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Dynamical aspect of entropy transfer in free convection turbulence
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From a dynamical perspective, entropy transfer processes are investigated in two-dimensional free convec-
tion turbulence in comparison with an entropy cascade picture based on the coupled dynamics of theT vorticity
x[(]yT,2]xT) and the velocity gradient tensor. Typical entropy transfer processes are observed in direct
numerical simulations. For these processes, two characteristic times, the transfer time and the staying time are
determined: the former time obeys a Bolgiano-Obukhov~BO! time scaling corresponding to the eddy turnover
time in energy cascade. It is suggested that this typical transfer process is not an elementary process of cascade
but a dynamical manifestation of intermittency. To examine the meaning of the characteristic times of the
typical entropy transfer process, a shell model is constructed based on the entropy cascade picture. By this
model, it is shown numerically that typical entropy transfer processes are regarded as the fluctuations satisfying
a dynamical similarity. This similarity proved by perturbation analysis requires naturally that the transfer time
should obey the BO time scaling.

PACS number~s!: 47.27.Ak, 47.27.Gs, 47.27.Eq, 47.27.Te
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I. INTRODUCTION

Cascade is a well-known idea of turbulence. Though t
idea is based on statistics and scaling, cascade is expla
schematically as the successive breakdown of a mother e
into daughter eddies within a so-called eddy turnover tim
Richardson’s picture@1#. This schematic picture of cascad
contains a kind of dynamics, i.e., the existence of an elem
tary process of cascade is implicitly assumed. The casc
process is not spatially homogeneous even in a statis
sense because of intermittency, although the characteri
of the intermittency have not yet been clarified. The mo
proposed by She and Le´vêque@2#, which is believed to give
an excellent explanation of anomalous scaling due to in
mittency, is based on the existence of coherent structure
singular structures. In direct numerical simulations~DNS’s!
of the three-dimensional~3D! Navier-Stokes~NS! equations,
coherent structures such as tubelike vortices are obse
that play an important role especially when cascade p
cesses are examined dynamically. However, it is not c
whether these coherent structures are directly related to
eddies or vortices mentioned in Richardson’s picture, or
intermittency models. We believe research into the casc
process from the dynamical aspect should be helpful to
derstand fully developed turbulence. In this paper, we try
understand the meaning of the turnover time in the casc
process as a preliminary work.

In the 3D NS system, the characteristic time based on
Kolmogorov 1941 theory~K41! @3# has been considered a
the ‘‘eddy turnover time’’ in the context of Richardson
energy cascade picture@1#, in which an eddy is distorted o
broken, exciting smaller eddies. In this picture, the char
teristic time can be interpreted in two ways. One is the d
tortion time, i.e., the time for an eddy to be distorted. T
other is the circulation time, i.e., the time of an eddy to ex
this is the staying time or lifetime. These two characteris
PRE 611063-651X/2000/61~3!/2626~14!/$15.00
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times are considered identical in the traditional cascade
ture. In this situation, we define the transfer time as the ti
in which an appreciable part of the kinetic energy of an ed
is transferred to smaller eddies because only t
generations—mother and daughter—are considered. Da
ter eddies succeed to all the energy possessed by the m
before her grandchildren are born. Furthermore the localn
of interactions among different scales is taken strictly in
account.

We can consider another situation where many gen
tions coexist but energy exchange is still limited among
mother and her daughters, i.e. the localness of the en
transfer still holds. Then in general the active period of
eddy is shorter than her lifetime. In this situation, the trans
time may be defined as the time taken by alternation of g
erations because this definition is a natural extension of
above case. Thus the transfer time is shorter than the sta
time. If a blob of energy possessed by a large eddy start
transfer to small eddies, we will observe a successive e
tation of new generations of smaller eddies in the iner
range. This situation is a little bit curious, since relative
strong correlation among many generations is maintai
during the transfer process even under the restriction of
localness of interactions. However, there is no reason to
regard it. In fact, we will report observations which seem
correspond to this situation. Of course, it is still an op
question whether elementary processes constituting cas
exist in the dynamical sense.

In this paper we deal with 2D free convection~FC! tur-
bulence instead of 3D NS turbulence for simplicity. FC is
model of the central region of hard turbulence~HT! @4–7#
which is proposed to examine the power spectrum of te
perature fluctuations,P(v);v21.4. This power spectrum is
explained by Bolgiano-Obukhov~BO! scaling@8,9# based on
the entropy (T2/2) cascade@10–12#. The governing equa-
2626 ©2000 The American Physical Society
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tions of the FC system are based on the Boussinesq app
mations

Du

Dt
52“p1agTey1nDu, ~1.1!

DT

Dt
5kDT, ~1.2!

“•u50, ~1.3!

where“[(]/]x,]/]y), D[“

2, and D/Dt[]/]t1(u•“),
and n, k, a, and g are the kinematic viscosity, the he
diffusivity, the volume expansion coefficient, and the gra
tational acceleration, respectively. The buoyancy acts al
the y axis, andey is the unit vector of this direction. This
model assumes a neutrally stable stratification and hom
neity which is realized in the central region of hard turb
lence@11#.

The FC system has conserved quantities, entropyS
[* uTu2/2dV and total energyE[* uuu2/21(ag)yTdV, in
the inviscid case. It should be noted that both 2D and 3D
systems have the same conserved quantities, unlike NS
tems. In the inertial range, the BO spectra for entropy a
kinetic energyS(k) andE(k) are obtained based on entrop
cascade:

S~k!;eT
4/5~ag!22/5k27/5, ~1.4!

E~k!;eT
2/5~ag!4/5k211/5, ~1.5!

whereeT is the average dissipation rate of the entropy.
For both 2D FC and 3D NS, phenomena related to

transfer time~the eddy turnover time! were observed. In the
2D FC system, the transfer time was estimated in terms
the correlation time using orthogonal wavelet@13#. The
transfer time obtained is well explained by the the charac
istic time due to BO scaling:

t l;eT
21/5~ag!22/5l 2/5. ~1.6!

In a 3D NS system with high symmetry, large fluctuations
the cumulative transfer over a shell in Fourier space are
served to be activated successively in scales due to the c
acteristic timet l; l 2/3, which is the eddy turnover time base
on K41 @14#.

We expect that FC turbulence has the nature of a cas
similar to that of 3D NS turbulence. Pumir and Sigg
showed that the 2D inviscid Boussinesq approximation eq
tion corresponds to the local approximation of the Eu
equation for 3D axisymmetric swirl flow to examine the e
istence of a finite time singularity@15#. It should be noted
that the existence of the singularity is still an open quest
@16,17#, as is the relation between the singularity and
cascade.

In experiments and DNS’s in 3D NS turbulence, high
vortical regions such as a vortex tube or sheet are obse
and assumed structures. Their dynamics, such as stretc
and tilting is believed to play an important role in ener
cascade. In the 2D FC system, however, there is no pic
based on structures for the entropy cascade because s
tures have not yet been defined. Nonetheless, the equ
xi-
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for x[(]yT,2]xT) ~calledT vorticity hereafter! is similar to
that for vorticity in the 3D NS case like divorticity in the 2D
NS system. By this equation, we will dig into the entrop
cascade mechanism based on the dynamics of the struc
of the T vorticity.

