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Quark-model nucleon-nucleon and hyperon-nucleon interactions by the Kyoto-Niigata group are applied to
the hypertriton calculation in a three-cluster Faddeev formalism using the two-cluster resonating-group method
kernels. The most recent model, fss2, gives a reasonable result similar to the Nijmegen soft-core model
NSC89, except for an appreciable contribution of higher partial waves.
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I. INTRODUCTION We first applied this formalism to three di-neutron and
The QCD-inspired spin-flavor SUguark model for the three-alpha systems, and obtained complete equivalence be-

baryon-baryon interaction, proposed by the Kyoto-Niigatatwee” the Faddeev calculations and variational calculations
group, is a unified model ILOI‘ the complete baryon o¢Bat using the translationally invariant harmonic-oscillatbro.)

tions of the nucleon-nucleotNN) and hyperon-nucleon calculation of the three-nucleon bound st employing
(YN) interactions[1-3]. In particular, theNN interaction of the off-shellT matrices which are derived from the nonlocal
the most recent model fs§2] is accurate enough to compare and energy-dependent RGM kernels for our quark-mbie|
with the modern realistic meson-exchange models. Thes@teractions, fss2 and FSS. The model fss2 yIE|dS the triton
quark-model interactions can be used for realistic calculabinding energyB;=8.519 MeV in the 50 channel calculation,
tions of few-baryon and few-cluster systems, once an approshen thenp interaction is employed for all theN pairs in
priate three-body equation is formulated for the pairwise inthe isospin basi§7]. The effect of the charge dependence of
teractions described by the resonating-group metiRg@M)  the two-bodyNN interaction is estimated to be —-0.19 MeV
kernels. The desired three-cluster equation should be able for the triton binding energy8]. This implies that our result
deal with the nonlocality and the energy dependence intrinis not overbinding in comparison with the empirical value,
sically involved in the quark-exchange RGM kernel. Further-Bx°=8.482 MeV. If we attribute the difference, 0.15 MeV,
more, the quark-model description of teN and hyperon-  to the effect of the three-nucleon force, it is by far smaller
hyperon (YY) interactions in the full COUpled'Channel than the genera”y accepted Va]ueS, 9B MeV [9], pre-
formalism sometimes involves a Pauli forbidden state at thejicted by many Faddeev calculations employing modern re-
quark level, which excludes the most compé@s)® spatial  alistic meson-theoreticaN interactions. The charge rms
configuration, resulting in the strongly repulsive nature of theradii for ®H and3He are also correctly reproduced. The non-
interactions in some particular channels. We have recentljocal description of the short-range repulsion in the quark
formulated a three-cluster equation which uses two-clustemodel is essential to reproduce the large binding energy and
RGM kernels explicitly[4]. This equation exactly eliminates the correct size of the three-nucleon bound state without re-
three-cluster redundant components by requiring the orducing theD-state probability of the deuteron.
thogonality of the total wave function to the pairwise two-  Here we apply our quark-mod&N and YN interactions
cluster Pauli-forbidden states. The explicit energy depento the hypertriton(iH) with the small separation energy of
dence inherent in the exchange RGM kernel is selfthe A particle, B,®*"=130+50 keV. Since theé\ particle is
consistently treated. This equation is entirely equivalent tqar apart from the two-nucleon subsystem, the on-shell prop-
the Faddeev equation which uses a singularity-freeatrix  erties of theAN and 3N interactions are expected to be well
(which we call the RGMT matrix) generated from the two- reflected in this system. In particular, this system is very
cluster RGM kernel. useful to determine the relative strength'sf and>S; inter-
actions in our framework. We will be able to fine tune the
guark model interaction to the hypertriton binding energy.
*Electronic address: fujiwara@ruby.scphys.kyoto-u.ac.jp This enables firmer quark-model predictions for fﬁg and
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S p.hgse shnfts. In fact, RefglO—la showed that it is not qt D U ) {Ug [ W,) = N W,) (4)
all trivial to bind the hypertriton as most meson-theoretical i=1,2
interactions fail to bind the hypertriton, except for the ) .
Nijmegen soft-core potentials NSC8@3], NSC97f and N the antisymmetric model spacel)(123=-V,(213,
NSC97e[14]. It is also pointed out in Refg10,17 that a  Which we denote a¥, <[11] in the following. The projec-
small admixture of the&NN components less than 1% is tion operator on the Pauli-allowed spad®, is defined by
very important for this binding. taking the model space spanned by the eigenvectorswith
In the next section, the Faddeev equation of the hypertri=0

