used for the triton Faddeev calcula-
tion in Refs.[6,7], for which well converged results are ob-
tained. The partial-wave decomposition of the two-cluster
RGM kernel is carried out numerically using the Gauss-
Legendre 20-point quadrature formula. The modified spline
interpolation technique developed in Ref.[16] is employed
for simplifying the treatment of the rearrangement of the
Jacobi momentum coordinates. The Faddeev formalism with
two identical particles or clusters is discussed in Ref.[17],

together with some formulas for calculating the matrix ele-
ments of the two-cluster Hamiltonian. For the diagonaliza-
tion of the large nonsymmetric matrix appearing in solving
Faddeev equations, the Arnoldi-Lanczos algorithm devel-
oped in the ARPACK subroutine package[18] is very useful.

Table II shows the results of the Faddeev calculations
using fss2 and our previous model FSS. In the 15-channel
calculation including theS andD waves of theNN andYN
interactions, we have already obtainedBL=−«d−EsL

3 Hd
,200 keV for fss2. The convergence with the extension to
the higher partial waves is very rapid, and the total angular
momentum of the baryon pairs withJø4 is good enough for
1 keV accuracy. As for the convergedBL values with 150-
channel LNN and SNN configurations, we obtainBL

=289 keV and theSNN componentPS=0.80% for the fss2
prediction, andBL=878 keV andPS=1.36% for FSS. Table
III shows the correlation between theL separation energies
BL and the1S0 and 3S1 effective range parameters of FSS,
fss2 and NSC89LN interactions. Although all of theseLN
interactions reproduce the low-energyLN total cross section
data belowpL,300 MeV/c within the experimental error
bars, our quark-model interactions seem to be more attractive
than the Nijmegen soft-core potential NSC89[13]. The
model FSS gives a large overbinding since the1S0 LN inter-
action is strongly attractive. The phase-shift difference of the
1S0 and 3S1 states atpL,200 MeV/c is ds1S0d−ds3S1d
,29° for FSS, whileds1S0d−ds3S1d,7° for fss2. Since the
present fss2 result is still slightly overbound, this difference
should be somewhat smaller in order to reproduce the correct
experimental valueBL

exp=130±50 keV. From the two re-
sults given by fss2 and FSS, we can extrapolate that, in our
quark model, the desired difference is 0°,2°.

In order to make sure that this extrapolation gives a good
estimation, we modify thek-meson mass of the model fss2

TABLE I. The channel quantum numbers of the hypertriton in-
cluded in 15-channel Faddeev calculation withS andD waves. For
theNN-Y channels,I and j are coupled to the total angular momen-
tum 1

2
+ and the isospin coupling isfs 1

2
1
2

dt ; tg0. For the
YN-N channels, these arefI1j2g 1

2 andfst 1
2

d 1
2 ; 1

2
g0. The isospin value

t specifies the hyperon species; i.e.,Y=L for t=0 andY=S for t
=1.

NN-Y 2s+1lI
s, 1

2
d j t

1 3S1 sS1
2

d 1
2

0

2 3S1 sD 1
2

d 3
2

0

3 3D1 sS1
2

d 1
2

0

4 3D1 sD 1
2

d 3
2

0

5 1S0 sS1
2

d 1
2

1

YN-N 2s1+1s,1dI1
s,2

1
2

d j2 t

1 3S1 sS1
2

d 1
2

0 (1)

2 3S1 sD 1
2

d 3
2

0 (1)

3 3D1 sS1
2

d 1
2

0 (1)

4 3D1 sD 1
2

d 3
2

0 (1)

5 1S0 sS1
2

d 1
2

0 (1)
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from the original value,mkc2=936 MeV [2], to 1000 MeV,
and repeat the whole calculation. It is known that this modi-
fication makes the1S0 LN interaction less attractive and the
3S1 more attractive. We obtainBL=145 keV with PS

=0.53%. The effective range parameters of this modified fss2
interaction areas=−2.15 fm,rs=3.05 fm, andat=−1.80 fm,
rt=2.87 fm. The phase-shift difference is only 1.3° and the
total cross section of theLN scattering increases at most
10 mb atpL=100 MeV/c from 286 mb to 296 mb, which is
still within the experimental error bars.

It should be kept in mind that the effective range param-
eters or theS-wave phase-shift values determined in this way
are very much model dependent, since theBL value is not
solely determined by these quantities. It depends on how
higher partial waves contribute and also on the details of the

LN-SN coupling of a particular model. A nice extrapolation
shown here is based on the similarity of the models fss2 and
FSS, which have a common framework for the quark sector
and the effective meson-exchange potentials.