By a shell model for FC turbulence, entropy cascade
been also examined@18,19#. Brandenburg concluded tha
backward energy transfer is crucial for reproducing the B
scaling in this shell model@18#. The universality of the BO
spectra and the intermittency of the transfer process w
also investigated@19#. Another shell model is proposed b
the authors to explain the behavior of the characteristic tim
of the entropy transfer observed in DNS’s of 2D FC turb
lence. This shell model is constructed based on the evolu
equations ofT vorticity and velocity gradient tensor@cf. Eqs.
~2.1! and~2.2!#. This model is not a chaotic system, and h
a stable steady solution containing the BO spectra in its
ertial range.

In this paper, we examine the entropy cascade by b
DNS’s and the shell model. In Sec. II, we propose an entro
cascade picture based on the coupled dynamics of theT vor-
ticity and velocity gradient. We compare this picture wi
DNS’s of the 2D FC system in Sec. III. In Sec. IV, w
review our shell model and then show the results of a sim
lation. Section V is devoted to examining the self-simil
nature of time evolution in the shell model by perturbati
theory. In Sec. VI, we discuss the entropy cascade base
the two types of the entropy transfer observed in our sh
model.

II. AN ENTROPY CASCADE PICTURE

The DNS of the 2D FC equations@Eqs. ~1.1! and ~1.2!#
shows that the BO scaling can be realized: the entropy
cade can exist. If the cascade is governed by a unive
mechanism and in this sense the entropy cascade is simil
the energy cascade, there may be physical quantities,
vorticity in the NS system, by which the entropy casca
mechanism will be understood more easily and deeply fr
the dynamical aspect. Then we focus on the similarity
tween the vorticity equation in the 3D NS system and
equation forT vorticity in the 2D FC system.

To study the FC system in terms of theT vorticity and
velocity gradient tensor, we rewrite Eqs.~1.1! and~1.2! with
x ands[¹ t:u as follows:

Ds

Dt
5agRS p

2 D :~x:ey
t !2s:s2“:“ tp1nDs, ~2.1!

Dx

Dt
5x•“u1kDx~5s:x1kDx!, ~2.2!

wheres is the velocity gradient tensor (@s# i j 5] iuj ),t indi-
cates a transpose, andR(u) is the rotation matrix through
angleu. The symbol : denotes the tensor product. Equat
~2.2! shows thatx is expected to play the same role as vo
ticity in the 3D NS system. The divorticity in the 2D NS
system is also governed by Eq.~2.2!, but divorticity is di-
rectly linked to velocity unlike in the 2D FC case. This di
ference in the degree of freedom between the 2D NS and
FC systems seems to be crucial for the cascade.
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We should illustrate the fact that it is inevitable to expla
our entropy cascade picture. In the 2D FC system, poten
energy is always converted into kinetic energy via the bu
ancy effect in a statistical sense. Furthermore kinetic ene
converted is inversely transferred to large scales. Thus
buoyancy term dominates the nonlinear term on the rig
hand side of Eq.~2.1!. If a scale is given, the induction tim
of the velocity gradient tensor due to theT vorticity is longer
than the excitation time of theT vorticity of smaller scale by
the terms:x. This fact is shown in Sec. III.

We can easily draw a picture of the entropy cascade
accordance with the form of Eqs.~2.1! and ~2.2!. Suppose
there is aT vorticity fluctuation of a certain size. Then
velocity gradient fluctuation of about the same size is exc
due to the linear term in Eq.~2.1!, i.e., the buoyancy. While
the velocity gradient is induced, anotherT vorticity fluctua-
tion of a smaller size is excited by the nonlinear interact
due tos:x. The size of the excited fluctuation of theT vor-
ticity is about half. In this picture, the interactions are clos
locally in scale and the entropy is transferred to sma
scales scale by scale, like the successive breakdown o
dies shown in Richardson’s cascade picture. Therefore
expect that a model based on the equations of theT vorticity
and velocity gradient is suitable for understanding the
tropy cascade. Moreover, we believe that the explanatio
the cascade process by such an entropy cascade picture
conversely be helpful in understanding energy cascade.

Here, we do not refer to a nonlinear term2s:s, because
the buoyancy terms dominate the nonlinear term. Advec
terms for eachx ands are neglected by regarding that the
cause mainly a local sweeping effect. We also neglec
pressure in this picture for simplicity, although the nonloc
effect of pressure might be important. The results of DNS
however, show that pressure is not so effective in local tra
fer of entropy. These results will be reported elsewhere.

III. CHARACTERISTIC TIMES IN 2D FC

In this section, we analyze the entropy transfer proces
FC turbulence from the perspective of the dynamics of thT
vorticity x and velocity gradient tensors defined in Sec. I.
In particular, we focus on characteristic times related to
entropy transfer process. To describe temporal evolution
the T vorticity and velocity gradient tensor in scales, w
introduce the scalar representations of these quantitie
simply as possible.

A. Representations of theT vorticity
and velocity gradient tensor

We introduce the representations of theT vorticity and
velocity gradient tensor of a scale in terms of a 2D wave
~cf. Appendix A for a 2D wavelet transform!. However, we
do not examine the details of the spatial distributions in t
paper. The representations of theT vorticity and velocity
gradient tensor of a scalel m;22m are referred to asXm and
Sm , respectively. In Sec. IV, we construct a shell model
scalar variablessm andxm corresponding toSm andXm .

First of all, we define the modal wavelet veloci
um,j(x,y) and the modal wavelet temperatureQm,j(x,y) in
physical space as
al
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um,j~x,y!5@um,j~x,y!,vm,j~x,y!#

[S (
q51

3

ûm,j
(q)Cm,j

(q)~x,y!,(
q51

3

v̂m,j
(q)Cm,j

(q)~x,y!D ,

~3.1!

Qm,j~x,y![ (
q51

3

Q̂m,j
(q)Cm,j

(q)~x,y!, ~3.2!

whereûm,j
(q) , v̂m,j

(q), andQ̂m,j
(q) are wavelet coefficients ofu, v,

and T, respectively. Then the local velocity of a scal
um(x,y)[(um ,vm), and the local temperature of the sca
Qm(x,y), are defined as

um~x,y!5~um ,vm![(
j

um,j , ~3.3!

Qm~x,y![(
j

Qm,j . ~3.4!

Next we defineSm by the spatial average of the large
eigenvalue of the symmetric part of“ t:um , because the
strain is essential for the dynamics of theT vorticity. The
definition is

Sm[
1

L2E E s1~x,y!dxdy, ~3.5!

whereL is the period length of the system and

s6~x,y!5
1

2
$~]xum1]yvm!

6A~]xum2]yvm!21~]xvm1]yum!2%.

~3.6!

It should be noted thatSm is not affected by the term
(]xum1]yvm) because this term vanishes when integra
over the space. However, the term (]xum1]yvm)5“•um
itself does not always vanish since an orthonormal wavele
used to constructum . In fact, in our definitions in terms of an
orthonormal wavelet, neither the modal wavelet velocityum,j
nor the local velocity of scalel m , um , is any longer incom-
pressible, while the incompressibility becomes less import
for Sm . If the spatial distribution of the strain field is ana
lyzed, another definition will be more useful. One possibil
is sm(x,y) defined as@s1(x,y)2s2(x,y)#/2. If Sm were de-
fined by the summation ofsm over space, it would be equa
to definition ~3.5!.