ton system, using the quark-mod¥N andYNRGM kernels,

P= 2 [T\ 5

is discussed, paying a special attention to A3 N T ma- "0
trix. The results are given in Sec. Ill and the summary in Sec. ) o
IV. The Appendix gives some essential points to derive the The three-cluster Faddeev equation, which is completely

Faddeev equation, whose solution exactly satisfies the ofquivalent to Eq(l), is derived by using some nice proper-
thogonality conditions. ties satisfied byP, which is briefly discussed in the Appen-

dix. The total wave function of the hypertriton system is
expressed as a superposition of two independent Faddeev
Il. FORMULATION components) and ¢: P\I’:l//'F(l—Plz)d) with ye [ll] The
coupled-channel Faddeev equation reads
We start from the three-cluster equation of tA&IN-
SNN system interacting via two-cluster RGM kernels =Go(E)T1o(E,£10)(1 —P1p) &,

1 _\/RGM _ \JRGM _ \JRGM _ -
PLE Fo=Vialend) =Var oo =V el =0, #= Gy B Tr(E ) (9~ Pz, ©

@
) _ where P, is the exchange operator of particles 1 and 2,
whereE is the negative three-body energy mea,sured frong(E)=1/(E-H,) is the three-body free Green function for
the ANN threshold, and the free Hamiltonid#y=H"+Am;  the negative energE <0, Tio(E, e1,) is theNN T matrix in

is composed of the kinetic-energy operatdt$=hs,+hj, ~ .
etc., and the mass terdms. In the following, the two nucle- the three-body space, afdy(E,eqy) is the redundancy-free

ons are numbered 1 and 2, theor 3, is numbered 3. The AN-XN T matrix in the coupled-channel formalism. Theke
equation actually implies the 22 matrix form andPV¥ is mlgetuces are gengated from theN and YN RGM kernels
the two-dimensional vectors composed of the upper compoVan (enn) @nd Vyg™(eyy), respectively, according to the
nent with ANN configuration and the lower onEBNN. The  prescription essentially given in R¢#]. The energy depen-
mass term\m is, therefore, a diagonal matrix whose matrix dence involved in these kernels is treated self-consistently by
elements are zero for th&aNN channel andAMs,=Msc?  calculating the matrix elements of the two-cluster Hamil-
—M ,c? for theXNN channel. HeréVl, andMy are theA and  tonian, which will be discussed in some detail.

3 masses, respectively. The RGM kernéf*(e;j) =Vp;; For the NN sector, T;5(E,&1,) in the ANN and NN
+Gjj+¢;;K;; consists of the direct potentidhy;, the sum of ~ spaces are given by the two-bodlymatrix t(w, ) through a
the exchange kinetic energy and interaction kern@g, simple replacement of the starting-energy argument
=Gf+Gj/, and the exchange normalization kerigl multi-

A
plied with the center-of-mass energy of theij subsystem TAE 615 = (tNN 0 )
for the relative motion. These are alsok2 matrices. For 0 tﬁN
example,
B2 [\ +2
exnv O EAN 0 t/l\\lN:tNN(E - _gA—qzvgNN>a
€31 = ) IVIN 4 gA
0 esn 0  &an-amy,
h? s +2
_(Kanan Kansn NN = tNN<E —AMgy = — o enns (7)
Ka1= : (2 My 4 s
Ksnan Ksnsw _ _ .
o whereMy is the nucleon masgz=M /My is the mass ratio
The two-cluster RGM equation is expressed as for B=A or 3, andq is the momentum of the residual or
— oy — VREM -0. 3 3. The.NN relative energy in the three-body spaegy, is
(221~ Na1 = Var " (ea) Ix 3 Jetermined from

