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A class of steady solutions to two-dimensional free convection
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We obtained steady solutions to the two-dimensional Boussinesq approximation equations without
a mean temperature gradient. This system is referred to as free convection in this paper. Under an
external flow described by the stream functionC52Ay f(x), steady solutions are found. They are
kept steady by the balance between the strain ofC and the diffusion. In this sense, they are similar
to the Burgers vortex layer solution. Two examples other thanf (x)5x are shown to have steady
solutions. We discuss the relation between these solutions and long-lived fine scale coherent
structures observed in direct numerical simulations of two-dimensional free convection
turbulence. ©2003 American Institute of Physics.@DOI: 10.1063/1.1613643#
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I. INTRODUCTION

In the incompressible three-dimensional Navier–Sto
~3-DNS! turbulence, it is observed that high vorticity regio
take the form of long-lived slender tube-like structure
which are called coherent structures.1 These vortex filaments
are well-known to be approximated locally by the Burge
vortex tube, a steady solution to 3-DNS equations. In pas
scalar turbulence, scalar also forms coherent structure2,3

One of the important issues of the study of turbulence is
understand the dynamics of coherent structures, their rol
the overall turbulence dynamics and their significance on
statistical properties of the turbulence.1 For the moment there
are still long ways to go for these goals.

In this paper we consider an active scalar system tha
a two-dimensional Boussinesq convection model withou
mean temperature gradient in a doubly periodic square
main, which is called two-dimensional free convection~2-
DFC!. There are two remarkable similar points betwe
2-DFC and 3-DNS turbulence: cascade and the appear
of coherent structures. About the cascade of 2-DFC, it
been shown that the temperature variance, called entr
cascades from larger scales to smaller scales in 2-DFC w
the turbulent state is maintained by a temperature forcin5,6

The filament-like coherent structures seen in a direct num
cal simulation~DNS! of 2-DFC turbulence are shown in Fig
1. They are long-lived sharp interfaces between hot and c
regions, i.e., shock fronts. The typical length and width
the structures are the order of the integral scale and the o
of Kolmogorov dissipation length scale. Furthermore,
evolution equations for the key quantities of the coher
structures, i.e., vorticity for 3-DNS and gradient of tempe
ture for 2-DFC, have the same stretching terms.

Based on this similarity, in spite of the difference
space dimension between 2-DFC and 3-DNS, we expect
allelism between 2-DFC and 3-DNS. The purposes of t
paper are~i! to model the coherent structures of 2-DFC w
a class of steady solutions of 2-DFC equations as done in
3-DNS with the Burgers vortex solutions, and~ii ! to check
validity of the model by comparison with the DNS data
2-DFC. We present evidence that coherent structures
3381070-6631/2003/15(11)/3385/12/$20.00
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2-DFC are well approximated by the steady solutions to
considered here.

However, there is a crucial difference about coher
structures between 2-DFC and 3-DNS: the coherent st
tures in 2-DFC are identical to those of the local temperat
dissipation rate. The coherent structures in 2-DFC can re
to the entropy cascade in a direct manner. Furthermore
cent studies about two-dimensional convection in a perio
domain by several groups revealed an interesting rela
between the statistical behavior of temperature and the
herent structures: the exponents of temperature struc
functions calculated by DNS saturate as the order goe
infinity as observed in passive scalar turbulence.4 This be-
havior is regarded as a signature of coherent structures
sharp shocks between hot and cold regions.7,8

The equations of 2-DFC are

] tT1~u"“ !T5kDT, ~1!

] tu1~u"“ !u52
“p

r0
1agTê1nDu, ~2!

“•u50. ~3!

Here k, r0 , a, g and n are the molecular diffusivity, the
mean density of the fluid~we taker0 to be unity for simplic-
ity!, the thermal expansion coefficient, the gravitational
celeration and the kinematic viscosity, respectively. The v
tor ê is the unit vector in the direction opposite to the gravi
In the DNS of 2-DFC, to keep the system statistically s
tionary, a large-scale forcing term is added to Eq.~1! and a
large-scale friction term is added to Eq.~2!. To deal with
temperature shocks more directly, we use the following v
tor quantity:9,10

x[~]yT,2]xT!, ~4!

which is calledT-vorticity here.T-vorticity obeys the equa-
tion

] tx1~u"“ !x5~x•“ !u1kDx, ~5!

which is quite similar to the three-dimensional vortici
equation. ThusT-vorticity plays an essential role in 2-DFC
5 © 2003 American Institute of Physics
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3386 Phys. Fluids, Vol. 15, No. 11, November 2003 S. Toh and T. Matsumoto
like vorticity in 3-DNS. In contrast withT-vorticity, the gov-
erning equation for vorticityv(x,y,t) in 2-DFC can be writ-
ten as

] tv1~u"“ !v5ag$“3~Tê!%z1nDv. ~6!

