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Spinless impurities and Kondo-like behavior in strongly correlated electron systems

Satoshi Fujimoto
Department of Physics, Kyoto University, Kyoto 606, Japan

~Received 17 July 2000; published 14 December 2000!

We investigate magnetic properties induced by a spinless impurity in strongly correlated electron systems,
i.e., the Hubbard model in spatial dimensionD51,2, and 3. For the one-dimensional~1D! system exploiting
the Bethe ansatz exact solution we find that the spin susceptibility and the local density of states in the vicinity
of a spinless impurity show divergent behaviors. The results imply that the induced local moment is not
completely quenched at any finite temperatures. On the other hand, the spin lattice relaxation rate obtained by
bosonization and boundary conformal field theory satisfies a relation analogous to the Korringa law, 1/T1T
;x2. In the 2D and 3D systems, the analysis based upon the antiferromagnetically correlated Fermi liquid
theory reveals that the antiferromagnetic spin fluctuation developed in the bulk is much suppressed in the
vicinity of a spinless impurity, and thus magnetic properties are governed by the induced local moment, which
leads to the Korringa law of 1/T1.

DOI: 10.1103/PhysRevB.63.024406 PACS number~s!: 75.20.Hr, 71.27.1a, 74.72.2h
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I. INTRODUCTION

Recently, magnetic properties induced by spinless im
rities in correlated electron systems have attracted m
interest.1–6 Especially, to probe antiferromagnetic correl
tions of high-Tc cuprates the substitution of Cu sites wi
nonmagnetic impurities such as Zn, Al, and Li has been s
ied experimentally.1–4 According to NMR experiments, i
was found that the substitution with spinless impurities
duces local moments in the vicinity of impurities, which al
show Kondo-like behaviors. For instance, the spin susce
bility in the vicinity of an impurity shows a temperatur
dependence like;1/(T1TK), which implies the existence
of the characteristic energy scaleTK analogous to the Kondo
temperature.3 Moreover, the spin-lattice relaxation rate 1/T1
shows Korringa-like behaviors, 1/T1T}K2, for T,TK .4

HereK is the Knight shift. It is noted that in the vicinity of a
spinless impurity the antiferromagnetic spin correlati
which is developed in the bulk is much suppressed, and
magnetic correlation is dominated by the induced local m
ment. From theoretical points of view, it is nontrivial ho
this induced local moment governs the magnetic proper
around an impurity, suppressing the antiferromagnetic co
lation. In this paper, we shall deal with this issue. Althou
the experiments are carried out for high-Tc cuprates which
are essentially quasi-two-dimensional~quasi-2D! systems, it
is expected that such effects may depend on the lattice s
ture and the dimensionality. Thus, we consider Hubb
models with a spinless impurity in spatial dimensionD51,
2, and 3 to investigate how the dimensionality affects
induced magnetic properties. ForD51, the effects of a spin-
less impurity are incorporated into an open boundary con
tion as will be explained in the next section. Thus we co
sider the 1D Hubbard model with boundaries which
exactly solvable in terms of the Bethe ansatz method.
analyze the magnetic properties of this model using the e
solution and boundary conformal field theory. ForD52 and
3, we derive the Korringa relation satisfied in the vicinity
a spinless impurity which is observed in NMR experimen
0163-1829/2000/63~2!/024406~7!/$15.00 63 0244
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Our argument forD52, 3 is based upon Fermi liquid theor
in the presence of antiferromagnetic spin fluctuations.

The organization of this paper is as follows. In Sec. II, t
1D Hubbard model with a spinless impurity is considere
The spin susceptibility and the local density of states in
vicinity of an impurity are obtained based upon the Bet
ansatz exact solution. It is found that the induced momen
not screened completely at any finite temperatures. We
derive the spin-lattice relaxation rate 1/T1 which satisfies a
relation analogous to the Korringa law. In Sec. III, we d
cuss the 2D and 3D systems, exploiting the antiferromagn
cally correlated Fermi liquid theory. A summary is given
Sec. IV.

