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We carry out Faddeev calculations of three-alphas3ad and two-alpha plusL saaLd systems, using two-
cluster resonating-group method kernels. The input includes an effective two-nucleon force for theaa
resonating-group method and a new effectiveLN force for theLa interaction. The latter force is a simple
two-range Gaussian potential for each spin-singlet and triplet state, generated from the phase-shift behavior of
the quark-model hyperon-nucleon interaction, fss2, by using an inversion method based on supersymmetric
quantum mechanics. Owing to the exact treatment of the Pauli-forbidden states between twoa clusters, the
present three-cluster Faddeev formalism can describe the mutually related,aa, 3a, andaaL systems, in terms
of a unique set of the baryon-baryon interactions. For the three-range Minnesota force which describes theaa
phase shifts quite accurately, the ground-state and excitation energies ofL

9 Be are reproduced within
100–200 keV accuracy.
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I. INTRODUCTION

In spite of much effort to incorporate microscopic features
of the alpha-alphasaad interaction, a consistent description
of the three-alphas3ad and two-alpha plusL saaLd systems
has not yet been obtained in the Faddeev formalism. The
most favorable description of theaa system is theaa
resonating-group method(RGM) [1]. Although some of the
previous works deal with theaa RGM kernel explicitly in
the 3a-cluster Faddeev formalism, they usually yield a large
overbinding for the ground state and sometimes involve spu-
rious states because of an incomplete treatment of the Pauli-
forbidden states in the 3a model space[2–5]. Various types
of 3a orthogonality condition models(OCM) [6–8] also
yield a similar overbinding for the ground state, although the
effect of the Pauli principle betweena clusters is satisfacto-
rily treated in each framework. Only one exception to this
rule is the 3a OCM in Refs.[9,10], in which the Pauli for-
bidden components described by theaa bound-state solu-
tions of the deep Buck, Friedrich, and Wheatley(BFW) po-
tential [11] are completely eliminated. The result is rather
similar to the traditional 3a Faddeev calculation using Ali-
Bodmer phenomenologicalaa potential with a repulsive
core [12]. In these calculations, the ground-state energy of
the 3a system is less than 1.5 MeV, and a simultaneous de-
scription of the compact shell-model-like ground state and
the excited 0+ state with well-developed cluster structure is
not possible. The origin of the different conclusions in Refs.
[8–10] is spelled out in Ref.[13], in which the existence of
almost forbidden Faddeev components inherent to this 3a
OCM using the bound-state Pauli-forbidden states of the
BFW potential is essential.

A possible resolution of this overbinding problem of the
3a model is found in our new three-cluster Faddeev formal-
ism, which uses singularity-freeT-matrices (RGM
T-matrices) generated from the two-cluster RGM kernels
[14]. In this formalism, solving the Faddeev equation auto-
matically guarantees the elimination of the three-cluster re-
dundant components from the total wave function. The ex-
plicit energy dependence inherent in the exchange RGM
kernel is self-consistently treated. We first applied this for-
malism to the three-dineutron and 3a systems, and obtained
complete agreement between the Faddeev calculations and
variational calculations using the translationally invariant
harmonic-oscillator(h.o.) basis[14,15]. Next, this formalism
was applied to a Faddeev calculation of the three-nucleon
bound state [16], which employs complete off-shell
T-matrices derived from the non-local and energy-dependent
RGM kernels of the quark-modelNN interactions, FSS[17]
and fss2[18]. The fss2 model yields a triton binding energy
Bt=8.519 MeV in the 50 channel calculation, when thenp
interaction is employed for all theNN pairs in the isospin
basis[19]. The effect of the charge dependence of the two-
body NN interaction is estimated to be −0.19 MeV for the
triton binding energy[20]. This implies that our result is not
overbinding in comparison with the empirical value,Bt

exp

=8.482 MeV. If we attribute the difference, 0.15 MeV, to the
effect of the three-nucleon force, it is by far smaller than the
generally accepted values, 0.5–1 MeV[21], predicted by
many Faddeev calculations employing modern realistic
meson-theoreticalNN interactions. We have further applied
this three-cluster Faddeev formalism to the hypertriton sys-
tem [22], in which the quark-model hyperon-nucleonsYNd
interactions of fss2 yield a reasonable result of the hypertri-
ton properties similar to the Nijmegen soft-core potential
NSC89 [23]. Most mathematical details for the Faddeev*Electronic address: fujiwara@ruby.scphys.kyoto-u.ac.jp
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equations, employed in this calculation, are given in the
present paper.

Here we apply the present three-cluster Faddeev formal-
ism to theaaL model for L

9 Be. This hypernucleus plays an
important role to study theLN interaction in thep-shell
L-hypernuclei. From the early time of the hypernuclear
study,L

9 Be is considered to be a prototype ofa-cluster struc-
ture, in which the twoa clusters form a loosely bound sub-
system by the effect of the extraL hyperon[24]. Since the
YN interaction is usually weaker than theNN interaction, this
system is suitable for studying a subtle structure change of
the two-a system from8Be. In fact, in addition to the 1/2+

ground state [25–28] with the L-separation energy
BLsL

9 Bed=6.71±0.04 MeV[29], the recentg-ray spectros-
copy [30,31] has revealed the existence of two narrow reso-
nances in the excited states, which are supposed to be 5/2+

and 3/2+ states generated from the small spin-orbit splitting
in the weak coupling picture of8Bes2+d3L (spin S=1/2).
From a theoretical point of view, this is the simplest non-
trivial system which requires the Faddeev formalism with
two identical particles, involving three Pauli-forbidden states
between two clusters. Several model calculations were al-
ready done with various frameworks and two-body poten-
tials. Hiyamaet al. [7] used the OCM for theaa, 3a and
aaL systems and discussed not only the ground state ofL

9 Be,
but also the spin-orbit splitting of the 5/2+ and 3/2+ states
[32]. They employed simple three-range Gaussian potentials
for theLN interaction based onG-matrix calculations[33] of
various Nijmegen and JülichYN one-boson-exchange-
potential (OBEP) models. TheLa potentials are generated
from theseLN effective potentials by the folding procedure
with respect to thes0sd4 h.o. wave function of thea cluster.
They introduced a three-a force and adjusted theYN param-
eters to reproduce the binding energies of the12C andL

9 Be
ground states. Filikhin and Gal[34] used the Faddeev and
Faddeev-Yakubovsky formalisms to calculate theL

9 Be and

LL
10 Be ground states. They used the Ali-Bodmeraa potential
[12] and the so-called Isle potential[35] for the La interac-
tion. They included onlyS wave in the calculation, and re-
produced theL

9 Be ground-state energy correctly. However, if
one includes higher partial waves the Ali-Bodmeraa poten-
tial yields overbinding forL

9 Be by more than 0.5 MeV. Oryu
et al. [36] carried out anaaL Faddeev calculation by using
theaa RGM kernel and various types ofLa potentials in the
separable expansion method. Their energy spectrum ofL

9 Be
is reasonable, but the treatment of the two-a Pauli principle
in theaaL system is only approximate. Since they neglected
the Coulomb force, a detailed comparison between their cal-
culated results and experiment is not possible. Cravo, Fon-
seca, and Koike[37] performedaaL andaan Faddeev cal-
culations by using manyaa and La potentials with the
Coulomb force included between the twoa particles. From
the comparison of the results for theL

9 Be and9Be systems,
they found an interesting sign change of the quadrupole mo-
ments and the magnetic moments for some excited states.
They also pointed out a possibility of negative parity reso-
nances withL

5 He+a cluster structure in this threshold region.
Our purpose for theaaL Faddeev calculations usingaa

RGM kernels is threefold. First, we develop a general three-

cluster Faddeev formalism with two identical clusters, in or-
der to apply it to more complex three-cluster systems like the
hypertriton interacting via quark-model baryon-baryon inter-
actions. In the hypertriton system, we have to deal with the
LNN-SNN coupled-channel system which involves a Pauli-
forbidden state at the quark level in theLN-SN subsystem.
Since the baryon-baryon interactions in the quark model are
formulated in the two-cluster RGM formalism, the present
three-cluster formalism is most appropriate to correlate the
baryon-baryon interactions with the structure of few-baryon
systems. The second purpose is to make a consistent descrip-
tion of theaa, 3a andaaL systems using effectiveNN and
LN interactions. This attempt is beyond the scope of the
usual OCM framework and the Faddeev formalism assuming
only inter-cluster potentials. A comparison of the present 3a
results with the fully microscopic 3a RGM or GCM [38–40]
is useful to examine the approximations involved in the
present three-cluster formalism. The third purpose is to
present a tractable effectiveLN force for cluster calculations
of variousp-shell hypernuclei, which is not purely phenom-
enological but derived microscopically from quark-model
baryon-baryon interactions. In particular, this effectiveLN
force should be able to reproduce the correctL-separation
energy ofL

5 He; BLsL
5 Hed=3.12±0.02 MeV. Such aLa inter-

action is indispensable for, e.g., aLLa Faddeev calculation
using the quark-modelLL interaction[41]. In this paper, we
derive an effectiveLN force of two-range Gaussian form
from the phase-shift behavior of the quark-modelYN inter-
action, fss2, by using an inversion method based on super-
symmetric quantum mechanics[42].

This paper is organized as follows. In the next section, the
three-cluster Faddeev formalism with two identical clusters
is given, together with expressions to calculate the expecta-
tion values of the two-cluster Hamiltonian with respect to the
solutions resulting from the Faddeev equations. The proce-
dure to calculate theLa andaa T-matrices is also discussed,
as well as the treatment of the cut-off Coulomb force em-
ployed in this paper. In the third section, we first briefly
discuss the results of the 3a Faddeev calculation, and then
those of theaaL Faddeev calculation. The final section is
devoted to a summary. Appendix A gives a brief comment on
the rearrangement factors of three-body systems with two
identical particles. The most general case with explicit spin-
isospin degrees of freedom is discussed. In Appendix B, we
derive a compact formula to calculate theLa Born kernel for
arbitrary types ofLN interactions. Energies are in MeV and
lengths in fm throughout, unless otherwise specified.

