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Dynamical aspect of entropy transfer in free convection turbulence
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From a dynamical perspective, entropy transfer processes are investigated in two-dimensional free convec-
tion turbulence in comparison with an entropy cascade picture based on the coupled dynamidsvofticgy
x=(d,T,—d,T) and the velocity gradient tensor. Typical entropy transfer processes are observed in direct
numerical simulations. For these processes, two characteristic times, the transfer time and the staying time are
determined: the former time obeys a Bolgiano-Obukt®®) time scaling corresponding to the eddy turnover
time in energy cascade. It is suggested that this typical transfer process is not an elementary process of cascade
but a dynamical manifestation of intermittency. To examine the meaning of the characteristic times of the
typical entropy transfer process, a shell model is constructed based on the entropy cascade picture. By this
model, it is shown numerically that typical entropy transfer processes are regarded as the fluctuations satisfying
a dynamical similarity. This similarity proved by perturbation analysis requires naturally that the transfer time
should obey the BO time scaling.

PACS numbes): 47.27.Ak, 47.27.Gs, 47.27.Eq, 47.27.Te

[. INTRODUCTION times are considered identical in the traditional cascade pic-
ture. In this situation, we define the transfer time as the time
Cascade is a well-known idea of turbulence. Though thisn which an appreciable part of the kinetic energy of an eddy
idea is based on statistics and scaling, cascade is explaingd transferred to smaller eddies because only two
schematically as the successive breakdown of a mother eddyenerations—mother and daughter—are considered. Daugh-
into daughter eddies within a so-called eddy turnover timeter eddies succeed to all the energy possessed by the mother
Richardson’s pictur¢l]. This schematic picture of cascade before her grandchildren are born. Furthermore the localness
contains a kind of dynamics, i.e., the existence of an elemeref interactions among different scales is taken strictly into
tary process of cascade is implicitly assumed. The cascadgcount.
process is not spatially homogeneous even in a statistical We can consider another situation where many genera-
sense because of intermittency, although the characteristig®ns coexist but energy exchange is still limited among the
of the intermittency have not yet been clarified. The modelnother and her daughters, i.e. the localness of the energy
proposed by She and tieque([2], which is believed to give transfer still holds. Then in general the active period of an
an excellent explanation of anomalous scaling due to interaqqy s shorter than her lifetime. In this situation, the transfer
mittency, is based on th.e existence of cqherent structures Qe may be defined as the time taken by alternation of gen-
singular struc'tures.'ln direct numencal S|mulatldm\I$’s) erations because this definition is a natural extension of the
of the three-dimension#BD) Navier-Stoke<NS) equations, above case. Thus the transfer time is shorter than the staying

coherent struc_:tures such as tubell_ke vortices are observ% e. If a blob of energy possessed by a large eddy starts to
that play an important role especially when cascade prot— ansfer to small eddies, we will observe a successive exci-
cesses are examined dynamically. However, it is not cle ja - S L
whether these coherent structures are directly related to ;ﬁgtmn of rllew_gen.erat_lons 0 f sm.aller .edd|es. in the |n_ert|al
eddies or vortices mentioned in Richardson’s picture, or tg2"9€- This situation is a little bit curious, since relatively
intermittency models. We believe research into the cascadiifond correlation among many generations is maintained
process from the dynamical aspect should be helpful to unduring the trgnsfer process even under the restriction of the
derstand fully developed turbulence. In this paper, we try tdocalness of interactions. However, there is no reason to dis-
understand the meaning of the turnover time in the cascad&gdard it. In fact, we will report observations which seem to
process as a preliminary work. correspond to this situation. Of course, it is still an open
In the 3D NS system, the characteristic time based on thguestion whether elementary processes constituting cascade
Kolmogorov 1941 theoryK41) [3] has been considered as exist in the dynamical sense.
the “eddy turnover time” in the context of Richardson’'s In this paper we deal with 2D free convecti@fC) tur-
energy cascade pictuf&], in which an eddy is distorted or bulence instead of 3D NS turbulence for simplicity. FC is a
broken, exciting smaller eddies. In this picture, the characmodel of the central region of hard turbulendéT) [4—7]
teristic time can be interpreted in two ways. One is the diswhich is proposed to examine the power spectrum of tem-
tortion time, i.e., the time for an eddy to be distorted. Theperature fluctuations?(w)~ w ™% This power spectrum is
other is the circulation time, i.e., the time of an eddy to exist:explained by Bolgiano-ObukhoBO) scaling[8,9] based on
this is the staying time or lifetime. These two characteristicthe entropy T2/2) cascadg10—12. The governing equa-
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tions of the FC system are based on the Boussinesq approXor y=(d,T,— d,T) (calledT vorticity hereafteyis similar to

mations that for vorticity in the 3D NS case like divorticity in the 2D
b NS system. By this equation, we will dig into the entropy
ou_ —Vp+agTe,+vAu, (1.)) cascade mechanism based on the dynamics of the structures
Dt of the T vorticity.

By a shell model for FC turbulence, entropy cascade has
E_ AT (1.2 been also examinefl18,19. Brandenburg concluded that
Dt “°h ' backward energy transfer is crucial for reproducing the BO
scaling in this shell mod€l18]. The universality of the BO
V.u=0, (1.3  spectra and the intermittency of the transfer process were
also investigatedi19]. Another shell model is proposed by
where V=(a/dx,dldy), A=V? andD/Dt=a/dt+(u-V),  the authors to explain the behavior of the characteristic times
and v, «, , andg are the kinematic viscosity, the heat of the entropy transfer observed in DNS'’s of 2D FC turbu-
diffusivity, the volume expansion coefficient, and the gravi-jence. This shell model is constructed based on the evolution
tational acceleration, respectively. The buoyancy acts a|0n6quations off vorticity and velocity gradient tensécf. Eqgs.
the Yy aXiS, andey is the unit vector of this direction. This (21) and(22)] This model is not a chaotic System’ and has
model assumes a neutrally stable stratification and homoger stable steady solution containing the BO spectra in its in-
neity which is realized in the central region of hard turbu-grtig| range.
lence[11]. In this paper, we examine the entropy cascade by both
The FC system has conserved quantities, entr&py DNS's and the shell model. In Sec. Il, we propose an entropy
=[|T[?/2dV and total energyE= [|u|?/2+(ag)yTdV, in  cascade picture based on the coupled dynamics o tre-
the inviscid case. It should be noted that both 2D and 3D FQicity and velocity gradient. We compare this picture with
systems have the same conserved quantities, unlike NS sySNS's of the 2D FC system in Sec. Ill. In Sec. IV, we
tems. In the inertial range, the BO spectra for entropy angeview our shell model and then show the results of a simu-
kinetic energyS(k) andE(k) are obtained based on entropy |ation. Section V is devoted to examining the self-similar
cascade: nature of time evolution in the shell model by perturbation
o theory. In Sec. VI, we discuss the entropy cascade based on
S(k)wéls(“g) 2T, (1.4 the two types of the entropy transfer observed in our shell

del.
E(k)~€$/5(ag)4/5k—ll/5, (15) mode

whereer is the average dissipation rate of the entropy. Il. AN ENTROPY CASCADE PICTURE

For bqth 2D FC and 3D NS,_ phenomena related to the The DNS of the 2D FC equatiori€gs. (1.1) and (1.2)]
transfer time(the eddy turnover timewere observed. In the shows that the BO scaling can be realized: the entropy cas-
2D FC system, the transfer time was estimated in terms ofade can exist. If the cascade is governed by a universal
the correlation time using orthogonal wavelgt3]. The  mechanism and in this sense the entropy cascade is similar to
transfer time obtained is well explained by the the charactery,o energy cascade, there may be physical quantities, like
istic time due to BO scaling: vorticity in the NS system, by which the entropy cascade

r1~ - Y5 ug) ~ 259205 (1.6 mechanism will be understood more easily and .de.epl'y from
boeT : : the dynamical aspect. Then we focus on the similarity be-

In a 3D NS system with high symmetry, large fluctuations oftween the vorticity equation in the 3D NS system and the

the cumulative transfer over a shell in Fourier space are okgguation forT vorticity in the 2D FC system.

served to be activated successively in scales due to the char- TO. study t_he FC system in terms of thevorticity a_nd
acteristic timer,~ 1?3, which is the eddy turnover time based velocity gradient tensor, we rewrite EdS.1) and(1.2) with

x and o=V':u as follows:

on K41[14].