II. A SPINLESS IMPURITY IN THE ONE-DIMENSIONAL
HUBBARD MODEL

A. Mapping to the Hubbard model with boundaries and the
Bethe ansatz exact solution

The effects of a single impurity in one-dimensional co
related systems have been extensively studied so far.7,8 If the
interaction between fermions is repulsive, a potential scat
ing in the 1D Hubbard model is renormalized to an infin
strength, eventually cutting the system into two half-infin
chains in the low-energy scaling limit. Thus at sufficient
low temperatures the system can be treated as a Hub
chain with open boundaries, of which the Hamiltonian
given by

H52 (
s,i 51

L21

cs i
† cs i 111H.c.1U(

i 51

L

n↑ in↓ i2m (
s,i 51

L

ns i

2
H

2 (
i 51

L

~n↑ i2n↓ i !1V(
s

ns1 , ~1!

where the last term is a boundary potential. As we will s
below, the low-energy spin dynamics around the impur
with which we are concerned is mainly described by t
model, and the interaction or hopping between the two h
©2000 The American Physical Society06-1
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infinite chains is a subleading irrelevant interaction wh
can be incorporated by perturbative calculations.

The Bethe ansatz exact solutions of 1D correlated syst
with boundaries have been studied by many authors.9–21 In
connection with the spin dynamics in the vicinity of th
boundary, an intriguing result was obtained for the sup
symmetrict-J model by Essler.16 He obtained the divergen
behavior of the boundary spin susceptibility as a function
a magnetic fieldH, i.e., xboundary;1/H(ln H)2. It was first
predicted by de Sa and Tsvelik that such a Curie-like beh
ior is universal for integral models with boundaries.14 Later,
similar behavior was also found for the Hubbard model
half-filling by Asakawa and Suzuki.17 In the next subsection
we shall show that this divergent behavior holds also for
case away from half-filling with finiteU.

Here we summarize the basic equations which are
evant to the following arguments. The Bethe ansatz eq
tions of the 1D Hubbard model with boundaries obtained
Schulz many years ago are10

ei2kjLeif0(kj )5 )
b51

M

e1~sin kj2lb!e1~sinkj1lb!, ~2!

)
j 51

N

e1~la2sinkj !e1~la1sinkj !

5 )
b51
bÞa

e2~la2lb!e2~la1lb!, ~3!

whereen(x)5(x1 inu)/(x2 inu), u5U/4, andf0,L is a po-
tential at boundaries.N is the total number of electrons.M is
the total number of down spins.kj andla are rapidities for
charge and spin degrees of freedom, respectively. In the
lowing, we consider only the case of repulsive boundary
tentials. Thus the above equations have real roots. Pu
k2 j52kj , l2a52la , and taking a continuum limit, we
have the integral equations for the distribution functions
rapidities,

r~k!5
1

p
1

1

pL
f08~k!2

1

2pL

2u cosk

~sink!21u2

1coskE
2B

B dl

p

u

~sink2l!21u2
s~l!, ~4!

s~l!5
1

pL

2u

l214u2
1E

2Q

Q dk

p

u

~l2sink!21u2
r~k!

2E
2B

B dl8

p

2u

~l2l8!214u2
s~l8!. ~5!

N andM are given by

E
2Q

Q

r~k!dk5
2N11

L
, ~6!
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2B

B

s~l!dl5
2M11

L
. ~7!

Then the magnetization is expressed as

Sz

L
5

1

4E2Q

Q

r~k!dk2
1

2E2B

B

s~l!dl1
1

4L
. ~8!

The total energy is expressed in terms of the dressed e
gies,

E

L
5E

2Q

Q

dkS 1

p
1

1

pL
f08~k!2

1

2pL

2u cosk

~sink!21u2D «c~k!

1E
2B

B dl

pL

2u

l214u2
«s~l!, ~9!

where the dressed energies«c(k) and«s(l) are determined
by the integral equations

«c~k!522 cosk2
H

2
2m1E

2B

B dl

p

u

~sink2l!21u2
«s~l!,

~10!

«s~l!5H1E
2Q

Q dk

p

u

~sink2l!21u2
«c~k!

2E
2B

B dl8

p

2u

~l2l8!214u2
«s~l8!. ~11!

