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We develop a nonlinear elasticity theory in which the elastic energy is a periodic function of five strain
components in three dimensions. We then study dislocation formation under applied shear strain in one and two
phase alloys. In two phase states loops of edge dislocations appear in the interface regions with increasing
strain. They grow into the softer regions gliding along the Burgers vector. These results are crucial to under-
stand mechanical properties of two phase solids.
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Dislocations often play decisive roles in various phase
transformations in crystalline solids. They are produced
when the lattice constants or the crystalline structures of the
two phases are not close.1 With their appearance the conti-
nuity of the lattice planes through the interfaces is lost par-
tially or even completely, resulting in the so-called coher-
ency loss. In particular, coarsening of incoherent
microstructures has been studied in fcc Al-Sc alloys.2 It is
also known that dislocations are proliferated in plastic flow.
In two phase states such dislocations grow into the softer
regions with their ends pinned at the interfaces.3,4 As a result,
mechanical properties of two phase solids are very different
from those of one phase solids.1

Most theoretical papers on the elastic effects in phase
transitions have treated the coherent case without
dislocations.5–8 Theory in the incoherent case is much more
difficult and numerical studies have been performed in two
dimensions �2D�9–11 and in three dimensions �3D�.12 In these
simulations dislocations have been treated as singular points
or lines in the linear elasticity scheme. Though in 2D, we
recently presented numerical results of dislocation formation
and gliding in two phase solids13 on the basis of a simple
nonlinear elasticity theory.14 In 3D, however, dislocations are
mobile curved lines and assume very complex configurations
and 3D simulations are needed to understand the real physi-
cal processes.15,16 In this Rapid Communication we will de-
velop a 3D nonlinear elasticity theory, perform 3D simula-
tions both in one and two phase states, and provide physical
pictures of these complex phenomena. A merit of our ap-
proach is its extreme simplicity, while it still captures the
realistic dislocation dynamics.

We consider an AB alloy without vacancies and intersti-
tials, where the order parameter � is the composition differ-
ence in the range −1���1. In the free energy F=�drf ,� is
coupled to the elastic displacement u= �ux ,uy ,uz�. The free
energy density f is written as
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The first term is the Bragg-Williams free energy density
where v0 is the volume of a unit cell, T0 is the critical tem-

perature in the absence of the elastic coupling. The second
term is the gradient term. The third term is the coupling
between � and the dilation strain e1=� ·u arising from the
atomic size difference of the two components.5 The last term
is the elastic free energy,

fel =
1

2
Ke1

2 + ��e2,e3� + ��e4,e5,e6� . �2�

Supposing a cubic solid with the principal axes in the x, y,
and z directions, we define the strain components as

e2 = �xx − �yy, e3 = �2�zz − �xx − �yy�/�3,

e4 = �xy, e5 = �yz, e6 = �zx, �3�

where �ij = ��ui /�xj +�uj /�xi� /2. The diagonal strains e2 and
e3 give rise to a contribution due to stretching,

� =
�2

4�2�3 − cos�2�e2−� − cos�2�e2+� − cos�4�

�6
e3	� ,

�4�

where e2±=e2 /�2±e3 /�6. The shear strains e4, e5, and e6
give rise to a shear contribution,

� =
�3

4�2 
3 − cos�2�e4� − cos�2�e5� − cos�2�e6�� . �5�

Notice that � and � are invariant with respect to a � /2
rotation around the x axis, which changes the strains as e2�
=e2 /2−�3e3 /2, e3�=−�3e2 /2−e3 /2, e4�=e6, e5�=−e5, and e6�
=−e4. Similarly, they are invariant with respect to � /2 rota-
tions around the y and z axes.17 For small strains we obtain
the standard forms, ���2�e2