In our cascade picture, theT vorticity of a scalel m is
related to the entropy of the same scale. Therefore we de
Xm as a rough estimation of the spatial average of the a
plitude of (]yQm ,2]xQm), although we can also use th
wavelet transform ofx itself for Xm . The concrete definition
of Xm is

Xm[ l m
21Tm , ~3.7!
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Tm[
1

L2E E uQm~x,y!udxdy. ~3.8!

B. Results of DNS

Direct numerical simulation is carried out with Eqs.~1.1!,
~1.2!, and ~1.3! using the fourth-order Runge-Kutta metho
in integrating the system, and the pseudospectral method
doubly periodical box,@0,2p#3@0,2p#. The number of
modesN2 is 2562. Aliasing terms are removed in terms o
the 1/2-shifted grids: thus the effective modes are (8/9)N2.
Hyperviscosity termsnHD8u and kHD8T are employed in-
stead of the normal viscosity terms in Eqs.~1.1! and~1.2! to
obtain the inertial range clearly. Without loss of general
we can setag51. Here we also setnH5kH55310231 and
a time step Dt52.031023. The forcing term F
5cos(2x)cos(2y) is introduced into Eq.~1.2! to drive the
temperature field. The drag termD50.5@12u(uk
23u)#D21u, whereu(x) is Heviside’s step function, is als
introduced to Eq.~1.1! to keep the system statistically st
tionary. It should be noted that a field constituted by 252

Fourier modes can be represented by a set of wavelet mo
$(m,j)u j5( j x , j y);0<m<8,0< j x , j y<2m21%.

As a preliminary step, we investigate the spatial distrib
tion of entropy briefly. In Fig. 1, we show a snapshot
entropy field at an active timet59.2 when entropy transfe
to small scales seems to be enhanced appreciably. In
right of the figure, we can see a strong eddylike struct
sprouting linelike structures from it. Although we also o
serve a corresponding vortex in the vorticity field~not shown
in this paper!, these vortices are localized even in scale a
are not robust, unlike those in 2D NS turbulence. During
active period, eddylike structures become obvious a
stretch linelike structures out. It was shown that entro
transfer is enhanced around the region where the line
structures stretched out@20#.

In Fig. 2, we show the normalized histogram for a spa
distribution of wavelet modal entropy,(q51

3 (Q̂m,j
(q))2/2, for

m56. In orthonormal wavelet analysis, the fluctuation d
to a phase intrinsic to the wavelet base blurs the obse
quantities. Here we eliminate the phase by the method

FIG. 1. A snapshot of the entropy field. Contour lines are dra
at mS , mS1VS

1/2, mS12VS
1/2, and mS13VS

1/2, where mS is the
mean andVS is the variance of the entropy. Regions where t
entropy exceedsmS13VS

1/2 are shaded.
a

es,
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posed in Ref.@21#. The shaded region shows the histogra
averaged over 60 snapshots. Squares and black circles
those at the most active and the most inactive times am
the 60 samples, respectively. The forms of three histogra
are similar. This suggests that activated regions which m
correspond to the structures mentioned above are small,
that the rest part is not affected significantly by the act
regions. Furthermore, we deduce that the rest part or
background of the structures support most of entropy tran
on average. In this sense, the structures or the active reg
seem to contribute to intermittency. In this paper, we foc
on the characteristic times related to the entropy transfer
cess, and so we leave the details of the spatial distribution
future works. In the following, we only deal with variable
integrated over a shell.

Now we examine the dynamics due to interactions of
T vorticity and velocity gradient by measuring correlatio
times betweenXm and Sm . First of all, we compare the
magnitudes of the fluctuations ofXm and Sm to their mean
values to see the relative significance of the fluctuations
Fig. 3, the average, the standard deviation, and the rati
the average to the standard deviation forXm and Sm are
plotted. If Sm andXm obey BO scaling, the scaling relation
in the inertial range are

^Sm&; l m
22/5, ~3.9!

n

FIG. 2. Normalized histograms of the wavelet entropy with
the scale;22m, where m56. The histogram averaged over 6
snapshots is shown shaded. Black circle: most active. Open sq
most inactive.

FIG. 3. The average~open circle!, the standard deviation~open
triangle!, and the ratios of the average to the standard devia
~closed square!: ~a! Xm , ~b! Sm .
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^Xm&; l m
24/5, ~3.10!

where^ & denotes the temporal average. In the range 2<m
<6, both scalings~3.9! and ~3.10! are satisfied. The ratio
are less than 0.1 for bothXm andSm . Thus the magnitudes
of the fluctuations around their mean values are small c
pared to the averages.

We define the characteristic time of the entropy trans
process as the time at which the cross-correlation coeffic
peaks in the same way as that in Ref.@13#. This definition of
the characteristic time corresponds to the transfer time,
fined in Sec. I as the time required for alternation of gene
tions. Here the cross-correlation coefficient between sign
A(t) andB(t) is defined as

F~A,B!~t![
„^A~ t !2^A&&…„^B~ t1t!2^B&&…

A„^A2~ t !&2^A&2
…„^B2~ t !&2^B&2

…

.

~3.11!

Figure 4 shows the three correlation functio
F(Xm ,Xm11)(t), F(Sm ,Sm11)(t), and F(Xm ,Sm)(t).
The correlation functionF(Xm ,Xm11)(t) shows thatXm and
Xm11 correlate well: the function attains a maximum val
larger than 0.8 form>3. The sign of the time at which
F(Xm ,Xm11)(t) peaks is positive form>2. ThusXm or,
equivalently, the entropy is transferred to smaller scales
the inertial range.

The correlation functionF(Sm ,Sm11)(t) also attains a
maximum value larger than 0.8 form>4. The sign of the

FIG. 4. Cross-correlation functions. Their values att50 in-
crease withm, and the top ism56. ~a! F(Xm ,Xm11)(t). ~b!
F(Sm ,Sm11)(t). ~c! F(Xm ,Sm)(t).
-

r
nt

e-
-
ls

in

time at whichF(Sm ,Sm11)(t) peaks is positive form>3.
However, unlike the case ofXm , this result is not neces
sarily explained by the nonlinear interaction amongSm ,
because the buoyancy dominates the nonlinear interac
in the early stage of the excitation ofSm . The
width of F(Sm ,Sm11)(t) is about the same as that o
F(Xm ,Xm11)(t) for m>4.

In Ref. @13#, a similar analysis was applied for the cum
lative wavelet energy and entropy within a scale. The res
in Ref. @13# is thatF(Em ,Em11)(t) takes two local maxima
around t50, whereEm is the cumulative modal wavele
energy within a scalel m . It has been concluded that th
kinetic energy transfer does not take a definite direction
like the entropy transfer. BecauseF(Sm ,Sm11)(t) seems to
have a single maximum, the negative energy transfer is
detected clearly bySm . Thus the velocity gradientSm is
more convenient thanEm when we focus on the entrop
transfer. It should be noted that energy is transferred
versely on average, and this inverse transfer is crucial for
BO scaling to dominate the Kolmogorov scaling.

The maximum value of the functionF(Xm ,Sm)(t) is not
as large as that ofF(Xm ,Xm11)(t) or F(Sm ,Sm11)(t). The
maximum is at most 0.8 form56 and 7, and less than 0.
for m<5. This may be explained as follows. There seem
be at least two processes for the transfer ofSm , which is
expected by the two terms on the right-hand side of E
~2.1!: one is the induction ofXm by Sm due to the buoyancy
effect, and the other is the interaction amongSm . Because
the latter does not seem to relate directly to the former,
Xm , the cross-correlation betweenSm andXm is lower than
that betweenSm andSm11, or that betweenXm andXm11.