If one fixes the magnetic fieldH, B is determined by the
equilibrium condition]E/]B50, which is equivalent to the
condition«s(B)50. In the subsequent sections, we calcul
the spin susceptibility and the local density of states us
the above equations.

B. Spin susceptibility

In order to derive the spin susceptibility, we solve Eqs.~4!
and~5! for s(l) using the Wiener-Hopf method, and obta
the magnetization, Eq.~8!.

Applying the Fourier transformation and shifting the a
gument,l→l1B, we rewrite Eq.~5! as,

s~l1B!5 f 0~l1B!1E
0

`dl8

p
R~l2l8!s~l81B!

1E
0

`dl8

p
R~l1l812B!s~l81B!, ~12!

where

f 0~l1B!5
1

LE2`

` dv

2p

e2uuvue2 iv(l1B)

2 coshuv

1E
2Q

Q

dk
r~k!

2 cosh
p

u
~l1B2sink!

, ~13!
6-2
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R~x!5E
2`

` dv

2p

e2uuvue2 ivx

2 coshuv
. ~14!

The last term of the right-hand side of Eq.~12! is O(1/B2)
for small magnetic fields. Thus we neglect it. Then Eq.~12!
can be solved by using the standard Wiener-Hopf metho22

The solution is expressed in terms of the following functio

G1~v!5A2p
S 2 i

uv

p D 2 iuv/p

GS 1

2
2 i

uv

p D eiuv/p, ~15!

G2~v!5@G1~2v!#21, ~16!

Q1~v!1Q2~v!5G2~v! f̃ 0~v!, ~17!

f̃ 0~v!5E
2`

`

dl f 0~l1B!eivl, ~18!

whereQ1(v)@Q2(v)# is the analytic part ofG2(v) f̃ 0(v)
defined in the upper@lower# half-plane. Fourier transforming
Eq. ~12! and introducing the function s1(v)
5*0

`dleivls(l1B), we obtain the solution ass1(v)
5G1(v)Q1(v).

Now we deriveQ1(v) as follows. For small magnetic
fields, i.e., largeB, andl.0 the second term off 0(l1B) is
approximated as

E
2Q

Q

dk
r~k!

2 cosh
p

u
~l1B2sink!

'
2N11

L

1

2 cosh
p

u
~l1B!

.

~19!

This driving term is essentially the same as the bulk con
bution, with which we are not concerned. The first term
f 0(l1B) gives rise an interesting boundary effect. Usi
e2uuvu/2 coshuv5(n51

` (21)n21e22nuuvu and the Laplace
transformation

2nu

~l1B!21~2nu!2
5E

0

`

dte2(l1B)tsin~2nut!, ~20!

we rewrite the first term off 0(l1B) as

1

LE2`

` dv

2p

e2uuvue2 iv(l1B)

2 coshuv

5
1

pL (
n51

`

~21!n21E
2`

` dv

2pE0

`

dt sin~2nut!

3F 1

v1 i t
2

1

v2 i t G ie2 iv(l1B). ~21!

The analytic property of Eq.~21! solves Eq.~17!,
02440
:

i-
f

Q1~v!5
1

L (
n51

` E
0

`

dt sin~2nut!
e2tB

v1 i t
iG2~2 i t !

1bulk terms. ~22!

Finally, using Eq.~8!, we obtain the magnetization,

Sz5
1

2E0

`

dls~l1B!5
1

2
s1~0!;

1

LB
1bulk terms,

~23!

for largeB, i.e., small magnetic fields.B is related toH from
the condition«s(B)50. From Eqs.~10! and ~11!, we have
H5Ce2pB/2u for H!u. Here C is an constant. Then the
spin susceptibilityx5]Sz /]H behaves like

x;
1

L

1

H~ ln H !2
1bulk terms. ~24!

This H dependence is the same as that found for the h
filling case.17 The above result implies that in 1D systems t
magnetic moment induced by a nonmagnetic impurity is
screened completely even at zero temperature. This beha
is analogous to the underscreening multichannel Kondo
fect, as pointed out by de Sa and Tsvelik.14 The leadingH
dependence of Eq.~24! is not altered, even if one include
irrelevant interactions such as the hopping between the
half-infinite chains.