The necessity of the projection opera®rn Eq. (1) is re-
lated to the existence of the eigenstate of #-2N nor- enn= (P |+ VAR (e [PP), (8)
malization kernelKsy|usy)=y|usy) with the eigenvaluey=1.  \hich is actually the sum of th&NN andS NN components.
This is the most compadct0s)® spin-singlet configuration For theY N sector, the situation is more complicated since
with the flavor SWY quantum number (11)s; [us)  the AN-SN coupling involves a complete Pauli forbidden
=[(0s)%;(11)1S,). We seek for the Pauli-allowed state of the state|usy) in the three-body space and the difference of the
ANN-2NN system by diagonalization momentum dependent starting energies in Ai¢ and =N
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channels is not constant because of the two types of reducesion of the AN-XN coupled-channel RGM equation in the
masses betweeviN andN. In fact, the equation satisfied by following OCM form:

7'31(E,s31) can never be reduced to the two-cluster coupled- Al o= h&P— V. Ay+ _ 0. (13
channel equation in the free space. We request [o=ho rom(e0 JAx +|u(w = 2)(ulx) =0. (13)
The solution of this equation satisfies the orthogonality,

Tai(E,e30) = Viar (e31) + VB (830 Go(E) Ta(E, £3), (u]x)=0 for w # &. The various energies in E¢L3) are usu-
B ally channel dependent; namely, if we use the lagieA or
T31(E,e31) = T31(E,£57) — (E - Hp)|usy) > to specify theAN or XN channel, the diagonal matrix

B . elements of these energies are given by
X[E = &3, = hy— Amg] Kugy|(E-Ho). (9)
—E- _gL 2 — E&XP

However, this equation is not actually satisfied, since the My g+ 1 int s

derivation is based on the unrealistic assumptions

(1) [E-&31—h,—Amg] is channel independent,

(2) [831_ h31_V§](_3M(831)]|U31>=0 is satisfied.
The second condition is only approximately satisfied since,
in the strict RGM framework, it is not possible to use the
empirical internal energies of clusters and reduced masses g0=ean— Eints (14)

for the relative kinetic-energy operators. In fact, the correct
expression for2) is gy op whereE is the negative three-body energythis time is the

momentum of the residual nucleon. We can prove that Eq.
[e0— ho-vgf'\"(go)ﬂus]} =0, (10) (13 its_, equivalent to the following Schrédinger-type RGM
equation:

int »

+2 +2
=y <§B _ gA ) Eexp
2MN\ g+l L +1

where gg=¢,n— Eix With E;,; being the calculated internal

energies, antl, uses the calculated reduced mass urttike wx =[ h§®+VRgu(@)lx, (15
We can choos¢E;,),=0 for the ANN channel, but(E;,)s
=AMy, is only approximately satisfied in our quark models,
fss2 and FSS. This difficulty also takes place when we try to Vgg(,*v'(s) =Vgrem(go) + AG,

derive the basic orthogonality condition of tﬁgl(E,s31)

where a newly defined RGM kern®fi&,(¢) is given by

AG = A(AEj, + Ae + Ahg)A — (AE;, + Ae + Ahy),

(Usall 1 +Go(e)Tay(E 2301 =0, (11)
which is essential to yield the orthogonality of the total wave AEn = E’—Epny,  Ahg=h™P—hy,
function through the second equation, E@); (us| ¢+ (1
~P1)$)=0 (i=1,2. IV O S U e
Fortunately, these problems are completely solved by sim- £ N\gtl L+l

ply adding a small correction term to the RGM kernel, which -

is a procedure developed in R¢L5] for making it possible The RGM T matrix T3((E,e39) is therefore formulated for
to use the empirical values of the internal energies and rethis modified RGM kerneVhd (s). By repeating the same
duced masses in the RGM formalism. In R@f5], we have  process as to derive E() with respect to/ad,(s), we can

slightly modified the original two-cluster RGM equation find that Eq.(9) [and also Eq(11)] is just valid if we replace
[e0—ho—V5M(£0)]x=0 and considered the following RGM (see Appendix for detais

equation in the OCMorthogonality condition modgfform:
stM(Ssi) - Vggcrivl(s)'
Ale = hg®= Vram(eo)JAX = 0. (12

