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We obtained steady solutions to the two-dimensional Boussinesq approximation equations without
a mean temperature gradient. This system is referred to as free convection in this paper. Under an
external flow described by the stream functi#n= — Ay f(x), steady solutions are found. They are

kept steady by the balance between the straifr @ind the diffusion. In this sense, they are similar

to the Burgers vortex layer solution. Two examples other thag)=x are shown to have steady
solutions. We discuss the relation between these solutions and long-lived fine scale coherent
structures observed in direct numerical simulations of two-dimensional free convection
turbulence. ©2003 American Institute of Physic§DOI: 10.1063/1.1613643

I. INTRODUCTION 2-DFC are well approximated by the steady solutions to be

. . . . . considered here.
In the incompressible three-dimensional Navier—Stokes . . .
However, there is a crucial difference about coherent

(3-DNY) turbulence, it is observed that high vorticity regions structures between 2-DEC and 3-DNS: the coherent struc-

take the form of long-lived slender tube-like structures, . . .
. . tures in 2-DFC are identical to those of the local temperature
which are called coherent structureshese vortex filaments . > . .
. dissipation rate. The coherent structures in 2-DFC can relate
are well-known to be approximated locally by the Burgers : )
) . .“to the entropy cascade in a direct manner. Furthermore, re-
vortex tube, a steady solution to 3-DNS equations. In passive . . : R -
cent studies about two-dimensional convection in a periodic
scalar turbulence, scalar also forms coherent structures. . : . .
. domain by several groups revealed an interesting relation

understand the dynamics of coherent structures, their role q:r)]etween the statistical behavior of temperature and the co-

the overall turbulence dynamics and their significance on th?erent structures: the exponents of temperature structure

L . unctions calculated by DNS saturate as the order goes to
statistical properties of the turbulent&or the moment there . ~. : . .
: infinity as observed in passive scalar turbulehdeis be-
are still long ways to go for these goals.

: . . havior is regarded as a signature of coherent structures like
In this paper we consider an active scalar system that is ;
) ; . . . Sharp shocks between hot and cold regiohs.
a two-dimensional Boussinesq convection model without a .
The equations of 2-DFC are

mean temperature gradient in a doubly periodic square do-

main, which is called two-dimensional free convecti@ O T+(u-V)T=kAT, (D)
DFC). There are two remarkable similar points between v
2-DFC and 3-DNS turbulence: cascade and the appearance au+(u-V)u=— —p+agTé+ vAU, @)

of coherent structures. About the cascade of 2-DFC, it has
been shown that the temperature variance, called entropy, V.u=0 3
cascades from larger scales to smaller scales in 2-DFC when '
the turbulent state is maintained by a temperature fortfhg. Here «, pg, a, g and v are the molecular diffusivity, the
The filament-like coherent structures seen in a direct numerimean density of the fluidwe takep, to be unity for simplic-
cal simulation(DNS) of 2-DFC turbulence are shown in Fig. ity), the thermal expansion coefficient, the gravitational ac-
1. They are long-lived sharp interfaces between hot and coldeleration and the kinematic viscosity, respectively. The vec-
regions, i.e., shock fronts. The typical length and width oftor &is the unit vector in the direction opposite to the gravity.
the structures are the order of the integral scale and the ordém the DNS of 2-DFC, to keep the system statistically sta-
of Kolmogorov dissipation length scale. Furthermore, thetionary, a large-scale forcing term is added to Eg.and a
evolution equations for the key quantities of the coherentarge-scale friction term is added to E(). To deal with
structures, i.e., vorticity for 3-DNS and gradient of tempera-temperature shocks more directly, we use the following vec-
ture for 2-DFC, have the same stretching terms. tor quantity®1©
Based on this similarity, in spite of the difference of x= (0T, — 4,T) @)
space dimension between 2-DFC and 3-DNS, we expect par- yorooxea
allelism between 2-DFC and 3-DNS. The purposes of thisvhich is calledT-vorticity here.T-vorticity obeys the equa-
paper ardi) to model the coherent structures of 2-DFC with tion
a class of steady solutions of 2-DFC equations as done in the
3-DNS with the Burgers vortex solutions, afid) to check
validity of the model by comparison with the DNS data of which is quite similar to the three-dimensional vorticity
2-DFC. We present evidence that coherent structures afquation. ThusT-vorticity plays an essential role in 2-DFC

dx+(u-V)x=(x-V)u+xAy, (5
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X

FIG. 2. The coordinate system fixed on the external stagnation flow. The
direction of the gravity vectog is expressed via the angle