Here$•%z denotes taking thez-component. Note that becaus
of the buoyancy term, i.e., the first term on the r.h.s. of E
~6!, vorticity is not a conservative quantity even forn50.
For simplicity, we assumen5k, i.e., Prandtl number P
[n/k51 here.

In the following sections, we consider steady solutio
to Eqs.~5! and ~6!, where the flow is decomposed into th
external part given by a stream functionC52Ay f(x) and a
response to it. In Sec. II, we deal with the casef (x)5x, i.e.,
a stagnation flow, and compare the obtained steady solut
with coherent structures seen in the DNS of 2-DFC. In S
III, extended stagnation flowsf (x)Þx are considered. We
show two examples off (x). The motivation of this exten-
sion is to model bundles of the coherent structures as see
Fig. 1~a!. The realizability of the extended external flow
also discussed. Concluding remarks are made in Sec. IV

II. BURGERS VORTEX LAYER SOLUTIONS

We assume that the system, Eqs.~5! and~6!, is exposed
to a stagnation flow,

C~x,y!52Axy, ~7!

FIG. 1. ~a! Modulus of the temperature gradient of a snapshot obtained
pseudo-spectral direct numerical simulation of 2-DFC with 20482 grid
points in a periodic domain@0,2p#2. The brighter region has larger value
High temperature gradient regions, which are equivalent to high local t
perature dissipation rate regions, form a long and slender structure. M
coherent structures form bundles together. The figure shows one quar
the whole computational domain. The direction of the gravitational forc
from top to bottom. The details of the DNS are in Sec. II B.~b! The tem-
perature of the same snapshot. Plumes of various scales are seen.~c! The
vorticity of the same snapshot. It is noted that vorticity also forms slen
structures that correspond to shears caused by strong temperature
ences at the coherent structures shown in Fig. 1~a!. This behavior is com-
pletely different from that of the barotropic two-dimensional turbulence
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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whereA is a positive constant so that we take the directio
of contraction and expansion as thex-axis andy-axis, re-
spectively. The angle between thex-axis andê is also a pa-
rameter and denoted byw as shown in Fig. 2. Then the un
vector ê in Eq. ~1! is given in this coordinate asê
5(cosw,sinw). We use this coordinate throughout this pap
We further assume the following forms of the temperatu
and velocity fields:

T~x,y,t !5u~x!, ~8!

u~x,y,t !5„]yC~x,y!,2]xC~x,y!…1„0,v~x!…

5„2Ax,Ay1v~x!…. ~9!

In terms ofu andv, T-vorticity and vorticity are expresse
as

x~x,y,t !5„0,2]xu~x!…[„0,xy~x!…, ~10!

v~x,y,t !5v~x!5
dv~x!

dx
. ~11!

Consequently, Eqs.~5! and ~6! are reduced to the following
ordinary differential equations:

d

dx S k

A

dxy

dx
1xxyD50, ~12!

n

A

d2v

dx2 1x
dv

dx
5xy

ag sinw

A
. ~13!

After integrating once, Eq.~12! can be re-written as

k

A

dxy

dx
1xxy50, ~14!

which is actually identical to Eq.~1! along with the condi-
tions, Eqs.~8! and ~9!. The right hand side therefore shou
be zero.

Let us consider the general boundary conditions at
origin:

xy~x50!5x0 , ~15!

xy8~x50!50, ~16!

a

-
ny
of

s

r
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FIG. 2. The coordinate system fixed on the external stagnation flow.
direction of the gravity vectorg is expressed via the anglew.
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3387Phys. Fluids, Vol. 15, No. 11, November 2003 A class of steady solutions to 2D free convection
v~x50!5v0 , ~17!

v8~x50!5v08 , ~18!

wherev8(x) denotes the derivative of vorticity;x0 ,v0 and
v08 are constants. Withk5n the solutions to Eqs.~12! and
~13! are obtained as

xy~x!5x0e2 ~A/2k! x2
, ~19!

v~x!5v01v08E
0

x

e2 ~A/k! j2
dj1x0

ag sinw

A

3~12e2 ~A/2k! x2
!. ~20!

