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Spinless impurities and Kondo-like behavior in strongly correlated electron systems
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We investigate magnetic properties induced by a spinless impurity in strongly correlated electron systems,
i.e., the Hubbard model in spatial dimensibr=1,2, and 3. For the one-dimensior{aD) system exploiting
the Bethe ansatz exact solution we find that the spin susceptibility and the local density of states in the vicinity
of a spinless impurity show divergent behaviors. The results imply that the induced local moment is not
completely quenched at any finite temperatures. On the other hand, the spin lattice relaxation rate obtained by
bosonization and boundary conformal field theory satisfies a relation analogous to the KorringaTldw, 1/
~x?2. In the 2D and 3D systems, the analysis based upon the antiferromagnetically correlated Fermi liquid
theory reveals that the antiferromagnetic spin fluctuation developed in the bulk is much suppressed in the
vicinity of a spinless impurity, and thus magnetic properties are governed by the induced local moment, which
leads to the Korringa law of Tj.
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[. INTRODUCTION Our argument foD =2, 3 is based upon Fermi liquid theory
in the presence of antiferromagnetic spin fluctuations.
Recently, magnetic properties induced by spinless impu- The organization of this paper is as follows. In Sec. Il, the
rities in correlated electron systems have attracted muchD Hubbard model with a spinless impurity is considered.
interest:—® Especially, to probe antiferromagnetic correla- The spin susceptibility and the local density of states in the
tions of highT, cuprates the substitution of Cu sites with vicinity of an impurity are obtained based upon the Bethe
nonmagnetic impurities such as Zn, Al, and Li has been studansatz exact solution. It is found that the induced moment is
ied experimentally= According to NMR experiments, it not screened completely at any finite temperatures. We also
was found that the substitution with spinless impurities in-derive the spin-lattice relaxation rateTd/which satisfies a
duces local moments in the vicinity of impurities, which alsorelation analogous to the Korringa law. In Sec. lll, we dis-
show Kondo-like behaviors. For instance, the spin susceptieuss the 2D and 3D systems, exploiting the antiferromagneti-
bility in the vicinity of an impurity shows a temperature cally correlated Fermi liquid theory. A summary is given in
dependence like-1/(T+Tg), which implies the existence Sec. IV.
of the characteristic energy scdlg analogous to the Kondo
temperaturé.Moreover, the spin-lattice relaxation rateT/ Il. A SPINLESS IMPURITY IN THE ONE-DIMENSIONAL
shows Korringa-like behaviors, T{T=K?, for T<Ty.* HUBBARD MODEL
HereK is the Knight shift. It is noted that in the vicinity of a
spinless impurity the antiferromagnetic spin correlation
which is developed in the bulk is much suppressed, and the
magnetic correlation is dominated by the induced local mo- The effects of a single impurity in one-dimensional cor-
ment. From theoretical points of view, it is nontrivial how related systems have been extensively studied sc®féithe
this induced local moment governs the magnetic propertiemteraction between fermions is repulsive, a potential scatter-
around an impurity, suppressing the antiferromagnetic correing in the 1D Hubbard model is renormalized to an infinite
lation. In this paper, we shall deal with this issue. Althoughstrength, eventually cutting the system into two half-infinite
the experiments are carried out for high-cuprates which chains in the low-energy scaling limit. Thus at sufficiently
are essentially quasi-two-dimensioriguasi-2D systems, it low temperatures the system can be treated as a Hubbard
is expected that such effects may depend on the lattice struchain with open boundaries, of which the Hamiltonian is
ture and the dimensionality. Thus, we consider Hubbardjiven by
models with a spinless impurity in spatial dimensbr-1,
. . . . . L-1 L L
2, and 3 to investigate how the dimensionality affects the = t
induced magnetic properties. FDr=1, the effects of aspin- 1=~ 21 CoiCoi+1tH.CH UZ,I Miifyi _'“Uizl Noi
less impurity are incorporated into an open boundary condi- '
tion as will be explained in the next section. Thus we con- HE
sider the 1D Hubbard model with boundaries which is —521 (nm—nuHV; No1, 1
exactly solvable in terms of the Bethe ansatz method. We
analyze the magnetic properties of this model using the exaathere the last term is a boundary potential. As we will see
solution and boundary conformal field theory. Bd=2 and  below, the low-energy spin dynamics around the impurity
3, we derive the Korringa relation satisfied in the vicinity of with which we are concerned is mainly described by this
a spinless impurity which is observed in NMR experiments.model, and the interaction or hopping between the two half-