II. FORMULATION

A. Faddeev equation for systems with two identical clusters

In order to formulate the Faddeev equation for systems
with two identical particles, we follow the notation of Refs.
[43,44] as much as possible. The Jacobi-coordinate vectors
are specified by the permutationsabgd, which is a cyclic
permutation of(123). For example, the momentum vectors
for the coordinate systemg in the unit of" are defined by

pg =
mb ka − makb

ma + mb

,
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qg =
1

M
fsma + mbdkg − mgska + kbdg,

P = ka + kb + kg, s1d

whereka, kb, kg are single particle momenta of particlesa,
b, g with the massesma, mb, mg, respectively, andM =ma

+mb+mg is the total mass. Three different sets of the Jacobi
coordinates,sp1,q1d, sp2,q2d, andsp3,q3d, are related to each
other in the standard relationship for the rearrangement. We
choose the coordinate systemg=3 as the standard set of
Jacobi coordinates and assume that particles 1 and 2 are the
two identical particles with a common massm1=m2. We in-
corporate the symmetry property for the exchange of par-
ticles 1 and 2 into the Faddeev formalism by assuming the
total wave functionCsp,qd as

Csp3,q3d = csp3,q3d ± ws− p1,q1d + wsp2,q2d

with cs− p3,q3d = ± csp3,q3d, s2d

where the upper(lower) sign is applied for identical bosons
(fermions). The requirementCs−p,qd= ±Csp,qd is satisfied
from this ansaz.

In the application to theaaL system, twoa clusters are
numbered 1 and 2, and theL hyperon is numbered 3. Since
the technique to handle the rearrangement of the Jacobi co-
ordinates in the Faddeev formalism is well known[43], we
only give the specification scheme of channels and the final
Faddeev equation after partial-wave decomposition. We give
expressions both in theLS-coupling andj j -coupling schemes
for later convenience. For theL

9 Be system, theg channel is
specified byg=3 with sgabd=s312d in Eq. (1). A set of
quantum numbers in theg-channel is specified byg
=fsl,dL1/2gJJz in the LS-coupling scheme and
fls,1/2d jgJJz in the j j -coupling scheme with the angular-
spin wave functions

kp̂3,q̂3ugl

= fa1
fa2H fYsl,dLsp̂3,q̂3dj1/2s3dgJJz

sLS-couplingd

fYlsp̂3dfY,sq̂3dj1/2s3dg jgJJz
s j j -couplingd.

J
s3d

Here,Ysl,dLLz
sp̂,q̂d=fYlsp̂dY,sq̂dgLLz

, j1/2s3d is the spin wave
function of L, andfa is the internal wave function of thea
cluster. Similarly, we define theb channel byb=2 with
sbgad=s231d, and a set of quantum numbersb
=fs,1,2dL1/2gJJz (LS-coupling) and fs,11/2dI,2gJJz

(j j -coupling) with

kp̂2,q̂2ubl

= fa1
fa2H fYs,1,2dLsp̂2,q̂2dj1/2s3dgJJz

sLS-couplingd

ffY,1
sp̂2dj1/2s3dgIY,2

sq̂2dgJJz
s j j -couplingd.

J
s4d

The a channel is specified bya=1 with sabgd=s123d, and

the quantum numbers similar to those of theb channel. The
partial-wave decomposed Faddeev equation for the two com-
ponentsc andw in Eq. (2) is given by

cgsp,qd = FE −
"2

4MN
Sp2 +

8 + z

4z
q2DG−1E

0

`

q82dq8

3E
−1

1

dxkpuT̃lSE −
"2

4MN

8 + z

4z
q2,«gDup1l

3 o
b

1

p1
lggbsq,q8;xd

1

p2
,1

wbsp2,q8d, s5ad

wbsp,qd = FE −
"2

8MN
S4 + z

z
p2 +

8 + z

4 + z
q2DG−11

2
E

0

`

q82dq8

3E
−1

1

dxHkpuT,1
SE −

"2

8MN

8 + z

4 + z
q2Dup18l

3 o
g

1

p18
,1

gbgsq,q8;xd
1

p28
lcgsp28,q8d

+ kpuT,1
SE −

"2

8MN

8 + z

4 + z
q2Dup̃1l

3o
b8

1

p̃1
,1

gbb8sq,q8;xd
1

p̃2
,18

wb8sp̃2,q8dJ , s5bd

wherez=sML /MNd is the mass ratio ofL to the nucleon and

p1 = pSq8,
1

2
q;xD, p2 = pSq,

z

4 + z
q8;xD ,

p18 = pSq8,
z

4 + z
q;xD , p28 = pSq,

1

2
q8;xD ,

p̃1 = pSq8,
4

4 + z
q;xD , p̃2 = pSq,

4

4 + z
q8;xD , s5cd

with psq,q8 ;xd;Îq2+q82+2qq8x. The T-matrices,T̃l and
T,1

, are discussed in Secs. II D and II C. The rearrangement
factors for thec−w or w−c cross terms are given by

ggbsq,q8;xd = gbgsq8,q;xd

= o
l1+l2=l

o
l18+l28=,1

ql18+l2q8l1+l28S1

2
Dl2S z

4 + z
Dl28

3o
k

s2k + 1dggb
l1l18kPksxd, s6d

wherePksxd is the Legendre polynomial of rankk. The re-

duced rearrangement factorggb
l1l18k is expressed as
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ggb
l1l18k = 5s− 1dlGsl,d,s,1,2d

l1l18kL sLS-couplingd

oL
s− 1dI+J+L+,1+1ĵ ÎsL̂d2H j , 1

2

L J l
JH J L 1

2

,1 I ,2
JGsl,d,s,1,2d

l1l18kL s j j -couplingd 6 , s7d

with ĵ =Î2j +1, etc., and the spatial angular-momentum factorGsl,d,s,1,2d
l1l18kL in Eq. (A9). For thew−w type rearrangement, these

factors are given by

gbb8sq,q8;xd = o
l1+l2=,1

o
l18+l28=,18

ql18+l2q8l1+l28S 4

4 + z
Dl2+l28

o
k

s2k + 1dg
bb8
l1l18k

Pksxd, s8d

with

g
bb8
l1l18k =5s− 1d,1+,18Gs,1,2d,s,18,28d

l1l18kL sLS-couplingd

oL
s− 1dI−I8Î I 8̂sL̂d2H J L 1

2

,1 I ,2
JH J L 1

2

,18 I8 ,28
JGs,1,2d,s,18,28d

l1l18kL s j j -couplingd 6 . s9d

B. Calculation of «g and «b

In this section, we derive some formulas to calculate ex-
pectation values of the two-cluster Hamiltonians,hg

+Vg
RGMs«gd and hb+Vb, wherehg is the kinetic-energy op-

erator of theg pair, etc. In the present application,Vg
RGMs«gd

is theaa RGM kernel andVb is theLa kernel. We deal with
the energy dependence of theaa RGM kernel self-
consistently by calculating

«g = kCuhg + Vg
RGMs«gduCl s10d

for the normalized Faddeev solutionC. The potential term of
the matrix element in Eq.(10) is most easily obtained from
various matrix elements of the kinetic-energy operators. Sup-
poseC is a sum of three Faddeev components,C=ca+cb

+cg. Then the Faddeev equationsE−H0dcg=VgC with Vg

=Vg
RGMs«gd andH0=hg+hḡ yields kCuVguCl=kcguE−H0uCl.

Thus Eq.(10) becomes

«g = EkcguCl − kcguH0uCl + kCuhguCl. s11d

We can write a similar equation also for theb pair. We cal-
culate«b, although the self-consistent procedure is not nec-
essary for theLa interaction. The kinetic energy term
kCuhbuCl is obtained fromkCuhguCl as follows. Using the
momentum Jacobi coordinates in Eq.(1), we can easily show

smb + mgdha + smg + madhb + sma + mbdhg = MH0.

s12d

For two identical particles withma=mb, this relationship
yields

ha + hb =
M

mb + mg

H0 −
2mb

mb + mg

hg, s13d

and

kCuhbuCl =
M

2smb + mgd
kCuH0uCl −

mb

mb + mg

kCuhguCl.

s14d

Thus we find, for theaaL system,

«b = EkcbuCl +
8 + z

2s4 + zd
kcguH0uCl +

4

4 + z
fkcbuH0uCl

− kCuhguClg. s15d

We need to calculate the overlap matrix elementskcg uCl,
kcb uCl, and kcguH0uCl=kcguH0ucgl+2kcguH0ucbl,
kcbuH0uCl=kcguH0ucbl+kcbuH0ucb+cal, kCuhguCl
=kcguhgucgl+4kcguhgucbl+2kcbuhgucb+cal. These are cal-
culated fromc and w by using the recoupling techniques
developed in Appendix A. The final result is

kcguH0uCl = o
g
E

0

`

p2dpq2dq
"2

4MN
Sp2 +

8 + z

4z
q2Dfcgsp,qdg2 + o

g,b
E

0

`

q2dqq82dq8E
−1

1

dxcgsp1,qd
"2

4MN

3Sp1
2 +

8 + z

4z
q2D 1

p1
lggbsq,q8;xd

1

p2
,1

wbsp2,q8d, s16ad
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kcbuH0uCl = o
b
E

0

`

p2dpq2dq
"2

8MN
S4 + z

z
p2 +

8 + z

4 + z
q2Dfwbsp,qdg2 +

1

2 o
b,b8

E
0

`

q2dqq82dq8E
−1

1

dxwbsp1̃,qd
"2

8MN

3S4 + z

z
p1̃

2 +
8 + z

4 + z
q2D 1

p1̃
,1

gbb8sq,q8;xd
1

p2̃
,18

wb8sp2̃,q8d +
1

2o
g,b
E

0

`

q2dqq82dq8E
−1

1

dxcgsp1,qd
"2

4MN

3Sp1
2 +

8 + z

4z
q2D 1

p1
lggbsq,q8;xd

1

p2
,1

wbsp2,q8d. s16bd

The overlap integrals are obtained by settingH0→1. Furthermore,kCuhguCl is given by

kCuhguCl = o
g
E

0

`

p2dpq2dq
"2

4MN
p2fcgsp,qdg2 + o

g,b
E

0

`

q2dqq82dq8E
−1

1

dxcgsp1,qd
"2

2MN
p1

2 1

p1
lggbsq,q8;xd

1

p2
,1

wbsp2,q8d

+ o
b,b8

E
0

`

p2dpq2dqwbsp,qd
"2

8MN
HFp2 + S8 + z

4 + z
D2

q2Gdb,b8 +
2s8 + zd

4 + z
pqfbb8Jwb8sp,qd

+ o
b,b8

E
0

`

q2dqq82dq8E
−1

1

dxwbsp1̃,qd
"2

16MN
sq2 + q82 − 2qq8xd

1

p1̃
,1

gbb8sq,q8;xd
1

p2̃
,18

wb8sp2̃,q8d. s17d

Here, fbb8 is given by

fbb8 =E dp̂2dq̂2kbup̂2q̂2lsp̂2 · q̂2dkp̂2q̂2ub8l = s− 1d,1+,28,1̂,2̂k,1010u,180lk,2010u,280l

3 5s− 1dLH,1 ,2 L

,28 ,18 1
J sLS-couplingd

oL
s− 1dI−I8+LÎI 8̂sL̂d2H J L 1

2

,1 I ,2
JH J L 1

2

,18 I8 ,28
JH ,1 ,2 L

,28 ,18 1
J s j j -couplingd.6 s18d

C. La T-matrix and effective LN potentials

The La T-matrices are obtained by solving the
Lippmann-Schwinger equation

T,sp,p8;Ed = V,sp,p8d −
4p

s2pd3

2m

"2E
0

`

k2dkV,sp,kd

3
1

g2 + k2T,sk,p8;Ed, s19d

where m=f4z / s4+zdgMN is the La reduced mass andE
=−s"2/2mdg2 is a negative energy. The partial-wave compo-
nentsV,sp,p8d for the La Born kernelVsp,p8d are defined
through

Vsp,p8d = 4po
,

V,sp,p8do
m

Y,msp̂d*Y,msp8̂d, s20d

and thekpuT,sEdup8l in Eq. (5b) is related toT,sp,p8 ;Ed with
an extra factor 4p / s2pd3.