We expect that FC turbulence has the nature of a cascade o o
similar to that of 3.D.N.S turbulgnce. Pumir .and_ Siggia —=agR(—):(x:ety)—a: o—V:Vip+vAe, (2.0)
showed that the 2D inviscid Boussinesq approximation equa- Dt 2

tion corresponds to the local approximation of the Euler b
equation for 3D axisymmetric swirl flow to examine the ex- X o
istence of a finite time singularitjd5]. It should be noted Dt X VUt KAx(= oyt kAx), 2.2
that the existence of the singularity is still an open question
[16,17, as is the relation between the singularity and thewhereo is the velocity gradient tensof ¢J;; = d;u;),t indi-
cascade. cates a transpose, afir(6) is the rotation matrix through

In experiments and DNS’s in 3D NS turbulence, highly angle 6. The symbol : denotes the tensor product. Equation
vortical regions such as a vortex tube or sheet are observe@.2) shows thaty is expected to play the same role as vor-
and assumed structures. Their dynamics, such as stretchitigity in the 3D NS system. The divorticity in the 2D NS
and tilting is believed to play an important role in energy system is also governed by E.2), but divorticity is di-
cascade. In the 2D FC system, however, there is no pictunectly linked to velocity unlike in the 2D FC case. This dif-
based on structures for the entropy cascade because strierence in the degree of freedom between the 2D NS and 2D
tures have not yet been defined. Nonetheless, the equati®iC systems seems to be crucial for the cascade.
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We should illustrate .the fact that it is inevitable to explair) U j(X,Y) = [Um j(%,Y),0mj(X,Y)]
our entropy cascade picture. In the 2D FC system, potential 5 5
energy is always converted into kinetic energy via the buoy- - -
ancy effect in a statistical sense. Furthermore kinetic energy =| 2 uﬁ,?)j‘lfﬁ,?,)j(x,y),zl o Bxy) |,
converted is inversely transferred to large scales. Thus the
buoyancy term dominates the nonlinear term on the right- 3.1
hand side of Eq(2.1). If a scale is given, the induction time
of the velocity gradient tensor due to thevorticity is longer N
than the excitation time of thE vorticity of smaller scale by O (X,y)= 21 oW (xy), (3.2
the termo . This fact is shown in Sec. lll. -

We can easily draw a picture of the entropy cascade in ~@) ()
accordance with the form of Eq&2.1) and (2.2). Suppose Wheréumj, vm;

q=1

3

@ and® Y are wavelet coefficients af, v,
there is aT vorticity fluctuation of a certain size. Then a @nd T, respectively. Then the local velocity of a scale,
velocity gradient fluctuation of about the same size is excitedm(X,Y)=(Um,vm), and the local temperature of the scale,
due to the linear term in Eq2.1), i.e., the buoyancy. While ©m(X.y), are defined as
the velocity gradient is induced, anothEworticity fluctua-
tion of a smaller size is excited by the nonlinear interaction _ _ _
due too: x. The size of the excited fluctuation of tAevor- um(x,y)—(um,vm)—Ej: Um.j 33
ticity is about half. In this picture, the interactions are closed
locally in scale and the entropy is transferred to smaller
scales scale by scale, like the successive breakdown of ed- Om(x,y)=> Om,- (3.9
dies shown in Richardson’s cascade picture. Therefore we !
expect that a model based on the equations ofltherticity ' .
and velocity gradient is suitable for understanding the en-  Next we defineX, by the spatial average of the larger
tropy cascade. Moreover, we believe that the explanation of'9envalue of the symmetric part &":uy, because the
the cascade process by such an entropy cascade picture wiff&in is essential for the dynamics of thevorticity. The
conversely be helpful in understanding energy cascade. ~ d€finition is

Here, we do not refer to a nonlinear terao: o, because
the buoyancy terms dominate the nonlinear term. Advection s - 1f f dxd 3
terms for eachy and o are neglected by regarding that they m— F S+ (x,y)dxdy, 39
cause mainly a local sweeping effect. We also neglected
pressure in this pictgre for sjmplicity, although the nonlocalherel is the period length of the system and
effect of pressure might be important. The results of DNS’s,
however, show that pressure is not so effective in local trans- 1
fer of entropy. These results will be reported elsewhere. s+ (X,y)= E{(axum+ AU m)

Ill. CHARACTERISTIC TIMES IN 2D FC + \(OxUm— 3y0 m) 2+ (350 mF dyUm) 2.

3.6
In this section, we analyze the entropy transfer process in 39

FC turbulence from the perspective of the dynamics offthe |1 should be noted thal,, is not affected by the term

vorticity x and velocity gradient tensar dgfined in Sec. I. (dxUm+dyv ) because this term vanishes when integrated
In particular, we focus on characteristic times related to thg),or the space. However, the term, .+ d,v)=V-Uu
. ' x¥m yYm m

ehntr_cl)_py transfer péocelss..To dezc;nbe temporal evollut|ons 9fself does not always vanish since an orthonormal wavelet is
the T vorticity and velocity gradient tensor In scales, We ,qqq 1o construat,,. In fact, in our definitions in terms of an

introduce the scalar representations of these quantities fthonormal wavelet. neither the modal wavelet veloaiy
' i

simply as possible. nor the local velocity of scalk,, U, is any longer incom-
pressible, while the incompressibility becomes less important
A. Representations of theT vorticity for 3. If the spatial distribution of the strain field is ana-
and velocity gradient tensor lyzed, another definition will be more useful. One possibility

We introduce the representations of thevorticity and 1S Sm(X,y) defined ags, (x,y) —s_(x,y)}/2. If >, were de-
velocity gradient tensor of a scale in terms of a 2D wavelefin€d by the summation o, over space, it would be equal
(cf. Appendix A for a 2D wavelet transformHowever, we  t© definition(3.5).

do not examine the details of the spatial distributions in this N Our cascade picture, the vorticity of a scalely, is
paper. The representations of tievorticity and velocity related to the entropy of the same scale. Therefore we define

gradient tensor of a scalg~2 "™ are referred to aX,, and  Xm @S & rough estimation of the spatial average of the am-

S, respectively. In Sec. IV, we construct a shell model forPlitude of (3,0y,~d,0y), although we can also use the

scalar variables,, and x,, corresponding t&, andX,,. wavelgt transform oy itself for X,,,. The concrete definition
First of all, we define the modal wavelet velocity Of Xm i