A. Mapping to the Hubbard model with boundaries and the
Bethe ansatz exact solution

o,i=
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infinite chains is a subleading irrelevant interaction which B

can be incorporated by perturbative calculations. J o(N)dN=
The Bethe ansatz exact solutions of 1D correlated systems -8

with boundaries have been studied by many authorsin Then the magnetization is expressed as

connection with the spin dynamics in the vicinity of the

boundary, an intriguing result was obtained for the super- S 1(Q 1B 1

symmetrict-J model by Esslet® He obtained the divergent T ZJQP(k)dk_ Efﬁs"()‘)d)ﬁ T ®

behavior of the boundary spin susceptibility as a function of

a magnetic fieldH, i.e., Xpoundary~ L/H(INH)? It was first ~ The total energy is expressed in terms of the dressed ener-

predicted by de Sa and Tsvelik that such a Curie-like behavgies,

ior is universal for integral models with boundartéd.ater,

2M+1
L

)

similar behavior was also found for the Hubbard model at E (@ 1 1 1 2ucosk
half-filling by Asakawa and SuzuRY.In the next subsection, |~ f_ dk ;”L E%(k)_ 2L (sink)2+u2) zc(K)
we shall show that this divergent behavior holds also for the
case away from half-filling with finiteJ. B d\ 2u
Here we summarize the basic equations which are rel- +J — ————¢&4(\), (9)
-BTL \2+4u?

evant to the following arguments. The Bethe ansatz equa-

tions of the 1D Hubbard model with boundaries obtained bXNhere the dressed energiegk) ande¢()\) are determined
Schulz many years ago afe by the integral equations

M

. . H B dA u
e'2itelo)= | | e (sink;—\p)ei(sinkj+Npg), (2 =— - == J —_——
[Lll i(sinkj—hgey(sink +xg), (2 so(k)=-2cosk— 5 —pt | - (sink—)\)2+u285(>\)'
(10
N
[T ex(n,—sinkj)ey(x,+sink)) Q dk u
j=1 e\ :H+f — —— &k
) ~Q 7 (sink—\)2+u? oK)
:;;[l e(N o= Apg)€2(N gyt Np), ) fB "~ ou o a
. - — ¢ .
B#: -B rs ()\_)\/)2“’4“2 S

wheree,(x) = (x+inu)/(x—inu), u=U/4, ande,, is a po- , o . .
tential at boundaries\ is the total number of electronst is T One fixes the magnetic fieltd, B is determined by the
the total number of down spink; and\,, are rapidities for equilibrium conditiondE/9dB=0, which is equivalent to the

charge and spin degrees of freedom, respectively. In the fofOnditiones(B)=0. In the subsequent sections, we calculate

lowing, we consider only the case of repulsive boundary pojthe spin suscept'ibility and the local density of states using
e above equations.

tentials. Thus the above equations have real roots. Puttin@

k_j=—kj, A_,=—\,, and taking a continuum limit, we _ o
have the integral equations for the distribution functions of B. Spin susceptibility
rapidities, In order to derive the spin susceptibility, we solve Egs.
and(5) for o(\) using the Wiener-Hopf method, and obtain
1 2u cosk the magnetization, Ed8).