FIG. 1. (2) Modulus of the ¢ . dient of hot obtained b whereA is a positive constant so that we take the directions
1. odulus of the temperature gradient of a snapshot obtained by . - . v )
pseudo-spectral direct numerical simulation of 2-DFC with 2048&d %f contractlon and expansion as tN.GB.XIS aAm_dy axis, re
points in a periodic domaifi0,27]2. The brighter region has larger value. SPEctively. The angle between thea.ms gnde is also a pa-
High temperature gradient regions, which are equivalent to high local temrameter and denoted hy as shown in Fig. 2. Then the unit
pe;]aturetditssiptationfrate l;egiglns, tformtha IO'T‘E] a?d slenger structure. l\t/Ian\yfeCtor 2 in Eq. 1) is given in this coordinate a®
coherent structures form bundles together. The figure shows one quarter of . . . .

the whole computational domain. The direction of the gravitational force is (cose,sing). We use this coo_rdlnate throughout this paper.
from top to bottom. The details of the DNS are in Sec. I(B. The tem- ~ We further assume the following forms of the temperature

perature of the same snapshot. Plumes of various scales are(ge€he  and velocity fields:
vorticity of the same snapshot. It is noted that vorticity also forms slender

structures that correspond to shears caused by strong temperature differ- T(X,Y,t)= 6(X), (8)

ences at the coherent structures shown in Fg). This behavior is com-

pletely different from that of the barotropic two-dimensional turbulence. u(x,y,t)= (3, ¥(x,y),— ¥ (x,y))+Op(x))
=(—AX,Ay+v(X)). (9)

like vorticity in 3-DNS. In contrast withT -vorticity, the gov-  In terms of# andv, T-vorticity and vorticity are expressed
erning equation for vorticityn(x,y,t) in 2-DFC can be writ- gs
ten as

o+ (U-V)o=ag{VX(Te)},+ rAw. (6)

Here{-}, denotes taking the-component. Note that because o(X,Y,H)=w(X)= dl;():() .
of the buoyancy term, i.e., the first term on the r.h.s. of Eq.
(6), vorticity is not a conservative quantity even for=0. Consequently, Eqg5) and(6) are reduced to the following
For simplicity, we assume'=«, i.e., Prandtl number Pr ordinary differential equations:

x(X,y,1)=(0,— 3,0(x))=(0,xy(X)), (10

11)

=v/k=1 here. d {x dy
In the following sections, we consider steady solutions —<— —y+ny =0, (12
to Egs.(5) and (6), where the flow is decomposed into the ~ dX\A dX
external part given by a stream functigh= — Ay f(x) and a v d?0 do agsing
response to it. In Sec. II, we deal with the cd¢r)=x, i.e., N AR T N (13

a stagnation flow, and compare the obtained steady solutions
with coherent structures seen in the DNS of 2-DFC. In SecAfter integrating once, Eq12) can be re-written as
[ll, extended stagnation flow§(x)+#x are considered. We d
L . Xy
show two examples of(x). The motivation of this exten- A dx
sion is to model bundles of the coherent structures as seen in X
Fig. 1(a). The realizability of the extended external flow is which is actually identical to Eq.1) along with the condi-
also discussed. Concluding remarks are made in Sec. IV. tions, Eqgs.(8) and(9). The right hand side therefore should

+Xxy=0, (14)

be zero.
Il. BURGERS VORTEX LAYER SOLUTIONS Let us consider the general boundary conditions at the
origin:
We assume that the system, E@.and (6), is exposed N
to a stagnation flow, Xy(X=0)=xo, (15
W(x,y)=—AXxy, 7 Xy(x=0)=0, (16)
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FIG. 3. TheT-vorticity, Eq. (23), the corresponding temperatuféx) and
the vorticity, Eq.(24). Here we set the parameters@g=1, A=1, k=1,
ag=1 andp= /4.