The characteristic times of the transfers fromXm to Xm11,
from Sm to Sm11 and from Xm to Sm are referred to as
tm

DNS(X), tm
DNS(S), andtm

DNS(X→S), respectively. Each of
them is defined as the time at which the correlation funct
attains a maximum value. In Fig. 5, the characteristic tim
tm

DNS(X), tm
DNS(S), and tm

DNS(X→S) are shown. In the
range 1<m<6, the induction timetm

DNS(X→S) is more
than two times larger thantm

DNS(X) andtm
DNS(S). As far as

a single sequence of entropy transfer through the ine
range is concerned, nonlinear interactions amongSm seem to
be less important. The fact thattm

DNS(X→S).tm
DNS(X) sug-

gests that the interaction amongSm dominates after the ex
citation of Xm11, while Xm11 is excited by the interaction
betweenSm and Xm . ThereforeSm seems to be induced

FIG. 5. Correlation times of F(Xm ,Xm11)(t),
F(Sm ,Sm11)(t), andF(Xm ,Sm)(t). The lines show the BO time
scaling.
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only by the buoyancy in an early stage.
Next we discuss the scaling relations of the characteri

times. Two broken lines representing the BO time scal
; l m

2/5, are drawn in Fig. 5 for reference. The lines agree w
tm

DNS(X) and tm
DNS(X→S) in the range 3,m,6, but

tm
DNS(S) differs from the lines. Iftm

DNS(S) obeys a power
law, the exponent is smaller than that of the BO time scal
22/5. In our simulation, the number of the modes adopte
not as large that the inertial range observed is not sufficie
wide. In Sec. IV, we show that our shell model indicates
similar tendency oftm

DNS(S) for smaller shell numbers
Therefore, it is inferred that the disagreement between
BO time scaling andtm

DNS(S) is due to the narrow inertia
range.

To examine a period when the entropy transfer proces
activated, we define a temporally local correlation tim
t(A,B,Tc) as the time at which the following correlatio
function attains a local maximum value:

Fl~A,B!~Tc ,Tw ,t![
„^A~ t !2^A& l& l…„^B~ t1t!2^B& l& l…

A„^A2~ t !& l2^A& l
2
…„^B2~ t !& l2^B& l

2
…

.

~3.12!

In this definition,^* & l denotes the local time average ov
the periodTw centered atTc , i.e., (1/Tw)*Tc2Tw/2

Tc1Tw/2* dt. Here
we chooseTw as two unit times, which is the width of th
cross-correlation functions shown in Figs. 4~a!, 4~b!, and
4~c!.

In Fig. 6,t(Xm ,Xm11 ,Tc) andt(Xm ,Sm ,Tc) are plotted
for m54, 5, and 6, when their correlation coefficients a
larger than 0.8. The number of points plotted in the figu
for t(Xm ,Sm ,Tc) is less than that fort(Xm ,Xm11 ,Tc). This
means that the local correlation betweenXm and Xm11 is
higher than that betweenXm andSm . The maximum value
of F(Xm ,Xm11)(t) is larger than that ofF(Xm ,Sm)(t) for
m54, 5, and 6. The number of points increases withm, since
the maximum values of F(Xm ,Xm11)(t) and
F(Xm ,Sm)(t) becomes larger asm goes large.

FIG. 6. ~a! t(Xm ,Xm11 ,Tc) as a function of Tc . ~b!
t(Sm ,Sm11 ,Tc) as a function ofTc .
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It is quite interesting that in the several period
t(Xm ,Xm11 ,Tc) approaches a constant value asm becomes
large, and this constant is the correlation timetm

DNS(X). This
suggests that there exist the well-separated entropy tran
processes. Some of them actually correspond to the ent
cascade picture, because the induction time also obeys
BO time scaling in these special periods. We call these p
cesses characteristic entropy transfer processes. On the
hand, we have deduced that multiprocesses constitute
excitation of Sm from the fact that the correlation
F(Xm ,Sm) is lower than that of F(Xm ,Xm11) and
F(Sm ,Sm11) as shown in Figs. 4~a!, 4~b!, and 4~c!. Thus
heavy scattering oft(Xm ,Sm ,Tc) seems to be caused by th
competition of these multiprocesses, one of which is
buoyancy effect and dominates others on average.

We examine the characteristic entropy transfer proces
individually. Some of them are labeledA, B, andB8 where
t(Xm ,Xm11 ,Tc).tm

DNS(X) and t(Xm ,Sm ,Tc).tm
DNS(X

→S). These periods are good samples of characteristic
namical processes corresponding to the entropy cascade
ture. We discuss qualitative features of the transfers of thT
vorticity and velocity gradient, observing the temporal ev
lution of Xm(t) and Sm(t) shown in Figs. 7 and 8. The
capital letters such asAS4, etc. marked in Figs. 7 and 8

FIG. 7. Time series ofXm(t) for m54, 5, and 6. Each function
is normalized by 3Vm

1/2, whereVm is the variance of each function

FIG. 8. Same as Fig. 8, except forSm(t).
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represent the characteristic periods mentioned above. In F
7 and 8, the symbolB8 is replaced byB because they repre
sent the same sequence of the transfer. The shapes ofXm(t)
andSm(t), belonging to periodB, are almost the same, bu
they are different from those in periodA. We focus on period
B, where the fluctuations in periodsBX5 , BX6, andBX7 cor-
relate highly to each other. The widths of the fluctuations
almost the same, and about two unit times forBX5 , BS5 ,
BX6 , BS6, andBX7. If the staying time of a scale, i.e., th
width of BXm , obeyed the BO time scaling, it would becom
shorter asm becomes larger and the ratio between the wid
of BX7 andBX5 would be (222/5)2;0.57. Thus we conclude
that the staying times forXm , or Sm do not satisfy the BO
time scaling: the staying time is different from the trans
time defined as the time between the peaks ofXm andXm11.

The characteristic entropy transfer processes we exam
above differ from the traditional cascade picture with resp
to the characteristic times. However, we have introduced
other cascade picture with multigeneration, and this pict
is rather appropriate for describing these characteristic
cesses. We will show in Sec. II that these processes are
explained by the shell model.

IV. A SHELL MODEL

The shell model proposed in Ref.@22# is governed by the
equations

dsm

dt
5agxm2sm

2 2nl2msm1FD~m!, ~4.1!

dxm

dt
5l2sm21xm212smxm112kl2mxm1FF~m!,

~4.2!

wherexm and sm are positive variables, and represent t
amplitudesx ands of scalel m[l2m (l is the ratio between
the length scales of adjacent shells!, respectively. The shel
numberm roughly corresponds to the logarithm of the wa
number;1/l m .

We have derived these model equations according to
entropy cascade picture described in Sec. II. Since the en
is transferred inversely on average in DNS’s, the nonlin
effects in a scale are weak before the modes of a sm
scale are excited sufficiently. Thus the model equation
sm is dominated by the buoyancy term. Furthermore,
replace the transfer of kinetic energy with the nonlinear sa
ration term2sm

2 , and then Eq.~4.1! is closed in a shell. This
nonlinear term also allows steady solutions satisfying the
scalings sm;l2m/5 and xm;(ag)21l4m/5 in the inertial
range. Convective terms and pressure terms are neglecte
simplicity. The drag termFD(m)52D(dm,1 /l1dm,2 /l2

1dm,3 /l3) is introduced to prevent the variables from d
verging.