1 1
p(K)=—+ —do(k)— Applying the Fourier transformation and shifting the ar-

27L (sink)2+ y2
(sink)+u gument,\ —\ + B, we rewrite Eq.(5) as,

B d\ u
- = <d\’
+COSkf—B - (sink—)x)2+u20()\)’ (4) U()\+B):f0()\+B)+fo7R()\—)\')U(7\’+B)
<d\’
U(A):i 2u +IQ% u (k) +f —RO+N +2B)o(A'+B), (12
mL \2+4u? J-Q7 (A—sink)?+u? 0
where
B d\’ 2u ,
_f_BTmU()\ ) (5) f LB :I_Joo do e—u‘w|e—iw()\+B)
oMBI=T] 57 Zcoshie
N andM are given by
Q p(K)
N+ 1 + ] dk - , (13
f_Qp(k)dk=T, (6) 2coshu—()\+B—sink)
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—tB

R _J‘oc dw e—U\w|e—iwx ” X 17 " . e o .
=] o S o (14) Q@)= 2, fo dtsin(2nut) ——iG " (~it)
The last term of the right-hand side of Ed.2) is O(1/B?) +bulk terms. (22

for small magnetic fields. Thus we neglect it. Then E®)
can be solved by using the standard Wiener-Hopf metfod. Finally, using Eq.8), we obtain the magnetization,
The solution is expressed in terms of the following functions:

Uw) ~iuel/m Szzlfmd)\a()mLB):10+(0)~i+bulkterms
(_i _) 2, 2 LB ’
' .
6" ()= 27 e, (15 3
F(g_' 7) for largeB, i.e., small magnetic field® is related toH from

the conditione((B)=0. From Egs.(10) and(11), we have
G (0)=[G*(—w)] %, (16) H_=Ce*’TB’2“_f<_)_r H<u. Here C is an constant. Then the
spin susceptibilityy=dS,/JH behaves like

Q (0)+Q (0)=G (w)fo(w), (17) 11

3 ) | X~ H(lnH)2+bquterms. (29
fo(w):f drfo(A+B)e'“*, (19

) This H dependence is the same as that found for the half-
filling casel’ The above result implies that in 1D systems the
magnetic moment induced by a nonmagnetic impurity is not
screened completely even at zero temperature. This behavior
is analogous to the underscreening multichannel Kondo ef-
fect, as pointed out by de Sa and TsvéfikThe leadingH
dependence of Eq24) is not altered, even if one includes
irrelevant interactions such as the hopping between the two
half-infinite chains.

In this section, we restrict our discussion to the zero-
temperature case. It is expected that at finite temperatures the
boundary , spin  susceptibility behaves likexyoundary

™ . L ™ ' ~1/T(InT)~. In order to confirm this prediction, we need to
2 COShJ()‘Jr B—sink) 2 COShJ(AJF B) explore the thermodynamic Bethe ansatz method in the pres-
(19 ence of boundaries. However, in the presence of boundaries,
the entropy cannot be expressed in terms of rapidity distri-
This driving term is essentially the same as the bulk contribution functions in the continuum limit, because of the pres-
bution, with which we are not concerned. The first term ofence of spurious states for vanishing rapidities, and thus the
fo(N+B) gives rise an interesting boundary effect. Usingusual technique of the thermodynamic Bethe ansatz method
e U°l2 costuw==;_,(-1)"*e ®™l and the Laplace is not applicable. If we limit the argument to sufficiently
transformation low-temperature regions, undesirable contributions from the
spurious state around the bottom of the energy spectrum may
o be small, and not give rise to serious errors. Even if we admit
= J dte” A *Blsin(2nut), (20) this approximation, it is still a cumbersome task to solve the

0 thermodynamic Bethe ansatz equations numerically for low
temperatures. Thus here we just give a field-theoretical argu-
ment to justify the above speculation. According to the
boundary conformal field theory, the above divergent behav-

whereQ " (w)[Q ()] is the analytic part o6~ (w)fo(w)
defined in the uppdiower] half-plane. Fourier transforming
Eg. (120 and introducing the function o (w)
=[odre'“*a(\+B), we obtain the solution asr*(w)
=G (0)Q" ().