Table II also shows that the expectation value of theNN
Hamiltonian,«NN, determined self-consistently is rather close
to the deuteron energy −«d, especially in fss2. This feature is
even marked if we decompose these energies to the kinetic-
energy and potential-energy contributions. Table IV shows
this decomposition with respect to fss2, FSS and NSC89.
(For this comparison, we use the definition of the kinetic-
energy part of the deuteron byhd=kxduhNNuxdl / kxduxdl,
where xd is the RGM relative wave function between the
neutron and the proton.) In fss2, the kinetic energy of theNN
subsystem is 1.88 MeV larger than that of the deuteron,
which implies that theNN subsystem shrinks by the effect of
the outerL particle, in comparison with the deuteron in the
free space. In NSC89, this difference is even smaller; i.e.,
1.18 MeV. These results are consistent with the fact that the
hypertriton in NSC89 is more loosely bound(BL=143 keV
[12]) than in fss2s289 keVd, and theL particle is very far
apart from theNN cluster. TheSNN probability in NSC89 is
PS=0.5% [10,12]. Table IV also lists the kinetic-energy and
potential-energy decompositions for the averagedYN expec-
tation value«YN and the total energyE. The kinetic energies
of «YN are much smaller than those of«NN, which indicates
that the relative wave functions between the hyperon and the
nucleon are widely spread in the configuration space. The
comparison of the total-energy decomposition shows that the
wave functions of fss2 and NSC89 may be very similar. A
clear difference between fss2 and NSC89 appears in the roles

TABLE II. Results of the hypertriton Faddeev calculations by
fss2 and FSS. The momentum discretization points aren1-n2-n3

=10-10-5 withq1-q2-q3=1-3-6 fm−1. The calculated deuteron bind-
ing energy is«d=2.2247 MeV for fss2 and 2.2561 MeV for FSS
s«d

exp=2.2246 MeVd. The headingE is the hypertriton energy mea-
sured from theLNN threshold;BL is theL separation energy;«NN

s«LNd is the NN sLNd expectation value determined self-
consistently; andPS is theSNN probability in percent. The norm of
redundant components,Nred

2 =ku3i u PCl2 si =1,2d, is less than 10−9.

Model
No. of

channels
E

sMeVd
BL

skeVd
«NN

sMeVd
«LN

sMeVd
PS

s%d

6 sSd −2.362 137 −1.815 3.548 0.450

15 sSDd −2.423 198 −1.762 5.729 0.652

30 sJø1d −2.403 178 −1.786 5.664 0.615

fss2 54sJø2d −2.498 273 −1.673 5.974 0.777

78 sJø3d −2.510 285 −1.660 6.014 0.800

102 sJø4d −2.513 288 −1.658 6.022 0.804

126 sJø5d −2.514 289 −1.657 6.024 0.805

150 sJø6d −2.514 289 −1.657 6.024 0.805

6 sSd −2.910 653 −1.309 3.984 1.022

15 sSDd −2.967 710 −1.433 6.171 1.200

30 sJø1d −2.947 691 −1.427 6.143 1.191

FSS 54sJø2d −3.121 865 −1.323 6.467 1.348

78 sJø3d −3.128 872 −1.320 6.480 1.357

102 sJø4d −3.134 877 −1.317 6.488 1.360

126 sJø5d −3.134 878 −1.317 6.488 1.361

150 sJø6d −3.134 878 −1.317 6.489 1.361

TABLE III. 1S0 and 3S1 effective range parameters of FSS[1],
fss2 [2,3], and NSC89[13] LN interactions(Lp for NSC89) and
the L separation energiesBL of the hypertriton. The values for
NSC89 are taken from Ref.[12].

Model as (fm) rs (fm) at (fm) rt (fm) BL (keV)

FSS −5.41 2.26 −1.03 4.20 878

fss2 −2.59 2.83 −1.60 3.01 289

NSC89 −2.59 2.90 −1.38 3.17 143

TABLE IV. Decomposition of theNN andYN expectation val-
ues («NN and «YN), the deuteron energy(−«d) and the total three-
body energyE to the kinetic-energy and potential-energy contribu-
tions. The unit is in MeV. The results for NSC89 are from Ref.[10].

Model hNN+VNN=«NN

FSS 19.986−21.303=−1.317

fss2 19.376−21.032=−1.657

NSC89 20.48−22.25=−1.77

Model hd+Vd=−«d (deuteron)

FSS 16.982−19.238=−2.256

fss2 17.495−19.720=−2.225

NSC89 19.304−21.528=−2.224

Model hYN+VYN=«YN

FSS 10.036−4.602=5.435

fss2 8.071−2.671=5.401

NSC89 7.44−3.54=3.90

Model kH0l+kVl=E

FSS 27.372−30.506=−3.134

fss2 23.860−26.374=−2.514

NSC89 23.45−25.79=−2.34
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of higher partial waves. The energy increase due to the
higher partial waves than theS and D waves is 91 keV in
fss2 and 168 keV in FSS, respectively. On the other hand,
the results in Ref.[10] imply that this is only 20–30 keV in
the case of NSC89. This difference can originate from both
of the NN and YN interactions. Since the characteristics of
the meson-theoreticalYN interactions in higher partial waves
are a priori unknown, more detailed analysis of the fss2
results might shed light on the adequacy of the quark-model
baryon-baryon interactions.