Here only the last term of Eq.~20! is the buoyancy generate
vorticity which is set to null atx50. The first two are ho-
mogeneous solutions, i.e., the solutions to the vorticity eq
tion Eq. ~13! setting the r.h.s.~the buoyancy force! zero.

A. Burgers vortex layer solutions

The boundary conditions to be considered here are

xy~x!→0 ~x→6`!, ~21!

v~x!→0 ~x→6`!, ~22!

which are equivalent to settingv052x0ag sinw/A andv08
50. The general solutions, Eqs.~19! and ~20!, are then re-
duced to the Burgers vortex layer solutions,

xy~x!5Q0A A

2pk
expS 2

A

2k
x2D , ~23!

v~x!52
ag sinw

A
Q0A A

2pk
expS 2

A

2k
x2D

52
ag sinw

A
xy~x!, ~24!

where Q05*2`
` xy(j,t50) dj5u(2`,0)2u(`,0). In

these solutions, the temperature difference corresponds t
circulation of the vortex layer for the barotropic case. In F
3 we plot the solutions;T-vorticity, Eq. ~23!, and the corre-
sponding temperatureu(x) and vorticity, Eq.~24!. Since the

FIG. 3. TheT-vorticity, Eq. ~23!, the corresponding temperatureu(x) and
the vorticity, Eq.~24!. Here we set the parameters asQ051, A51, k51,
ag51 andw5p/4.
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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temperatureu(x) is a monotonic function,xy(x) contains a
single bump. We call the solutions BurgersT-vortex layer
solutions.

Now we make several remarks on the solutions, E
~23! and ~24!. First, we note thatv(x) is proportional to
xy(x) and sinw. That is,xy(x) is not dependent on the di
rection of the gravity, butv(x) is. This is because the
T-vorticity solution is maintained by the balance between
imposed strain and the diffusion. On the other hand, the v
ticity is maintained by the balance between the diffusion a
the buoyancy induced by the temperature difference ac
the BurgersT-vortex layer. Hence the vorticity is maximize
when the direction of theT-vortex layer coincides with tha
of the gravity.

Second, a characteristic time of the relaxation to
steady state, Eq.~23!, for given temperature differenceQ0

can be estimated. Under the stagnation flow, Eq.~9!, the
time-dependent solution to Eq.~5! is obtained11 as

xy~x,t !5S 4pk
12e22At

2A D 21/2E
2`

`

xy~j,t50!

3expF2
~x2e2Atj!2

4k ~12e22At!/2AGdj

→Q0A A

2pk
expS 2

A

2k
x2D , as t→`. ~25!

The characteristic time for the relaxation is thus given
1/A.

Third, the characteristic width of the bump ofT-vorticity
and vorticity is A2k/A. This agrees with an observatio
about structures of a passive scalar advected by a t
dimensional synthetic random velocity field with a finite co
relation time in Ref. 12.~Of course, vorticity is not consid-
ered in that case.! The problem considered in Ref. 12
completely different from our case, i.e., a passive scalar w
a nonzero mean gradient is treated besides the synthetic
locity field. However, at least locally, the equations for pa
sive scalar and correspondingx are likely to hold. Hence,
once a stagnation flow is realized, the passive scalar
relax to the steady solution Eq.~23!. The following features
reported in Ref. 12 are consistent with this view:~i! the
width of the coherent structures of the passive scalar
found to scale well withAk/s, wheres was a root mean
square of the rate of strain calculated from the low-path
tered velocity and~ii ! they also showed a stagnation flo
associated with a coherent structure in Fig. 7 of Ref. 12.

B. Comparison with coherent structures in 2-DFC
turbulence

In this subsection, we compare the Burgers vortex la
solutions, Eqs.~23! and ~24!, with the coherent structure
observed in the DNS of 2-DFC turbulence.

Let us first mention the details of DNS. We employ
pseudo-spectral method with dealiasing through the grid s
method. The fourth order Runge–Kutta method is used fo
temporal marching scheme. For realizing a statistically s
tionary state, we actually simulate the following equation
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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Downloaded 11 Ma
TABLE I. Numerical and flow parameters of DNS. The coefficient of the buoyancy termag is set to unity for
all resolutions. The kinematic viscosityn is taken to be equal to correspondingk. Temperature dissipation
length scalehu[@k5/eu(ag)2#1/8, whereeu is temperature dissipation rate, is the smallest length scale in
flow. The Bolgiano–Obukhov length scale is defined asl BO5e5/4/@eu

3/4(ag)3/2#, wheree is the energy dissipa-
tion rate. The two scalesl BO andhu are the same order of magnitude, implying that the flow is dominated
the entropy cascade.