2+e3
2� /2 and ���3�e4

2+e5
2

+e6
2� /2, in the linear elasticity theory.18 The crystal is also

unchanged with respect to shear deformation ux→ux+y or
e4→e4+1 in the xy plane. Thus fel is required to be a peri-
odic function of e4, e5 and e6 with period 1. The simplest
elastic energy satisfying these requirements is given by Eq.
�2�. The elastic moduli �2 and �3 depend on � as8

�2 = �20 + �21�, �3 = �30 + �31� , �6�

while the bulk modulus K is a constant. For positive �20 and
�30 the regions with larger �smaller� � are harder �softer�
than those with smaller �larger� �. It is known that aniso-

PHYSICAL REVIEW B 72, 100101�R� �2005�

RAPID COMMUNICATIONS

1098-0121/2005/72�10�/100101�4�/$23.00 ©2005 The American Physical Society100101-1

http://dx.doi.org/10.1103/PhysRevB.72.100101


tropic elastic deformations tend to be localized in the softer
regions in phase separation.8

The lattice velocity v=�u /�t obeys

	
�v
�t

= � · 
J + �0�
2v , �7�

where 	 is the mass density and 
J= 

ij� is the elastic stress
tensor �=�f /��ij�. For example, 
xy =�3 sin�2�e4� /2�. The
nonlinearity of 
J is most important in Eq. �7�. We introduce
the shear viscosity �0, which gives rise to damping of u. The
composition is governed by the diffusive equation

��

�t
= � · ���� �





�
F . �8�

The kinetic coefficient is assumed to be of the form ����
=�0�1−�2�. Then � obeys a simple diffusion equation in the

FIG. 1. Stress vs strain in a one phase state �broken line� and in
a two phase state under cyclic shear �solid line�. There are no de-
fects initially. Edge dislocations appear in plastic flow.

FIG. 2. �Color online� Shear strain e4 exhibiting slip planes
�upper plate� and shear deformation energy � at z=20 with peaks at
dislocation cores �lower plate� in a one phase state at �=0.296. A
1/4 of the total plane is shown in the lower figure. The x, y, and z
axes are in red, blue, and green, respectively.

FIG. 3. �Color online� Time
evolution of e4 �upper figures� and
� �lower figures� under shear �
= �̇t. They take large values on
slip planes and dislocation cores,
respectively. Blue regions repre-
sent hard domains. Dislocation
loops are trapped at the interfaces.
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dilute limit �→ ±1 with the diffusion constant D0
=�0kBT /v0. Without applied stress, Eqs. �7� and �8� yield
dFT/dt�0 assuring approach to equilibrium, where FT=F
+�dr	v2 /2 is the total free energy. In this sence they are
self-consistent.19

We numerically integrated Eqs. �7� and �8� on a 128
�128�128 lattice using a staggered lattice method.14 The
mesh size is equal to the lattice constant a. We applied av-
erage shear strain �= ��ux /�y�= �e4� and imposed the
periodic boundary condition on the deviation 
u
= �ux−�y ,uy ,uz�. We set K /�20=4.5, � /�20=1.5, and
kBT0 /v0�20=0.05 in terms of �20 in Eq. �6�. Space, time, and
temperature will be measured in units of a, �0=a�	 /�20�1/2,
and v0�20/kB. We assume weak cubic elastic anisotropy with
�30/�20=1.1 and moderate elastic inhomogeneity with �21
=�31=0.6�20. The spinodal temperature, below which one
phase states become unstable, is then Ts�0.43 at ���=0. The
dimensionless kinetic coefficients are �*=�0�0�20a

−2=10−4

and �*=�0 /�0�20=0.1. The relaxation of u is faster than that

of � by �* /�*=�0 /D0	=103, so we integrated Eq. �7� using
an implicit Crank-Nicolson method. In Fig. 1 we show the
average stress �
xy� in units of �20 after application of shear
at t=0. The shear rate �̇=d� /dt will be measured in units of
�0