Um;j(X,y) and the modal wavelet temperatugg, ;(x,y) in .

physical space as Xon=lm T, (3.7
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Normalized Histogram

i : 5
Modal Entropy x10

FIG. 2. Normalized histograms of the wavelet entropy within
the scale~2~™, wherem=6. The histogram averaged over 60
snapshots is shown shaded. Black circle: most active. Open square:

] ) most inactive.
FIG. 1. A snapshot of the entropy field. Contour lines are drawn

at mg, Mg+ VE?, mgt2VE?, and me+3VE?, wheremg is the  posed in Ref[21]. The shaded region shows the histogram
mean andVg is the variance of the entropy. Regions where theaveraged over 60 snapshots. Squares and black circles show
entropy exceedmg+3V4? are shaded. those at the most active and the most inactive times among
the 60 samples, respectively. The forms of three histograms
are similar. This suggests that activated regions which may
correspond to the structures mentioned above are small, and
that the rest part is not affected significantly by the active
regions. Furthermore, we deduce that the rest part or the
background of the structures support most of entropy transfer
Direct numerical simulation is carried out with E¢$.1), on average. Ir!bthis sense, the structureshpr the active rfegions
(1.2), and(1.3) using the fourth-order Runge-Kutta method seem to contribute to intermittency. In this paper, we focus
on the characteristic times related to the entropy transfer pro-

in integrating the system, and the pseudospectral method in & : P
doubly periodical box,[0,27]X[0,2]. The number of cess, and so we leave the details of the spatial distribution for

modesN? is 25@. Aliasing terms are removed in terms of future works. In the following, we only deal with variables

. o . integrated over a shell.
the 1/2.'Sh'ft?d grids: th”g' the effeCtg"e modes are ('829) Now we examine the dynamics due to interactions of the
Hyperviscosity terms/yA®u and k4 A®T are employed in-

stead of the normal viscosity terms in E¢®.1) and(1.2) to T vorticity and velocity gradient by measuring correlation

obtain the inertial range clearly. Without loss of generalitytimes betweerXy, and %, First of all, we compare the
) magnitudes of the fluctuations of,,, and to their mean
we can setrg=1. Here we also set,= ky=5%10 %' and g m m

. ) values to see the relative significance of the fluctuations. In
a time step At=2.0x10 3. The forcing term F g

. . ; Fig. 3, the average, the standard deviation, and the ratio of
=cos(X)cos(3) is introduced into Eq(1.2) to drive the -
temperature _field. The drag termD=0.51— (| the average to the standard deviation ¥y, and 2, are

. . ST lotted. If %, andX,,, obey BO scaling, the scaling relations
—3])]JA " u, where§(x) is Heviside’s step function, is also 51 the inerztigl rangemare y g g
introduced to Eq(1.1) to keep the system statistically sta-

1
T= Ff f |O®n(x,y)|dxdy. (3.9

B. Results of DNS

tionary. It should be noted that a field constituted by 256 <§m>~|;12/5' (3.9
Fourier modes can be represented by a set of wavelet modes,
{(m,j)lj: (Jx ,jy);OSms&Oij ,ijZm— 1}' £ 10'g @

As a preliminary step, we investigate the spatial distribu- ~ ;/O/Oo/o
tion of entropy briefly. In Fig. 1, we show a snapshot of £10%E
entropy field at an active time=9.2 when entropy transfer i _15 .
to small scales seems to be enhanced appreciably. In the s 10 I .
right of the figure, we can see a strong eddylike structure §10-z Lo v 0
sprouting linelike structures from it. Although we also ob- 1234567
serve a corresponding vortex in the vorticity figtbt shown Wavelet Scale m
in this pape), these vortices are localized even in scale and £ 102

are not robust, unlike those in 2D NS turbulence. During an
active period, eddylike structures become obvious and

atio
—
o
LILLLLL LR
\j—
2
>

stretch linelike structures out. It was shown that entropy T 10%¢ .
transfer is enhanced around the region where the linelike 810 =i
structures stretched o[20]. > 402 Ev vy

In Fig. 2, we show the normalized histogram for a spatial
distribution of wavelet modal entropys_;(©M)2/2, for
m=6. In orthonormal wavelet analysis, the fluctuation due FIG. 3. The averagéopen circlg, the standard deviatiofopen
to a phase intrinsic to the wavelet base blurs the observegiangle, and the ratios of the average to the standard deviation
guantities. Here we eliminate the phase by the method praelosed squade (@) X, (b) 2.

Wavelet Scale m
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FIG. 5. Correlation  times  of F(Xy,Xm:1)(7),
FCEm.2me) (), andF(X,,,2 ) (7). The lines show the BO time
scaling.

F (Em,2m+1)
o
(6]

o
o

Y
hs

-5
[

05 time at whichF(X,,2 . 1)(7) peaks is positive fom=3.
-4-3-2-10123 4 However, unlike the case of,,, this result is not neces-
Correlation Time T sarily explained by the nonlinear interaction amobg,,

1.0 because the buoyancy dominates the nonlinear interaction
' in the early stage of the excitation ok,. The
width of F(2,,,2m+1)(7) is about the same as that of
F(Xm  Xm+1)(7) for m=4,

0.0 In Ref.[13], a similar analysis was applied for the cumu-

) lative wavelet energy and entropy within a scale. The result
05 b : in Ref.[13] is thatF(E,,,En.1)(7) takes two local maxima
-4-3-2-101234 around 7=0, whereE,, is the cumulative modal wavelet

Correlation Time T energy within a scalé,,. It has been concluded that the
kinetic energy transfer does not take a definite direction un-
like the entropy transfer. Becaubé2.,,,2 - 1) (7) seems to
have a single maximum, the negative energy transfer is not
detected clearly by ,,. Thus the velocity gradient,, is
— 455 more convenient thatE,, when we focus on the entropy
(X~ 1™, (3.10 transfer. It should be noted that energy is transferred in-

versely on average, and this inverse transfer is crucial for the
where( ) denotes the temporal average. In the rangen® BO scilling o dogr]ninate the Kolmogorov scaling,

<6, both scalingg3.9) and (3.10 are satisfied. The ratios The maximum value of the functigR(X,..,S)(7) is not

are less than 0.1 for botK,, andX ,. Thus the magnitudes as large as that 6 (X, X, 1)(7) Or F(3p 31 )(7). The

of the fluctuations around their mean values are small com="_". :
pared to the averages. maximum is at most 0.8 fom=6 and 7, and less than 0.7

We define the characteristic time of the entropy transferror m=5. This may be explained as follows. There seem to

process as the time at which the cross-correlation coefficie e at tlegsé tV\;?] prtocesises for thte;] ”a_”srffﬁ% dwh(;Ch i? E
peaks in the same way as that in Réf3]. This definition of expected by the two terms on the right-hand side ot £q.

the characteristic time corresponds to the transfer time, dd2:1): 0ne is the induction o, by %, due to the buoyancy

fined in Sec. | as the time required for alternation of genera&ffect: and the other is the interaction amdng. Because

tions. Here the cross-correlation coefficient between signalg."e latter does not seem to relate directly to the former, i.e.,
A(t) andB(t) is defined as Xm, the cross-correlation betweéh, and X, is lower than

that betweer®,,, and3,,,; 1, or that betweerX,, and X, ;.