17
(18)

wherew’(X) denotes the derivative of vorticity,,wy and
w( are constants. Witlk = v the solutions to Eqs(12) and
(13) are obtained as

w(x=0)=wq,

o' (x=0)= o,

— (A20) 52
Xy(X)= xoe~ W2 X, (19
X ag sin
w(X)=wyt+ wéf e (Ax) §2d§+xou
0 A
X (1—e~ (A20x%) (20)

Here only the last term of Eq20) is the buoyancy generated

vorticity which is set to null ak=0. The first two are ho-

mogeneous solutions, i.e., the solutions to the vorticity equ

tion Eq. (13) setting the r.h.s(the buoyancy forcezero.

A. Burgers vortex layer solutions

The boundary conditions to be considered here are
(21)
(22)

which are equivalent to settingo= — yoad Ssing/A and w})
=0. The general solutions, Eg&l9) and (20), are then re-
duced to the Burgers vortex layer solutions,

(X— %),

Xy(X)—0

o(X)—=0  (X—=*=),

A A,
Xy(X)=00\/5—exg — 5 x|, (23
__agsincp [ A B A,
w(X)= A (O 2m{exp< 2Kx
agsing
== X, (24)

where Og=[”_x,(£t=0) dé=6(—=,0)—6(=,0). In

a-
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temperatured(x) is a monotonic functiony,(x) contains a
single bump. We call the solutions Burgersvortex layer
solutions.

Now we make several remarks on the solutions, Egs.
(23) and (24). First, we note thaiw(x) is proportional to
Xy(X) and sing. That is, x,(X) is not dependent on the di-
rection of the gravity, butw(x) is. This is because the
T-vorticity solution is maintained by the balance between the
imposed strain and the diffusion. On the other hand, the vor-
ticity is maintained by the balance between the diffusion and
the buoyancy induced by the temperature difference across
the BurgersT-vortex layer. Hence the vorticity is maximized
when the direction of th@-vortex layer coincides with that
of the gravity.

Second, a characteristic time of the relaxation to the
steady state, Eq23), for given temperature differend®,
can be estimated. Under the stagnation flow, B, the
time-dependent solution to E¢p) is obtained" as

1— e 2AY ~12 oy,
T) f_ Xy(&,1=0)

(x—e Mg)?
Xex”[ P (1—e—2A‘)/2A%|§

A A
—0 mex _ZX

The characteristic time for the relaxation is thus given as
1/A.

Third, the characteristic width of the bump Bfvorticity
and vorticity is y2«/A. This agrees with an observation
about structures of a passive scalar advected by a two-
dimensional synthetic random velocity field with a finite cor-

Xy(X,t)= ( 4k

, ast—oo,

(29

relation time in Ref. 12(Of course, vorticity is not consid-
ered in that casg.The problem considered in Ref. 12 is
completely different from our case, i.e., a passive scalar with
a nonzero mean gradient is treated besides the synthetic ve-
locity field. However, at least locally, the equations for pas-
sive scalar and correspondingare likely to hold. Hence,
once a stagnation flow is realized, the passive scalar can
relax to the steady solution E(R3). The following features
reported in Ref. 12 are consistent with this vie) the
width of the coherent structures of the passive scalar was
found to scale well with\/x/s, wheres was a root mean
square of the rate of strain calculated from the low-path fil-
tered velocity andii) they also showed a stagnation flow
associated with a coherent structure in Fig. 7 of Ref. 12.

B. Comparison with coherent structures in 2-DFC
turbulence

In this subsection, we compare the Burgers vortex layer
solutions, Eqs(23) and (24), with the coherent structures
observed in the DNS of 2-DFC turbulence.

Let us first mention the details of DNS. We employ a

these solutions, the temperature difference corresponds to tipseudo-spectral method with dealiasing through the grid shift
circulation of the vortex layer for the barotropic case. In Fig.method. The fourth order Runge—Kutta method is used for a

3 we plot the solutionsT-vorticity, Eq. (23), and the corre-
sponding temperaturé(x) and vorticity, Eq.(24). Since the

temporal marching scheme. For realizing a statistically sta-
tionary state, we actually simulate the following equations:
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TABLE I. Numerical and flow parameters of DNS. The coefficient of the buoyancy tegris set to unity for

all resolutions. The kinematic viscosity is taken to be equal to correspondirg Temperature dissipation
length scalen,=[ % e,(ag)?]*®, wheree, is temperature dissipation rate, is the smallest length scale in the
flow. The Bolgiano—Obukhov length scale is defined @s= €5/[ €5'%(ag)¥?], wheree is the energy dissipa-
tion rate. The two scaldgg and 7, are the same order of magnitude, implying that the flow is dominated by
the entropy cascade.