The model equation forxm is essentially the same as th
of Tm in the original shell model, which causes an entro
cascade, as seen by replacingTm and um with l mxm and
l msm , respectively@18,19#. The localness of nonlinear inter
actions is assumed as in typical shell models. Thus the t
entropySmTm

2 /2 is conserved in the inviscid case. The for
ing termFF(m)5Fdm,4 is introduced to allow the system t
s.
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sustain a steady solution. It should be noted that our s
model is not a chaotic system, unlike the original sh
model.

A. BO case

We have introduced our shell model to examine each
the characteristics of entropy transfer processes observe
DNS’s which seem to be candidates for elementary proce
of entropy cascade. Through each of these transfer proce
the modesSm and Xm constituting fluctuations are highly
correlated to each other, i.e., these processes can be reg
as dynamical ones. Thus we believe that chaotic behavio
not required for our purpose. The fluctuations in these p
cesses are small when compared to the background field,
the statistically quasiequilibrium state. Then we first obta
steady solutions of our shell model obeying the BO scal
in the inertial range, and observe the temporal evolution o
fluctuation added to these steady solutions at a large sca

Simulations of our shell model are performed using t
fourth-order Runge-Kutta method. We setl52 hereafter.
The steady solutions are obtained forF5D51.03103, n
5k51.0310212, and ag51. These steady solutions, re
ferred to aŝ sm

BO& and ^xm
BO&, obey the BO scaling in the

range between 10,m,20, as seen in Fig. 9. We have calle
this range the inertial range of the steady solutions for c
venience. The initial condition was constructed by addin
small fluctuationdx51.031022 at m54 to ^xm54

BO & in sur-
plus. We refer to this situation as the BO case. The solutio
referred to assm

BO(t) and xm
BO(t), are obtained withDt

51.031026.
We examine the BO case, focusing particularly on ch

acteristic times: the transfer time and the staying time. H
we introduce the characteristic times of a modem, tm

s , tm
x ,

and tm
x→s , which are defined astm

s 5tm11
s 2tm

s , tm
x 5tm11

x

2tm
x , andtm

x→s5tm
s 2tm

x , respectively. In these definitions
tm
s and tm

x denote the times at whichsm andxm attain their
maximum values, respectively.

In Fig. 10,tm
s , tm

x , andtm
x→s are plotted as functions o

m. In the range 10,m,20, all of them obey the BO time
scaling. In the range 5<m<10, tm

x andtm
x→s satisfy the BO

time scaling, buttm
s decreases faster than the BO time sc

ing asm increases. This behavior of the characteristic tim
is reminiscent of the results of DNS shown in Fig. 5. Th
suggests that the discrepancy oftm

DNS(S) from the BO scal-
ing is due to the short inertial range.

FIG. 9. The stable solutionŝxm
BO& and ^sm

BO&. The lines show
the BO scaling.
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As shown in Fig. 11, functionssm
BO(t) andxm

BO(t) of the
modes in the inertial range coincide with the same sh
under a proper normalization: if we define the normaliz
time tm andtm8 astm[(t2tm

s )/tm
s andtm8 [(t2tm

x )/tm
x , re-

spectively, we obtain the two similar functionsSm(tm)
[@sm

BO(t)2^sm
BO&#/^sm

BO& and Km(tm8 )[@xm
BO(t)

2^xm
BO&#/^xm

BO& whereSm andKm are independent ofm. If
l m is in the inertial range, i.e.,m is large, the normalization
factor tm

x or tm
s is almost constant becausetm

x !tm
x and tm

s

!tm
s , respectively. Thus the introduction of the normaliz

timestm andtm8 virtually means the translation of the origin
This is consistent with the result of DNS’s. In Fig. 7, th
fluctuationsBX5 , BX6, andBX7 have almost the same shap
although the ratio of the scale ofBX7 to that ofBX5 is 1/4.
This similarity of Sm andKm is well explained by perturba
tion analysis in Sec. V.

These results mean that we should introduce two cha
teristic times for the entropy transfer, as mentioned in Se
the transfer time and the staying time. The transfer tim
such astm

x , is the time in which fluctuations are transferre
from a shellm to m11. The staying time of a fluctuation
which is of ordertm

x , is the time in which a fluctuation of a
scalem loses its appreciable part. In the BO case, only
transfer time obeys the BO time scaling. On the other ha
the staying time is almost the same in the inertial range.
result is contradictory to the traditional cascade picture
which there is only one characteristic time. The BO ca
rather corresponds to the multigeneration cascade pictur
troduced in Sec. I. It should be noted that we extend
meaning of the transfer time to express the transfer proce
of nonconserved quantities, such assm andxm .

In 3D NS turbulence@14#, the transfer time was examine
indirectly by observing the fluctuations of transfer functio
It is shown that the transfer time does not contradict
Kolmogorov time scaling. However, the staying time has
been examined in 3D NS turbulence. Therefore, we can
conclude whether the difference of these two character
times is common in 2D FC and 3D NS turbulences or not
Sec. V, it is proved analytically that the transfer time satisfi
the BO time scaling. In Appendix B, it is shown that th
original shell model for FC and shell models for NS have
same similarity as our model. Thus we suggest that the
system has two different characteristic times when the tra
fer of fluctuations around the steady solution or the statist
quasiequilibrium state, i.e., the Kolmogorov spectrum,
considered.

FIG. 10. The characteristic times ofsm andxm in the BO case.
The lines show the BO time scaling.
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B. Blast case

Next, we investigate another situation where the system
far from the quasiequilibrium state initially. That is, we tre
the response of the system in a null state to the injection
the entropy of large scale. This case is called the blast c
hereafter. The time-dependent solution describing the
sponse shows that the maximum value of each mode sati
different scaling relations from the BO scaling. We call t
spectrum of the maximum values the peak spectrum her
ter. The peak spectra for the BO case satisfy the BO sca
which is trivial due to the similarity ofSm andKm shown in
Sec. IV A.

In this case, all modes are set null except thatxm54
51.0 in the initial condition. The time stepDt is 1.0
31026, the total number of steps is 33106, n5k51.0
310212, and F5D50. These solutions obtained by th
simulation are referred to assm

bl(t) andxm
bl(t).

In the blast case, if we define the normalized timehm and
hm8 as hm[(t2tm

s )/tm
s and hm8 [(t2tm

x )/tm
x , the functions

Sm(hm)[sm
bl(t)/@sm

bl# andTm(hm8 )[xm
bl(t)/@xm

bl# are almost
the same, where@sm

bl# and @xm
bl# are the peak spectra~Fig.

12!. It should be noted that the definitions ofhm andhm8 are
different from the counterparts in the BO case.

The peak spectra and the characteristic times, define
the same way as in the BO case satisfy the different sca
relations from the BO scaling. The scalings for the blast c
are

@sm
bl#;~ag!1/2S0

1/4l (1/2)m, ~4.3!