In this section, we restrict our discussion to the ze
temperature case. It is expected that at finite temperature
boundary spin susceptibility behaves likexboundary
;1/T(ln T)2. In order to confirm this prediction, we need
explore the thermodynamic Bethe ansatz method in the p
ence of boundaries. However, in the presence of bounda
the entropy cannot be expressed in terms of rapidity dis
bution functions in the continuum limit, because of the pre
ence of spurious states for vanishing rapidities, and thus
usual technique of the thermodynamic Bethe ansatz me
is not applicable. If we limit the argument to sufficient
low-temperature regions, undesirable contributions from
spurious state around the bottom of the energy spectrum
be small, and not give rise to serious errors. Even if we ad
this approximation, it is still a cumbersome task to solve
thermodynamic Bethe ansatz equations numerically for
temperatures. Thus here we just give a field-theoretical a
ment to justify the above speculation. According to t
boundary conformal field theory, the above divergent beh
ior of the spin susceptibility is due to the presence o
boundary entropySbound5T ln(A4pR).23,17HereR is the ra-
dius of the boson field of the Gaussian model which is
low-energy effective theory. If the leading irrelevant intera
tion is the marginal operator in the spin degrees of freedo
JL•JR , we haveR;R02g/ ln T for small T.24 Then, the
boundary spin susceptibility should behave likexboundary
;1/T(ln T)2. Thus we expect that this temperature depe
dence which signifies the presence of an unquenched l
moment may realize in this system.
6-3
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C. Local density of states

In models solvable in terms of the Bethe ansatz meth
the local density of states is defined as the derivative of
quantum number, which parametrizes rapidities, with resp
to the pseudoenergy, i.e.,]I j /]«(kj ).

25 For the 1D Hubbard
model, we can consider the density of states of holons
spinons, respectively. An interesting singular behavior du
the boundary appears in the spin degrees of freedom.

The local density of states of spinon as a function of
ergy is given by

rspin~«!5
]l

]«s
s~l!. ~25!

In the absence of magnetic fields,B→`, the solution of
Eq. ~5! is expressed as

s~l!5
1

LE2`

` dv

2p

euuvue2 ivl

2 coshuv

1E
2`

` dv

2p

e2 ivl

2 coshuvE2Q

Q

dkr~k!eiv sin k. ~26!

For l@1, the first term of Eq.~26! behaves like;1/l2,
while the second term is just the order ofO(e2pl/u). Thus
the main singular contribution comes from the former wh
is nothing but the boundary term. In a similar manner, fro
Eq. ~11! we obtain the asymptotic form of«s(l) for largel,
i.e., «s(l);Ae2pl/u, whereA is a constant. Then from Eqs
~25! and ~26!, we have

rspin~«!;
1

«~ ln «!2
, ~27!

for small «. Thus the local density of states also shows s
gular divergent behavior because of the presence of
boundary. It is noted that this result is similar to that of t
underscreened multichannel Kondo effect.25
s

of
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n
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The important message of this and the previous sub
tions is that in 1D correlated electron systems the locali
moment induced by a nonmagnetic impurity is not quench
at any temperatures. The inclusion of irrelevant interactio
such as hopping between semi-infinite chains does
change the result qualitatively. It should be stressed that
unquenched local moment is a particular property of the
systems where an impurity divides the system into two se
infinite chains. Such a separation of the system is not p
sible in higher-dimensional systems.

D. Spin-lattice relaxation rate

Here we calculate the spin-lattice relaxation rate 1/T1 in
the vicinity of a spinless impurity, i.e., a boundary, using t
bosonization method and boundary conformal field theo
The same kinds of calculations have been done for Heis
berg spin chains before.26,27 Some parts of the following re
sults are similar to those obtained in Refs. 26 and 27. Ho
ever, combining them with the results from the Bethe ans
exact solution, we shall see some new aspects. In the p
ous subsections, it was shown that the induced moment is
screened completely at any temperatures. Then one m
expect that 1/T1 behaves like that of an isolated spin, 1/T1

;Tx. However, as will be seen below, this naive expec
tion is incorrect.