For the effectiveLN potential, we assume a Minnesota-
type central force[45]

vLN = Fvs1Ed1 − Ps

2
+ vs3Ed1 + Ps

2
GFu

2
+

2 − u

2
PrG ,

s21d

wherevs1Ed andvs3Ed are simple two-range Gaussian poten-
tials generated from the1S0 and3S1 phase shifts predicted by
the quark-modelLN interaction, fss2. We use the inversion
method based on supersymmetric quantum mechanics, de-
veloped in Ref.[42], to derive phase-shift equivalent local
potentials. These potentials are then fitted by two-range
Gaussian functions. These are given by

vs1S0d = − 128.0 exps− 0.8908r2d + 1015 exps− 5.383r2d,

vs3S1d = − 56.31f exps− 0.7517r2d + 1072 exps− 13.74r2d,

s22d

wheref =1 andr is the relative distance betweenL andN. In
the following, we call this effectiveLN potential the SB
potential. Figure 1 shows that these potentials fit the low-
energy behavior of the1S0 and3S1 LN phase shifts obtained
by the full LN-SN coupled-channel RGM calculations of
fss2. In the3S1 state, only the low-energy region is fitted,
since the cusp region cannot be fitted in a single-channel
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calculation. This potential overestimates the3S1 phase shift
in the higher energy region. The procedure to calculate the
La Born kernel for the simples0sd4 a-cluster wave function
is discussed in Appendix B. Here we only give the final
result for the partial-wave components:

V,sqf,qid = o
i=1

4

fXd
i V,

dsqf,qi ;kid + Xe
i V,

esqf,qi ;kidg. s23d

Here,Xd
i andXe

i are spin-isospin factors defined in Eq.(B10)
and tabulated in Table I for the present two-range Gaussian
potentials. The explicit functional form ofV,

dsqf ,qi ;kid and
V,

esqf ,qi ;kid are given in Eq.(B11).
In this paper, we also examine theLN effective forces

[33] used by Hiyamaet al. [7] for comparison. These poten-
tials are generated from theG-matrix calculations of various
OBEP potentials. They are parametrized as

vLN = o
i=1

3 Hfv0 even
sid + vss even

sid ss1 · s2dg
1 + Pr

2

+ fv0 odd
sid + vss odd

sid ss1 · s2dg
1 − Pr

2
Je−sr/bid

2
. s24d

Since the spin-spin term does not contribute to the spin satu-
rateda-cluster, the spin-isospin factors in Eq.(23) (with ki
→1/sbid2, i =1–3) are given by

Xd
i = 2sv0 even

sid + v0 odd
sid d,

Xe
i = 2sv0 even

sid − v0 odd
sid d. s25d

The explicit values forv0 even
sid andv0 odd

sid si =1–3d generated
from Nijmegen models, NS, ND, NF, and Jülich potentials,
JA, JB, are given in Ref.[7]. [Table V of Ref.[7] includes a
misprint for NS: the width parametersbi for this potential
are 1.50−1.0−0.55, instead of 1.50−0.90−0.50 for the other
potentials.]

The binding energy of theLa bound state depends on the
h.o. width parametern of the a-cluster. Table II shows that
the SB potential of Eq.(22) overbinds theL

5 He energy by
more than 1.6 MeV. It also shows that theu-dependence is
very weak, which implies thatL

5 He is anS-wave dominated
system. It is well known that a central single-channelLN
effective force that fits the low-energyLN total cross sec-
tions and the ground-state energies ofL

3 H, L
4 H and L

4 He al-
ways overestimates theL

5 He binding energy by more than
2 MeV, due to a lack ofL-S mixing and the tensor force
[47–50]. In order to circumvent this difficulty, we introduce a
reduction factorf in the attractive part of the3S1 potential in
Eq. (22) for the following Faddeev calculations. The choices
f =0.8821 for n=0.275 fm−2 and f =0.8923 for n
=0.257 fm−2 reproduce the desired valueEsL

5 Hed=
−3.120 MeV, when the pure Serber type SB potential with
u=1 is used. TheLa bound-state energies predicted by the
NS-JB effectiveLN potentials deviate from the original fit in
Ref. [7] by 110–170 keV(−3.23 to −3.29 MeV). This is
because they used a slightly different expression from ours
for the exchange term of theLa potential. For theaaL
Faddeev calculations using the Minnesota three-range force
for the aa RGM kernelsn=0.257 fm−2d, we readjusted the
strength of the original NS-JBLN potentials in order to fit
the preciseL

5 He energy, −3.120 MeV. This is achieved by

FIG. 1. LN-SN 1S0 (a) and 3S1 (b) phase shifts for the isospin
I =1/2 channel, calculated with fss2[46] (solid and dashed curves)
and with the SB potential(circles).

TABLE I. La spin-flavor coefficients for the Minnesota-type
SB potential withv=v0e

−kr2
.

i Xd
i Xe

i ki

1, 2 su/2dv0s1Sd s1−u/2dv0s1Sd ks1Sd

3, 4 s3u/2dv0s3Sd 3s1−u/2dv0s3Sd ks3Sd

TABLE II. Bound-state energies for theLa system,EsL
5 Hed (in

MeV), calculated by the original SB potential withf =1. The h.o.
width parameters,n=0.275 fm−2 and n=0.257 fm−2 are assumed
for the s0sd4 a-cluster. The experimental value isEexpsL

5 Hed=
−3.12±0.02 MeV.

u n=0.275 fm−2 n=0.257 fm−2

1 −4.975 −4.747

0.6 −4.946 −4.728
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slightly (less than 0.36%) modifying the strength of the
short-range repulsive term(the third component) of the origi-
nal G-matrix potentials.

The La phase shifts are also calculated, although there is
no experimental information. TheS-wave phase shift shows
a monotonic decrease from 180° similar to Fig. 9 of Ref.
[36]. In the energy regionEc.m.sLad=0–20MeV, the phase
shifts of the higher partial waves rapidly decrease, starting
from 20°;30° for the P wave. This implies that theLa
potential is very much of the Wigner type, and our lack of
knowledge of theLa interaction in higher partial waves may
not become a serious problem in the Faddeev calculations.

D. aa T-matrix and effective NN potentials

The aa T-matrices used for the 3a and aaL Faddeev
calculations are generated from theaa RGM kernel which
uses an effectiveNN potential similar to Eq.(21). In the
notation used in Ref.[51], the aa RGM kernel, VRGMs«d
=VD+VD

Cl+G+GCl+«K consists of the direct potentialVD,
the direct Coulomb potentialVD

Cl, the sum of the exchange
kinetic-energy and interaction kernels,G=GK +GV, the ex-
change Coulomb kernelGCl, and the exchange normalization
kernelK. We have to eliminate redundant components from
the energy-dependent partial wave T-matrices,
Tlsp,p8 ;E,«d, which satisfy the Lippmann-Schwinger equa-
tion similar to Eq.(19). This is necessary only for theS-wave
(l=0) andD-wavesl=2d components, for which there exist
two and one h.o. Pauli redundant states,unlspd, respectively.
Here, unlspd are essentially the h.o. wave functions in the
momentum representation with the total h.o. quantaN=2n
+l=0 and 2, satisfyingKunl=unl. They are explicitly given
by

unlspd = s− 1dns2pd3/2

Î4p
RnlSp,

1

4mn
D s26d

with m=2, in terms of the standard three-dimensional h.o.
radial wave functionRn,sr ,nd in the coordinate representa-
tion. The RGMT-matrices defined in Ref.[14] are calculated
by

T̃lsp,p8;E,«d = Tlsp,p8;E,«d +
"2

4MN

sg2 + p2dsg2 + p82d
sg2 + k2d

3Hon=0

1
un0spdun0sp8d

u02spdu02sp8d
J

for l = H0

2
J , s27d

whereg2=−s4MNE/"2d andk2=s4MN« /"2d. For the higher

partial waves with lù4, we define T̃lsp,p8 ;E,«d
=Tlsp,p8 ;E,«d. The RGMT-matrices in Eq.(27) satisfy the
orthogonality condition

unlspd =
4p

s2pd3

4MN

"2 E
0

`

p82dp8T̃lsp,p8;E,«d
unlsp8d
g2 + p82 ,

s28d

for n=0, 1 sl=0d and n=0 sl=2d. Owing to this relation-
ship, we can prove the orthogonality of the total wave func-
tion Eq. (2) to the Pauli-forbidden statesunlspd.

For the effectiveNN force, we mainly use the three-range
Minnesota(MN) force [45] with the exchange-mixture pa-
rameter, u=0.946 87, and the h.o. width parameter,n
=0.257 fm−2, for the s0sd4 a-clusters. We also use the two-
range Volkov No.1(VN1) and No.2(VN2) forces [52], in
order to comapre our 3a results with the microscopic RGM
[38,53] and GCM [39] calculations. The Majorana param-
etersm of the Volkov forces and the h.o. width parameters
arem=0.575 andn=0.2515 fm−2 for VN1, andm=0.59 and
n=0.275 fm−2 for VN2. The aa RGM calculations using
these effectiveNN forces and the complete Coulomb kernel
reasonably reproduce the empiricalaa phase shifts of theS-,
D-, andG-waves, as well as theS-wave resonance near the
aa threshold. However, the best fit to the experiment is ob-
tained by the three-range MN force. For the VN2 force, the
s-wave resonance appears as a bound state with the binding
energyBaa=245 keV. Although the VN1 force reproduces
this resonance, the overall fit to theaa phase shifts is less
impressive compared to the MN force. In the RGM calcula-
tion, the precise determination of the resonance energy is not
easy even in the two-a system, because of the presence of
the Coulomb force. In the present Lippmann-Schwinger for-
malism in the momentum representation, the method by Vin-
cent and Phatak[54] is used for solving the scattering prob-
lem with full Coulomb force at the nucleon level. We find
that the 0+ resonance energy is 0.18 and 0.14 MeV for VN1
force and the MN force, respectively. This should be com-
pared with the experimental value 0.092 MeV.