- —ho— -1 _ _ -1
From here on, we omit the subscript 31 ¥N as much as [E-ez—hy—Amg] " — [E-eyn— (M) (17)
possible, in_order to simplify the notations. For example,|, order to determine «« or ; ;
. . AN gg, We approximatew in Eg.
Vrem(0) =VEM(20) and A = Ag;=1~|u)(u| with [u)=|ug,) in (15) as
Eq. (12). Furthermoreg=¢,y—Ej" in Eq. (12) uses the em-

pirical internal energyEi"=Ams, and the relative kinetic- o h? [ +2 , 0
energy operatoh,®P=hg,=-(42/2u®PV?, uses the empiri- My &y + 14
cal reduced masu®*P=u or ugy. On the other hand, we w= 2
ke he s+2
need to use:y with the Calculated internal energies in the 0 E- —>>—q°%-AMy,
RGM kernel. It is shown in Ref{15] that Eq.(12) is con- My +1
verted to Eq.(3) by simply addingAG to Vggu(so); i-€., exy O
VEM(e51) =Vram(eo) +AG. The explicit expression akG is — ( 0 . ) (18)
SN

given in the papefor Ae=0 case in Eq(16) below]. We use
the same idea to eliminate the channel dependendd of with keeping the relationshipsy=e,ny—AMs, in the free
—&31—h,—Amg] in (1). Let us start from the off-shell exten- space, and first calculate/eN->N averaged value
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eyn=(PW| &P+ VI ()| PW). (19

Then, from eyn=e n (P |¥) +egy (V]| P)* and AMy,
=EANTESNy we find

eAn=&eynt AMs, Py,

esn=eyn~ AMsp (1 -Py), (20)
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TABLE |. The channel quantum numbers of the hypertriton in-
cluded in 15-channel Faddeev calculation withndD waves. For
theNN-Y channels| andj are coupled to the total angular momen-
tum %* and the isospin coupling is[(%%)t;t]o. For the
YN-N channels, these a[eljz]% and[(t%)% ; %]0. The isospin value
t specifies the hyperon species; i.¥5A for t=0 andY=%, for t
=1.

2s+1 1);
wherePs =(¥ | W)* is the probability of th&& NN component NA-Y N (e3)i ¢
admixed in the hypertriton wave function. 1 33, (5%)% 0

2 33, (D2)2 0
lIl. RESULT 3 °D, (st)i 0
4 *D, (D3)2 0
The angular-momentum states of thNeN-Y channel are 5 g, (si)i 1
specified byl (A\9)1,(¢3)j13:[(32)t,t]0), where(rs)I stands 2’2
for the two-nucleon staté?”)\,, andt is the isospin value YNN 2Sl+l((51)I1 (€,3)i, t
t=0 for A andt=1 for 3. Due to the antisymmetric property 3 (1)1
of the two nucleons(-)»*s*'=-1, we find that théE and'0 =~ 1 351 Sil 2 0@
states contribute to thANN channel and théE and0 2 S (D3)3 0
states contribute to thENN channel. For th& N-N channel, 3 *D, (s3)2 0 (1)
the angular-momentum states are specified by D (D%)2 0(1)
1): 71 1\1 1 . . . 1 2/2
L5011, (€23)i1)3:[(t3)3,210). Since the isospin of the hy- 5 15 (si)i 01