According to the boundary conformal field theory, corr
lation functions for any operators in the vicinity of boun
aries are obtained by the analytic continuation of the anti

lomorphic part to the holomorphic part,O(z,z̄)5OL(vt
1 ix)OR(vt2 ix);OL(vt1 ix)OL(vt2 ix).28,29 Following
the standard technique, we have the asymptotic behavio
the spin-spin correlation function in the presence of
boundary,28,23,30
x~x,y,t !;S pT

vs
D 2Fsinh

pT

vs
~x2y2vt !G22

1e2ikF(x2y)

3 )
n5s,c F S pT

vn
D 2 sinh

2pTx

vn
sinh

2pTy

vn

sinh
pT

vn
~x1y1vnt !sinh

pT

vn
~x1y2vnt !sinh

pT

vn
~x2y1vnt !sinh

pT

vn
~x2y2vnt !

G Kn/2

.

~28!
on
the
r

Here vs and vc are the velocities of spinons and holon
respectively. Kc is the Luttinger liquid parameter in
the charge sector, and 1/2<Kc<1. Ks51 because of
the SU(2) symmetry of the spin sector. In the vicinity
the boundary, i.e.,x,y,ux2yu!vst, the staggered par
~the second term! of Eq. ~28! is less relevant in compariso
, with the uniform part ~the first term!. Thus in contrast
to the bulk behavior, the antiferromagnetic spin fluctuati
is much suppressed, and the uniform part gives
dominant contribution to 1/T1 near the boundary. Fourie
transforming Eq.~28!,31,32 we obtain, up to logarithmic cor-
rections,
6-4
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1

T1T
5 lim

v→0

1

v (
q,q8

Imx~q,q8,v!;
C

vs
2

1O~T2Kc!. ~29!

Here we have assumed that the hyperfine coupling cons
is independent ofq, and omitted it.C is a temperature-
independent constant. In the case thatvs is a constant, the
above result is equivalent to that obtained by Brunelet al. for
Luttinger liquids with boundaries.26 The spinon velocityvs is
related to the spin susceptibility obtained before, 1vs
5xbulk1xboundary/L. As claimed in the previous subsection
xboundary should show enhanced local correlations li
xboundary;1/T(ln T)2. Thus, near the boundary,

1

T1T
;~xboundary!

2. ~30!

Surprisingly, this relation is analogous to the Korringa re
tion. However, it is noted that in contrast to the conventio
Korringa law, the right-hand side of Eq.~30! shows a strong
temperature dependence. As mentioned in the previous
sections, the induced local moment is not quenched c
pletely. In spite of such an unscreened character of the
ment, the Korringa-like relation holds in the vicinity of
spinless impurity.

III. SPINLESS IMPURITY IN 2D AND 3D HUBBARD
MODELS

In this section, we discuss the local magnetic proper
caused by a spinless impurity in 2D and 3D Hubbard mod
in the presence of bulk antiferromagnetic fluctuations, i
very close to the half-filling. The main purpose of this se
tion is to derive the Korringa relation satisfied at the near
neighbor of the impurity site, which is observed in the NM
experiment for cuprates.4 The model Hamiltonian is given by

H5(
ks

Ekcsk
† csk1U(

i
n↑ in↓ i1E0(

s
ns0 . ~31!

Here Ek522t(a51
D coska (D52 or 3), and the last term

represents a spinless impurity localized at site 0. We res
our discussion to the case of the square lattice in 2D and
cubic lattice in 3D. Because of the presence of an impur
correlation functions are nonlocal. In the case ofU50, the
single-particle Green’s function is given by

Gkk8
0

~«n!5
dkk8

i«n1m2Ek
1

1

i«n1m2Ek

3
E0

12E0(
k9

1

i«n1m2Ek9

1

i«n1m2Ek8

,

~32!

where m is a chemical potential. ForUÞ0, the single-
particle Green’s function is obtained by solving the equat
02440
nt
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(
k9

@~ i«n1m2«k!dkk92Skk9~«n!2E0#Gk9k8~«n!5dkk8 .

~33!

The self-energySkk8(«) may be obtained by perturbativ
calculation in terms ofU. However, in the following quali-
tative argument we do not need an explicit expression
Gkk8(«n).