For the Coulomb force in the 3a andaaL Faddeev cal-
culations, we use the cut-off Coulomb force at the nucleon
level

vi,j
Clsrd =

1 + tzsid
2

1 + tzs jd
2

e2

r
usRC − rd, s29d

with the cut-off radiusRC, although an exact treatment of the
point Coulomb force exists for bound-state nuclear three-
body problems with two charged particles[55]. Hereusxd is
the Heaviside step function. For the most compact 3a ground
state, this approximation withRC=10 fm is good enough to
obtain 1–2 keV accuracy. The exchange Coulomb kernel for
Eq. (29) is calculated analytically. The partial-wave decom-
position of theaa RGM kernel is carried out numerically
using the Gauss-Legendre 20-point quadrature formula,
when the Coulomb force is not included. When the cut-off
Coulomb force with aRC=14 fm is employed, it is increased
to the 30-point quadrature formula to obtain an accuracy
within 1 keV for the exchange Coulomb kernel. The direct
Coulomb term is separately integrated with a sufficient num-
ber of numerical integration points.
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III. RESULTS

To solve the Faddeev equation, we discretize the continu-
ous momentum variablep sqd for the Jacobi coordinate vec-
tors, using the Gauss-Legendren1-point (n2-point) quadra-
ture formula, for each of the three intervals of 0–1 fm−1,
1–3 fm−1 and 3–6 fm−1. The small contribution from the
intermediate integral overp beyondp0=6 fm−1 in the aa
T-matrix calculation is also taken into account by using the
Gauss-Legendren3-point quadrature formula through the
mappingp=p0+tanhps1+xd /4j. We needn1ù10 andn3=5,
so that 35 points are at least necessary to follow up the inner
oscillations of the two-a bound-state wave function and the
necessaryT-matrices for solving the Faddeev equation.
Thesen3 points forp.6 fm−1 are, however, not included for
solving the Faddeev equation, since it causes a numerical
instability for the interpolation. The momentum regionq
=6 fm−1–` is also discretized by then3 point formula just as
in thep discretization. We taken1-n2-n3=15-10-5 for the 3a
system and 10-10-5 for theaaL system, respectively, unless
otherwise specified. The modified spline interpolation tech-
nique developed in Ref.[56] is employed to generate the
rearrangement matrices. For the large-scale diagonalization
of non-symmetric matrices, the Arnoldi-Lanczos algorithm
developed in theARPACK subroutine package[57] is very
useful.

A. 3a Faddeev calculation

In order to make sure that our Faddeev equation is solved
correctly, we first carried out the standard 3a-particle Fad-
deev calculation by using the angular-momentum dependent
Ali-Bodmer potential ofd type (ABd). We find that the 3a
energy,E3a=−6.423 MeV without Coulomb force, is consis-
tent with previous calculations[9]. Here, we used"2/Ma

=10.4465 MeV fm2 and e2=1.44 MeV fm for comparison.
When the cut-off Coulomb force is included, our value
−1.527 MeV is 4 keV lower than the −1.523 MeV given in
Table I of Ref.[9]. This difference is due to a slightly differ-
ent treatment of the Coulomb force between the two calcu-
lations. The small 3a binding energy implies that the Ali-
Bodmer phenomenologicalaa potential cannot describe the
ground state of12C with a compact shell-model like struc-
ture.

On the other hand, the present 3a model interacting via
the aa RGM kernel gives enough binding and a large over-
lap with the compact shell-model-like component. Table III
lists the results of such Faddeev calculations for the ground
state of the 3a system with and without the Coulomb force.
Theaa RGM kernels are generated from the VN1, VN2, and
MN forces. When the Coulomb effect is included, the cut-off
Coulomb force withRC=10 fm is employed. In the last col-
umn in Table III,cs04d implies the overlap amplitude of the
3a bound-state function with theSU3 s04d shell-model con-
figuration. We find that all three effectiveNN forces yield
binding energies comparable with the experimental value
uE3a

expu=7.275 MeV, although the result of of theMN force is
a little too large. The dominant component of these 3a
ground states is theSU3 s04d shell-model configuration.

In Table IV we compare the 3a ground-state energiesE3a,
predicted in the present three-cluster Faddeev formalism,
with those obtained by fully microscopic calculations,E3a

full .
We find that the present three-cluster equation gives 3a en-
ergies which are only 1.5–1.8 MeV higher than those of the
fully microscopic 3a RGM or GCM calculations. This im-
plies that the three-cluster exchange effect, which is ne-
glected in our three-cluster formalism, but is present in the
fully microscopic three-cluster RGM kernel, is attractive in
nature, and is not as large as the repulsive three-body force
claimed necessary in the semi-microscopic 3a models[2,4].
This is mainly because the 3a model space used by these
authors does not exclude the 3a Pauli-forbidden components

TABLE III. Results of 3a Faddeev calculations, using theaa
RGM kernel, with and without the Coulomb effect. The parenthe-
sized numbers indicate the results when the cut-off Coulomb force
with RC=10 fm are included at the nucleon level. Partial waves up
to lmax are included inaa ands2ad-a channels. The heading«2a is
the expectation value of the two-a Hamiltonian with respect to the
3a bound state solution,E3a the 3a bound-state energy, andcs04d
the overlap between the 3a bound-state wave function and theSU3

(04) shell-model configuration. For the MN force, the result of the
variational calculation using the translationally invariant h.o. basis
(h.o. var.) is also given for comparison, where h.o. quanta up to
N=60 are included.

Force lmax «2a E3a cs04d

4 9.657(10.887) −10.751s−5.206d 0.900(0.879)

VN1 6 9.531(10.779) −10.926s−5.365d 0.896(0.875)

8 9.530(10.778) −10.927s−5.366d 0.896(0.875)

4 8.583(9.608) −11.202s−5.781d 0.826(0.795)

VN2 6 8.449(9.505) −11.415s−5.967d 0.821(0.790)

8 8.447(9.503) −11.417s−5.969d 0.821(0.790)

4 12.032(13.603) −15.616s−9.433d 0.979(0.973)

MN 6 11.905(13.482) −15.777s−9.591d 0.978(0.971)

8 11.904(13.481) −15.779s−9.592d 0.978(0.971)

h.o. var. 11.903(13.480) −15.781s−9.594d 0.978(0.971)

TABLE IV. Comparison of the 3a ground-state energies, pre-
dicted by the present modelsE3ad and by fully microscopic calcu-
lations sE3a

fulld. The experimental value isE3a
exp=−7.275 MeV. The

present model is the Faddeev calculation using theaa RGM kernel,
including the cut-off Coulomb force withRC=10 fm. The heading
Ea

int implies the internal energy of thes0sd4 a-cluster with the h.o.
width parametern, Etot the total energy from the RGM([53] for
MN and [38] for VN2) or GCM ([39] for VN1) calculations, and
E3a

full =Etot−3Ea
int.

Force n sfm−2d Ea
int Etot E3a

full E3a

VN1 0.2515 −27.0 −87.9 −6.9 −5.37

VN2 0.275 −27.3 −89.4 −7.5 −5.97

MN 0.257 −23.9 −83.0 −11.4 −9.59
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accurately, unlike the one used in the present Faddeev for-
malism.

In Tables III and IV, we also find that the three-range MN
force gives a somewhat large overbinding of 2–4 MeV, if
the 3a energyE3a is measured from the 3a threshold. The
decomposition of the 3a energy to the kinetic-energy and
potential-energy contributions in Table V implies that this
overbinding is due to the large cancellation between these
two contributions. In this respect, it is interesting to note that
the a clusters withn=0.257 fm−2 (which gives the correct
rms radiusra=s3/4Înd=1.48 fm [58] for the simples0sd4

a-cluster) give less binding in the framework of the orthogo-
nality condition model(OCM) [8]. If the h.o. constant pa-
rametern is small, a proper treatment of theaa exchange
kernel seems to be essential in order to obtain a large binding
energy of the 3a ground state. This is reasonable since the
large overlap of twoa-clusters implies the importance of
nucleon exchange effects.

B. aaL Faddeev calculation

For a detailed description of theaaL bound states in the
Faddeev calculation, it is important to make sure that the
result is converged with respect to the following three con-
ditions:

(1) convergence with respect to the momentum discreti-
zation points,

(2) convergence with respect to the extension of partial
waves included,

(3) convergence with respect to the cut-off radiusRC,
when the cut-off Coulomb force is included.
Among them, the Coulomb effect is the most difficult, since
the T-matrix of the full Coulomb force is divergent at the
diagonal part and the strong oscillation in the momentum
representation in the cut-off Coulomb case does not lead to
the correct answer, unless the numerical angular-momentum
projection of theaa Coulomb kernel(especially the direct
Coulomb term) is accurately performed. As to the partial
waves, we can easily enumerate all possible angular-
momentum states ofL

9 Be for theLp=0+ ground state with
J=1/2 and theLp=2+ excited state withJ=5/2 and 3/2 in
the LS coupling scheme. If noLa spin-orbit force is intro-
duced, theJ=5/2 and 3/2excited states are degenerate and
the LS-coupling scheme is more efficient than the
j j -coupling scheme to reduce the number of channels
coupled in the calculation. In the following, the angular-
momentum truncation is specified bylmax-,1max

values for
the aa andLa pairs. For example,D-P in the ground-state

calculation implies a 4-channel calculation andG-G in the
Lp=2+ calculation a 19-channel calculation. The largest
model space adopted isI-I, which is an 11-channel calcula-
tion for Lp=0+ and a 28-channel calculation forLp=2+. Note
that the variational calculation in Ref.[7] uses a rather re-
stricted model space, i.e., a 3-channel calculation withlmax
=2 and ,1max

=0, although the meaning of angular-
momentum truncation is a little different from ours. For the
momentum discretization points, we find that the energy
change due to the increase ofn1-n2-n3 is very muchRC de-
pendent. It is usually positive if we go fromn1-n2-n3=5-5
-5 to n1-n2-n3=10-10-5 when the Coulomb force is not in-
cluded, but it turns out negative whenRC=10 and 14 fm.
This implies that the Faddeev calculation without Coulomb
force usually overestimates the binding energy, if the number
of momentum discretization points is not large enough. Since
the cut-off Coulomb kernels are oscillating, too small a num-
ber of momentum discretization points such as inn1-n2-n3
=5-5-5 case is dangerous whenRC is very large likeRC
=10 and 14 fm. The orthogonality to the Pauli-forbidden
states also deteriorates when the number of momentum dis-
cretization points is too small. The squared norm of the
Pauli-forbidden components contaminating the total wave
function is typically 10−5–10−6 when n1-n2-n3=5-5-5, but
is improved to less than 10−13 for n1-n2-n3=10-10-5. In
this paper, we will mainly show the results ofn1-n2-n3
=10-10-5, since the energy gain by further extension to
n1-n2-n3=15-15-5 is usually less than 1 keV, when the cut-
off Coulomb force withRC=10–14 fm is included.