pertriton is zero, only the isospih=1/2 sector of theAN-

2N interaction contributes to the hypertriton calculation. All
the partial waves of the orbital angular momentum are postogether with some formulas for calculating the matrix ele-
sible for each of theA\NN and 2NN channels, which makes ments of the two-cluster Hamiltonian. For the diagonaliza-
the number of channels for a particular partial-wave truncation of the large nonsymmetric matrix appearing in solving
tion just three times larger than in the triton Faddeev calcuFaddeev equations, the Arnoldi-Lanczos algorithm devel-

lation. The hyperon species of th¥NN channels are
uniquely specified by the isospin valueO or 1. For the
orbital part, the parity conservation requires-1)**¢

oped in the ARPACK subroutine packafds] is very useful.
Table Il shows the results of the Faddeev calculations
using fss2 and our previous model FSS. In the 15-channel

=(-1)*2=1. The channel truncation is specified by the calculation including theés andD waves of theNN and YN
maximum value of the total angular momenta of the pairwisgnteractions, we have already obtaing} =—e4—E(3H)

baryons| andl,, which we denotel. As an example, all the
channels of the standard 15-channel calculation &i#mdD
waves are listed in Table I.

~200 keV for fss2. The convergence with the extension to
the higher partial waves is very rapid, and the total angular
momentum of the baryon pairs with<4 is good enough for

For the numerical calculation, we discretize the continu-1 keV accuracy. As for the convergd&), values with 150-

ous momentum variablp (or q) for the Jacobi coordinate
vectors, using the Gauss-Legendie (or ny-) point quadra-
ture formula, for each of the three intervals of 0—1"fmn
1-3 fmi! and 3-6 fm%. The small contribution from the
intermediate integral ovep beyondp,=6 fm™* in the two-

channel ANN and 3NN configurations, we obtainB,
=289 keV and th&NN componentPs =0.80% for the fss2
prediction, andB, =878 keV andPs=1.36% for FSS. Table
IIl shows the correlation between the separation energies
B, and the'S, and S, effective range parameters of FSS,

body T-matrix calculation is also taken into account by usingfss2 and NSC89\N interactions. Although all of thes&AN
the Gauss-Legendm-point quadrature formula through the interactions reproduce the low-enerdy total cross section

mappingp=py+tan{m(1+x)/4}. [Thesens points forp are
not included for solving the Faddeev equation Eg), since
it causes a numerical inaccuracy for the interpolaiidine
momentum regiorg=6 fm -« is also discretized by the
ns-point formula just as in th@ discretization case. We take

data belowp, ~300 MeV/c within the experimental error
bars, our quark-model interactions seem to be more attractive
than the Nijmegen soft-core potential NSC8®3]. The
model FSS gives a large overbinding since ]tagaAN inter-
action is strongly attractive. The phase-shift difference of the

n;-N,-n3=10-10-5 as is used for the triton Faddeev calcula'S, and 3S; states atp,~200 MeV/c is 8('S)- (%S,

tion in Refs.[6,7], for which well converged results are ob- ~29° for FSS, Whileé(lso)—6(3sl)~7° for fss2. Since the
tained. The partial-wave decomposition of the two-clusterpresent fss2 result is still slightly overbound, this difference
RGM kernel is carried out numerically using the Gauss-should be somewhat smaller in order to reproduce the correct
Legendre 20-point quadrature formula. The modified splineexperimental valueB,®**=130+50 keV. From the two re-

interpolation technique developed in Rgt6] is employed

sults given by fss2 and FSS, we can extrapolate that, in our

for simplifying the treatment of the rearrangement of thequark model, the desired difference is 9 2°.
Jacobi momentum coordinates. The Faddeev formalism with In order to make sure that this extrapolation gives a good

two identical particles or clusters is discussed in R&7],

estimation, we modify thec-meson mass of the model fss2
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TABLE Il. Results of the hypertriton Faddeev calculations by

fss2 and FSS. The momentum discretization points rara,-n3

=10-10-5 withg;-0,-g3=1-3-6 fnT. The calculated deuteron bind-
ing energy iseq=2.2247 MeV for fss2 and 2.2561 MeV for FSS
(egP=2.2246 MeV. The headingE is the hypertriton energy mea-
sured from theANN threshold;B, is the A separation energyy

(ean) is the NN (AN) expectation value determined self-
consistently; andPy is theXNN probability in percent. The norm of

redundant componentsl% =(ug| P¥)? (i=1,2), is less than 10.