Before discussing the magnetic properties, it is usefu
sketch the spatial dependence of the density of states in
vicinity of an impurity. The density of states at the Ferm
level is given by

r~x,x8!52~1/p!(
kk8

ImGkk8
R

~0!eikxe2 ik8x8. ~34!

To simplify the calculation, we consider the strong limit
an impurity potential, i.e.,E0@U,t. The following argu-
ments do not change qualitatively even in the case of a fi
E0. Using Eq.~32!, we obtain the density of states at th
Fermi level for the noninteracting system,U50,

r0~x,x8!5Nx2x8~m!2
Nx~m!Nx8~m!

N0~m!
, ~35!

Nx~«![(
k

d~«2Ek!e
ikx5E

2`

` ds

2p
eis«)

i 51

D

Jni
~ ts!,

~36!

with Jn(x) the Bessel function andx5(n1 ,n2) for D52 and
x5(n1 ,n2 ,n3) for D53. Note that ifx or x8 is the impurity
site, the density of states vanishes,r0(x,0)5r0(0,x8)50.
We can easily show that if the electron density is close
half-filling, i.e., umu/t!1, then Nx(m);O„(m/t)2

… for the
site x on the sublattice which includes the nearest-neigh
site of the impurity,xNN ~denoted by theA sublattice!, and
Nx(m);N0(m) for the site x on the sublattice which in-
cludes the impurity site (B sublattice!. Thus from Eq.~35!
we immediately see that the local density of states around
impurity site shows strong spatial modulation similar to t
Friedel oscillation. The period of the oscillation is;1/kF
which is close to the half-filling value in this case. Ifx andx8
belong to theA sublattice, the local density of states is nea
equal to that of bulk systems,r0(x,x8);r0(uxu→`,
ux8u→`). On the other hand, ifxÞ0 andx8Þ0 belong to
the B sublattice,r0(x,x8);O„(m/t)2

…. Since the density of
states at the Fermi level is not renormalized by electr
electron interactions, this Friedel oscillation occurs forU
Þ0. This observation leads to an important implication f
local magnetic properties on the nearest-neighbor site of
impurity, xNN . Because of the Friedel oscillation and th
bipartite lattice structure, the local density of states on all
sites surrounding the sitexNN is much suppressed provide
that the impurity potential is sufficiently strong. Thus th
spin on the sitexNN is less screened than spins of electrons
the bulk. As a result, the local spin susceptibility on the s
xNN is strongly enhanced.

Now we consider the spin-lattice relaxation rate 1/T1 in
the vicinity of a spinless impurity. For simplicity, we assum
6-5
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that the hyperfine coupling constant does not depend oq.
We apply the general argument from the Fermi liquid the
to the case with a single spinless impurity.33,34 Then 1/T1 at
site xi is given by, up to constant factors,

1

T1T
5 lim

v→0
(
q,q8

Imx~q,q8,v!

v
eiqxie2 iq8xi

5 (
q1 ,q2 ,q3 ,q4 ,k,k8

ReL~q1 ,k1q2 ,k!

3ImGkk8
R

~0!ImGk1q2k81q3

R
~0!

3ReL~q4 ,k81q3 ,k8!eiq1xie2 iq4xi, ~37!

where L(q,k1q8,k) is a three-point vertex function. Th
diagrammatic expression of Eq.~37! which is thev-linear
term of Imx(q,q8,v) is shown in Fig. 1. The detail deriva
tion of this formula is given in Refs. 33 and 34. In the pre
ence of strong antiferromagnetic fluctuations, it is plausi
to assume thatL(q,k1q8,k) depends mainly onq andq8.
Thus in the following we discard thek dependence o
L(q,k1q8,k). It is useful to rewrite Eq.~37! in terms of
quantities in coordinate space,

1

T1T
5p2(

s,t
r~2xi2s,2xi1t !r~xi1s,xi2t !

3L~xi ,xi1s!L~xi2t,xi !. ~38!

Here,

L~x,x8!5 (
q,q8

ReL~q,q8!eiqxe2 iq8x8. ~39!