Grid points k F0 d0 hu l BO

5122 531024 0.4 0.1 1.15~2p/512! 3.1hu

10242 131024 0.4 0.1 0.950~2p/1024! 4.8hu

20482 531025 0.4 0.1 1.26~2p/2048! 4.5hu
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] tT1~u"“ !T5kDT1F, ~26!

] tv1~u"“ !v5ag]xT1nDv1d, ~27!

where the gravitational force acts in the2y direction. The
two terms, the large-scale forcing termF and the large-scale
friction term d that absorbs energy transferred from sma
scales are added to maintain the turbulence statistically
tionary. The large-scale forcing term used here is tim
independent:

F~x!5F0 cos~2x!sin~2y!, ~28!

whereF0 is a constant. The large scale friction term is wr
ten in the Fourier space as

d̂~k!5H 2
d0

uku
v̂~k! ~0,uku<3!,

0 ~otherwise!,

~29!

whered0 , k andv̂(k) are, respectively, a constant, the wa
number vector and the Fourier mode of vorticity. The sim
lations are started with random initial conditions and cont
ued for more than 100 large-scale eddy turnover times.
coherent structures shown in Fig. 1~a! are spontaneously
formed. The resultant numerical and flow parameters
listed in Table I. The entropy and energy spectra of the sim

FIG. 4. Angle-averaged and normalized spectra of the temperature vari
i.e., entropy~the upper curves! and the kinetic energy~the lower curves!
obtained from the DNS of three different resolutions. They are almost
tropic in the wave number space. The scalings in the inertial range of
temperature variance and the energy spectra are close to the Bolgi
Obukhov scalingsk27/5 and k211/5, respectively. For clarity, temperatur
spectra are multiplied by 2.53103. Inset: The flux functionPu(k) of tem-
perature variance~entropy flux! of the DNS with 20482 grid points. The
constant entropy flux range is developed.
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lated flows are shown in Fig. 4. There is the inertial range
which the entropy cascades at a constant rate and the sca
of the spectra are close to the Bolgiano–Obukhov scalin
In this sense, the simulated 2-DFC turbulence exhibits si
lar behavior as 3-DNS turbulence.

For a comparison between the Burgers vortex layer
lutions and the coherent structures of 2-DFC, a numer
identification of coherent structures is necessary. The co
ent structures seen in Fig. 1~a! can be roughly regarded a
thin ridges ofu“Tu5uxu. Tracing a ‘‘skeleton’’ of a coheren
structure can therefore be done by connecting a local m
mum point ofuxu to the nearest neighbor ones in the directi
of the ridge. If the nearest local maximum point is farth
than, say five meshes, we stop connecting the points
regard that we reach one of the end points of the structur
second order interpolation is employed for estimating val
at off-grid points in this procedure. The idea of connecti
local maximum or minimum points for identification is pro
posed by Miura and Kida for the analysis of local press
minimum vortex tubes in 3-DNS turbulence.13 One advan-
tage of this method is that it does not require any thresh
i.e., some value ofuxu in 2-DFC, for the identification. An
example of the identified skeletons of 2-DFC is shown
Fig. 5.

With this identification method, we are able to extract
individual structure from a snapshot and compare it with
Burgers vortex layer solutions. In Figs. 6 and 7, we show t
examples of the comparison: one is a structure with a typ
length ~100 to 200 meshes! in Fig. 6~a! and the other is a
longer structure in Fig. 7~a!.

To measure the deviation from the Burgers vortex la
solutions along the structure, the ratio,

R52
A* v~x* !

agxy
DNS~x* !

, ~30!

is plotted in Figs. 6~b! and 7~b!. Herex* denotes the points
on the skeleton,xy

DNS(x* ) is the y-component in the DNS
coordinates ofT-vorticity at the pointx* andA* is the posi-
tive eigenvalue of the velocity gradient tensor at the po
x* . The ratio is unity ifT-vorticity and vorticity obeys the
Burgers vortex layer solutions.@Note that xy

DNS(x* ) is
equivalent toxy(x)sinw in Eq. ~23!.# In rather straight parts
the ratio is close to one, while it deviates from unity in th
parts where the skeleton has large curvature. In such l
curvature regions, which are dominated by rotational moti
the structures can no longer be maintained by straining

ce,

-
e
o–
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FIG. 5. ~a! Numerically identified skeletons of coherent structures in the DNS. The figure contains 2002 grid points out of 20482 points. Dotted lines are
isolines ofuxu. ~b! Contours ofuxu in the corresponding region to~a!. The brighter region has a larger value.
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tion and split into different parts. This feature is clearly se
in the insets of Figs. 6~b! and 7~b!. The places where the
ratio shows divergent behavior correspond to the lo
minima of the modulus ofT-vorticity along the skeleton
However, for long structures,R51 regions seem not to be
large fraction of structures.