IV. SUMMARY

In this study, we have carried out the Faddeev calculations
of the hypertriton, using the recent quark-modelNN andYN
interactions, FSS[1] and fss2[2,3]. These are realistic inter-
actions which describe all the availableNN andYN data, by
incorporating the effective meson-exchange potentials at the
quark level. Since these quark-model baryon-baryon interac-
tions are formulated in the RGM framework, they are non-
local, energy dependent, and sometimes involve the Pauli-
forbidden component at the quark level. The hypertriton is an
appropriate place to investigate the roles of the compact SU3
s11ds component, which is completely Pauli forbidden in the
1S0 LN-
SN channel coupling with the isospinT=1/2. In order to
deal with this off-shell effect of the quark-model interaction
precisely, we have formulated a type of the Faddeev equation
which explicitly employs the two-cluster RGM kernels[4,5].
The energy dependence of the RGM kernel is self-
consistently treated, by calculating the expectation values of
the two-cluster Hamiltonian with respect to the obtained so-
lutions of the Faddeev equation[17]. We have especially
paid attention to how to extend the microscopic description
of the LN-SN coupling in the hypertriton system without
spoiling the effect of the Pauli principle at the quark level.
The present study is the second application of this formalism
to the few-baryon systems interacting via the quark-model
baryon-baryon interactions, following our previous one to
the triton system[6,7]. The hypertriton is well suited to in-
vestigate the on-shell properties of theLN and SN interac-
tions, since the hyperon is very far apart from the two-
nucleon cluster.

We have found that our quark-model interaction fss2
gives a reasonable result for the hypertriton properties, which
is rather similar to the result of the Nijmegen soft-core model
NSC89 [13]. The L separation energy given by fss2 isBL

=289 keV, which is a little too large in comparison with the
experimental valueBL

exp=130±50 keV. The admixture of
the SNN component isPS=0.80%. Modifying thek-meson
mass of fss2 from the original value,mkc2=936 MeV, to
1000 MeV leads to the almost correctL-separation energy
145 keV with PS=0.53%. Unlike the NSC89 result, the ef-
fects of higher partial waves up to theG wave are rather
important in the quark-modelNN andYN interactions. If we
use the dominantS-wave character of theLN interaction in
the hypertriton system, the1S0 LN interaction of the model
fss2 is slightly too attractive. It is a future problem to inves-
tigate whether or not a reduction in the1S0 attraction like the

modification tomkc2=1000 MeV produces a favorable fea-
ture for the level spacing of the 0+ and 1+ states ofL

4 H and

L
4 He systems. The fairly large charge symmetry breaking in
these systems is also an important issue to understand the
hyperon-nucleon interactions in detail.
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APPENDIX: DERIVATION OF THE THREE-CLUSTER
FADDEEV EQUATION FOR THE LNN-SNN SYSTEM

In this Appendix, we discuss some essential points to de-
rive the Faddeev equation Eq.(6) from the three-cluster
equation Eq.(1). In the derivation, we extensively use the
following properties of the projection operatorP defined in
Eq. (5):

sid L3iP = PL3i = P si = 1,2d,

whereL3i = 1 − uu3ilku3iu,

sii d whenC P f11g, ∀ ku3iuCl = 0↔ PC = C,

siii d whenC P f11g, PC = 0↔ ∃ ufl,

C = uu31f2l − uu32f1l. sA1d

Using the property(i), we can replaceV3i
RGMs«3id in Eq. (1)

by v3is«3id=L3iV3i
RGMs«3idL3i or

V3isE,«3id = sE − H0d − L3isE − H0dL3i + v3is«3id. sA2d

We further use the property(iii ) for the whole equation and
introduce the ansatz for the Faddeev components,PC=c
+s1−P12df, to derive a pair of equations

fE − H0 − V12
RGMs«12dgc = V12

RGMs«12ds1 − P12df,

fE − H0 − V31sE,«31dgf = V31sE,«31dsc − P12fd + uu31f2l.

sA3d

In the second equation, we note that

E − H0 − V31sE,«31d = L31fE − H0 − V3i
RGMs«3idgL31,

sA4d

and introduce the projected two-body Green function in the
three-body space,GL31

sE,«31d, which satisfies

GL31
sE,«31dL31fE − H0 − v31s«31dgL31 = L31. sA5d

This can be easily constructed through
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GL31
sE,«31d = Gv31

sE,«31d − Gv31
sE,«31duu31l

3
1

ku31uGv31
sE,«31duu31l

ku31uGv31
sE,«31d

sA6d

by using the two-body Green functionGv31
sE,«31d=fE−H0

−v31s«31d+ i0g−1 in the three-body space. The essential equa-
tion we need for deriving the full Green function
G31sE,«31d=fE−H0−V31