Grid points K Fo do N lgo
512 5x10°4 0.4 0.1 1.1827/512 3.1y,
1024 1x10°* 0.4 0.1 0.95(@7/1024 4.87,
2048 5x10°° 0.4 0.1 1.26271/2048 4.57,
T+(UV)T=kAT+F, (26) lated flows are shown in Fig. 4. There is the inertial range in
which the entropy cascades at a constant rate and the scalings
g+ (UV)o=agdT+rAwtd, (27)  of the spectra are close to the Bolgiano—Obukhov scalings.

where the gra\/itationa| force acts in they direction. The In this sense, the simulated 2-DFC turbulence exhibits simi-

two terms, the large-scale forcing teffnand the large-scale lar behavior as 3-DNS turbulence.
friction term d that absorbs energy transferred from smaller ~ For a comparison between the Burgers vortex layer so-

scales are added to maintain the turbulence statistically stdutions and the coherent structures of 2-DFC, a numerical
tionary. The large-scale forcing term used here is timeidentification of coherent structures is necessary. The coher-

independent: ent structures seen in Fig(dl can be roughly regarded as
thin ridges of|VT|=|x|. Tracing a “skeleton” of a coherent

F(X)=Focog2x)sin(2y), (28 gtructure can therefore be done by connecting a local maxi-
whereF, is a constant. The large scale friction term is writ- mum point of| x| to the nearest neighbor ones in the direction
ten in the Fourier space as of the ridge. If the nearest local maximum point is farther

than, say five meshes, we stop connecting the points and

R — %a)(k) (0<|k|<3), regard that we reach one of the end points of the structure. A

d(k)= K| (290  second order interpolation is employed for estimating values

0 (otherwise, at off-grid points in this procedure. The idea of connecting

hered- k anda(k tivel tant. th local maximum or minimum points for identification is pro-
wheredo, k anda(k) are, respectively, a constant, the V\{aveposed by Miura and Kida for the analysis of local pressure
number vector and the Fourier mode of vorticity. The simu-

lati tarted with random initial diti q i minimum vortex tubes in 3-DNS turbulené&One advan-
ations are started with random Initial conditions and con In'tage of this method is that it does not require any threshold,
ued for more than 100 large-scale eddy turnover times. Th

h ¢ struct h i Fi . | fe., some value ofy| in 2-DFC, for the identification. An
conerent structures shown in ig(al are spontaneously example of the identified skeletons of 2-DFC is shown in
formed. The resultant numerical and flow parameters are.

listed in Table 1. The entropy and energy spectra of the simu- With this identification method, we are able to extract an

individual structure from a snapshot and compare it with the
10 , . , Burgers vortex layer solutions. In Figs. 6 and 7, we show two

0 T examples of the comparison: one is a structure with a typical
T ] length (100 to 200 meshésn Fig. 6(@) and the other is a
0} . longer structure in Fig. (3).
o 0 ] To measure the deviation from the Burgers vortex layer
g I 1 solutions along the structure, the ratio,
.s L 1
S Re - 0(Xs) (30)
w0 b agxy (%)
wer is plotted in Figs. &) and 1b). Herex, denotes the points
“’};o;l - ’ i on the skeletony,(x,) is the y-component in the DNS
. . 1

coordinates off -vorticity at the pointx, andA, is the posi-
tive eigenvalue of the velocity gradient tensor at the point

FIG. 4. Angle-averaged and normalized spectra of the temperature variancg, .. Sy, T . ..
i.e., entropy(the upper curvesand the kinetic energythe lower curves ﬁ* - The ratio is unity ifT vorticity and Vor“C'th(S)beyS the

obtained from the DNS of three different resolutions. They are almost isoBUrgers vortex layer solutiongNote that x, " (x,) is

tropic in the wave number space. The scalings in the inertial range of thequivalent toy,(x)sine in Eq. (23).] In rather straight parts,
temperature variancssand thellgnergy spectra are close to the Bolgianghe ratio is close to one, while it deviates from unity in the
Obukhov scalingsk ** andk '™ respectively. For clarity, temperatre 5 1o \vhere the skeleton has large curvature. In such large
spectra are multiplied by 2:610°. Inset: The flux functiorI ,(k) of tem- . . ; . .
perature variancéentropy fluy of the DNS with 2048 grid points. The ~ curvature regions, which are dominated by rotational motion,

constant entropy flux range is developed. the structures can no longer be maintained by straining mo-