The behavior on the cut perpendicular to the skeleto
shown in Figs. 6~c! and 7~c!. For a comparison with the
Burgers vortex layer solutions, Eqs.~23! and ~24!,
T-vorticity ~two components!, vorticity and the length scale
are normalized by the values at the point on the skeleton
second order interpolation is again used to estimate qua
ties at the off-grid points. The collapse of normaliz
T-vorticity ~the component perpendicular to the cut! and vor-
ticity to the curve exp(2s2), wheres5(length)/A2k/A, sug-
gests that the Burgers vortex layer solutions are, at leas
cally, good approximations of the coherent structures. Fr
these figures, the typical width of the structure is estimate
be a few Kolmogorov dissipation scales.

To evaluate the fraction of the sections where the B
gers vortex layer solutions give good approximations,
probability density function~pdf! of the ratioR is plotted in
Fig. 8. The pdf is calculated from the data on equally spa
points on each skeleton~the points where the eigenvalues
the velocity gradient tensorA becomes complex are ex
cluded!. The conditional pdf on the magnitude ofT-vorticity
has a peak closer toR51. This suggests that stronge
T-vorticity structures are closer to the Burgers vortex la
solutions. For the structures havinguxu.5uxuaverage, the
probability of taking the ratio 0.5<R,1.5 is estimated to be
0.37. Our observation on skeletons obtained by DNS s
gests that~i! the width of the structure scales well wit
A2k/A, whereA is the positive eigenvalue of the velocit
gradient tensor at a point on a skeleton,~ii ! the relation be-
tweenT-vorticity and vorticity, Eq.~24!, holds well in rather
straight parts of structures having highT-vorticity.
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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C. Temporal evolution of the coherent structure

In this subsection we briefly study the temporal evo
tion of the coherent structure shown in Fig. 6. The purpos
to see how long the part of the structure approximated by
steady solution keeps the property. First of all, as a mea
of a large scale motion, we use the definition14 of a large
scale eddy turnover timet as

t[
1

k*
A*E~k!dk

, ~31!

wherek* is the wave number at which the temperature va
ance ~entropy! spectrum takes maximum andE(k) is the
energy spectrum. In our DNS with 20482 grids points, the
turnover time~31! is estimated to bet.0.80 (k* 52). We
track the structure for one large scale turnover time after
instance shown in Fig. 6. The evolution of the structure
shown in Figs. 9–12. From these figures it is seen that
behavior close to the stationary solutions remains for
turnover time. After this time the overall behavior ofuxu
along the structure is decay~see the insets of Figs. 10 an
12!. However, it involves splitting and reconnection. Th
structure can be identifiable for 1.2 turnover time after t
instance of Fig. 6.

To conclude this section, regarding the significance
the Burgers vortex layer solutions in the limit of vanishin
diffusivity, it is well-known that the temperature dissipatio
rate per unit length along they-axis,eu , of the solution, Eq.
~23!, goes to zero. That is,eu5*2`

` kxy(x)2 dx}AkA→0
as k→0, implying that this Burgers layer solution is irre
evant in this limit. In the DNS, however, the situation can
different because the feedback toA from other ingredients of
the flow should be taken into account. Indeed, the probab
distribution functions ofA(x,y) obtained in the DNS of vari-
ous values ofk are observed to fall into a unique curve und
a suitable normalization. In other words,A(x,y) field may
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 6. ~a! A tracked skeleton of a typical coherent structure obtained from the DNS with 20482 grid points. The length of the skeleton is 0.0732p. Open
circles are marked at every other 25 mesh sizes along the skeleton from the end point marked with a filled square.~b! Deviation from the Burgers vortex laye
solution along the skeleton. The end points marked with a filled square and triangle correspond to the same marks in~a!. The ratioR is unity if T-vorticity
and vorticity obey the Burgers vortex layer solutions. In the part denoted by the dotted line around (length)5135, the eigenvalue of the velocity gradien
tensor becomes complex. Inset: the correspondinguxu along the skeleton. The spatial average ofuxu in this snapshot is 8.1. This structure has a relatively la
uxu value.~c! The behavior ofT-vorticity and vorticity on the cut perpendicular to the skeleton, which is shown as the dashed line in Fig. 6~a! and the filled
circle in ~b!. The plotted two component ofT-vorticity, xperp andxpara, are perpendicular and parallel component to the cut. The origin,s50, corresponds to
the point on the skeleton. The coordinates, T-vorticity xperp, xpara and vorticity v are normalized with the values at the origin so that they collapse
exp(2s2) if they are the Burgers vortex layer solutions, Eqs.~23! and ~24!. The normalized unit length scale amounts to 0.96~2p/2048!. A width of the
structure is hence estimated to be a few Kolmogorov dissipation scales~see Table I!.
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have some nontrivial dependency on the diffusivityk. Thus
it is conjectured that the dissipation rate of the solution E
~23!, AkA, would take a nonzero value in the limit of van
ishing diffusivity in real flows. Hence, the relevance of t
Burgers vortex layer solutions might not be ruled out. T
detail of the observation onA(x,y) field in DNS will be
reported elsewhere.