The energy gain of the ground state,DE, and that of the
self-consistent«2a value by the increase of the maximum
angular-momentum values,lmax-,1max

, are shown in Table VI
in the cases when we use the VN2 or MN forces for theaa
interaction and the SB force for theLa interaction. In these
calculations the cut-off Coulomb force withRC=6 fm is em-
ployed. If theS-wave calculation is extended to include the
D-wave, the energy gain is about 1 MeV for VN2+SB and
1.2 MeV for MN+SB. The energy gain mainly comes from
the partial-wave component with,1=,2=1 of the a-L

5 He
channel. The effect of the partial wave,1=,2=2 is rather
small; i.e., about 50sVN2d–60 sMNd keV. Needless to say,
the exact energy gain largely depends on the character of the
LN odd force. The ground-state energy is further improved
by 7 sVN2d–5 sMNd keV and 0.03sVN2d–0.0 sMNd keV,
according to the extension to theG- and I-wave, respec-
tively. On the other hand, «2a is improved by
165 sVN2d–288sMNd keV, 6 keV and 0.5–0.6 keV, ac-
cording to the extension to theD-, G- and I-waves, respec-
tively. In conclusion, partial waves up to theD-wave are
sufficient within 10 keV accuracy. If we wish to have a
1 keV accuracy, we need to take into account at least up to
the G-wave. This implies that the partial-wave truncation in
the Faddeev formalism is very efficient and the result con-
verges very rapidly, according to the increase of the partial
waves taken into account.

Table VII shows theRC dependence of the two-a energy
Es8Bed, the self-consistently determined«2a, the three-
cluster ground-state energyEsL

9 Bed, theL separation energy
defined byBLsL

9 Bed=Es8Bed+ML−EsL
9 Bed, and the expecta-

TABLE V. Kinetic- and potential-energy contributions to the
three-a energyE3a, calculated fromkH0l=2s3«2a−E3ad and kVl
=3sE3a−2«2ad. The shell-model(04) component,cs04d, is large if
kH0l is large.

Force «2a E3a kH0l kVl cs04d

VN1 10.778 −5.366 75.402 −80.768 0.875

VN2 9.503 −5.969 68.958 −74.927 0.790

MN 13.481 −9.592 100.068 −109.660 0.971
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tion value of theLa Hamiltonian,«La, when the momentum
discretization points withn1-n2-n3=10-10-5 and the partial
waves up toI-I are used in the MN plus SB model. The
energy increase(and the accumulated one) due to the in-
crease ofRC is also shown with the plus sign in the second
(and the third) row. We find that the ground-state energy
EsL

9 Bed increases by 1.621 MeV when we move fromRC

=0 to RC=6 fm, which is larger than 1.127 MeV calculated
for the free two-a bound state. This seems to be natural,
since the two-a subsystem is more compact in theL

9 Be sys-
tem. The energy increase in the self-consistently determined
«2a values is 1.435 MeV, which is about 200 keV smaller
than the energy increase inEsL

9 Bed, but is still larger than in
the free two-a bound state by about 300 keV. This observa-

tion is a good example that our self-consistent procedure of
determining«2a is reasonably functioning. It is interesting to
note that this large Coulomb effect in the three-body ground
state; i.e., about 1.4 times larger than in the two-a system, is
characteristic for the increase ofRC from 0 to 6 fm. For the
range fromRC=6 to 10 fm, just the opposite is true and the
energy increase in the three-body ground states85 keVd is
smaller than in the two-a systems.133 keVd. This is appar-
ently because the freeaa relative wave function is more
widely spread than the correlatedaa relative wave function
in the L

9 Be ground state. The tendency of«2a falls just into
the middle of these two extremes. By using this feature, we
can easily estimate the full Coulomb effect in theEsL

9 Bed
ground state. We find that the result withRC=10 fm is accu-
rate within a 1 keV error both forEsL

9 Bed and «2a. From
Table VII, the final result for the MN+SB potentials is

EsL
9 Bed = 27.35 − 34.18 = − 6.837 MeV,

«2a = 19.46 − 18.27 = 1.181 MeV,

«La = 9.215 − 7.954 = 1.261 MeV,

cs40d = 0.695. s30d

Here we have shown the kinetic-energy and potential-energy
contributions separately in each energy, andcs40d is the over-
lap amplitude of theL

9 Be ground-state wave function with the
shell-model(40) wave function.[Note that the sum of the
«2a potential energy and twice of the«La potential energy is
the potential energy ofEsL

9 Bed, but this is not true for the
kinetic-energy terms.] We have also carried out the similar
analysis in the VN2+SB model. The converged result of the
VN2+SB forces, including the cut-off Coulomb force with
RC=14 fm, is given by

TABLE VI. Energy gain for the ground statesDEd and that of the self-consistent«2a valuesD«2ad in keV,
for the extension of the maximum angular-momentum values,lmax-,1max. The cut-off Coulomb force with
RC=6 fm is included.

Force VN2+SB MN+SB

DEskeVd D«2a skeVd DE skeVd D«2a skeVd

n1-n2-n3 5-5-5 10-10-5 5-5-5 10-10-5 5-5-5 10-10-5 5-5-5 10-10-5

S-S→D-P −954 −954 165 160 −1165 −1172 287 281

D-P→D-D −50 −50 5 5 −57 −58 7 7

D-D→G-G −7 −7 6 6 −6 −5 7 6

G-G→ I-I −0.03 −0.03 0.6 0.6 −0.1 −0.0 0.5 0.5

TABLE VII. Cut-off radius sRCd dependence of the Coulomb
energies in the two-a bound state energyEs8Bed, the two-a expec-
tation value«2a, the three-body bound state energyEsL

9 Bed, the L
separation energyBLsL

9 Bed, and theLa expectation value«La. Cal-
culations are carried out by usingn1-n2-n3=10-10-5 and the partial
waves up toI-I. The three-range MN force and the SB force are
used with n=0.257 fm−2 for the h.o. width parameter of the
a-clusters. The energy increase(and the accumulated one) due to
the increase ofRC is also shown with the plus sign in the second
(and third) row. The experimentalL separation energy is
BL

expsL
9 Bed=6.71±0.04 MeV. The suffix “ext” stands for

extrapolation.

RC (fm) 0 6 10 14 `

Es8Bed −1.260 −0.133 .0

+1.127 .+0.133

s.+1.260d
«2a −0.384 1.051 1.180 1.181 s1.181dext

+1.435 +0.129 +0.001 -

s+1.564d s+1.565d s+1.565dext

EsL
9 Bed −8.543 −6.922 −6.837 −6.837s−6.837dext

+1.621 +0.085 +0.000 -

s+1.706d s+1.706d s+1.706dext

BLsL
9 Bed 7.283 6.789 .6.837

«La 1.390 1.228 1.260 1.261s+1.261dext
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EsL
9 Bed = 21.21 − 28.09 = − 6.879 MeV,

«2a = 13.64 − 12.99 = 0.649 MeV,

«La = 8.264 − 7.548 = 0.715 MeV,

cs40d = 0.569. s31d

If we compare this result with Eq.(30) for the MN force, we
find that the energy gain by the more attractive VN2 force is
only 42 keV. This result is rather surprising, if we consider
that the VN2 force gives a two-a bound state with energy
E2a=−245 keV. TheLa interaction by the SB force is also
more attractive than in the MN force case due to the different
choice of the h.o. width parametern. In other words, the
ground state energy ofL

9 Be is not much affected by the poor
aa andLa interactions, as long as we find a well-converged
value by taking enough partial waves and a large number of
momentum discretization points. On the other hand, the«2a

and«La values for the MN force are larger than those for the
VN2 force by almost 500 keV. This may be related to the
difference ofn values in the two calculations. The smallern
value, 0.257 fm−2, in the MN force calculation means more
extended a-clusters than in the VN2 calculationsn
=0.275 fm−2d, which implies in turn that the relative wave
functions in the 2a andLa subsystems should be more com-
pact in the MN case. This can be confirmed by comparing
the kinetic-energy contributions inEsL

9 Bed, «2a and «La in
Eqs. (30) and (31). For example, the kinetic-energy contri-
bution in «2a is 13.64 MeV in the VN2 case, while in the
MN case it has a much larger value 19.46 MeV. The com-
pactness of theaaL relative wave function in the MN case
is also reflected in the fact thatcs40d is larger in the MN case,
even though the binding energy is smaller. Comparing the
result in Eq. (30) with the experimental valueEexpsL

9 Bed
=−6.62±0.04 MeV, we can conclude that the MN+SB com-
bination overbinds theL

9 Be ground-state energy by 220 keV.
This is partly because our SB potential is of the pure Serber
type su=1d. If we chooseu=0.82 for the SB force, the com-
bination with the present MN force andn=0.257 fm−2 yields
EsL

9 Bed=−6.621 MeV. In this case, theL
5 He bound-state en-

ergy is −3.105 MeV.
We list the results of variousLN effective forces used by

Hiyamaet al. in Table VIII, when they are used in combina-
tion with the MN force for theaa RGM kernel. The calcu-
lations are carried out withn1-n2-n3=10-10-5,RC=10 fm,
and the partial waves up to theG-wave, to obtain the con-
verged results with the accuracy of 1–2 keV.