−1.
In the one phase case we set T�0.5 and �̇=10−4.20 The

initial value of u is a random Gaussian number with variance
0.01a at each lattice point. The stress exhibits a sharp over-
shoot with appearance of edge dislocations. In our case the
instability point of homogeneous states is given by
�2� /�e4

2=�3 cos�2�e4�=0 or �=e4=1/4. Figure 2 displays
a 3D snapshot of the shear strain e4 and a 2D cross section of
the shear elastic energy � at z=20 for �=0.296. We can see
multiple formation of slip planes �upper plate� and edge dis-
locations �lower plate�. The core regions have higher �.21 As
in 2D,14 these dislocations do not disappear even if the shear-
ing is stopped. They can be metastable due to the Peierls
potential arising from the discrete lattice structure.22

In the two phase case we prepared a coherent domain
structure at T=0.42 with ���=0, where the cuboidal domains
are harder than the percolating matrix.8 We then applied
cyclic shear defined by �̇=10−3 for 0� t−ntp� tp /2 and
�̇=−10−3 for tp /2� t−ntp� tp �n=0,1 , ¯ � with period tp

=780, as shown in Fig. 1. Since e4 takes considerably large
values ��0.1� near the interfaces, dislocation formation is
triggered earlier than in the one phase case. From the second
cycle, ��0.1 and 0.3 even for �
xy�=0, and �
xy��−0.13
even for �=0. Figure 3 shows snapshots of e4 and � at the
three points marked in Fig. 1. The dislocation loops form the
boundaries of the slip planes extending into the soft regions,
while their ends are trapped at the interfaces. Figure 4 shows
2D cross sections of �ux−�y ,uy� and �.

In plastic flow we define a regular elastic strain �el by
�
xy�=�3 sin�2��el� /2� in terms of the average stress. We
then define the average defect energy density,

fD�t� = �fel��t� − �fel��0� − ����el,0,0�� , �9�

in the course of cyclic shear. The first term is the average
elastic energy density at time t, the second term is that at t

FIG. 4. Displacement deviation �ux−�y ,uy� �upper plate� and �
�lower plate� at �=0.206 on a 1/4 plane at z=20. The � �indicating
the Burgers vector� in the upper figure and the peaks in the lower
figure represent edge dislocations.

FIG. 5. Defect energy density fD�t� defined by Eq. �9� in units of
�20 vs strain ��t� in cyclic shear in a two phase state.
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=0 arising from the deformations around the domains �=8
�10−4�20�, and the third term is the regular elastic energy
density due to �el. As shown in Fig. 5, fD�t� is around
10−3�20 for ��0.3 from the second cycle. For larger �, how-
ever, fD�t� increases abruptly with increasing �, where the
Peierls potential is broken and the dislocation loops begin to
expand. If dislocations give rise to an elastic energy density
of order 10−3�20, the dislocation line density becomes of
order 2�10−3 /a2.23 The same order of magnitude can also
be obtained directly if the total length of high-value regions
of � is divided by the system volume �see Fig. 3�.

In summary, developing a simple efficient scheme, we
have studied dislocation dynamics in binary alloys under
simple shear deformations. Their gliding motion along the
Burgers vector4 is preferentially into the softer regions.
Therefore, the composition dependence of the elastic moduli
in Eq. �6� �elastic inhomogeneity� is essential in our theory.
Note that our simulation times are much shorter than the

time scale of the composition evolution. As has been con-
firmed in our previous two-dimensional simulation,13 there
should eventually appear a compositional Cottrell atmo-
sphere around each dislocation core also in three
dimensions,4 which can affect dislocation dynamics and
phase separation on long time scales. We will examine in
future how dislocations influence various phase transitions in
solids. In addition, in one phase states, dislocations tend to
be formed close to preexisting dislocations and shear bands,
where strains are localized, thicken with decreasing the shear
rate in the plastic flow.20,24 Simulation of dislocation forma-
tion under uniaxial deformations is also under way.
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