@xm
bl#;S0

1/2lm, ~4.4!

tm
bl;~ag!21/2S0

21/4l2(1/2)m, ~4.5!

whereS0 is the total entropy injected initially. Since the tim
is normalized bytm

s or tm
x , the staying time is also scaled b

Eq. ~4.5! in this case. Hereafter we call scalings~4.3! and

FIG. 11. Temporal evolutions ofSm(tm) andTm(tm8 ) in the BO
case.Sm(tm): ~a! for m55,6, . . .,10, and~b! in the inertial range.
Tm(tm8 ): ~c! for m55,6, . . .,10, and~d! in the inertial range.
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2634 PRE 61SADAYOSHI TOH AND MAKOTO IIMA
~4.4! the blast peak spectra. The scaling relation~4.5! has
been confirmed for different values ofS0 andag. In Fig. 13,
the normalized time scalestm(ag)1/2S0

1/4 for the induction
time tm

x→s are plotted. It is scaled as; l m
1/2.

In Fig. 14, the~normal! spectra forxm andsm are shown
at several times. One spectrum obtained after the time w
the blast reaches the dissipation range is also shown. Be
the blast reaches the dissipation range, its scaling is diffe
from the BO scaling. In the case ofxm , it does not satisfy
even the scaling relation, whilesm seems to obey a powe
law but its exponent varies as time goes on. On the o
hand, the maximum values ofsm andxm obey scalings~4.3!
and ~4.4! which are drawn as bold straight lines in Fig
13~a! and 13~b!, respectively. This means that even if th
blast dominates the system, the BO spectra will be retrie
after the blast reaches the dissipation range. In fact, this
is finite and evaluated as follows: t`[(m50

` tm
bl

5(ag)21/2S0
21/4(12l21/2)21,`.

It should be noted that the staying time and the trans
time are identical in this case. In this sense, the blast cas
rather similar to the traditional cascade picture. However,
do not use the average dissipation rate of the entropy, bu
total entropy in the dimensional analysis, to derive scalin
~4.3!, ~4.4!, and~4.5! @22#. Even in the blast case, the entrop
flux averaged overt` is independent ofm. At the moment,
we can only point out that the blast case may be one ca
date for an elementary process of entropy cascade; howe
we do not claim further significance of the blast case he

The essential difference between the BO case and
blast case is the ratio of the entropy injected in the ini
condition to the entropy of the background states. Thus
suggested that when the strength of the initial fluctuation
the BO case becomes sufficiently large, the fluctuation do
nates the steady solutions and obeys the scalings for the
case. Here we examine the dependence of the BO case o
strength of the initial fluctuation, to see where and how
BO peak spectra are converted into the blast peak spectra
seen in Fig. 15, a significant transition from the BO pe

FIG. 12. Temporal evolutions ofSm
bl(tm) and Tm

bl(tm8 ) in the
blast case.Sm

bl(hm): ~a! for m55,6, . . .,10, and ~b! in inertial
range.Tm

bl(hm8 ): ~c! for m55,6, . . .,10, and~d! in inertial range.
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spectra to the blast peak spectra occurs betweendx452
3103 anddx4553103. The rough sketch of the transitio
is as follows. The transition starts with the appearance of
blast peak spectra in a small shell. After that the crosso
moves to a larger shell as the value ofdx4 increases. Finally,
the entire range is occupied by the blast peak spectra
should be noted that the transition is not so clear, and
spectra do not obey the scalings for the BO and the b
cases strictly for intermediate values ofdx4.

V. PERTURBATION ANALYSIS

In Sec. IV, numerical simulations revealed thatsm(t) and
xm(t) have almost the same shape in the inertial rang
properly normalized. Here, by perturbation analysis, we
to explain the similarity ofsm(t) andxm(t) for the BO case.
Through this analysis, characteristic times are derived c
sistently. In Appendix B, a similar analysis is applied for
class of shell models for NS, and the original shell model
free convection, to show that these shell models can be
cluded in the same class as ours.

We introduce the nondimensionalized similar solutions
sm(t) andxm(t):

eS~t![
sm~ t !2^sm

BO&

^sm
BO&

, ~5.1!

FIG. 13. Normalized peak spectra and the time scaling for s
eral values of the set (S0 ,ag): ~a! @sm

bl#(ag)21/2S0
21/4, ~b!

@xm
bl#S0

21/2, and~c! tm
bl .
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eK~t8![
xm~ t !2^xm

BO&

^xm
BO&

, ~5.2!

where the small parametere indicates the order of the rela
tive strength of the fluctuation with regard to the steady
lution. ThusS andK are of order 1. The normalized timest
and t8 are also defined on a particular shellm as t[(t
2tm

s )/tm
s andt8[(t2tm

x )/tm
x . Introducing another small pa

rameterem[(tm
s ^sm

BO&)21, and substituting the similar solu
tions ~5.1! and ~5.2! to Eq. ~4.1! with D5n5k50, we ob-
tain the equation

eem

dS

dt
5e$K~t8!22S~t!%2e2S2~t!, ~5.3!

where the existence ofS andK are assumed.
We request that the sums of characteristic times conve

at the same finite value asm tends to infinity:

lim
m→`

tm
s 5 lim

m→`

tm
x 5t`,`. ~5.4!

Then limm→`em51/(tm
s ^sm

BO&)50 because^sm
BO&;l3m/5

and l.1. Condition ~5.4! also means that limm→`tm
s

50, limm→`tm
x 50, and limm→`tm

x→s50. We focus on the
period utu!1, where

t85t1
tm

x→s

tm
s

1OS S tm
x→s

tm
s D 2D 5t1emtm

x→s^sm
BO&

1O„~emtm
x→s^sm

BO&!2
…, ~5.5!

becausetm
s 5tm

x 1tm
x→s . Then we can evaluateK(t8) as

K~t8!5K~t!1emtm
x→s^sm

BO&
dK

dt
1O„~emtm

x→s^sm
BO&!2

….

~5.6!

FIG. 14. Temporal evolution of the spectra of the blast ca
Lines are plotted at times in which each mode peaks, and one
after the blast reaches to the dissipation range.~a! sm

bl(t). ~b! xm
bl(t).
-

ge

Now we obtain a relation between the similar solutionsSand
K up to O(eem):

05e$K~t!22S~t!%2e2S2~t!1eemS tm
x→s^sm

BO&
dK

dt

2
dS

dt D1O„e~emtm
x→s^sm

BO&!2
…. ~5.7!

Taking account of the fact thatem!e!1 andeem!e2!e
for sufficiently largem, the balance of the first and secon
terms on the right hand side of Eq.~5.7! up toO(e2) leads to

K~t!52S~t!1eS~t!2.2S~t!. ~5.8!

The magnitudes of the other terms are equal to or less
O(eemtm

x→s^sm
BO&). We require that relations of differen

orders are separately satisfied in relation~5.7!. In particular,
the relation of the ordereem leads to

^sm
BO&tm

x→s5
1

2
. ~5.9!

This relation indicates that the induction time satisfies
BO time scalingtm

x→s5^sm
BO&21/2;l22m/5.

This relation is also proved by directly solving Eq.~4.1!.
Substituting sm5^sm

BO&1dsm and xm5^xm
BO&1dxm into

Eq. ~4.1!, we obtain the linearized equation with respect
dxm anddsm by neglecting (dsm)2:

d

dt
~dsm!5~ag!dxm22^sm

BO&dsm . ~5.10!

Then the solution is

dsm~ t !5agE t

e22^sm
BO&(t2t8)dxm~ t8!dt8. ~5.11!

Thus the characteristic time fordsm is ^sm
BO&21. If we re-

gard this characteristic time as the induction timetm
x→s , then

it is shown that the induction time obeys the BO time sc
ing.