The visualization of DNS flow, Fig. 1~a!, shows the col-
lective behavior of coherent structures: long structures t
to align each other. In the next section we explore the po
bility of modeling these bundles of structures with stea
solutions.

III. EXTENSION

Let us first look at a bundle of structures obtained in
DNS. A snapshot is shown in Fig. 13. The cut plotted in F
13~b! is chosen to go across highT-vorticity structures.@As
seen in Fig. 13~c! the typical magnitude ofT-vorticity of the
structures is 20, whereas the spatial average ofuxu in this
snapshot is 6.65.# One feature of this cut is that the temper
ture roughly decreases from one end to the other. In su
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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case, the staircase-like change of temperature can lea
stripes of structures. This is the point we try to model in th
section. Needless to say that it is just one mechanism
cause bundles of structure.@The temperature can only chang
monotonically in our consideration because of the constr
that the right hand side of Eq.~14! vanishes.#

For modeling a bundle of several structures with stea
solutions, we consider the external flow given by

C~x,y!52Ay f~x!, ~32!

where f (x) is a function satisfying a condition mentione
later. In the previous section we treat the casef (x)5x. A
major difference from the previous case is that the exter
flow, Eq. ~32!, has, in general, nonzero vorticity,

V~x,y![2DC5Ay f9~x!. ~33!

ThusV should satisfy the vorticity equation. The realizab
ity of Eq. ~32! will be discussed in detail later in this sectio

Under the extended stagnation flow, Eq.~32!, we further
assume the dependence of temperature and velocity on
spatial coordinate as follows:
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 7. ~a! A tracked skeleton of a typical long structure obtained from the same snapshot as Fig. 6. The length of the skeleton is 0.2432p. Open circles are
marked at every other 50 mesh sizes along the skeleton from the end point marked with a filled square.~b! The same as Fig. 6~b! but for the longer structure.
Here the fraction of the part where the eigenvalue of the velocity gradient tensor becomes complex is increased. Inset: correspondinguxu along the skeleton.
~c! The same as Fig. 6~c! but for the longer structure. The normalized unit length scale in this figure is 1.7~2p/2048!. A width of the structure is again estimate
to be a few Kolmogorov dissipation scales~see Table I!.
q.

to

r
ll
T~x,y,t !5u~x!, ~34!

u~x,y,t !5~]yC,2]xC!1„0,v~x!…

5„2A f~x!,Ay f8~x!1v~x!…. ~35!

Thenx and the total vorticityv are given by

FIG. 8. Probability density functions of the ratioR calculated from the DNS
with 20482 grid points. The Burgers vortex layer solutions correspond
R51. The conditional probability distribution has a peak nearR51, i.e., the
structures having largerT-vorticity are closer to the Burgers vortex laye
solutions. The average ofT-vorticity uxuaverageis the spatial average over a
grid points.
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
x~x!5„0,2u8~x!…[„0,xy~x!…, ~36!

v~x,y!52DC1v8~x![V~x,y!1ṽ~x!. ~37!

We call ṽ response vorticity here. The velocity field, E
~35!, is uniquely decomposed into they-dependent and the
y-independent parts.

Imposing the general boundary conditions,

xy~x50!5x0 , ~38!

xy8~x50!50, ~39!

ṽ~x50!5ṽ0 , ~40!

ṽ8~x50!5ṽ08 , ~41!

steady solutions to Eqs.~5! and ~6! are easily obtained for
any f (x) as

xy~x!5x0e2 ~A/k! *0
x f (l)dl, ~42!