Table IX lists aaL Faddeev calculations for the 2+ ex-
cited state, including the cut-off Coulomb force withRC
=14 fm. The momentum discretization points withn1-n2-n3
=10-10-5 are employed. When the partial waves are re-
stricted toD-S or S-D, the 2+-state energy is located above
the a+L

5 He threshold with the threshold energy −3.12 MeV.
The listing therefore starts from the 7-channel calculation
with D-P. We find that the result is almost converged with
I-I and RC=14 fm, within the accuracy of 1 keV. The final
result for the 2+ excited state in the MN+SB model is

E = 29.47 − 33.40 = − 3.926 MeV,

«2a = 21.55 − 17.54 = 4.013 MeV,

«La = 9.481 − 7.930 = 1.551 MeV,

cs40d = 0.645. s32d

If we compare Eqs.(30) and (32), we find that the 3 MeV
excitation energy of the 2+ state mainly comes from an in-
crease of the two-a kinetic energys2 MeVd and from the
two-a potential energys1 MeVd. This clearly shows the ro-
tational nature of the ground 0+ and excited 2+ states, com-

TABLE VIII. aaL Faddeev calculations for theLp=0+ ground
state, including the cut-off Coulomb force withRC=10 fm. Theaa
RGM kernel is generated from the three-range MN force withu
=0.946 87 andn=0.257 fm−2 for the h.o. width parameter of the
a-clusters. TheG-matrix based effectiveLN forces in Ref.[7] are
used for theLa interaction, by slightly modifying the short-range
repulsive part to fit theL separation energyBLsL

5 Hed=3.120 MeV.
Partial waves up tolmax are included inaa-L channel and those up
to ,1max

are included in theLa-a channel. The headingEsL
9 Bed is

the three-body ground-state energy ofL
9 Be in theaaL model,«2a

the two-a expectation value determined self-consistently, and«La

the La expectation value, andcs40d is the overlap with the shell
model (40) wave function.

Force lmax-,1max
EsL

9 Bed «2a «La cs40d

S-S −5.580 0.909 1.136 0.606

NS D-P −6.681 1.122 1.250 0.683

D-D −6.736 1.133 1.255 0.686

G-G −6.743 1.132 1.257 0.686

S-S −5.734 0.764 0.774 0.579

ND D-P −7.375 1.136 0.838 0.693

D-D −7.478 1.159 0.842 0.697

G-G −7.483 1.157 0.843 0.697

S-S −5.682 0.802 0.882 0.587

NF D-P −6.839 1.009 0.942 0.666

D-D −6.901 1.021 0.944 0.669

G-G −6.906 1.020 0.944 0.669

S-S −5.620 0.862 1.030 0.599

JA D-P −6.622 1.022 1.112 0.667

D-D −6.672 1.031 1.114 0.669

G-G −6.677 1.031 1.115 0.669

S-S −5.566 0.915 1.154 0.606

JB D-P −6.431 1.027 1.253 0.664

D-D −6.469 1.034 1.255 0.666

G-G −6.475 1.033 1.256 0.666
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posed of the two-a cluster structure with a weakly coupled
L.

Table X summarizes the present results with the MN force
for the aa RGM kernel. The SB result shows the overbind-
ing of theL

9 Be ground-state energy by about 220 keV and too
small excitation energy of the 2+ excited state by about
130 keV. Table X also shows a comparison with the results
by Hiyama et al. [7] for the G-matrix based effectiveLN
forces. We find that their results are a little lower than our
results by about 70–90 keV. Since their calculation is a
variational calculation using a smaller model space than
ours, this is not a convergence problem of the variational
calculation. A possible reason is the difference between
OCM and RGM in theaa part. They usedaa OCM, while
ours is aa RGM. The OCM usually gives more attractive
results than the RGM. In fact, it is well known that 3a OCM
usually gives a larger binding energy than the 3a RGM for
the ground state of the 3a system[59]. A small difference in

the exchange term of theLa folding potential may also con-
tribute to this difference.

If we arrange the effectiveLN forces in Table X in the
order of more attractive nature, we find

NDs− 7.483d . NFs− 6.906d . SBs− 6.837d

. NSs− 6.742d . JAs− 6.677d . JBs− 6.474d. s33d

The experimental value −6.62±0.04 MeV is located between
JA and JB. However, this does not mean that the Jülich po-
tentials JA and JB are the most correctLN interactions. It is
well known that the spin-spin central terms of these Jülich
potentials are completely wrong and that they fail to repro-
duce the observed energy spectrum of theL

4 H and L
4 He sys-

tems[60]. As for the 2+ excitation energy, all the results in
Table X are between 2.91 and 2.93 MeV. They are too small
by 110–130 keV with respect to the average value
3.04 MeV of the two resonances recently observed byg-ray
spectroscopy[30,31]. Since the experimental error bars are at
most ±40 keV even in thesK ,pd reaction [26], this is a
meaningful disagreement. It would be interesting to examine
the ,s splitting of the 5/2+-3/2+ states, by introducing a
small LN spin-orbit force predicted by our quark-model in-
teraction.

In order to show that the presentaa RGM kernel gives a
better result than simpleaa potentials, we show in Table XI
some results ofaaL Faddeev calculations using the Ali-
Bodmer potential, ABd[12], and the Buck, Friedrich, and
Wheatley potential, BFW[11]. In these cases, there needs to
be no self-consistent procedure to determine«2a. We only
use the SB potential for theLa interaction, since results with
other effectiveLN forces are easily evaluated from the above
discussion in the case of theaa RGM kernel. In these
a-particle models, we customarily use "2/Ma

=10.4465 MeV fm2 and e2=1.44 MeV fm. The momentum
discretization points withn1-n2-n3=15-10-5 are employed.

TABLE IX. Same as Table VIII, but for theLp=2+ excited state
with RC=14 fm.

Force lmax-,1max
EsL

9 Bed «2a «La cs40d

D-P −3.797 3.987 1.528 0.643

SB D-D −3.874 4.014 1.536 0.645

G-G −3.926 4.013 1.550 0.645

I-I −3.926 4.013 1.551 0.645

D-P −3.700 3.920 1.518 0.639

NS D-D −3.772 3.946 1.525 0.641

G-G −3.831 3.942 1.544 0.641

I-I −3.831 3.943 1.544 0.641

D-P −4.377 4.027 1.130 0.648

ND D-D −4.518 4.071 1.134 0.651

G-G −4.553 4.066 1.137 0.651

I-I −4.553 4.067 1.138 0.651

D-P −3.853 3.825 1.223 0.637

NF D-D −3.938 3.851 1.226 0.639

G-G −3.981 3.849 1.236 0.639

I-I −3.981 3.849 1.236 0.639

D-P −3.645 3.805 1.380 0.635

JA D-D −3.710 3.827 1.385 0.637

G-G −3.762 3.825 1.401 0.637

I-I −3.762 3.826 1.402 0.637

D-P −3.460 3.775 1.507 0.632

JB D-D −3.510 3.792 1.511 0.633

G-G −3.568 3.793 1.535 0.634

I-I −3.568 3.794 1.535 0.634

TABLE X. Summary of the ground-state energyEgrs0+d and the
2+ excitation energyExs2+d in MeV, calculated by solving the Fad-
deev equation for theaaL system in theLS coupling scheme. The
aa RGM kernel is generated from the three-range MN force with
u=0.946 87 andn=0.257 fm−2 for the h.o. width parameter of the
a-clusters.

VLN Egrs0+d (MeV) Exs2+d (MeV)

Present Ref.[7]

SB −6.837 - 2.911

NS −6.742 −6.81 2.912

ND −7.483 −7.57 2.930

NF −6.906 −7.00 2.925

JA −6.677 −6.76 2.915

JB −6.474 −6.55 2.907

Expt −6.62±0.04 3.024(3)

[30,31] 3.067(3)
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For theaa Coulomb potential, the folding potential of the
cut-off Coulomb force with thes0sd4 shell-model wave func-
tion is used withRC=10 fm. The h.o. width parameter of the
s0sd4 a-cluster for this Gaussian folding is n
=0.271 27 fm−2 in the ABd case andn=0.257 fm−2 in the
BFW case. In the ABd case, thisn value corresponds to the
Coulomb-force parameterb=Î3/s231.44d=0.6014 fm−1

and thea rms radius,ra=s3/4Înd=1.44 fm. Since thisn
value is also used for thea-cluster folding for theLN po-
tential, theLa bound-state energyEsL

5 Hed is a little shifted
from the fitted experimental value −3.12 MeV.[The differ-
ent "2/MN value also affects this difference.] Since the en-
ergy change is only about 0.06 MeV, we do not readjust the
potential parameters of theLN force. In the BFW case, then
value, 0.257 fm−2, corresponds tob=Î4n /3=0.585 38 fm−1

and the rms radius of thea-cluster,ra=Î3/s2bd=1.48 fm. In
this case the difference of theLN bound-state energy,
0.054 MeV, from −3.12 MeV is solely from the different
"2/MN value. The bound-state solutions of the BFW poten-
tial are used for the pairwise Pauli-forbidden states. The
elimination of the Pauli-forbidden components from the
three-body total wave function is always inspected by calcu-
lating their squared norm, which is of the order of 10−13.

We find that theaaL ground-state energy by the ABd
potential is lower than the result of the MN force in Eq.(30)
by 0.3 MeV. Note that even in this case the energy gain from
the higher partial waves than theS wave is appreciable, i.e.,

0.7 MeV. This implies that theS-wave assumption adopted
by Filikhin and Gal[34] is not valid. They used a little dif-
ferent version of the Ali-Bodmer potential(type (a) with
125 MeV modified by 120 MeV) and obtainedEsL

9 Bed=
−6.55 MeV in theS-wave approximation. We expect an en-
ergy gain of about 0.7 MeV from the higher partial waves
and their result is overbound, in comparison with the experi-
mental value, −6.62±0.04 MeV. In Table XI, we find that
the BFW potential gives a better result than the Ali-Bodmer
force, but the energy is still lower than in the MN force case
by 0.2 MeV. In this case we find that the effect of partial
waves higher than theS wave is quite appreciable, i.e.,
−1.5 MeV. This is of course due to the inner oscillation of
the relative wave function between the twoa-clusters in the
aaL ground state. The shell-model like(40) components are
about 0.7 in amplitude, which is appreciably larger than
cs40d,0.5 in the Ali-Bodmer case.

IV. SUMMARY

The three-cluster Faddeev formalism using two-cluster
resonating-group method(RGM) kernels opens a way to
solve few-baryon systems interacting via quark-model
baryon-baryon interactions without spoiling essential fea-
tures of the RGM kernel, i.e., the non-locality, the energy
dependence proportional to the exchange normalization ker-
nel, and the existence of pairwise Pauli-forbidden states in
some specific channels. In this paper, we have applied this
formalism to three-cluster systems involvinga-clusters, i.e.,
the 3a and aaL systems. These systems involve all of the
above three features for the microscopic interactions between
composite particles. In particular, theaa interaction is a pro-
totype of composite-particle interactions, in which the fully
microscopic RGM calculation is easy and very successful. It,
however, involves a somewhat complex kernel structure
composed of three non-trivial Pauli-forbidden states, and the
energy-dependence of the interaction is rather strong in the
Pauli-allowed model space. In the present Faddeev formula-
tion, the Pauli-forbidden components between pairwise clus-
ters are completely eliminated from the total wave function
of the three clusters. This can be achieved by introducing a

special type of RGMT̃-matrix calculated from the two-
cluster RGM kernel, which satisfies theT-matrix version of
the orthogonality conditions to the relative motion between
two clusters. The on-shell and half off-shell properties of the

T̃-matrix are just the same as those of the ordinaryT-matrix.