05}

F(XuXn)

FIG. 4. Cross-correlation functions. Their values7at0 in-
crease withm, and the top ism=6. (8 F(Xy ,Xm:1)(7). (b)
F(meszrl)(T)- (C) F(vazm)(T)-

(A —(A)((B(t+7)—(B))) The characteristic times of the transfers frm to X 1,
F(AB)(rn)= ) NIy > from X, to 2,4+, and from X, to X, are referred to as
VA% (D) — (A ((BA(1)) —(B)?) 3 ONS(X), T2NS(2), and 72NS(X—3), respectively. Each of

them is defined as the time at which the correlation function
Figure 4 shows the three correlation functions attains a maximum value. In Fig. 5, the characteristic times

F(Xm s Xme (1), FCm:Sme1)(7), and F(Xy,3m) (7). ONS(X), PN¥(2), and ANY(X—3) are shown. In the
The correlation functiofF (X, X+ 1) (7) shows thai,,and ~ fange :m=6, the induction timerp"(X—3) is more
Xms 1 correlate well: the function attains a maximum valuethan two times larger thamy"S(X) and 7" %(2). As far as
larger than 0.8 fom=3. The sign of the time at which a single sequence of entropy transfer through the inertial
F(Xm,Xms1)(7) peaks is positive fom=2. ThusX,, or,  range is concerned, nonlinear interactions ambpgeem to
equivalently, the entropy is transferred to smaller scales ife less important. The fact thaf¥S(X— ) > 72NS(X) sug-
the inertial range. gests that the interaction amoig, dominates after the ex-
The correlation functior=(2,,,2+1)(7) also attains a citation of X,,,; 1, while X, ; is excited by the interaction
maximum value larger than 0.8 fan=4. The sign of the between,,, and X,,. ThereforeX,, seems to be induced
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%qo ‘ FIG. 7. Time series oK,(t) for m=4, 5, and 6. Each function
0. :

is normalized by 3/1m’2, whereV, is the variance of each function.

10 15 20
Time

It is quite interesting that in the several periods,
7(Xm:Xm+1,T¢) approaches a constant valueravecomes
large, and this constant is the correlation tin§&'S(X). This
only by the buoyancy in an early stage. suggests that there exist the well-separated entropy transfer

Next we discuss the scaling relations of the characteristiprocesses. Some of them actually correspond to the entropy
times. Two broken lines representing the BO time scalingcascade picture, because the induction time also obeys the
~Iﬁ1’5, are drawn in Fig. 5 for reference. The lines agree withBO time scaling in these special periods. We call these pro-
ONS(X) and 2NS(X—3) in the range Im<6, but cesses characteristic entropy transfer processes. On the other
7oNS(3) differs from the lines. 1f7oNS(3) obeys a power hand, we have deduced that multiprocesses constitute the
law, the exponent is smaller than that of the BO time scalingxcitation of %, from the fact that the correlation
—2/5. In our simulation, the number of the modes adopted i$-(X,,2,,) is lower than that of F(X,,X,.1) and
not as large that the inertial range observed is not sufficientlf (2,2 ,+1) as shown in Figs. @), 4(b), and 4c). Thus
wide. In Sec. IV, we show that our shell model indicates theheavy scattering of(X,,>m,Tc) Seems to be caused by the
similar tendency ofrh"(3) for smaller shell numbers. competition of these multiprocesses, one of which is the
Therefore, it is inferred that the disagreement between thpuoyancy effect and dominates others on average.
BO time scaling andry'Y(2) is due to the narrow inertial  We examine the characteristic entropy transfer processes
range. individually. Some of them are labeled B, andB’ where

To examine a period when the entropy transfer process is(x = X ., T.)= PNSX) and (X, S, Te)=2NS(X
activated, we define a temporally local correlation '_[ime_,z)_ These periods are good samples of characteristic dy-
7(A,B,T;) as the time at which the following correlation n,mical processes corresponding to the entropy cascade pic-
function attains a local maximum value: ture. We discuss qualitative features of the transfers ofithe
vorticity and velocity gradient, observing the temporal evo-
lution of X,,(t) and X,(t) shown in Figs. 7 and 8. The
capital letters such a#s,, etc. marked in Figs. 7 and 8

FIG. 6. @ 7(Xm:Xm+1.Tc) as a function of T.. (b)
T2 m,2me1.Te) as a function ofT .

(A = (ADUB(t+7)—(B)i))

PABITe e D R~ DB (B))
(3.12

1.0
In this definition,(* ), denotes the local time average over 3 83 'OE»)N’\W‘JW’“V/\”%WM‘
the periodT,, centered aff ¢, i.e., (1T,) 1S TW2 dt. Here - ST ST "
we chooseT,, as two unit times, which is the width of the 1.00 > 0 B =
cross-correlation functions shown in Figsi@a4 4(b), and 5 8-8‘%&’%@ b NEe
40). BT STy
In Fig. 6, 7(Xin, Xne1,Te) and (X, 21, Te) are plotted 15 0 15 20
for m=4,5, and 6, when their correlation coefficients are .02 A0 _Bis
larger than 0.8. The number of points plotted in the figures W S0 Mwm 7
for 7(Xn,2m, T¢) is less than that for( X, , X1, T¢). This A0 5 20
means that the local correlation betwe¥p and X, is 1.0 @ 5
higher than that betweeX,, and3,,. The maximum value 5 93 I\Wf’\w i AR
of F(X,, Xms1)(7) is larger than that oF (X,,,3)(7) for 0 N T Y
m=4, 5, and 6. The number of points increases witlsince 05 T;rge 1520

the  maximum values of F(X,,Xn:1)(7) and
F(Xm,2m) (7) becomes larger as goes large.

FIG. 8. Same as Fig. 8, except fBr,(t).
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represent the characteristic periods mentioned above. In Figs. 108

7 and 8, the symbdB’ is replaced byB because they repre- A 106’

sent the same sequence of the transfer. The shapeg(of = .

and3 (), belonging to period, are almost the same, but L 104

they are different from those in peridd We focus on period g 102 I

B, where the fluctuations in perio®ss, Byg, andBy; cor- A o« <An>
relate highly to each other. The widths of the fluctuations are “ﬁ 10 s <GP>
almost the same, and about two unit times Bys, Bys, Vo102t s

Bxs» Bys andBys. If the staying time of a scale, i.e., the 0510715 50 55 30
width of By,,, obeyed the BO time scaling, it would become Shell Number m

shorter asn becomes larger and the ratio between the widths ) 80O 80 .

of By, andBys would be (2 25)2~0.57. Thus we conclude FIG. 9. The stable solutionsy;,”) and({or,"). The lines show

that the staying times foX,,, or S, do not satisfy the Bo h€ BO scaling.

time scaling: the staying time is different from the transfer

time defined as the time between the peak¥ gfandX,,,;.  sustain a steady solution. It should be noted that our shell
The characteristic entropy transfer processes we examingdodel is not a chaotic system, unlike the original shell

above differ from the traditional cascade picture with respectnodel.