ṽ~x!5ṽ01ṽ08E
0

x

e2 ~A/n! *0
z f (l)dldz

1x0

ag sinw

k E
0

x

ze2 ~A/n! *0
z f (l)dldz. ~43!
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FIG. 9. The early stage evolution o
the structure shown in Fig. 6. The
longer structure in~b! reconnects to a
top-right neighboring structure at 0.3
turnover time after the instance o
Fig. 6.

FIG. 10. The early stage evolution of the ratioR of the structure shown in Fig. 6. In~c!, the length of the longer structure~denoted by the solid line! changes
abruptly due to the reconnection. Only the right end in~c! corresponds to the tracked structure shown~a! and~b!. Insets: corresponding modulus ofT-vorticity,
uxu. The modulus decays rapidly between 0.2 and 0.4 turnover time.
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FIG. 11. The later stage evolution o
the structure shown in Fig. 6. The
longer structure in~a! splits already at
0.51 turnover time. The shorter struc
ture in ~a! decays out at 0.67 turnove
time.

FIG. 12. The later stage evolution of the ratioR of the structure shown in Fig. 6. Insets: corresponding modulus ofT-vorticity, uxu.
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FIG. 13. ~a! Skeletons obtained in the DNS. This figure contains 10242 points out of 20482 grid points. Long structures tend to form ‘‘bundles.’’~b!
Enlargement of the square region (2002 grid points! in the upper left corner of~a!. ~c! T-vorticity, temperature and vorticity along the straight line shown
~b!. The abscissa is the length in mesh units along the line: open circles in~b! from the right bottom end to the left top end point correspond to the po
s50,20,...,100. In the figure ofT-vorticity, xperp andxparallel denote the components of the vectorx perpendicular and parallel to the line, respectively.
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The last term of Eq.~43! represents the vorticity induced b
the buoyancy.

Now we discuss the realizability of the external flow, E
~32!. If we claim that Eq.~33! is a steady solution of the
barotropic two-dimensional vorticity equation,

~U"“ !V5nDV, ~44!

whereU5(]yC,2]xC). Then the equation forf (x) is

n

A
f (4)~x!1 f ~x! f (3)~x!2 f 8~x! f 9~x!50, ~45!

wheref ( j )(x) denotes thej th order derivative. Equation~45!
has been studied by many authors as a model of a flow
a rigid wall.15 In Ref. 17, Chen and Okamoto, who we
interested in the finite time blow-up of the solution, de
with the time-dependent stream functionC52Ay f(x,t) in
a bounded domain and discussed the asymptotic beha
(t→`) of the solution to the equation forf (x,t), the
Proudman–Johnson equation.16 They showed that every so
lution decays to zero ast→` with homogeneous boundar
conditions.

Here instead of solving Eq.~45!, we assume that the
flow, Eq. ~32!, is formed by a larger scale flow in the turbu
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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ar

t

ior

lence field. That is, from a practical point of view, a stea
solution subjected to an external flow is no more than a lo
model of coherent structures in the turbulent field, so that
external flow need not satisfy Eq.~44!. Thus it may be pos-
sible to add a forcing term describing an effect of the larg
scale motions to Eq.~44!. Denoting the forcing term by
G(x,y), the equation forV @or f (x)] can be re-written as

~U"“ !V5nDV1G. ~46!

Then the steady-state equation for the total vorticity, E
~37!, can be written as

~u"“ !~V1ṽ !5xy~x!ag sinw1nD~V1ṽ !1G, ~47!

which yields the equation for the response vorticityṽ,

n

A

d2ṽ

dx2 1 f ~x!
dṽ

dx
5xy~x!

ag sinw

A
. ~48!

The solution, Eq.~43!, is obtained from Eq.~48!. By substi-
tuting f (x)5x, it is easily checked that the solutions Eq
~42! and ~43! contain Burgers vortex layer solutions.

In the following, we present two examples off (x) show-
ing more than one structure. As the first example, we d
with an external flow,
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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3395Phys. Fluids, Vol. 15, No. 11, November 2003 A class of steady solutions to 2D free convection
f ~x!54x322x, ~49!

which itself has vorticityV(x,y)524Axy. The stream lines
of the external flow is shown in Fig. 14. Here we assume
additional forcingG(x,y) that keeps the external field, Eq
~49!, steady. @Equation ~46! prescribes the forcing a
G(x,y)5192A2x3y.] We impose the boundary conditions,

xy~x50!5x0Þ0, ~50!

xy8~x50!50, ~51!

ṽ~x50!5ṽ0 , ~52!

ṽ~x50!85ṽ0850. ~53!