This RGM T̃-matrix involves a relative energy of two clus-
ters as a parameter, which is determined self-consistently by
calculating the expectation value of the two-cluster Hamil-
tonian with respect to the total wave function resulting from
the Faddeev equation. The Faddeev equation using

T̃-matrices is equivalent to the pairwise orthogonality condi-
tion model (OCM) of three-cluster systems, interacting via
two-cluster RGM kernels. A nice point of this formalism is
that the underlying nucleon-nucleonsNNd and hyperon-
nucleon sYNd interactions are more directly related to the
structure of three-cluster systems than in the models assum-
ing simple two-cluster potentials.

TABLE XI. aaL Faddeev calculations for theLp=0+ ground
state by the Ali-Bodmer(ABd) [12] and Buck, Friedrich, and
Wheatley(BFW) [11] aa potentials. The SBLN force is used for
the La interaction. The cut-off Coulomb force is included at the
nucleon level withRC=10 fm. The h.o. width parameters of the
a-clusters are assumed to ben=0.271 27 fm−2 (ABd) and n
=0.257 fm−2 (BFW). The parameters"2/Ma=10.4465 MeV fm2

and e2=1.44 MeV fm are used. Partial waves up tolmax are in-
cluded in theaa-L channel and those up to,1max in the La-a
channel. The momentum discretization points withn1-n2-n3

=15-10-5 are employed. TheLa bound-state energyEsL
5 Hed for the

SB LN force is given in the first column.

EsL
5 Hed lmax

-,1max

EsL
9 Bed «2a «La cs40d

ABd+SB

S-S −6.409 0.970 −0.503 0.466

D-P −7.091 1.013 −0.532 0.497

−3.183 D-D −7.147 1.013 −0.526 0.499

G-G −7.153 1.018 −0.518 0.498

I-I −7.153 1.018 −0.517 0.498

BFW+SB

S-S −5.544 0.861 1.776 0.630

D-P −6.971 1.147 1.973 0.724

−3.066 D-D −7.038 1.155 1.979 0.728

G-G −7.043 1.161 1.979 0.728

I-I −7.043 1.161 1.980 0.728

FADDEEV CALCULATION OF 3a AND aaL SYSTEMS ... PHYSICAL REVIEW C70, 024002(2004)

024002-13



We have first applied the present formalism to the ground
state of the 3a system by using three different types of ef-
fectiveNN forces, the two-range Volkov forces, No.1(VN1)
and No. 2(VN2), and the three-range Minnesota(MN) force.
The three-range MN force reproduces theS-, D- andG-wave
aa phase shifts quite well in the simples0sd4-model of thea
clusters. The comparison with the 3a RGM calculation has
shown that the present three-cluster formalism using only the
aa RGM kernel gives a good approximation to the micro-
scopic 3a model. The difference of the ground-state energies
predicted by these two models is less than 2 MeV. The effect
of the antisymmetrization among threea-clusters, which is
neglected in our formulation, is attractive and is not so large,
as long as the Pauli-allowed model space of the 3a system is
properly treated. It is also shown that the three-range MN
force gives a lower ground-state energy than the two-range
VN1 and VN2 forces, resulting in a somewhat large
overbinding of 2–4 MeV, if the 3a ground-state energy is
measured from the 3a threshold.

The application to theL
9 Be system has proved that our

three-cluster formalism is soundly extended to the systems
with two identical clusters, in addition to the systems of three
identical clusters like the 3a system and the triton system.
Here we have introduced a new effectiveLN force, called
the SB force, which is made from the quark-model predic-
tions of theLN phase shifts by using an inversion method
based on supersymmetric quantum mechanics[42]. The SB
force consists of two simple two-range Gaussian potentials
which reproduce the low-energy behavior of the1S0 and3S1
LN phase shifts predicted byLN-SN coupled-channel RGM
calculations using the model fss2[46]. Since any central and
single-channel effectiveLN force leads to the well-known
overbinding problem ofL

5 He by about 2 MeV[50], the at-
tractive part of the3S1 LN potential is reduced by about 10%
to reproduce the empiricalL-separation energy,BL

expsL
5 Hed

=3.12±0.02 MeV. The odd-stateLN force is assumed to be
zero(pure Serber type). In addition to this SB force, we have
also used the effectiveLN forces in Ref.[7] for comparison.
The La interactions are generated from theseLN effective
forces by the folding procedure with respect to thes0sd4 h.o.
wave function of thea clusters.

In the aaL Faddeev calculation, sufficient partial waves
up to lMax=,1Max=6 are included both in theaa and La
pairs since the relative wave functions between two
a-clusters are oscillating at least in the relativeS- and
D-waves. The detailed analysis shows that the partial waves
up to theD-wave are sufficient if we do not mind a 10 keV
inaccuracy. If we wish to obtain a 1 keV accuracy, we need
to take into account at least up to theG-wave. This implies
that the partial wave truncation is very efficient even in the
present Faddeev formalism. The energy gain due to partial
waves higher than theS-wave is about 1 MeV for the VN2
force and 1.2 MeV for the MN force, when theseaa inter-
actions are used in combination with the SB force for theLa
interaction. The Coulomb effect between the twoa-clusters
is included by a cut-off Coulomb force at the nucleon level.
The cut-off radius,RC=10–14 fm seems to be sufficient for
a 1–2 keV accuracy. In the present formalism, the structure
change of twoa-clusters insideL

9 Be is clearly identified by

calculating the kinetic-energy contribution in the two-a ex-
pectation value«2a. The comparison of the Coulomb contri-
butions in theaa bound state,«2a and theL

9 Be ground state
with respect to the change ofRC is very useful to measure
the compactness of the two-a configurations in various en-
vironments. It is confirmed that the 0+ ground state and the
2+ exited state ofL

9 Be are well described by the contracted
two-a cluster structure with a weakly coupledL-particle in
the dominantS-wave component. In the present calculation
using only central forces, the three-range MN force and the
SB potential with the pure-Serber character can reproduce
the ground-state and excitation energies ofL

9 Be within an
accuracy of 100–200 keV. The results in Ref.[7] based on
the OCM framework are also confirmed within 100 keV ac-
curacy. On the other hand, the simplea-particle model using
the Ali-Bodmeraa potential, ABd[12], and the OCM using
the deep Buck, Friedrich, and Wheatleyaa potential, BFW
[11], with bound-state Pauli-forbidden states give an
overbinding of theL

9 Be ground state by 530 and 420 keV,
respectively, when the SB force is used for theLa interac-
tion. Although these energies are rather similar, the effect of
partial waves higher than theS-wave is very different, i.e.,
0.7 MeV in the Ali-Bodmer case and 1.5 MeV in the BFW
case. It is natural that theaa interactions which yield an
oscillatory behavior of theaa relative wave functions, like
our RGM kernel and the BFW potential, need more partial
waves with a larger energy gain.

There are still many problems left for future studies. First
of all, the readjustment of the3Sattractive part of the SBLN
potential is unsatisfactory from the viewpoint of using the
fundamental baryon-baryon interactions. The Brueckner re-
arrangement effect inL

5 He is fairly large even for the rather
stablea-cluster[50]. In this sense, there is still no consistent
description of thes-shell andp-shell hypernuclei even at the
level of using effective baryon-baryon interactions. A micro-
scopic description of theLa interaction may need a more
detailed analysis based on theG-matrix theory, for which the
folding formula given in Appendix B is very useful. In order
to describe theL

9 Be excited states realistically, we need to
introduce theLa spin-orbit force and solve the Faddeev
equation in thej j -coupling scheme. The recentg-ray spec-
troscopy experiment[30,31] indicates a very small spin-orbit
splitting for the possible 5/2+ and 3/2+ resonances. It is
interesting to examine theLS components of the quark-
modelLN interaction, in which the antisymmetricLS inter-
action sLSs−dd is by about a factor two larger than in the
Nijmegen models. We expect a large cancellation between
the ordinaryLS interaction and thisLSs−d interaction. An in-
teresting application of the present Faddeev formalism and
theLa T-matrix derived in this study is to the recent Nagara
event[61] for L

6
LHe. For theLL interaction, we can use the

coupled-channelLL-JN-SS T̃-matrix of the quark-model
interaction, fss2. A preliminary result[41] shows that fss2 is
at present the only model which can reproduce an appropri-
ate strength of theLL interaction,DBLL

exp=1.01±0.20 MeV,
deduced from the Nagara event. In a separate paper[22], we
have also reported another application of the present three-
cluster Faddeev formalism to the hypertriton system, in
which the quark-modelNN andYN interactions are explicitly
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used in theLNN andSNN coupled-channel Faddeev formal-
ism. In this system, a complete Pauli-forbidden state at the
quark level exists in theLN-SN subsystem.

ACKNOWLEDGMENTS

This work was supported by Grants-in-Aid for Scientific
Research(C) from the Japan Society for the Promotion of
Science(JSPS) (Nos. 15540270, 15540284, and 15540292).
Y.F. wishes to thank the FNRS foundation of Belgium for
making his visit to the Free University of Brussels possible
during the summer, 2002.