No. of E Ba ENN EAN Ps

Model  channels (MeV) (keV) (MeV) (MeV) (%)
6 (9 -2.362 137 -1.815 3.548 0.450
15 (SD) -2.423 198 -1.762 5.729 0.652
30(J<1) -2.403 178 -1.786 5.664 0.615
fss2 54(J<2) -2.498 273 -1.673 5.974 0.777
78(J=3) -2510 285 -1.660 6.014 0.800
102(J<4) -2.513 288 -1.658 6.022 0.804
126 (J<5) -2.514 289 -1.657 6.024 0.805
150(J<6) -2.514 289 -1.657 6.024 0.805
6 (9 -2910 653 -1.309 3.984 1.022
15 (SD) -2.967 710 -1.433 6.171 1.200
30(J<s1) -2947 691 -1.427 6.143 1.191
FSS 54J<2) -3.121 865 -1.323 6.467 1.348
78(J<3) -3.128 872 -1.320 6.480 1.357
102(J<4) -3.134 877 -1.317 6.488 1.360
126(J<5) -3.134 878 -1.317 6.488 1.361
150(J<6) -3.134 878 -1.317 6.489 1.361

from the original valuem,c>=936 MeV [2], to 1000 MeV,

PHYSICAL REVIEW C 70, 024001(2004)

TABLE IV. Decomposition of theNN and Y N expectation val-
ues(enny and eyy), the deuteron energf-e4) and the total three-
body energyE to the kinetic-energy and potential-energy contribu-
tions. The unit is in MeV. The results for NSC89 are from R&f).

Model hNN+VNN:8NN

FSS 19.986-21.303=-1.317
fss2 19.376-21.032=-1.657
NSC89 20.48-22.25=-1.77
Model hq+Vgy=-¢4q (deuteron
FSS 16.982-19.238=-2.256
fss2 17.495-19.720=-2.225
NSC89 19.304-21.528=-2.224
Model hYN+VYN:8YN

FSS 10.036-4.602=5.435
fss2 8.071-2.671=5.401
NSC89 7.44-3.54=3.90
Model Hpy+(V)=E

FSS 27.372-30.506=-3.134
fss2 23.860-26.374=-2.514
NSC89 23.45-25.79=-2.34

AN-2N coupling of a particular model. A nice extrapolation
shown here is based on the similarity of the models fss2 and
FSS, which have a common framework for the quark sector
and the effective meson-exchange potentials.

Table Il also shows that the expectation value of liié
Hamiltonian,eyy, determined self-consistently is rather close

and repeat the whole calculation. It is known that this modi+g the deuteron energyeg, especially in fss2. This feature is
fication makes thés) AN interaction less attractive and the even marked if we decompose these energies to the kinetic-

%S, more attractive. We obtairB,=145 keV with Py

energy and potential-energy contributions. Table IV shows

=0.53%. The effective range parameters of this modified fssghis decomposition with respect to fss2, FSS and NSC89.

interaction areag=—2.15 fm,r;=3.05 fm, anda,=-1.80 fm,

(For this comparison, we use the definition of the kinetic-

r=2.87 fm. The phase-shift difference is only 1.3° and theenergy part of the deuteron biig={xqlhanlxa)/ xalxa):
total cross section of th\N scattering increases at most yyhere y, is the RGM relative wave function between the

10 mb atp, =100 MeV/c from 286 mb to 296 mb, which is
still within the experimental error bars.

neutron and the protonln fss2, the kinetic energy of tHéN
subsystem is 1.88 MeV larger than that of the deuteron,

It should be kept in mind that the effective range param-yhich implies that th&IN subsystem shrinks by the effect of
eters or thes-wave phase-shift values determined in this wayihe outerA particle, in comparison with the deuteron in the

are very much model dependent, since Byevalue is not

free space. In NSC89, this difference is even smaller; i.e.,

solely determined by these quantities. It depends on how 18 Mev. These results are consistent with the fact that the
higher partial waves contribute and also on the details of thﬁypertriton in NSC89 is more loosely boutiB, =143 keV

TABLE III. 180 and 3Sl effective range parameters of F§H,
fss2[2,3], and NSC8913] AN interactions(Ap for NSC89 and
the A separation energieB, of the hypertriton. The values for
NSC89 are taken from Refl12].