If the field f (x) is an odd function, taking the conditio
for vorticity, Eq. ~53!, is equivalent to assuming that th
solutions are even. This results in the localization of vortic
around the origin. The solutions, Eqs.~42! and~43!, are then
reduced to

FIG. 14. Stream lines of an external flowC(x)52y(4x322x). The
arrows denote the directions of the flow. Stagnation points
(21/&,0),(0,0) and (1/&,0).

FIG. 15. The solutions forC(x)52Ay(4x322x): theT-vorticity Eq. ~54!,
the corresponding temperatureu(x) and the response vorticity, Eq.~55!.
Here we set the parameters asA51, k51, ag51, w5p/4, x051,

u(x50)50 andṽ052e1/4Ap@11(2/Ap)*0
1/2e2z2

dz#/(4&)520.61.
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
n

xy~x!5x0e2 ~A/k!(x42x2), ~54!

ṽ~x!5ṽ01x0

ag sinw

k E
0

x

je2 ~A/k!(j42j2)dj,

5ṽ01x0

e~A/4k!ag sinw

2k E
0

x2

e2 ~A/k!(z2 1/2)2dz.

~55!

The constantṽ0 is determined so that the response vortic
vanishes at infinity, i.e.,

ṽ052x0

e~A/4k!ag sinw

2k F1

2
Akp

A
1E

0

1/2

e2 ~A/k! z2
dzG .

~56!

These solutions are plotted in Fig. 15. There are two bum
in xy . This solution catches features seen in Fig. 13~c!
arounds540.

As another example, let us consider the periodic flow

f ~x!5sinx. ~57!

This flow has vorticityV52Ay sinx. The corresponding
forcing G(x,y) is then given bynAy sinx. The streamlines
of this external flow Eq.~57! are shown in Fig. 16, where
stagnation points are located periodically. We impose
boundary conditions, Eqs.~50!–~53!. In particular we take
ṽ050 in this case. Then the general solutions, Eqs.~42! and
~43!, are expressed as

xy~x!5x0e2 ~A/k!(12cosx), ~58!

ṽ~x!5x0

ag sinw

k E
0

x

je2 ~A/k!(12cosj)dj, ~59!

which are plotted in Fig. 17. The temperature shows
staircase-like behavior ofu(x). As a result of that a row of
structures is seen. The solution, Eqs.~58! and ~59!, can be
useful to model the small wavy behavior embedded on
large temperature front, which is similar to the one shown
Fig. 13~c!. However, in Fig. 13~c! the strong peak of tem
perature arounds555 makes it rather hard to see this over
trend clearly.

IV. CONCLUDING REMARKS

We have examined a class of steady solutions to
two-dimensional Boussinesq approximation equations.
believe that these solutions well describe coherent struct
observed in the DNS of 2-DFC. Under an extended stag

e

FIG. 16. Stream lines of an external flowC(x)52y sinx. The arrows
denote the directions of the flow. Stagnation points are (np,0), n50,61,
62,... .
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tion flow C52Ay f(x), we obtained steady solutions o
T-vorticity and vorticity. The steadyT-vortex layers are
maintained by the balance between the strain of an exte
stagnation flow and the diffusion. Whenf (x)5x, the Bur-
gers vortex layer solutions are obtained, which model w
individual coherent structure obtained in DNS. Whenf (x)
Þx, the T-vortex solution can have multiple bumps, whic
can be a model of the collective behavior of the coher
structures seen in the DNS. So far we have taken for gra
the independence of an external flow and a response.
view is reasonable if we focus on local behavior of the c
herent structures. Indeed the local shape of the structure
quite similar to the steady solutions. Thus it is suggested
the characteristic time scale of the external strain field
well separated from that of structure’s motions.

The role of the coherent structures in statistical prop
ties of turbulence, which is expected to be universal, is s
an open question. Since the coherent structures have
long correlation length comparable to the scale of the
tropy ~temperature variance! containing range, their exis
tence may significantly break the locality hypothesis. Ho
ever, the authors have examined the relative diffusion
2-DFC turbulence recently and found that the coherent st
tures rather play an essential role in keeping the loca
These contradicting characteristics of the coherent struct
make research on turbulence challenging.

FIG. 17. A solution forC(x)52Ay sinx: the T-vorticity, Eq. ~58!, the
corresponding temperatureu(x) and the response vorticity, Eq.~59!. Here
we set the parameters asA51, k51, ag51, w5p/4, x051, u(x50)50
and ṽ050.
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We believe that coherent structures are universal and
sential ingredients of turbulence. Extensive researches on
herent structures are therefore required.
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