Now we deriveQ " (w) as follows. For small magnetic
fields, i.e., largeB, and\ >0 the second term df,(A +B) is
approximated as

Q k 2N+1 1
dk p(k) _
-Q

2nu
(A+B)?+(2nu)?

we rewrite the first term of ;(A +B) as

EJ‘” doe HelgmieO+8) ior of the spin susceptibility is due to the presence of a
L) .27 2coshuw boundary entropByound= T IN(V47R).231" HereR is the ra-
. dius of the boson field of the Gaussian model which is the
1 E 1)1 * dw °°d . low-energy effective theory. If the leading irrelevant interac-
Tal & (=1 _2m)o t sin(2nut) tion is the marginal operator in the spin degrees of freedom,
J.-Jr, we haveR~R,—g/InT for small T.?* Then, the
1_ B 1_ ia-i0+B) (21) boundary 2spin susceptibility should_ behave likgoundary
w+it  w—it ~1/T(InT)~. Thus we expect that this temperature depen-
dence which signifies the presence of an unquenched local
The analytic property of Eq21) solves Eq(17), moment may realize in this system.
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C. Local density of states The important message of this and the previous subsec-

In models solvable in terms of the Bethe ansatz methoot'ons is that in 1D correlated electron systems the localized
the local density of states is defined as the derivative of thé'oment induced by a nonmagnetic impurity is not quenched
guantum number, which parametrizes rapidities, with respecdt any temperatures. The inclusion of irrelevant interactions
to the pseudoenergy, i.ell;/de(k;). 25 Eor the 1D Hubbard Such as hopping between semi-infinite chains does not
model, we can consider the den5|ty of states of holons anghange the result qualitatively. It should be stressed that this
spinons, respectively. An interesting singular behavior due téinquenched local moment is a particular property of the 1D

the boundary appears in the spin degrees of freedom. systems where an impurity divides the system into two semi-
The local density of states of spinon as a function of endnfinite chains. Such a separation of the system is not pos-
ergy is given by sible in higher-dimensional systems.
2N
psp|n(8) _0'(7\) (25

o ) D. Spin-lattice relaxation rate
In the absence of magnetic field3;—«, the solution of

Eq. (5) is expressed as Here we calculate the spin-lattice relaxation rat€, lih
de eUlelg=ior the vicinity of a spinless impurity, i.e., a boundary, using the
a(\)= _f B — bosonization method and boundary conformal field theory.
LJ_»27 2 coshuw

The same kinds of calculations have been done for Heisen-
= de e (o o berg spin chains befor&:?” Some parts of the following re-

+f — —f dkp(k)e'sink (26)  sults are similar to those obtained in Refs. 26 and 27. How-

~=27 2 Cosfuw ] —q ever, combining them with the results from the Bethe ansatz

For A>1, the first term of Eq(26) behaves like~1/\?, exact solution, we shall see some new aspects. In the previ-

while the second term is just the order@fe”™!). Thus  OuUS subsections, it was shown that the induced moment is not

the main singular contribution comes from the former whichscreened completely at any temperatures. Then one might
is nothing but the boundary term. In a similar manner, fromexpect that IV, behaves like that of an isolated spinT1/

Eq. (11) we obtain the asymptotic form afy(\) for large\, ~Tyx. However, as will be seen below, this naive expecta-
i.e.,e{(A\)~Ae ™Y whereA is a constant. Then from Egs. tion is incorrect.
(25) and (26), we have According to the boundary conformal field theory, corre-

lation functions for any operators in the vicinity of bound-
(&)~ 1 27 aries are obtained by the analytic continuation of the antiho-
Popin. & (In g)?’ lomorphic part to the holomorphic parO(z,?)=O|_(vt
+ix)Or(vt—ix)~O, (vt+ix)O. (vt—ix).2®?° Following
e standard technique, we have the asymptotic behaviors of

e spin-spin correlation function in the presence of the
bou dary28 ,23,30

for smalle. Thus the local density of states also shows sin-
gular divergent behavior because of the presence of th
boundary. It is noted that this result is similar to that of thel
underscreened multichannel Kondo effétt.