Model as(fm) rg(fm) a (@fm) ry(fm) B, (keV)
FSS -5.41 2.26 -1.03 4.20 878
fss2 -2.59 2.83 -1.60 3.01 289
NSC89 -2.59 2.90 -1.38 3.17 143

[12]) than in fss2(289 ke\), and theA particle is very far
apart from theNN cluster. TheXNN probability in NSC89 is
Py+=0.5%[10,12. Table IV also lists the kinetic-energy and
potential-energy decompositions for the averay&texpec-
tation valueesyy and the total energi. The kinetic energies

of eyy are much smaller than those gy, which indicates
that the relative wave functions between the hyperon and the
nucleon are widely spread in the configuration space. The
comparison of the total-energy decomposition shows that the
wave functions of fss2 and NSC89 may be very similar. A
clear difference between fss2 and NSC89 appears in the roles
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of higher partial waves. The energy increase due to thenodification tom,c?=1000 MeV produces a favorable fea-
higher partial waves than th® and D waves is 91 keV in ture for the level spacing of the*@Gnd I states ofj‘\H and

fss2 and 168 keV in FSS, respectively. On the other hancxj“He systems. The fairly large charge symmetry breaking in
the results in Ref[10] imply that this is only 2630 keV in  these systems is also an important issue to understand the
the case of NSC89. This difference can originate from boththyperon-nucleon interactions in detail.

of the NN and YN interactions. Since the characteristics of
the meson-theoreticdN interactions in higher partial waves
are a priori unknown, more detailed analysis of the fss2
results might shed light on the adequacy of the quark-model This work was supported by Grants-in-Aid for Scientific
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IV. SUMMARY 15540292
In this study, we have carried out the Faddeev calculations AppeNDIX: DERIVATION OF THE THREE-CLUSTER
of the hypertriton, using the recent quark-mobi¥ andY N FADDEEV EQUATION FOR THE ANN-XNN SYSTEM
interactions, FS$1] and fss2[2,3]. These are realistic inter-
actions which describe all the availabliN and Y N data, by In this Appendix, we discuss some essential points to de-

incorporating the effective meson-exchange potentials at theve the Faddeev equation E@6) from the three-cluster
guark level. Since these quark-model baryon-baryon interacequation Eq.(1). In the derivation, we extensively use the
tions are formulated in the RGM framework, they are non-following properties of the projection operatBrdefined in
local, energy dependent, and sometimes involve the PaulEg. (5):
forbidden component at the quark level. The hypertriton is an
appropriate place to investigate the roles of the compagt SUi) AzP=PAz=P (i=1,2),
(12)s component, which is completely Pauli forbidden in the
’ AN- whereAg =1 - |ug)ug|,
>N channel coupling with the isospii=1/2. In order to
deal with this off-shell effect of the quark-model interaction
precisely, we have formulated a type of the Faddeev equatio
which explicitly employs the two-cluster RGM kerng#5].
The energy dependence of the RGM kernel is self{ii) when¥ e [11], P¥ =0+« [O|f),
consistently treated, by calculating the expectation values of
the two-cluster Hamiltonian with respect to the obtained so- W = [Ugyfy) = |Usof ) (A1)
lutions of the Faddeev equatiqii7]. We have especially szl st/
paid attention to how to extend the microscopic descriptionysing the property(i), we can replac&3®M(e4) in Eq. (1)
of the AN-XN coupling in the hypertriton system without (e2)=Aa VECM(£ ) A o