RGMs«31d+ i0g−1 is the decomposition

E − H0 − V31
RGMs«31d = sE − «31 − h2̄ − Dm3d

− L31sE − «31 − h2̄ − Dm3dL31

+ L31fE − H0 − V31
RGMs«31dgL31

=uu31lsE − «31 − h2̄ − Dm3dku31u

+ L31fE − H0 − V31
RGMs«31dgL31,

sA7d

but the last equality is actually not satisfied sincesE−«31

−h2̄−Dm3d is channel dependent. This difficulty is avoided

by usingVRGM
mod s«d in Eq. (16), in place ofV31

RGMs«31d. In fact,
we find that

sE − «0 − h2̄ − Dm3d − sh31 − h0d + sDEint + D«+ Dh0d

= E − «LN − sh2̄dL sA8d

is channel independent. Here«0 and sh31−h0d terms appear
since uu31l actually satisfies Eq.(10) and not Eq.(3). This
makes it possible to derive our basic relationship

G0sEdT31sE,«d = G31sE,«dVRGM
mod s«d

= GL31
sE,«dV31sE,«d − uu31lku31u + uu31l

3
1

E − «LN − sh2̄dL

ku31usE − H0d

=G0sEdT̃31sE,«d + uu31l
1

E − «LN − sh2̄dL

3ku31usE − H0d, sA9d

where all the kernels are defined by usingVRGM
mod s«d. From

Eq. (A9) we can easily prove the second Faddeev equation,
Eq. (6), and the orthogonality condition, Eq.(11).

[1] Y. Fujiwara, C. Nakamoto, and Y. Suzuki, Phys. Rev. Lett.76,
2242 (1996); Phys. Rev. C54, 2180(1996).

[2] Y. Fujiwara, T. Fujita, M. Kohno, C. Nakamoto, and Y. Suzuki,
Phys. Rev. C65, 014002(2002).

[3] Y. Fujiwara, M. Kohno, C. Nakamoto, and Y. Suzuki, Phys.
Rev. C 64, 054001(2001).

[4] Y. Fujiwara, H. Nemura, Y. Suzuki, K. Miyagawa, and M.
Kohno, Prog. Theor. Phys.107, 745 (2002).

[5] Y. Fujiwara, Y. Suzuki, K. Miyagawa, M. Kohno, and H. Ne-
mura, Prog. Theor. Phys.107, 993 (2002).

[6] Y. Fujiwara, K. Miyagawa, M. Kohno, Y. Suzuki, and H. Ne-
mura, Phys. Rev. C66, 021001(R) (2002).

[7] Y. Fujiwara, K. Miyagawa, Y. Suzuki, M. Kohno, and H. Ne-
mura, Nucl. Phys.A721, 983c(2003).

[8] R. Machleidt, Adv. Nucl. Phys.19, 189 (1989).
[9] A. Nogga, H. Kamada, and W. Glöckle, Phys. Rev. Lett.85,

944 (2000).
[10] K. Miyagawa, H. Kamada, W. Glöckle, and V. Stoks, Phys.

Rev. C 51, 2905(1995).
[11] K. Miyagawa, H. Kamada, W. Glöckle, H. Yamamura, T. Mart,

and C. Bennhold, Few-Body Syst., Suppl.12, 324 (2000).
[12] A. Nogga, H. Kamada, and W. Glöckle, Phys. Rev. Lett.88,

172501(2002); A. Nogga, Ph.D. thesis, University of Bochum,
2001.

[13] P. M. M. Maessen, Th. A. Rijken, and J. J. de Swart, Phys.
Rev. C 40, 2226(1989).

[14] Th. A. Rijken, V. G. J. Stoks, and Y. Yamamoto, Phys. Rev. C
59, 21 (1999).

[15] Y. Fujiwara, M. Kohno, C. Nakamoto, and Y. Suzuki, Prog.
Theor. Phys.104, 1025(2000).

[16] W. Glöckle, G. Hasberg, and A. R. Neghabian, Z. Phys. A
305, 217 (1982).

[17] Y. Fujiwara, K. Miyagawa, M. Kohno, Y. Suzuki, D. Baye, and
J.-M. Sparenberg, nucl-th/0404071, Phys. Rev. C(in press).

[18] See ARPACK homepage, http://www.caam.rice.edu/software/
ARPACK/

FADDEEV CALCULATION OF THE HYPERTRITON… PHYSICAL REVIEW C 70, 024001(2004)

024001-7