-2

7TT 2 i 7TT ik B
X(X,y,t)’\' - Slnh—(X—y—Ut) +e? e(x—y)
Us Vg
27Tx . 27Ty K, /2
)2 Slnh—smh_
x 1 (_
v=S,C U,

ooaT ooaT ) ooamT
SInhU—(x+y+vVt)SInhU—(ery—vVt)smhv—(x—y+th)sth—(x—y—v,,t)

(28

Here v, and v, are the velocities of spinons and holons, with the uniform part(the first term. Thus in contrast
respectively. K. is the Luttinger liquid parameter in to the bulk behavior, the antiferromagnetic spin fluctuation
the charge sector, and ¥X.<1. K;=1 because of is much suppressed, and the uniform part gives the
the SU(2) symmetry of the spin sector. In the vicinity of dominant contribution to I/; near the boundary. Fourier
the boundary, i.e.x,y,|x—y|<vd, the staggered part transforming Eq(28),*3?*we obtain, up to logarithmic cor-
(the second terjnof Eq. (28) is less relevant in comparison rections,

024406-4



SPINLESS IMPURITIES AND KONDO-LIKE BEHAVI(R . . . PHYSICAL REVIEW B 63 024406

1 1 C .
—=lim= >, IMx(9,q", )~ — +O(T*e). (29 2 [(ien+ m— e S — Skwr(en) — EolGrnr(£0) = S -
k”

T,T
(33

Here we have assumed that the hyperfine coupling constante self-energys,.(¢) may be obtained by perturbative

is independent ofy, and omitted it.C is a temperature- calculation in terms of). However, in the following quali-
independent constant. In the case thatis a constant, the tative argument we do not need an explicit expression of
above result is equivalent to that obtained by Bruetedl.for G, (¢,).

Luttinger liquids with boundarie¥’ The spinon velocity  is Before discussing the magnetic properties, it is useful to
related to the spin susceptibility obtained beforeps1l/ sketch the spatial dependence of the density of states in the

= Xbulkt Xboundary/ L- AS claimed in the previous subsections, vicinity of an impurity. The density of states at the Fermi
Xboundary Should show enhanced local correlations likeevel is given by

Xboundary~ L/T(INT)%. Thus, near the boundary,

w—0" q,q Usg

L p(xX') == (Um) 2, ImGyi, (0)e""e . (34)
ﬁN(Xboundar))z- (30) . . ,kk . L
To simplify the calculation, we consider the strong limit of
an impurity potential, i.e.Ey>U,t. The following argu-
ments do not change qualitatively even in the case of a finite

Ey. Using Eq.(32), we obtain the density of states at the

Surprisingly, this relation is analogous to the Korringa rela-
tion. However, it is noted that in contrast to the conventional
Korringa law, the right-hand side of E(B0) shows a strong . . .
temperature dependence. As mentioned in the previous sufermi level for the noninteracting systetd =0,
sections, the induced local moment is not quenched com- Ny (20) Ny ()
pletely. In spite of such an unscreened character of the mo- po(X,X') =Ny () — )
ment, the Korringa-like relation holds in the vicinity of a No()
spinless impurity.

: (39

D
) © ds .
Ny(s)=> 5~ EQeiie J 98 o T 3, (1),
I1l. SPINLESS IMPURITY IN 2D AND 3D HUBBARD k o 27T i=1 !
MODELS (36)