0.1
L.
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FIG. 5. (a) Numerically identified skeletons of coherent structures in the DNS. The figure contaifig28@oints out of 20438 points. Dotted lines are
isolines of|x|. (b) Contours of|x| in the corresponding region @). The brighter region has a larger value.

tion and split into different parts. This feature is clearly seenC. Temporal evolution of the coherent structure
in the insets of Figs. ®) and 7b). The places where the

ratio shows divergent behavior correspond to the Ioca{
minima of the modulus ofT-vorticity along the skeleton.

In this subsection we briefly study the temporal evolu-
ion of the coherent structure shown in Fig. 6. The purpose is
. to see how long the part of the structure approximated by the
However, for long structure®=1 regions seem not 10 be a steady solution keeps the property. First of all, as a measure

large fraction O.f structures. ) .of a large scale motion, we use the definifibof a large
The behavior on the cut perpendicular to the skeleton IS cale eddy turnover time as

shown in Figs. &) and 7c). For a comparison with the

Burgers vortex layer solutions, EQs(23) and (24), 1 31
_ o H T= — 31
T-vorticity (two components vorticity and the length scale K VJE(K)dk

are normalized by the values at the point on the skeleton. A
second order interpolation is again used to estimate quantwherek, is the wave number at which the temperature vari-
ties at the off-grid points. The collapse of normalizedance (entropy spectrum takes maximum ar(k) is the
T-vorticity (the component perpendicular to the)camd vor-  energy spectrum. In our DNS with 20%48rids points, the
ticity to the curve expfs?), wheres= (length)/\’2«/A, sug-  turnover time(31) is estimated to be=0.80 k, =2). We
gests that the Burgers vortex layer solutions are, at least |ldrack the structure for one large scale turnover time after the
cally, good approximations of the coherent structures. Froninstance shown in Fig. 6. The evolution of the structure is
these figures, the typical width of the structure is estimated teshown in Figs. 9—-12. From these figures it is seen that the
be a few Kolmogorov dissipation scales. behavior close to the stationary solutions remains for 0.2
To evaluate the fraction of the sections where the Burturnover time. After this time the overall behavior b
gers vortex layer solutions give good approximations, thealong the structure is decdgee the insets of Figs. 10 and
probability density functior{pdf) of the ratioR is plotted in ~ 12). However, it involves splitting and reconnection. The
Fig. 8. The pdf is calculated from the data on equally spacedtructure can be identifiable for 1.2 turnover time after the
points on each skeletdithe points where the eigenvalues of instance of Fig. 6.
the velocity gradient tensoA becomes complex are ex- To conclude this section, regarding the significance of
cluded. The conditional pdf on the magnitude ®fvorticity ~ the Burgers vortex layer solutions in the limit of vanishing
has a peak closer tiR=1. This suggests that stronger diffusivity, it is well-known that the temperature dissipation
T-vorticity structures are closer to the Burgers vortex layerate per unit length along theaxis, €,, of the solution, Eq.
solutions. For the structures havifg|>5|x|average the  (23), goes to zero. That iss,= ..k xy(X)? dxkA—0
probability of taking the ratio 08R< 1.5 is estimated to be as «—0, implying that this Burgers layer solution is irrel-
0.37. Our observation on skeletons obtained by DNS sugevant in this limit. In the DNS, however, the situation can be
gests that(i) the width of the structure scales well with different because the feedback&drom other ingredients of
V2kl/A, whereA is the positive eigenvalue of the velocity the flow should be taken into account. Indeed, the probability
gradient tensor at a point on a skelet@n) the relation be- distribution functions ofA(x,y) obtained in the DNS of vari-
tweenT-vorticity and vorticity, Eq.(24), holds well in rather  ous values ok are observed to fall into a unique curve under
straight parts of structures having highvorticity. a suitable normalization. In other word&(x,y) field may
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FIG. 6. (a) A tracked skeleton of a typical coherent structure obtained from the DNS with? 20#Bpoints. The length of the skeleton is 0:0Z7. Open
circles are marked at every other 25 mesh sizes along the skeleton from the end point marked with a fille¢bsdenation from the Burgers vortex layer
solution along the skeleton. The end points marked with a filled square and triangle correspond to the same(aailtseimatioR is unity if T-vorticity