We can verify that the results obtained by numeric
simulations satisfy these conclusions. Figures 11~b! and
11~d! show that condition~5.8! is satisfied: the peak ofKm is
twice as large as that ofSm . Figure 10 shows that the BO
time scaling holds for tm

x→s . It is also shown that
^sm

BO&tm
x→s is almost constant and about 0.5, which assu

that the relation of ordereem on the right hand side of Eq
~5.7! holds.

In the same way as the derivation of the relation~5.7!, we
obtain the following equation from Eq.~4.2! for the inertial
range:

eem

dK

dt
5eeml4/5^sm

BO&S 1

2
tm21

s 1tm21
x 1tm

x D dK

dt
.

~5.12!

In this case, the balance relations of ordere and e2 hold
identically. Thus the condition for the existence of the sim

lar solutionS is ^sm
BO&( 1

2 tm21
s 1tm21

x 1tm
x )5l24/5. In fact,

.
e
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the numerically evaluated value ofl4/5^sm
BO&( 1

2 tm21
s

1tm21
x 1tm

x ) is independent ofm and about 1.0. This con
dition is classified into the following three conditions:~a!
tm

x ;^sm
BO&21 and tm

s ;^sm
BO&21, ~b! tm

x ;^sm
BO&21 and tm

s

!tm
x , and ~c! tm

s ;^sm
BO&21 and tm

x !tm
s . Figure 10 shows

that tm
s is smaller thantm

x and the ratio of12 tm21
s to tm

x is
about 0.2, which also means thattm

s is not so important for
the existence of the similar solutions.

Relation~5.8!, K(t)52S(t), can be confirmed by Figs.
and 8 for DNS’s and by Fig. 11 for our shell model. F
DNS’s, three pairs of the fluctuationsAX4 andAS4 , BX5 and
BS5, andBX6 andBS6 are chosen to confirm relation~5.8!.
High correlations are due to the similarity of the functio
Xm(t) and Sm(t). Moreover, the shape of the pairAX4 and
AS4 is different from that of the pairsBX5 andBS5 andBX6,
andBS6. Thus this is consistent with the result of the pertu
bation analysis thatSm andKm must be almost similar, bu
their shapes are not determined uniquely. The similar sha
of Sm andKm can be dependent differently on initial cond
tions. In fact, other similar solutionsSm8 andKm8 derived from
another initial condition are shown in Fig. 16. The simil
solutionsS8 andK8 are different in shape from those in Fig
11. Therefore, we conclude that our shell model can w
explain the results of DNS’s.

In this analysis, we assumeutu!1 or t'0. Although a
little bit severe, this condition can be interpreted as follow
The periodt;21 corresponds to the initial stage, i.e.,t
;0. In this stage, the modes excited dominantly are no
the inertial range, as shown in Fig. 11. Since these mo
indirectly affect the inertial range, the modesSm or Km be-
longing to the inertial range do not necessarily satisfy

FIG. 15. Peak spectra for different magnitudes of initial dist
bance:dx45102, 103, 23103, 53103, and 104. ~a! Peak spectra
for l2/5msm . ~b! Peak spectra forl4/5mxm .
-
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e

similarity for the initial stage. On the other hand, the peri
t.0 corresponds tot.t` for sufficiently largem when an
infinite number of modes has been excited without dissi
tive effect. This period is not realistic, because we could
continue simulation aftert` . In real simulations, solutions
exist even aftert` because of dissipation.

The conditionutu!1 can be relaxed asutu,1, because
the similarity of S and K holds even forutu,1, as seen in
Fig. 15. This suggests that even in an initial stage, the ef
of transient variations of large scales on the modes in
inertial range becomes weak as the considered scale
deeply into the inertial range. It is quite interesting that t
similarity is sustained fort.t` , though we cannot explain
why the similarity holds even after the dissipation becom
effective. We have not been able to explain the similar
observed in the blast case.

VI. CONCLUDING REMARKS

In this paper, we investigated the possibility of the ex
tence of elementary processes constituting entropy cas
in free convection turbulence. We believe that entropy c
cade is essentially similar to energy cascade: the casc
possess common essentials.

In the energy cascade picture, an eddy, i.e., a blob
energy, is successively broken into smaller ones within a
called turnover time. Although the picture is based on
statistics and scaling, the process described is quite dyn
cal. Thus it is suggested that in fully developed turbulen
energy is transferred to small scales by a number of elem
tary transfer processes, each of which corresponds to a
quence of breakdowns of a mother eddy into daughters
generations. During these processes, many generations
relate to each other even under the restriction of the localn
of interactions. In fact, we observed characteristic entro
transfer processes in which correlating highly strong fluct
tions of the entropy orT vorticity Xm are transferred through
the inertial range. Thus these characteristic transfer proce

-

FIG. 16. Sm(tm) and Tm(tm8 ) for another initial disturbance
dxm55521.031022. ~a! Sm(tm) in the inertial range (11,m
,20). ~b! Tm(tm8 ) in the inertial range (11,m,20).
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seemed to be candidates for the elementary process of
cade. Each of these processes may correspond to the m
generation picture of cascade introduced in Sec. I, becau
has two different characteristic times: transfer time and s
ing time. The former obeys the BO time scaling. On t
other hand, the latter is almost constant independent of s
although not so clearly defined in DNS’s. The long-ran
correlation through many scales observed in character
transfer processes is a little bit curious, because in the tr
tional cascade picture there is only one characteristic ti
and then it is believed that the correlation between sc
decreases rapidly against the difference between them. H
ever, by demanding only that the staying time is scaled
same way as the transfer time, the correlation among ed
~or T vortices! of different scales does not decrease. So
randomness should be required for each of the breakd
processes of eddies. Thus the characteristic time seem
make sense only statistically in the traditional cascade
ture.

We can observe two separable regions in a snapshot o
entropy field~see Fig. 1!: a coherent part and a relative
random part. The latter probably corresponds to the tra
tional cascade picture. In this paper, to examine charact
tic times we have introduced two quantities integrated ove
shell, i.e., Xm and Sm . Since the random part may b
smoothed out in this integration, the substantial variations
Xm and Sm represent a temporal evolution of the cohere
part. It should be noted that the variation itself is relative
small compared with the temporal average which obeys
BO scaling, and is contributed mainly by the random pa
We infer that the characteristic transfer process mentio
above is related to the coherent part, i.e., coherent struct
observed in a snapshot. Therefore, we conclude that the c
acteristic transfer process is not an elementary proces
cascade but a manifestation of intermittency.

It is not natural that the transfer time of the characteris
transfer process obeys the BO time scaling, because ea
the characteristic transfer processes is a dynamical proc
The key point of this question is the existence of the rand
part, i.e., the background of the coherent part which can
approximated by the temporal averages^Xm& and^Sm&. The
scaling of this transfer time originates from the scaling of
background field.

We have confirmed this fact in terms of the shell model
has been shown that small fluctuations of a large scale ad
to the steady solution which includes the BO scaling in
inertial range are transferred, satisfying the similarity. T
similarity, proved by perturbation analysis, requires natura
that the transfer time should obey the BO time scaling. T
success of the perturbation analysis indicates that the c
acteristic transfer process is a kind of linear process aro
the BO scaling. In this sense, the characteristic transfer
cess is never an elementary process of cascade.