In this section, we discuss the local magnetic propertiedVith J,(x) the Bessel function and= (n,,n,) for D=2 and
caused by a spinless impurity in 2D and 3D Hubbard model&=(n1,N2,n3) for D=3. Note that ifx or x" is the impurity
in the presence of bulk antiferromagnetic fluctuations, i.e.site, the density of states vanisheg(x,0)=pe(0x")=0.
very close to the half-filling. The main purpose of this sec-We can easily show that if the electron density is close to
tion is to derive the Korringa relation satisfied at the neareshalf-filling, i.e., |u|/t<1, thenN,(u)~O((u/t)?) for the
neighbor of the impurity site, which is observed in the NMR site x on the sublattice which includes the nearest-neighbor
experiment for cupratésThe model Hamiltonian is given by site of the impurity,xyy (denoted by theA sublattice, and
N, () ~Ng(u) for the sitex on the sublattice which in-
cludes the impurity siteR sublattice. Thus from Eq.(35)
H=2 Echicoxt U niuni+Eo> nyo. (3D we immediately see that the local density of states around the
ko ! 7 impurity site shows strong spatial modulation similar to the
Friedel oscillation. The period of the oscillation i81/kg

_ D _
Here E, = —212,_,c0sk, (D=2 or 3), and the last term which is close to the half-filling value in this casexlandx’

represents a spinless impurity localized at site 0. We restri . . .
our discussion to the case of the square lattice in 2D and tﬁlgelong o theA sublattice, the local density of states is nearly

cubic lattice in 3D. Because of the presence of an impurity(gqual to that of bulk systemspo(X,x")~po(|x| =,

) . {x"|—c). On the other hand, ik#0 andx’+#0 belong to
correlation functions are nonlocal. In the caselbf 0, the /' sublattice,po(x,x")~O((u/t)?). Since the density of
single-particle Green’s function is given by

states at the Fermi level is not renormalized by electron-
electron interactions, this Friedel oscillation occurs tbr
Ski 1 #0. This observation leads to an important implication for
ientu—Ey ieqtu—Ey local magnetic properties on the nearest-neighbor site of the
impurity, xyy. Because of the Friedel oscillation and the
Eo 1 bipartite lattice structure, the local density of states on all the
1 ient+u—Ep sites surrounding the siteyy is much suppressed provided
1-Ep>, ——————— that the impurity potential is sufficiently strong. Thus the
K lentu—Ee spin on the sitexyy is less screened than spins of electrons in
(32)  the bulk. As a result, the local spin susceptibility on the site
Xnn IS strongly enhanced.
where o is a chemical potential. FoJ #0, the single- Now we consider the spin-lattice relaxation ratd&,lin
particle Green’s function is obtained by solving the equatiorthe vicinity of a spinless impurity. For simplicity, we assume

GEkr(gn) =

X
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A(9,9")~ App(d) 8g,q' T Aioc(d,9")- (40)

The antiferromanetically correlated parhe(q) has a strong
peak atq=Q, the staggered vector, and then is approxi-
mated as  R&ar(q)~Rex(qd~Q)=x(Q)/{1+[£ar(q
—Q)]?. Here we used the phenomenological expression for
x(qd~Q).%® As mentioned above\..(q,q’) is enhanced by
k+q2 k’+q3 local magneti_c’ correlations at siteyy, i-€., Ao(9,9")

~ A8 TN XN Then, Eq.(37) is rewritten as

FIG. 1. diagram of thew-linear term of Iny(q,,94,»). The )

shaded part is the three-point vertex. (i) N x(Q) > ImGEk,(O)ImGE )
; i TaT (&aR)™] kK’ ’ rekire
that the hyperfine coupling constant does not depend.on NN AF :
We apply the general argument from the Fermi liquid theory
to the case with a single spinless impurfy** Then 1T, at +[ReAjpl? X |mGEkr,q2,q3(0)
site x; is given by, up to constant factors, kk'.dz.03
R
1 3 Im)((q,q',w)eiqxie_iq,xi XImGk+q2,k’+q3(O)! (41)
T o a.9’ w wherem=2 for 2D systems anth= 3 for 3D systems. Since
x(Q)~ (éap)?,% the first term of Eq(41), which is the an-
= 2 ReA (g, k+q5,K) tiferromagnetically correlated part, is much suppressed com-
01.02.03.04. K.k’ pared to the second term, i.e., the local correlation part. Thus
R R we obtain
X ImGkk,(O)ImGquk,ma(O) .
X ReA(qq,K' +qg,k")eldrXie 4 (37) ﬁ) NN~(ReA|oc)2- (42)

where A(qg,k+q’,k) is a three-point vertex function. The
diagrammatic expression of E¢37) which is the w-linear
term of Imy(q,q’,) is shown in Fig. 1. The detail deriva-
tion of this formula is given in Refs. 33 and 34. In the pres
ence of strong antiferromagnetic fluctuations, it is plausibl
to assume that (g,k+q’,k) depends mainly o andq’.
Thus in the following we discard th& dependence of
A(q,k+q’,k). It is useful to rewrite Eq(37) in terms of