to the characteristic times. However, we have introduced an-

other cascade picture with multigeneration, and this picture

is rather appropriate for describing these characteristic pro- A. BO case

cesses. We will show in Sec. Il that these processes are well \we have introduced our shell model to examine each of
explained by the shell model. the characteristics of entropy transfer processes observed in
DNS’s which seem to be candidates for elementary processes
IV. A SHELL MODEL of entropy cascade. Through each of these transfer processes,
the modess ,, and X, constituting fluctuations are highly
correlated to each other, i.e., these processes can be regarded
as dynamical ones. Thus we believe that chaotic behavior is
not required for our purpose. The fluctuations in these pro-
dom 2 2m i
—— = aQxm— 00— VN""a+ Fp(m), (4.1)  cesses are small when compared to the background field, i.e.,
dt the statistically quasiequilibrium state. Then we first obtain
steady solutions of our shell model obeying the BO scaling
in the inertial range, and observe the temporal evolution of a
fluctuation added to these steady solutions at a large scale.
4.2 Simulations of our shell model are performed using the

» ) fourth-order Runge-Kutta method. We set=2 hereafter.
where x,, and o, are positive variables, and represent thetpe steady solutions are obtained fr=D=1.0x1C%, »

amplitudesy ando of scalel ,=\"" (\ is the ratio between _ . _ 1 ox 10 2 and ag=1. These steady solutions, re-
the length scales of adjacent shgllespectively. The shell ferred to aS<O_BO> and <XBO> obey the BO scaling in the
numberm roughly corresponds to the logarithm of the wave range betweenkam<20,mas,seen in Fig. 9. We have called

number~ 1/, this range the inertial range of the steady solutions for con-

We have derive_d these mo_del e_quations a(_:cording 10 thGenience. The initial condition was constructed by adding a
entropy cascade picture described in Sec. Il. Since the energy fluctuationdy=1.0x 10~ 2 at m=4 to <XBO in sur
=1. = 8O, .

IS transferred inversely an average in DNS's, the nonllneaeblus. We refer to this situation as the BO case. The solutions,
effects in a scale are weak before the modes of a smaller BO BO : .
ferred to aso, (t) and x,,(t), are obtained withAt

scale are excited sufficiently. Thus the model equation for® s
o is dominated by the buoyancy term. Furthermore, we 1.0x10 . . :
m ; We examine the BO case, focusing particularly on char-

replace the transfer of kinetic energy with the nonlinear Satuécteristic times: the transfer time and the staving time. Here
ration term— Urzna and then Eq(4.1) is closed in a shell. This : ying '

i o o ¥
nonlinear term also allows steady solutions satisfying the Bd"® introduce the characteristic times of a meterr,, 7,
scalings o~ A2™% and ym~(@g) *]\*™® in the inertial

The shell model proposed in R¢R2] is governed by the
equations

dXm
W:)\Zamlemfl_UmeJrl_ K)\szm+ Fr(m),

and 7,7, which are defined asy =ty ., —tm, 75=t%.1

range. Convective terms and pressure terms are neglected fortm» @nd 7, “=tq,—t5,, respectively. In these definitions,
simplicity. The drag termFp(m)=—D (8 1/\+ 2/ N> ty, andt}, denote the times at which,, and x, attain their
+6m3/\°) is introduced to prevent the variables from di- maximum values, respectively.
verging. In Fig. 10,77, 7¥, and 7~ 7 are plotted as functions of
The model equation fox,, is essentially the same as that m. In the range 1&m<20, all of them obey the BO time
of T,, in the original shell model, which causes an entropyscaling. In the rangeSm=10, 7}, and7Y\,” 7 satisfy the BO
cascade, as seen by replacifig and u,, with Iy, and time scaling, butr;, decreases faster than the BO time scal-
I nom, respectivelyf18,19. The localness of nonlinear inter- ing asm increases. This behavior of the characteristic times
actions is assumed as in typical shell models. Thus the tota$ reminiscent of the results of DNS shown in Fig. 5. This
entropyEmTﬁqlz is conserved in the inviscid case. The forc- suggests that the discrepancyﬂﬁff\‘s(E) from the BO scal-
ing termFg(m)=F &, 4 is introduced to allow the system to ing is due to the short inertial range.
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As shown in Fig. 11, functions,,"(t) andx,, (t) of the c I e 3
modes in the inertial range coincide with the same shape S0 S0
under a proper normalization: if we define the normalized 2 oL P A T
fi ds’ — (t—t7)/t" d 7= (t—tX)/tX 1 0 1 _2 - 0o 1 _2
ime 7, and 7, as 7= (t—ty)/ty, and 7= (t—tR)/ty,, re- Normalized Time Normalized Time
spectively, we obtain the two similar functionS,(7.,) ) L
E[Uao(t) _(Ur?]0>]/< U%o and Km(Tr'n)E[Xﬁo(t) FIG. 11. Temporal evolutions &,(r,) andT(,,) in the BO

case.S,(my): (@ for m=5,6, .. .,10, and(b) in the inertial range.

BO BO -
—{(xm ) J{xm") whereS,, andK, are independent ah. If Tm(7,): (c) for m=5,6, .. .,10, and(d) in the inertial range.

I is in the inertial range, i.em is large, the normalization
factor t}, or t; is almost constant becausé <t} and 7y, B. Blast case

- ! . . .
<tp, respectively. Thus the introduction of the normalized Next, we investigate another situation where the system is

times r, and 7, virtually means the translation of the origin. ¢ar from the quasiequilibrium state initially. That is, we treat
This is consistent with the result of DNS's. In Fig. 7, the the response of the system in a null state to the injection of
fluctuationsBys, Bxe, andBx; have almost the same shape, the entropy of large scale. This case is called the blast case
although the ratio of the scale &7 to that of Bys is 1/4.  nhereafter. The time-dependent solution describing the re-
This similarity of Sy, andK., is well explained by perturba- sponse shows that the maximum value of each mode satisfies
tion analysis in Sec. V. _ different scaling relations from the BO scaling. We call the
These results mean that we should introduce two charaGpectrum of the maximum values the peak spectrum hereaf-
teristic times for the entropy transfer, as mentioned in Sec. ligr. The peak spectra for the BO case satisfy the BO scaling,
the transfer time and the staying time. The transfer timeynich is trivial due to the similarity 08,, andK ,, shown in
such asry,, is the time in which fluctuations are transferred gec. |V A.
from a shellm to m+1. The staying time of a fluctuation, In this case, all modes are set null except that_ 4
which is of orderty,, is the time in which a fluctuation of a =1.0 in the initial condition. The time stept is 1.0
scalem loses its appreciable part. In the BO case, only thex 1078, the total number of steps is>X3L°, v=«k=1.0
transfer time obeys the BO time scaling. On the other handx 10 %2 and F=D=0. These solutions obtained by the
the staying time is almost the same in the inertial range. Theimulation are referred to ast\(t) and y2(t).
result is contradictory to the traditional cascade picture in | the blast case, if we define the normalized timgand
which there is only one chargcteristiq time. The BQ €ase,’ as y,=(t—t2)/7% and 5= (t—tX)/¥, the functions
rather corresponds to the multigeneration cascade picture |ra5m( Um)EUﬁ:(t)/[Uﬂ] and T, ﬂ%)EXﬁ:(t)/[Xﬁi] are almost

troduced in Sec. I. It should be noted that we extend th bi bl .
meaning of the transfer time to express the transfer process%%? Tta gli,u\lléhk?erer?on;]e dag?a[t)mi Zﬁir::j[s)r?segg ZEZ(;U,@;%
- m

of nonconserved quantities, sucha@g and x, . ; )
In 3D NS turbulencél4], the transfer time was examined different from the counterparts in the B.O case. , .
The peak spectra and the characteristic times, defined in

indirectly by observing the fluctuations of transfer function. ; : . .
It is shown that the transfer time does not contradict thethe same way as in the BO case satisly the different scaling