APPENDIX A: REARRANGEMENT FACTORS OF
THREE-CLUSTER SYSTEMS WITH TWO

IDENTICAL PARTICLES

In this Appendix, we give a brief comment on the defini-
tion of the rearrangement factors in the Dirac notation for
general three-body systems with two identical particles or
clusters. The incorporation of spin-isospin degrees of free-
dom is essential for further applications to the hypertriton
system[22] and theLLa system[41]. When one uses the
Dirac notation, it is important to fix a coordinate system of
the representation. We choose the standard system of the
Jacobi coordinates withg=3, and introduce the Jacobi coor-
dinates in the momentum space,p=p3 andq=q3. The other
Jacobi coordinatesp1, q1, etc., are similarly defined. For an
arbitrary functioncsp,q;123d in g=3, the effect of the cy-
clic permutationPs123d of the symmetric groupS3 is

Ps123dcsp2,q2;312d = Ps123d
2csp1,q1;231d = csp3,q3;123d,

sA1d

where 123 incsp,q;123d stands for the spin-isospin vari-
ables. For the transpositionPs12d, Eq. (1) yields

Ps12dcsp3,q3;123d = cs− p3,q3;213d,

Ps12dcsp1,q1;231d = cs− p2,q2;132d,

Ps12dcsp2,q2;312d = cs− p1,q1;321d. sA2d

Note that the momentum suffixa in pa, qa, and the sign of
pa, etc., are uniquely specified by the sequence of 123. For
example, kp̂2,q̂2ubl in Eq. (4) actually implies
kp̂2,q̂2;312ubl. In the following, we always use an abbrevi-
ated notation,c=csp3,q3;123d, in the standard coordinate
systemg=3. The total wave function,Csq3,q3;123d, in Eq.
(2) is then compactly expressed as

C = c ± Ps12dPs123d
2w + Ps123d

2w. sA3d

If we write the Faddeev equation in terms ofc and w, it
reads

c = G0T̃s1 ± Ps12ddPs123d
2w,

w = G0TfPs123dc ± Ps23dwg, sA4d

with T̃=T12 and T=Ps123dT13Ps123d
−1, whereT12 and T13 are

the two-bodyT-matrices in the three-body space.
The definition of the rearrangement factors in the Dirac

notation is based on the assumption

kp3,q3;123uPs123d
2wl = Ps123d

2wsp3,q3;123d = wsp2,q2;312d

=E dp8dq8dsp8 − p2ddsq8 − q2d

3 Ps123d
sstd 2wsp8,q8;123d, sA5d

where the functionwsp3,q3;123d is w in Eq. (A3) andPs123d
sstd

operates only on the spin-isospin variables ofwsp8 ,q8 ;123d.
With this w in theb=2 channel in mind, the standard proce-
dure of the partial wave decomposition gives the following
definition for the first-type rearrangement factorggbsq,q8 ;xd:

kp,q,guPs123d
2up8,q8,bl3−2 =

1

2
E

−1

1

dx
dsp − p1d

pl+2

dsp8 − p2d
p8,1+2 ggbsq,q8;xd = o

123
E dp̂dq̂dp̂8dq̂8kgup̂,q̂;123l

3dSp + q8 +
m2

m2 + m1
qDdSp8 − q −

m3

m3 + m1
q8DPs123d

sstd 2kp̂8,q̂8;123ubl. sA6d

Here,p1 andp2 are given in Eq.(5c) with a general mass factor,z=s4m3/m1d. With this mass modification, Eq.(6) is valid
with a more complete reduced rearrangement factor
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ggb
l1l18k =5s− 1dlGsl,d,s,1,2d

l1l18kL kSTTz;giPs123d
sstd 2iSTTz;bl sLS-couplingd

s− 1dloLS3l s1 I

, s2 j

L S J
43,1 s18 j1

,2 s28 j2
L S J

4Gsl,d,s,1,2d
l1l18kL kSTTz;giPs123d

sstd 2iSTTz;bl s j j -couplingd.6 sA7d

Here the square bracket implies the unitary form of the 9j coefficients and the quantum numbers are specified by

H ugl = ufsl,dLSgJJz;TTzl, ubl = ufs,1,2dLSgJJz;TTzl sLS-couplingd,

ugl = ufsls1dIs,s2d jgJJz;TTzl, ubl = ufs,1s18d j1s,2s28d j2gJJz;TTzl s j j -couplingd.
J sA8d

The angular-momentum factorsGsl,d,s,1,2d
l1l18kL with l1=0,l, l18=0,,1 are given by

Gsl,d,s,1,2d
l1l18kL = Gs,1,2d,sl,d

l18l1kL = F s2l + 1d ! s2,1 + 1d!

s2l1d ! s2l2d ! s2l18d ! s2l28d!
G1/2

l̂,̂,1̂,2̂o
f,f8

kl20,0uf0lkl280,20uf80lkk0l10uf80lkk0l180uf0l

3H f L l1

l l2 , JH f8 L l18

,1 l28 ,2
JHl18 f8 L

l1 f k
J , sA9d

where l̂=Î2l+1, etc. andl2=l−l1, l28=,1−l18. In the
spin-isospin reduced matrix elements of Eq.(A7), the per-

mutation operatorPs123d
sstd2 does not change the total spin and

isospin values,S andTTz.
The other types of rearrangement factors are obtained in a

similar way. First, the symmetry of the matrix elements
yields

kp,q,buPs123dup8,q8,gl2−3 = kp8,q8,guPs123d
2up,q,bl3−2.

sA10d

The rearrangement factor for the matrix elementkwuPs23duwl
needs a little care, since the mass assignment of the three
particles is made in the standard Jacobi coordinatesg=3. We
first use Ps23d=Ps123dPs12dPs123d

−1 and write the matrix ele-
ment as

kwuPs23duwl = o
123
E dp3dq3w * sp2,q2;312dws− p1,q1;321d.

sA11d

The corresponding rearrangement factor in the Dirac nota-
tion is given by

kp,q,buPs23dup8,q8,b8l2−1

= o
123
E dp̂dq̂dp̂8dq̂8kbup̂,q̂;123l

3dSp + q8 +
m1

m1 + m3
qDdSp8 + q +

m2

m2 + m3
q8D

3Ps23d
sstdkp̂8,q̂8;123ub8l, sA12d

from which the results in Eqs.(8) and(9) are easily obtained.
Note that the rearrangement factor Eq.(A12) is symmetric

with respect to the interchange betweenp, q, b and p8, q8,
b8, sincem1=m2.

APPENDIX B: A USEFUL FORMULA FOR THE La
BORN KERNEL

The general procedure to calculate Born kernels of the
s-shell clusters, developed in Ref.[62], can also be used to
calculate theLa Born kernel

Vsqf,qid = keiqfruVueiqirl = keiqfrjLfauo
j=2

5

v1jueiqirjLfal,

sB1d

wherefa is the internal wave function of thea cluster,jL is
the spin wave function of theL particle andv1j is an effec-
tive LN interaction. The essential part of this method lies in
the correct treatment of the c.m. motion which is handled by
the procedure given in Ref.[63]. This method makes it pos-
sible to deal with the most general form of theLN interac-
tion with non-static effects like theG-matrix LN interaction.
In this method,Vsqf ,qid in Eq. (B1) is calculated from an
integral form of the GCM kernel through

Vsqf,qid = kdsXGdeiqfrjLfauo
j=2

5

v1ju1 ·eiqirjLfal

= S g

2p
D3/2

es1/4gdsqf
2+qi

2d E dadbe−iqf·a+iqi·bGsa,bd,

sB2d

with
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Gsa,bd = S gG

2p
D3/2E dR kcLsadcas0du

3o
j=2

5

v1jucLsR + bdcasRdl. sB3d

Here, gG=s4+zdn, g=4zn / s4+zd with z=ML /MN, and
cLsRd andcasRd are the h.o. shell model wave functions of
L anda, centered atR, with the width parameterszn andn,
respectively. First we calculate spatial integrals for the spa-
tial partu in v1j =u1jv1j. These four integrals withj =2–5 are
all equal because of the antisymmetric property of thea
cluster. We need to calculate spatial integrals foru=usx1

−x2d andu=usx1−x2dPr, which we call the direct term and
the exchange term, respectively. It is important to note that
the space exchange operator,Pr, operates only on the single-
particle coordinatesx1 andx2, anddoes notexchange theL
and N masses. The procedure to interchange these masses
ML andMN simultaneously like in Ref.[7] leads to an erro-
neous expression[see Eq.(A.1) of [7]], which is apparently
wrong since the RGM kernelkdsr −adjLfauo j=2

5 v1judsr
−bdjLfal should not involve the mass dependence. The cor-
rect expression is the one in which one setsMN=ML in their
Eq. (A.1) [see Eq.(B8) below]. The most general form of the
two-bodyLN matrix elements for the translationally invari-
ant u is parametrized as

kp1p2uuup18p28l =
1

s2pd3dsP − P8dusk8,q8;Pd, sB4d

with p=sp1−zp2d / sz+1d, P=p1+p2 (alsop8, P8 for p18, p28),
and k8=p−p8, q8=sp+p8d /2. For the matrix element Eq.
(B4), the spatial part of the GCM kernel in Eq.(B3) is cal-
culated to be

Gspacesa,bd =
1

s2pd6n3S4 + z

3z
D3/2E dPdk8dq8usk8,q8;Pd

3 expH−
1

6n

z + 4

z + 1
P2 −

1

2n

z + 1

z
Sq82 +

1

4
k82D

+ isa − bd ·Sq8 +
z

z + 1
PD + i

1

2
sa + bd ·k8J .

sB5d

If we use Eq.(B5) in Eq. (B2), we can perform the integrals
over a and b and obtain two delta functions. Thus we can
perform the integrals overk8 and q8 and obtain a compact
formula

Vspacesqf,qid = e−s3/32ndk2S 2

3pn
D3/2E dPe−s2/3ndP2

3 uSk,
z + 4

4sz + 1d
q −

z

z + 1
P;P +

3

4
qD ,

sB6d

wherek=qf −qi andq=sqf +qid /2.
For a simple local Gaussian interaction, we find

usk,q;Pd = Sp

k
D3/2

expH−
k2

4k
J for usrd = e−kr2

,

usk,q;Pd = Sp

k
D3/2

expH−
1

k
Sq +

1

2

z − 1

z + 1
PD2J

for usrd = e−kr2
Pr . sB7d

Then theP integral is carried out easily and we obtain

Vdsqf,qid = Sp

k
D3/2

expH−
1

4
S 3

8n
+

1

k
Dk2J

for usrd = e−kr2
,

Vesqf,qid = S8p

3

1

n + 8
3k
D3/2

expH−
3

32n
k2

−
25

24

1

n + 8
3k

q2J for usrd = e−kr2
Pr . sB8d

If we further incorporate the spin-isospin factors, the full
Vsqf ,qid is given by

Vsqf,qid = XdVdsqf,qid + XeVesqf,qid, sB9d

with the spin-isospin factors defined by

HXd

Xe
J = kjLxauo

j=2

5 Hv1j
d

v1j
e JujLxal. sB10d

Here xa is the spin-isospin wave function of thea-cluster.
The partial wave decomposition of Eq.(B8) is given by

V,
dsqf,qi ;kd = Sp

k
D3/2

expH−
1

4
S 3

8n
+

1

k
Dsqf

2 + qi
2dJ

3i,S1

2
S 3

8n
+

1

k
DqfqiD ,

V,
esqf,qi ;kd = S8p

3

1

n + 8
3k
D3/2

expH−
1

4S 3

8n
+

25

24

1

n + 8
3k
Dsqf

2

+ qi
2dJi,S1

2S 3

8n
−

25

24

1

n + 8
3k
DqfqiD , sB11d

where i,sxd= i, j,s−ixd is the spherical Bessel function of
imaginary argument.
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