Here we neglect all factors which are not enhanced by elec-
tron correlation. On the other hand, the local spin suscepti-
_bility at xyy is approximately given by o.~ReA ... Thus
£Fa. (42) establishes the Korringa relation satisfied at the
nearest-neighbor site of the impurity. As mentioned before,
this relation is actually observed in NMR experimehts.

quantities in coordinate space, IV. SUMMARY AND DISCUSSION
1 We have discussed some magnetic properties analogous
_:7722 p(—X;—s,—X;+1)p(X;+5,x—t) to the Kondo effect induced by a spinless impurity in
T, T sit strongly correlated electrons systems. In the 1D system, we

have shown that the spin susceptibility and the local densit
XABGXFS)A G =Ex). B8 4t states near the impErity indiczte di\)//ergent behaviors, imY
Here, plying the presence of an unquenched local moment at any
temperatures. We have also obtained a Korringa-like relation
between the spin-lattice relaxation rate and the local spin
susceptibility, 1T1T~(Xb0unda,92. In 2D and 3D systems,
the antiferromagnetically correlated Fermi liquid theory has
In the case that site; is far from the impurity, i.e.[x]|  been applied. It has been shown that magnetic properties in
>a, where a is a lattice constantp(x;+s,x;—t)—p(s  the vicinity of a spinless impurity are dominated by the in-
+1), A(Xi,xi+s)—A(—s), and thus the above expression duced moment rather than the antiferromagnetic spin fluctua-
is reduced to the usual formula ofTk/in bulk systems. Itis tion developed in the bulk, and that the Korringa relation
also noted that ifx;=0, 1/T;T vanishes, since\(0,5) in-  holds at the near-neighbor site of the impurity.
cludesG(0,x;) which vanishes as mentioned above. Here we  The results obtained for the 1D system have an interesting
are concerned with the case that the sitds the nearest implication to higher-dimensional systems. Suppose a semi-
neighbor of the impurity sitex; =Xy - infinite 2D Hubbard model with a boundary line, which is
To proceed further, we use a phenomenological expresegarded as the coupled semi-infinite Hubbard chains. Ac-
sion for A(q,q’). We assume that the three-point vertex cording to the results obtained in Sec. I, it is expected that at
function A(q,q’) consists of a part which is strongly en- some finite temperatures 1D-like strong spin correlations oc-
hanced by antiferromagnetic spin fluctuations and a locatur in the vicinity of the boundary line, leading to a strongly
part which depends og andq’ weakly, enhanced density of states near the boundary. Such an en-

A(x,x')= 2, ReA(q,q’)e'*e 1a'x" (39
a.9'
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hanced electron correlation and one dimensionality of theyry between SRuQ, and Ru metat® We would like to
boundary line may give rise to strong fluctuations towardpursue this possible mechanism of the enhanced transition
some surface phase transition. For instance, if there existstamperature in the near future.

pairing interaction in the bulk system, the pairing correlation
may be enhanced near the boundary, leading to a higher
transition temperature than the bulk superconductivity. Actu-
ally, it is reported that SRuQ, with lamellar microdomains The author thanks N. Kawakami, H. Frahm, and K. Ya-
of Ru metal shows a superconducting transition at a temperanada for invaluable discussions. This work was partly sup-
ture higher thanl, of the pure system, and that supercon-ported by a Grant-in-Aid from the Ministry of Education,
ductivity with higherT, occurs in the vicinity of the bound- Science, Sports and Culture, Japan.
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