Kolmogorov time scaling. However, the staying time has notrelations from the BO scaling. The scalings for the blast case
been examined in 3D NS turbulence. Therefore, we cann

conclude whether the difference of these two characteristic [ O_bI]N( ag)llzsém)\(llz)m 4.3
times is common in 2D FC and 3D NS turbulences or not. In m '

Sec. V, itis proved analytically that the transfer time satisfies

bly__cli2y m

the BO time scaling. In Appendix B, it is shown that the [xml~So"A™, (4.4
original shell model for FC and shell models for NS have the o e 1A (12

same similarity as our model. Thus we suggest that the NS i~ (ag) Ay VA T Am, (4.5

system has two different characteristic times when the trans-

fer of fluctuations around the steady solution or the statisticawhereS; is the total entropy injected initially. Since the time
quasiequilibrium state, i.e., the Kolmogorov spectrum, isis normalized byr, or 7, the staying time is also scaled by
considered. Eqg. (4.9 in this case. Hereafter we call scalings3) and
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FIG. 12. Temporal evolutions oB!(7,) and TRl(7/) in the 0 51015202530
blast case. Sl (#nm): (@ for m=5,6,...,10, and(b) in inertial Shell Number m
range.T2(7.): (c) for m=5.6, . . .,10, and(d) in inertial range. 10°¢
o 107} % HEN
(4.4) the blast peak spectra. The scaling relatidrb) has E L e, Dol
been confirmed for different values 8§ andag. In Fig. 13, =10 N R o501 uml0
the normalized time scales,(«g)*?Sy for the induction g10%F  n
time 7%~ are plotted. It is scaled as|¥?. 2 10
In Fig. 14, the(norma) spectra fory,, ando,, are shown = 10°% ]
at several times. One spectrum obtained after the time when 10° AT
the blast reaches the dissipation range is also shown. Before 0 51015202530
the blast reaches the dissipation range, its scaling is different Shell Number m

from the BO §Callng. I.n the case &, it does not satisfy FIG. 13. Normalized peak spectra and the time scaling for sev-

even the_ scaling relatlonz Whllem_ seems to obey a power eral values of the setS,ag): @ [o](ag) Y255, (b)

law but its exponent varies as time goes on. On the othe[rxm]salxz and(c) !

hand, the maximum values of,, and x,, obey scaling$4.3) " ' "

and (4.4 which are drawn as bold straight lines in Figs. spectra to the blast peak spectra occurs betw&en=2

13(@) and 13b), respectively. This means that even if the X 10° and §y,=5x 10°. The rough sketch of the transition

blast dominates the system, the BO spectra will be retrieve$ as follows. The transition starts with the appearance of the

after the blast reaches the dissipation range. In fact, this timblast peak spectra in a small shell. After that the crossover

is finite and evaluated as follows:t, =3} _,7  moves to a larger shell as the valuedx, increases. Finally,

=(ag) Y25, Vi1V T <on, the entire range is occupied by the blast peak spectra. It
It should be noted that the staying time and the transfegshould be noted that the transition is not so clear, and the

time are identical in this case. In this sense, the blast case &ectra do not obey the scalings for the BO and the blast

rather similar to the traditional cascade picture. However, wgases strictly for intermediate values &f,.

do not use the average dissipation rate of the entropy, but the

total entropy in the dimensional analysis, to derive scalings V. PERTURBATION ANALYSIS

(4.3, (4.4), and(4.5) [22]. Even in the blast case, the entropy

flux averaged ovet., is independent om. At the moment,

we can only point out that the blast case may be one candj:

date for an elementary process of entropy cascade; howev Bexplain the similarity ofr,(t) andy.(t) for the BO case.

WerhO not Clilt:nlflgi;?err ilgnlEC?vf\]lce :ft:lhe SgSt case zzrihThrough this analysis, characteristic times are derived con-
€ essentia erence between fine case and Sstently. In Appendix B, a similar analysis is applied for a

blast_c_:ase is the ratio of the entropy injected in the InlF'a.lclass of shell models for NS, and the original shell model for

condition to the entropy of the background states. Thus it i ree convection, to show that these shell models can be in-

suggested that when the strength of the initial fluctuation oL uded in the same class as ours.

the BO case becomes. sufficiently large, the fIl_Jctuanon domi- We introduce the nondimensionalized similar solutions of
nates the steady solutions and obeys the scalings for the blast (t) and y(1):
case. Here we examine the dependence of the BO case on e Xmit):

strength of the initial fluctuation, to see where and how the O_m(t)_<a_BO
BO peak spectra are converted into the blast peak spectra. As eS(7)= m

seen in Fig. 15, a significant transition from the BO peak (UEqO>

In Sec. IV, numerical simulations revealed tlagf(t) and
m(t) have almost the same shape in the inertial range if
roperly normalized. Here, by perturbation analysis, we try

; (5.)
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FIG. 14. Temporal evolution of the spectra of the blast case.
Lines are plotted at times in which each mode peaks, and one time

after the blast reaches to the dissipation raf@es?.(t). (b) x2i(t).

Xm(t)— <Xao

eK(7')= <XBO>

, (5.2
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Now we obtain a relation between the similar soluti®snd
K up toO(eep):

0:G{K(T)_ZS(T)}_fZSZ(T)'FEEm Tff”(tfﬁO)?j_l:
_S—f +O(6(6m7’§1ﬂ0<0’io>)2). 57

Taking account of the fact that,<e<1 and ee,<e’<e
for sufficiently largem, the balance of the first and second
terms on the right hand side of E&.7) up toO(€?) leads to

K(7)=2S(7)+ eS(7)2=2S(7). (5.9

The magnitudes of the other terms are equal to or less than
O(eenrt, 7(0B9)). We require that relations of different
orders are separately satisfied in relatiétv). In particular,

the relation of the ordeee,, leads to

(a’ﬁqoﬁéﬁ‘T:%. (5.9
This relation indicates that the induction time satisfies the
BO time scalingr);” 7= (aB0) ~1/2~ )\ ~2m5,

This relation is also proved by directly solving Ed.1).
Substituting o= (0t + do, and xm=(x2) + xm into
Eq. (4.1), we obtain the linearized equation with respect to

v_vhere the small parameter_indica_ltes the order of the rela- Sx.m and S0, by neglecting a,)2:
tive strength of the fluctuation with regard to the steady so-
lution. ThusS andK are of order 1. The normalized times
and 7' are also defined on a particular sheil as 7=(t
—tp)/ty and 7' =(t—tX)/tX . Introducing another small pa-
rametere,=(t%(o5°)) 71, and substituting the similar solu- Then the solution is
tions (5.1) and(5.2) to Eq. (4.1) with D=v=k=0, we ob-

d BO
a(éam):(ag)5Xm_2<0—m YOO - (5.10

tain the equation
ds
cemg- = €{K(7')-28(n}-€*S¥(7), (5.3

where the existence @ andK are assumed.