and vorticity obey the Burgers vortex layer solutions. In the part denoted by the dotted line around @et8fihthe eigenvalue of the velocity gradient
tensor becomes complex. Inset: the corresponfihglong the skeleton. The spatial averagéxydfn this snapshot is 8.1. This structure has a relatively large
|x| value.(c) The behavior ofT-vorticity and vorticity on the cut perpendicular to the skeleton, which is shown as the dashed line ifaFandthe filled
circle in (b). The plotted two component @i-vorticity, xperp, @Nd xparas @re perpendicular and parallel component to the cut. The osgi, corresponds to
the point on the skeleton. The coordinaeT-vorticity Xpem: Xpara @Nd vorticity w are normalized with the values at the origin so that they collapse to
exp(—9) if they are the Burgers vortex layer solutions, E(®3) and (24). The normalized unit length scale amounts to (2962048. A width of the
structure is hence estimated to be a few Kolmogorov dissipation saesTlable)l

have some nontrivial dependency on the diffusivityThus  case, the staircase-like change of temperature can lead to

it is conjectured that the dissipation rate of the solution Eqgstripes of structures. This is the point we try to model in this

(23), \/K_A would take a nonzero value in the limit of van- section. Needless to say that it is just one mechanism to

ishing diffusivity in real flows. Hence, the relevance of the cause bundles of structuf@he temperature can only change

Burgers vortex layer solutions might not be ruled out. Themonotonically in our consideration because of the constraint

detail of the observation oA(x,y) field in DNS will be that the right hand side of E¢14) vanishes.

reported elsewhere. For modeling a bundle of several structures with steady
The visualization of DNS flow, Fig. (&), shows the col- solutions, we consider the external flow given by

lective behavior of coherent structures: long structures tend

to align each other. In the next section we explore the possi- ¥ (XY)=—~Ayf(x), (32

bility of modeling these bundles of structures with Steadywheref(x) is a function satisfying a condition mentioned

solutions. later. In the previous section we treat the c#éér)=x. A
major difference from the previous case is that the external
Il EXTENSION flow, Eg. (32), has, in general, nonzero vorticity,
Let us first look at a bundle of structures obtained in the Q(xy)=— AT =Ayf(x). (33)

DNS. A snapshot is shown in Fig. 13. The cut plotted in Fig.

13(b) is chosen to go across highvorticity structures[As  Thus() should satisfy the vorticity equation. The realizabil-
seen in Fig. 1&) the typical magnitude of -vorticity of the ity of Eq. (32) will be discussed in detail later in this section.
structures is 20, whereas the spatial averagéypfn this Under the extended stagnation flow, E82), we further
snapshot is 6.650ne feature of this cut is that the tempera- assume the dependence of temperature and velocity on the
ture roughly decreases from one end to the other. In such gpatial coordinate as follows:
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FIG. 7. (a) A tracked skeleton of a typical long structure obtained from the same snapshot as Fig. 6. The length of the skeletsi2 1. @C&%n circles are
marked at every other 50 mesh sizes along the skeleton from the end point marked with a filled(byT@esame as Fig.(B) but for the longer structure.
Here the fraction of the part where the eigenvalue of the velocity gradient tensor becomes complex is increased. Inset: corigéptomttinipe skeleton.
(c) The same as Fig.(6) but for the longer structure. The normalized unit length scale in this figure (84/2048. A width of the structure is again estimated
to be a few Kolmogorov dissipation scalese Table )l