- A by vsi(es)=AgVg (e3)Ag OF
spoiling the effect of the Pauli principle at the quark level.
The present study is the second application of this formalism Vai(E,e4) = (E—Hg) = A5(E = Ho)Ag + vg(e3). (A2)
to the few-baryon systems interacting via the quark-model
baryon-baryon interactions, following our previous one towe further use the properiii ) for the whole equation and
the triton systen{6,7]. The hypertriton is well suited to in- introduce the ansatz for the Faddeev componeRts=
vestigate the on-shell properties of thé&l and =N interac- +(1-Pyy ¢, to derive a pair of equations
tions, since the hyperon is very far apart from the two-
nucleon cluster. [E - Ho= ViZ"(e1214= ViZ (e12(1 - P1o) ¢,

We have found that our quark-model interaction fss2
gives a reasonable result for the hypertriton properties, which
is rather similar to the result of the Nijmegen soft-core model [E—Ho = Va(E,830)1¢ = Vai(E,e30) (4 ~ P1oh) + [Ugsf2).
NSC89[13]. The A separation energy given by fss2 By (A3)
=289 keV, which is a little too large in comparison with the
experimental valueB,®P=130+50 keV. The admixture of In the second equation, we note that
the NN component isPs =0.80%. Modifying thex-meson RGM
mass of fss2 from the original valuep,c2=936 MeV, to E-Ho—Va1(E,e31) = Ag[E—Ho— V57" (e5) Az,
1000 MeV leads to the almost corregtseparation energy (A4)
145 keV with Ps=0.53%. Unlike the NSC89 result, the ef-
fects of higher partial waves up to th@ wave are rather and introduce the projected two-body Green function in the
important in the quark-mod@&IN andY N interactions. If we three-body spacef;‘:ASl(E,agl), which satisfies
use the dominanB-wave character of thdN interaction in
the hypertriton system, thks, AN interaction of the model Gy, (Eie3)Azi[E~Ho=vai(es) Az = Agy. (AS5)
fss2 is slightly too attractive. It is a future problem to inves-
tigate whether or not a reduction in tF‘@O attraction like the  This can be easily constructed through

(i) whenW e [11], O(ug|P)=0« PT =V,

024001-6
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Gy, (E.e3) =G, (E,e31) = G, (E,e31)|Usp)
1
X
(U31|G,, (E,e31)|Us)

(Uz1|G, (E,e31)

(AB)
by using the two-body Green func’ti(flav3l(E,831):[E—HO

—vg31(€37) +i0]71 in the three-body space. The essential equa-

tion we need for deriving the full Green function
Ga1(E, e3) =[E-Ho- Vi M(e31) +i0] L is the decomposition

E = Ho = V5 (e30) = (E - 31~ h;— Amy)
= Az(E-e3—hy— Amg)Agy
+ A3 E —Ho = V5PM(e3) A5
=[u3p(E = £31— hy — Amg)(usy|
+ Mg E ~ Ho = V3 (e3)] Ay,
(AT)

but the last equality is actually not satisfied sin@e-e3;

PHYSICAL REVIEW C 70, 024001(2004
by usingVhdd (&) in Eq. (16), in place ofVicM(e4y). In fact,
we find that

(E—e0=hz—Amg) = (h3y = hg) + (AEjy + Ae+ Ahy)
=E-exn— ()

is channel independent. Heeg and (hg;—hg) terms appear
since |uzy) actually satisfies Eq10) and not Eq.(3). This

(A8)

makes it possible to derive our basic relationship
Go(E) Tay(E, &) = Gay(E, ) Vi ()
=Gy, (E,8)Vai(E, &) — [uzp(Usy| + |uzp)
1

N E e (i Wl(E O
- 1
=Go(B)Taa(Be) + e g == 5+
X<U31|(E_ HO)! (Ag)

where all the kernels are defined by usMg2d, (). From
Eqg. (A9) we can easily prove the second Faddeev equation,

-h,—-Amy) is channel dependent. This difficulty is avoided Eq. (6), and the orthogonality condition, E¢L1).
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