We request that the sums of characteristic times converge

at the same finite value as tends to infinity:

lim t7= lim t¥=t, <. (5.4)

m— oo m— o

Then limy_.em=1/(t%(oB%))=0 because(otO)~\3M5
and A>1. Condition (5.4) also means that lig, .7

=0, limy_.7%=0, and lim,_,..7%,"“=0. We focus on the

period|7|<1, where

X—0 X—0 2
m Tm . BO
=7+ +0 =71+ ent Nom)
tm th
+O((6mT§H”<Uﬁo>)z), (5.5

because; =t} + 7% 7. Then we can evaluaté(r') as

K(r'>=K(r>+emfﬁ‘%oﬁoﬂ—f+0((emrzr”<«rﬁo>>2).
(5.6

t ’
Sop(t)= agf e Aot gy (t)dt’. (5.1

Thus the characteristic time fa¥o, is (o2°) . If we re-
gard this characteristic time as the induction tim{g’” , then

it is shown that the induction time obeys the BO time scal-
ng.

We can verify that the results obtained by numerical
simulations satisfy these conclusions. Figuregbjlland
11(d) show that conditiort5.8) is satisfied: the peak df,, is
twice as large as that &,,. Figure 10 shows that the BO
time scaling holds for 7Y "7. It is also shown that
(089 7X~7 is almost constant and about 0.5, which assures
that the relation of ordeee,, on the right hand side of Eq.
(5.7) holds.

In the same way as the derivation of the relatibry), we
obtain the following equation from E@4.2) for the inertial
range:

dK
E.
(5.12

In this case, the balance relations of ordeand € hold
identically. Thus the condition for the existence of the simi-

lar solutionSis (oBO) (379 _,+ 7% _,+ %) =\"%5 In fact,

dK 1
_ 4/5/ _BO
€€m dT—eem)\ (o) ET%_l'f‘T)r%_l‘f' ™
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Shell Number m similarity for the initial stage. On the other hand, the period

>0 corresponds to>t,, for sufficiently largem when an
FIG. 15. Peak spectra for different magnitudes of initial distur-infinite number of modes has been excited without dissipa-
bance:sy,=10%, 10°, 2x10°, 5x10°, and 10. (a) Peak spectra tjve effect. This period is not realistic, because we could not
for \#"o,. (b) Peak spectra fok ™"y, . continue simulation aftet... In real simulations, solutions
exist even aftet., because of dissipation.
the numerically evaluated value oh*Xo°)(37h-; The condition|7|<1 can be relaxed als|<1, because
+7X_,+7X%) is independent ofn and about 1.0. This con- the similarity of SandK holds even fof7[<1, as seen in
dition is classified into the following three conditiong)  Fi9- 15. This suggests that even in an initial stage, the effect
Tan~<aﬁ° -1 and T%~<Uao>—1’ (b) Té~<0510>—1 and 7¢, _of trgns,lent variations of large scales on t_he modes in the
<X, and(c) T;g““(O'E,‘o)_l and 7 <77 . Figure 10 shows inertial range bgcomes weak as the_ co_nS|dere_d scale goes
o - m . deeply into the inertial range. It is quite interesting that the
that 7, is smaller thanr}, and the ratio of; 77,_, to 7% is S . _
. . r similarity is sustained fot>t,,, though we cannot explain
about 0.2, which also means thef}, is not so important for why the similarity holds even after the dissipation becomes

the exis'Fence of the similar solutions. i ) effective. We have not been able to explain the similarity
Relation(5.8), K(7)=23(r), can be confirmed by Figs. 7 observed in the blast case.

and 8 for DNS'’s and by Fig. 11 for our shell model. For
DNS'’s, three pairs of the fluctuatiols, andAs,, Bys and
Bys, andByg andByg are chosen to confirm relatiais.8). VI. CONCLUDING REMARKS
High correlations are due to the similarity of the functions | this paper, we investigated the possibility of the exis-
Xm(t) andX(t). Moreover, the shape of the pag, and  tence of elementary processes constituting entropy cascade
As, is different from that of the pairBys andBys andBxs,  in free convection turbulence. We believe that entropy cas-
andBye. Thus this is consistent with the result of the pertur-cade is essentially similar to energy cascade: the cascades
bation analysis tha§;, andK,, must be almost similar, but possess common essentials.
their shapes are not determined uniquely. The similar shapes |n the energy cascade picture, an eddy, i.e., a blob of
of S, andK,, can be dependent differently on initial condi- energy, is successively broken into smaller ones within a so
tions. In fact, other similar solutiory/, andK | derived from  called turnover time. Although the picture is based on the
another initial condition are shown in Fig. 16. The similar statistics and scaling, the process described is quite dynami-
solutionsS’ andK’ are different in shape from those in Fig. cal. Thus it is suggested that in fully developed turbulence,
11. Therefore, we conclude that our shell model can welkenergy is transferred to small scales by a number of elemen-
explain the results of DNS's. tary transfer processes, each of which corresponds to a se-
In this analysis, we assunje|<1 or t~0. Although a quence of breakdowns of a mother eddy into daughters for
little bit severe, this condition can be interpreted as follows.generations. During these processes, many generations cor-
The period7~—1 corresponds to the initial stage, i.¢., relate to each other even under the restriction of the localness
~0. In this stage, the modes excited dominantly are not irof interactions. In fact, we observed characteristic entropy
the inertial range, as shown in Fig. 11. Since these modesansfer processes in which correlating highly strong fluctua-
indirectly affect the inertial range, the mod8g or K,,, be-  tions of the entropy ofl vorticity X, are transferred through
longing to the inertial range do not necessarily satisfy thehe inertial range. Thus these characteristic transfer processes
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seemed to be candidates for the elementary process of cabe traditional cascade processes as the steady solution. This
cade. Each of these processes may correspond to the mulsitiggests that the dynamics of coherent structures is affected
generation picture of cascade introduced in Sec. |, becauseliy the background. Although we do not clearly understand
has two different characteristic times: transfer time and staythe characteristics of coherent structures and the relation to
ing time. The former obeys the BO time scaling. On theintermittency, this work suggests that the temporal evolution
other hand, the latter is almost constant independent of scaff coherent structures is a manifestation of intermittency.
although not so clearly defined in DNS'’s. The long-range W€ are interested in the meaning of the turnover time
correlation through many scales observed in characteristifom @ dynamical perspective. We have succeeded in defin-

transfer processes is a little bit curious, because in the trad|n9 the plausible characteristic time in terms of the correla-

tional cascade picture there is only one characteristic timet,Ion time. This pharac_tensﬂc time, however, is not the turn-
ver time mentioned in the traditional cascade picture. This

and then it is believed that the correlation between scalef

decreases rapidly against the difference between them. How{99€sts that the traditional cascade is constituted not by

ever, by demanding only that the staying time is scaled thauccessive but by random breakdown of eddies. In this sense,

same way as the transfer time, the correlation among eddi ge turnover time should be regarded as not the transfer time

(or T vorticeg of different scales does not decrease. Som ut the staying time.

randomness should be required for each of the breakdown

processes of eddies. Thus the characteristic time seems to APPENDIX A: 2D ORTHONORMAL WAVELET
make sense only statistically in the traditional cascade pic-

ture A one-dimensional orthonormal wavelet base, which is

allﬁbeled by discretized parametgrand m corresponding to

We can observe two separable regions in a snapshot of osition and scale, is constructed by discrete scale transfor-
entropy field(see Fig. 1 a coherent part and a relatively posI ” ] y
mation and translation as follows:

random part. The latter probably corresponds to the tradi-
tional cascade picture. In this paper, to examine characteris-
tic times we have introduced two quantities integrated over a

shell, i.e., X, and X,. Since the random part may be h . ial functi lled th Vi let
smoothed out in this integration, the substantial variations of" erevo 'a a special function cafled the analyzing wavelet.
The set{ ] |m,j € Z} spans a one-dimensional complete or-