T(x,y,t)=0(x), (34) X(X)=(0,— 0" (x))=(0,xy(x)), (36)
u(x,y,t)= (¥, —a,¥)+(0p(x)) o(X,y)=—AV+0v' (X)=Q(X,y) + D(X). (37)
=(=Af), Ay (X) +v(X)). (39 we call ® response vorticity here. The velocity field, Eq.
Then y and the total vorticityw are given by (35), is uniquely decomposed into thhedependent and the

y-independent parts.
Imposing the general boundary conditions,

1
Xy(X=0)=xo, (39)
Xy(x=0)=0, (39
4 B(x=0)=ay, (40)
4
' (x=0)=0}, (41)
steady solutions to Eq$5) and (6) are easily obtained for
no condition ——— any f (X) as
0.001 . . . . 1 >,5 Wevgage -
L 3 2 - _ — (Alk) [3f
s 4 3 2 1 1(: 1 2 3 4 5 Xy(x) = Xo€ (Alx) [q ()\)d)\’ (42)
FIG. 8. Probability density functions of the rafdcalculated from the DNS ~ e e [ (Alv) [EFO0dN
with 2048 grid points. The Burgers vortex layer solutions correspond to o(x)= wot wOJ e 0 d¢
R=1. The conditional probability distribution has a peak nearl, i.e., the
structures having largef-vorticity are closer to the Burgers vortex layer sin X )
, oI ; ! agsine — (A/v) FEEO) AN
solutions. The average @Fvorticity | x|averagelS the spatial average over all + X0 le v)Jo de. (43
grid points. K 0
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1050 FIG. 9. The early stage evolution of
“’”wso 1700 1150 120 1250 1050 the structure shown in Fig. 6. The
. x longer structure ir(b) reconnects to a
1250 . : top-right neighboring structure at 0.38
(©) turnover time after the instance of
Fig. 6.
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FIG. 10. The early stage evolution of the raRoof the structure shown in Fig. 6. i), the length of the longer structutdenoted by the solid linechanges
abruptly due to the reconnection. Only the right enécincorresponds to the tracked structure sh@@rand(b). Insets: corresponding modulus Bivorticity,
|x|- The modulus decays rapidly between 0.2 and 0.4 turnover time.
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Rt
8/1 ime =
1050 / 1050 L2 /1 /t v — FIG. 11. The later stage evolution of
1050 1100 1150 1200 1250 1050 1100 1150 1200 1250 the structure shown in Fig. 6. The
N . longer structure ina) splits already at
1250 : " 0.51 turnover time. The shorter struc-
ture in(a) decays out at 0.67 turnover
© time.
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FIG. 12. The later stage evolution of the raRoof the structure shown in Fig. 6. Insets: corresponding modulug\aedrticity, |x|-
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} : > 1700 T T -+
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X X

T-vorticity
|
SEBoN588
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5

FIG. 13. (a) Skeletons obtained in the DNS. This figure contains fQ@dints out of 2048 grid points. Long structures tend to form “bundleg)
Enlargement of the square region (2aid points in the upper left corner ofa). (c) T-vorticity, temperature and vorticity along the straight line shown in
(b). The abscissa is the length in mesh units along the line: open circlgs from the right bottom end to the left top end point correspond to the points
$=0,20,..,100. In the figure of-vorticity, xperp aNd X parales d€NOte the components of the vecgpperpendicular and parallel to the line, respectively.

The last term of Eq(43) represents the vorticity induced by lence field. That is, from a practical point of view, a steady

the buoyancy. solution subjected to an external flow is no more than a local
Now we discuss the realizability of the external flow, Eq. model of coherent structures in the turbulent field, so that the

(32). If we claim that Eq.(33) is a steady solution of the external flow need not satisfy E¢44). Thus it may be pos-

barotropic two-dimensional vorticity equation, sible to add a forcing term describing an effect of the larger
. _ scale motions to Eq(44). Denoting the forcing term by
(U-V)Q=rAQ, (44) G(x,y), the equation foK) [or f(x)] can be re-written as
whereU=(4,¥,—d,¥). Then the equation fof(x) is (U-V)Q=rAQ+G. (46)
%f(4)(x)+f(x)f(3)(x)_f’(X)f”(x)zo, (45)  Then the steady-state equation for the total vorticity, Eq.