In the case that sitexi is far from the impurity, i.e.,uxi u
@a, where a is a lattice constant,r(xi1s,xi2t)→r(s
1t), L(xi ,xi1s)→L(2s), and thus the above expressio
is reduced to the usual formula of 1/T1 in bulk systems. It is
also noted that ifxi50, 1/T1T vanishes, sinceL(0,s) in-
cludesG(0,xj ) which vanishes as mentioned above. Here
are concerned with the case that the sitexi is the nearest
neighbor of the impurity site,xi5xNN .

To proceed further, we use a phenomenological exp
sion for L(q,q8). We assume that the three-point vert
function L(q,q8) consists of a part which is strongly en
hanced by antiferromagnetic spin fluctuations and a lo
part which depends onq andq8 weakly,

FIG. 1. diagram of thev-linear term of Imx(q1 ,q4 ,v). The
shaded part is the three-point vertex.
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L~q,q8!;LAF~q!dq,q81L loc~q,q8!. ~40!

The antiferromanetically correlated partLAF(q) has a strong
peak atq5Q, the staggered vector, and then is appro
mated as ReLAF(q);Rex(q;Q)5x(Q)/$11@jAF(q
2Q)#2%. Here we used the phenomenological expression
x(q;Q).35 As mentioned above,L loc(q,q8) is enhanced by
local magnetic correlations at sitexNN , i.e., L loc(q,q8)
;L loce

2 iqxNNeiq8xNN. Then, Eq.~37! is rewritten as

S 1

T1TD
NN

;F x~Q!

~jAF!mG 2

(
k,k8

ImGk,k8
R

~0!ImGk1Q,k81Q
R

~0!

1@ReL loc#
2 (

k,k8,q2 ,q3

ImGk,k8,q2 ,q3

R
~0!

3ImGk1q2 ,k81q3

R
~0!, ~41!

wherem52 for 2D systems andm53 for 3D systems. Since
x(Q);(jAF)2,35 the first term of Eq.~41!, which is the an-
tiferromagnetically correlated part, is much suppressed c
pared to the second term, i.e., the local correlation part. T
we obtain

S 1

T1TD
NN

;~ReL loc!
2. ~42!

Here we neglect all factors which are not enhanced by e
tron correlation. On the other hand, the local spin susce
bility at xNN is approximately given byx loc;ReL loc . Thus
Eq. ~42! establishes the Korringa relation satisfied at t
nearest-neighbor site of the impurity. As mentioned befo
this relation is actually observed in NMR experiments.4

IV. SUMMARY AND DISCUSSION

We have discussed some magnetic properties analo
to the Kondo effect induced by a spinless impurity
strongly correlated electrons systems. In the 1D system,
have shown that the spin susceptibility and the local den
of states near the impurity indicate divergent behaviors,
plying the presence of an unquenched local moment at
temperatures. We have also obtained a Korringa-like rela
between the spin-lattice relaxation rate and the local s
susceptibility, 1/T1T;(xboundary)

2. In 2D and 3D systems
the antiferromagnetically correlated Fermi liquid theory h
been applied. It has been shown that magnetic propertie
the vicinity of a spinless impurity are dominated by the i
duced moment rather than the antiferromagnetic spin fluc
tion developed in the bulk, and that the Korringa relati
holds at the near-neighbor site of the impurity.

The results obtained for the 1D system have an interes
implication to higher-dimensional systems. Suppose a se
infinite 2D Hubbard model with a boundary line, which
regarded as the coupled semi-infinite Hubbard chains.
cording to the results obtained in Sec. II, it is expected tha
some finite temperatures 1D-like strong spin correlations
cur in the vicinity of the boundary line, leading to a strong
enhanced density of states near the boundary. Such an
6-6
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hanced electron correlation and one dimensionality of
boundary line may give rise to strong fluctuations towa
some surface phase transition. For instance, if there exis
pairing interaction in the bulk system, the pairing correlati
may be enhanced near the boundary, leading to a hig
transition temperature than the bulk superconductivity. Ac
ally, it is reported that Sr2RuO4 with lamellar microdomains
of Ru metal shows a superconducting transition at a temp
ture higher thanTc of the pure system, and that superco
ductivity with higherTc occurs in the vicinity of the bound
v.
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ary between Sr2RuO4 and Ru metal.36 We would like to
pursue this possible mechanism of the enhanced trans
temperature in the near future.
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