Xm and X, represent a temporal evolution of the coherent . ;
part. It should be noted that the variation itself is relativelythonormal system. These wavelet bases are localized in both

small compared with the temporal average which obevs th@hysical space and Fourier space, although the localness of
P P d 4 them depends on their scales. The rough stabevelength

BO scaling, and is contributed mainly by the random patrt. e .
We infer that the characteristic transfer process mentione@"d Position of a wavelet base characterized by parameters

above is related to the coherent part, i.e., coherent structuré§h1) are~2"" and~2"j, respectively. We adopt Mey-
observed in a snapshot. Therefore, we conclude that the chfr's wavelet, which is infinitely differentiable, and its Fourier

acteristic transfer process is not an elementary process ggnsform has compact support in Fourier space. The con-
cascade but a manifestation of intermittency. struction of Meyer's wavelet was introduced in REZ3].

It is not natural that the transfer time of the characteristic 10 construct wavelet basis in two dimensions, we need
transfer process obeys the BO time scaling, because each @fother scaling function, the low-pass filigp(x), in addi-
the characteristic transfer processes is a dynamical procedion to the analyzing wavelet. The Fourier spectrumbgfx)
The key point of this question is the existence of the randontS located arouné=0. Using these two scaling functions, a
part, i.e., the background of the coherent part which can b@D wavelet base is composed of the three components
approximated by the temporal averag¥s,) and(2,). The

Y(x) =222 — ) (M j e 2), (A1)

1 _
scaling of this transfer time originates from the scaling of the YR =PR0 1Y), (A2)
background field.
We have confirmed this fact in terms of the shell model. It WE6GY) = 00 PH(Y), (A3)
has been shown that small fluctuations of a large scale added
to the steady solution which includes the BO scaling in its TEIXY) =) B(Y), (A4)

inertial range are transferred, satisfying the similarity. This
similarity, proved by perturbation analysis, requires naturallyvherej=(j1,j2) indicates the position of a wavelet base in
that the transfer time should obey the BO time scaling. Thehe form ~2~™ and #"(x) is defined the same ag"(x),

success of the perturbation analysis indicates that the chafith . (x) and notéy(x). In the 2D case the sdtl(@|j
acteristic transfer process is a kind of linear process aroung(jljz).m i1j2e7:qe{1,2,3} is a complete orthg#]or-

the BO scaling. In this sense, the characteristic transfer prgs o, system. Any scalar fiel(x,y) is decomposed as
cess is never an elementary process of cascade. ' ’

Our shell model is based on the entropy cascade picture 3
where theT vorticity of a scale is stretched into smaller ones fx,y)=2, > FOQw@y y) (A5)
by a strain of the same scale induced by the buoyancy. In this myog=1 ™

picture, the dynamical evolution of some coherent structures
of the T vorticity is described, and any randomness is notwhere
included explicitly. If the traditional cascade only sustains
the background fluctuation obeying the BO scaling statisti-

Fla) = (a)
cally, our shell model includes only the average produced by fm,i_f i) Txy)dV. (AG)
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For a 2D vector field, we decompose #sndy components Bo(2M*574 .+ 74)+ Bo(A oY

27 N1

separately. . s
X(BN¥5+By) 7~k 2o, (B9)
APPENDIX B: APPLICATION OF THE PERTURBATION 5 s s e T .
ANALYSIS TO OTHER SHELL MODELS (A7 T AN TPT) (AN AN ) (71 + 7))
We can formally apply the perturbation analysis intro- ~kn?®. (B10)

duced in Sec. V to the original shell model for FC turbulence . i )
and a class of shell models for 3D NS turbulence. It should! "€ condition(B8) is the same as relatiof8.4) for our
be noted that these shell models are chaotic systems unlik80de!- ConditiongB9) and(B10) mean some linear combi-

H T T— —2/5
our model. Thus the following results merely indicate thathations ofry,, 7, and ;™" should be scaled as k™.
these models possess the same similarity as ours. Thus characteristic times should satisfy the BO scaling even
The original shell model for FC turbulen¢&8,19 is in this model.

A class of shell models for 3D NS turbulence also pos-
dT, sesses the same property. Here we use the following shell
gt~ Pakn(Um-1Tm-1= Mg T 1) + AKe(Un Tim-1 model proposed by Ohkitani and Yamald]:

2 d
~ MU 1 Timea) = €Ky T 104, (B1) at K2 U= iKm(@Um: 1Ums 2+ DA Uy iU 1
du
d_tm:Blkm(uﬁkl_)\umuerl)"'szm(umumfl_)\uszrl) *+CN U 1Up—2)” +10ma, (B11)

a+br+cA?=0, (B12

1
— K2 Ut @9 Tn— (Smat Smat Omat Sma) 5T,
m

wherea, b, andc are parameters which determine the prop-
erties of conserved quantities, one of which is the kinetic
(B2)  energy. The steady solution of Eq&11) and (B12) in the

) ) inviscid case is
where u,, and T, are representations of the velocity and

temperature. The steady solution of E@1) and(B2) in the U= Fk,“® (F=cons}. (B13)
inviscid case;T,, andu,,, are ] ) ) o ]
We define the nondimensional similar solutidras follows:
Tm=Ck-5, B3 —
" " ( ) um(t) —Un
_ eU(p)=———. (B14)
upn=Dk %5, (B4) U

where C and D are constants which satisfy the following The sma_ll parametet is also introducgd formally qnder the
relation: assumption that the order of the ratio of fluctuations to the

steady solution is small. Thug is of order 1. The normal-
0=D2\ Y (A*—1)(B;A%*+B,oA ")+ agC. (B5) ized time w is defined on a particular sheth as u=r,,
=(t—t)/t, wheret,, is the time at which the right hand
We define nondimensional similar functions of velocity andside of Eq.(B14) peaks, respectively. Then we obtain the

temperaturdJ andW as follows: following leading order equation fdy:
Upn(t) = Upy d—U=iF2* k23(—aN Lz, +cNiry) - (B15)

eU(n)=———, (B6) du m m ™ du

m

o where 7,=%(7n_1+ T+ Tm.q1) is independent of shell
o T =T numberm if

eW(n')=———. (B7)

Tm

—aN " Irgt o T~k 2. (B16)
The small parameter is introduced formally under the as-
sumption that the order of the ratio of fluctuations to the
steady solution is small. Thug andW are of order 1. The
normalized timesy and ' are also defined on a particular
shell m as p=r7u=(t—th)/ts and »'=7=({t—t)/t},
wherety andt; are the times at which the right hand sidesto exist similar solutionU. ThoughU is complex, there is

Thus the characteristic time scale averaged with adjacent
three terms must satisfy Kolmogorov’s time scaling

k23 (B17)

of Egs.(B6) and(B7) peak, respectively. another constraint that nonzetbexist. That is,
Then similar solutiondJ and W exist if the following o . .
conditions hold: [Um|2(cN 71 —aN 17 >1, (B18)

2U(7n)—W(7)=0, (B8)  which is derived from Eq(B15).
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