(37), can be written as

wheref()(x) denotes thgth order derivative. Equatiof#5) (UV)(Q+8) = xy (X agsing+ vAQ+2)+G, (47)
has been studied by many authors as a model of a flow near
a rigid wall® In Ref. 17, Chen and Okamoto, who were Which yields the equation for the response vortigity
in_terested_ in the finite time blow-up _of the solution, _dealt v 42 do agsing
with the time-dependent stream functidh= — Ay f(x,t) in N +f(x) ax = Xxy(X) A
a bounded domain and discussed the asymptotic behavior
(t—) of the solution to the equation fof(x,t), the  The solution, Eq(43), is obtained from Eq(48). By substi-
Proudman—Johnson equatithiThey showed that every so- tuting f(x)=x, it is easily checked that the solutions Egs.
lution decays to zero as—o with homogeneous boundary (42) and(43) contain Burgers vortex layer solutions.
conditions. In the following, we present two examplesfgi) show-

Here instead of solving Eq45), we assume that the ing more than one structure. As the first example, we deal
flow, Eq. (32), is formed by a larger scale flow in the turbu- with an external flow,

(48)
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-1 -1A2

FIG. 14. Stream lines of an external flow (x)=—y(4x3—2x). The

arrows denote the directions of the flow. Stagnation points are

(—1#2,0),(0,0) and (12,0).

f(x)=4x3—2x, (49
which itself has vorticityQ)(x,y) = 24Axy. The stream lines

of the external flow is shown in Fig. 14. Here we assume an @o~
additional forcingG(x,y) that keeps the external field, Eq.

(49), steady. [Equation (46) prescribes the forcing as
G(x,y)=192Ax%y.] We impose the boundary conditions,

Xy(Xx=0)=x0#0, (50
Xy(x=0)=0, (51
@(x=0)=y, (52)
»(x=0)"=uy=0. (53)

If the field f(x) is an odd function, taking the condition

for vorticity, Eq. (53), is equivalent to assuming that the
solutions are even. This results in the localization of vorticity

around the origin. The solutions, Eq42) and(43), are then

reduced to
14
1 /N
¥
0
15
Zo
1.5
0
=
' j/——_
-0.6
4 -3 2 -1 0 1 2 3 4

FIG. 15. The solutions foW (x) = — Ay(4x3— 2x): the T-vorticity Eq. (54),
the corresponding temperatug§x) and the response vorticity, E¢55).
Here we set the parameters ds=1, k=1, ag=1, ¢=7/4, xo=1,

9(x=0)=0 and@,= —e¥Ja[ 1+ (2\7) [ Y%~ d{]/(4v2) = — 0.61.

A class of steady solutions to 2D free convection 3395

-

FIG. 16. Stream lines of an external flow(x)=—y sinx. The arrows
denote the directions of the flow. Stagnation points are,0), n=0,+1,
+2,....

_ )
Xy(X)= xge~ A, (54)
_ _ agsineg (x 42
w(x):wo+X0—K fo g~ WRE-Egg,
(Aldk) ; 5
=;00+X0$ fx e (A= V22
0
(55

The constaniy, is determined so that the response vorticity

vanishes at infinity, i.e.,
1 KT 1/2 >
A/ — — (Alk) ¢
2\/ A +f0 e dg}

(56)

These solutions are plotted in Fig. 15. There are two bumps
in xy. This solution catches features seen in Fig(cl3
arounds=40.

As another example, let us consider the periodic flow,

(57)

This flow has vorticity() = —Aysinx. The corresponding
forcing G(x,y) is then given byvAysinx. The streamlines

of this external flow Eq(57) are shown in Fig. 16, where
stagnation points are located periodically. We impose the
boundary conditions, Eqg50)—(53). In particular we take
wo=0 in this case. Then the general solutions, E42) and
(43), are expressed as

~ eN4) ag sineg
Xo 2k

f(x)=sinx.

Xy(x) =xo0€~ (A/K)(l—COSX), (58)

X
R
which are plotted in Fig. 17. The temperature shows the
staircase-like behavior af(x). As a result of that a row of
structures is seen. The solution, E¢s8) and (59), can be
useful to model the small wavy behavior embedded on a
large temperature front, which is similar to the one shown in
Fig. 13c). However, in Fig. 1&) the strong peak of tem-
perature around=55 makes it rather hard to see this overall
trend clearly.

IV. CONCLUDING REMARKS

We have examined a class of steady solutions to the
two-dimensional Boussinesq approximation equations. We
believe that these solutions well describe coherent structures
observed in the DNS of 2-DFC. Under an extended stagna-
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1 We believe that coherent structures are universal and es-
sential ingredients of turbulence. Extensive researches on co-
herent structures are therefore required.
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