Our shell model is based on the entropy cascade pic
where theT vorticity of a scale is stretched into smaller on
by a strain of the same scale induced by the buoyancy. In
picture, the dynamical evolution of some coherent structu
of the T vorticity is described, and any randomness is n
included explicitly. If the traditional cascade only sustai
the background fluctuation obeying the BO scaling stati
cally, our shell model includes only the average produced
as-
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the traditional cascade processes as the steady solution.
suggests that the dynamics of coherent structures is affe
by the background. Although we do not clearly understa
the characteristics of coherent structures and the relatio
intermittency, this work suggests that the temporal evolut
of coherent structures is a manifestation of intermittency

We are interested in the meaning of the turnover ti
from a dynamical perspective. We have succeeded in de
ing the plausible characteristic time in terms of the corre
tion time. This characteristic time, however, is not the tu
over time mentioned in the traditional cascade picture. T
suggests that the traditional cascade is constituted no
successive but by random breakdown of eddies. In this se
the turnover time should be regarded as not the transfer
but the staying time.

APPENDIX A: 2D ORTHONORMAL WAVELET

A one-dimensional orthonormal wavelet base, which
labeled by discretized parametersj and m corresponding to
position and scale, is constructed by discrete scale trans
mation and translation as follows:

c j
m~x!52m/2c0~2mx2 j !~m, j PZ!, ~A1!

wherec0 is a special function called the analyzing wavel
The set$c j

mum, j PZ% spans a one-dimensional complete o
thonormal system. These wavelet bases are localized in
physical space and Fourier space, although the localnes
them depends on their scales. The rough scale~wavelength!
and position of a wavelet base characterized by parame
(m, j ) are;22m and;22mj , respectively. We adopt Mey
er’s wavelet, which is infinitely differentiable, and its Fouri
transform has compact support in Fourier space. The c
struction of Meyer’s wavelet was introduced in Ref.@23#.

To construct wavelet basis in two dimensions, we ne
another scaling function, the low-pass filterf0(x), in addi-
tion to the analyzing wavelet. The Fourier spectrum off0(x)
is located aroundk50. Using these two scaling functions,
2D wavelet base is composed of the three components

Cm,j
(1)~x,y!5c j 1

m ~x!f j 2
m ~y!, ~A2!

Cm,j
(2)~x,y!5f j 1

m ~x!c j 2
m ~y!, ~A3!

Cm,j
(3)~x,y!5f j 1

m ~x!f j 2
m ~y!, ~A4!

wherej5( j 1,j 2) indicates the position of a wavelet base
the form ;22mj and f j

m(x) is defined the same asc j
m(x),

with c0(x) and notf0(x). In the 2D case the set$Cm,j
(q)u j

5( j 1,j 2);m, j 1,j 2PZ;qP$1,2,3%% is a complete orthonor-
mal system. Any scalar fieldf (x,y) is decomposed as

f ~x,y!5(
m,j

(
q51

3

f̂ m,j
(q)Cm,j

(q)~x,y!, ~A5!

where

f̂ m,j
(q)[E Cm,j

(q)~x,y! f ~x,y!dV. ~A6!
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For a 2D vector field, we decompose itsx andy components
separately.

APPENDIX B: APPLICATION OF THE PERTURBATION
ANALYSIS TO OTHER SHELL MODELS

We can formally apply the perturbation analysis intr
duced in Sec. V to the original shell model for FC turbulen
and a class of shell models for 3D NS turbulence. It sho
be noted that these shell models are chaotic systems u
our model. Thus the following results merely indicate th
these models possess the same similarity as ours.

The original shell model for FC turbulence@18,19# is

dTm

dt
5A1km~um21Tm212lumTm11!1A2km~umTm21

2lum11Tm11!2kkm
2 Tm1 f dm,4 , ~B1!

dum

dt
5B1km~um21

2 2lumum11!1B2km~umum212lum11
2 !

2nkm
2 um1agTm2~dm,11dm,21dm,31dm,4!

1

km
2

f̄ ,

~B2!

where um and Tm are representations of the velocity an
temperature. The steady solution of Eqs.~B1! and~B2! in the
inviscid case,T̄m and ūm , are

T̄m5Ckm
21/5, ~B3!

ūm5Dkm
23/5, ~B4!

where C and D are constants which satisfy the followin
relation:

05D2l21/5~l4/521!~B1l3/51B2l21/5!1agC. ~B5!

We define nondimensional similar functions of velocity a
temperatureU andW as follows:

eU~h![
um~ t !2ūm

ūm

, ~B6!

eW~h8![
Tm~ t !2T̄m

T̄m

. ~B7!

The small parametere is introduced formally under the as
sumption that the order of the ratio of fluctuations to t
steady solution is small. ThusU andW are of order 1. The
normalized timesh andh8 are also defined on a particula
shell m as h[tm

u 5(t2tm
u )/tm

u and h8[tm
T 5(t2tm

T )/tm
T ,

wheretm
u and tm

T are the times at which the right hand sid
of Eqs.~B6! and ~B7! peak, respectively.

Then similar solutionsU and W exist if the following
conditions hold:

2U~h!2W~h!50, ~B8!
e
d
ike
t

B1~2l4/5tm21
u 1tm

u !1B2~l4/5tm21
u 12tm

u !1l21/5~l4/521!

3~B1l3/51B2!tm
T→u;km

22/5, ~B9!

~A1l4/5tm21
u 1A2l1/5tm

u !1~A1l4/51A2l1/5!~tm21
T 1tm

T !

;km
22/5. ~B10!

The condition ~B8! is the same as relation~3.4! for our
model. Conditions~B9! and~B10! mean some linear combi
nations oftm

u , tm
T , and tm

T→u should be scaled as;km
22/5.

Thus characteristic times should satisfy the BO scaling e
in this model.

A class of shell models for 3D NS turbulence also po
sesses the same property. Here we use the following s
model proposed by Ohkitani and Yamada@24#:

S d

dt
1nkm

2 Dum5 ikm~aum11um121blum11um21

1clum21um22!* 1 f dm,4 , ~B11!

a1bl1cl250, ~B12!

wherea, b, andc are parameters which determine the pro
erties of conserved quantities, one of which is the kine
energy. The steady solution of Eqs.~B11! and ~B12! in the
inviscid case is

ūm5Fkm
21/3 ~F5const!. ~B13!

We define the nondimensional similar solutionU as follows:

eU~m![
um~ t !2ūm

ūm

. ~B14!

The small parametere is also introduced formally under th
assumption that the order of the ratio of fluctuations to
steady solution is small. ThusU is of order 1. The normal-
ized time m is defined on a particular shellm as m[tm
5(t2tm)/tm where tm is the time at which the right hand
side of Eq.~B14! peaks, respectively. Then we obtain th
following leading order equation forU:

dU

dm
5 iF 2* km

2/3~2al21t̄m1cl2t̄m!
dU*

dm
, ~B15!

where t̄m[ 1
3 (tm211tm1tm11) is independent of shel

numberm if

2al21t̄m1clt̄m21;km
22/3. ~B16!

Thus the characteristic time scale averaged with adjac
three terms must satisfy Kolmogorov’s time scaling

t̄m;km
22/3 ~B17!

to exist similar solutionU. ThoughU is complex, there is
another constraint that nonzeroU exist. That is,

uūmu2~clt̄m212al21t̄m!.1, ~B18!

which is derived from Eq.~B15!.
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