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A variational associating fluid theory is proposed to describe equations of state for expanded fluid
mercury. The theory is based on the soft-sphere variational theory, incorporating an ab initio
diatomic potential and an attractive many-body potential; the latter is evaluated with quatnum
chemical methods and expressed as a function of the local atomic coordination number and the
nearest-neighbor distance. The resultant equation of state can reproduce the observed gas-liquid
coexistence curve with good accuracy, without introducing phenomenological effective pair
potentials. Various thermodynamic quantities such as pressure, isochoric thermal pressure
coefficient, adiabatic sound velocity, and specific heat are calculated over a wide
density-temperature range and compared with available experimental data. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2712443�

I. INTRODUCTION

Expanded fluid metals undergo liquid-gas and metal-
nonmetal �M-NM� transitions at high temperatures and high
pressures.1 Mercury, whose gas-liquid critical temperature is
the lowest �Tc=1751 K� among all the fluid metals, has so
far been most intensively studied; a number of experimental
data on thermodynamic, structural, transport, and optical
properties are currently available over a wide range of den-
sities and temperatures.1–4

Despite of the progress in experimental studies, theoret-
ical models for the equation of state and gas-liquid coexist-
ence curve of mercury have not been established yet, due
mainly to the difficulty in describing phase transitions ac-
companying a drastic change in chemical bonding; the low-
density gas phase is dominated by weak van der Waals forces
between 6s2 closed-shell atoms, whereas the dense liquid
phase is characterized by strong metallic cohesion with over-
lapping 6s-6p bands. At elevated temperatures near Tc,
M-NM transition occurs within the liquid phase at around
9 g/cm3, which was detected through measurements of the
optical excitation gap and the Knight shift.1,4

The interplay between the atomic density fluctuation and
change in local electronic states brings about interatomic
many-body interaction, which is attractive and plays a cru-
cial role in the phase transition.5 A cooperative attractive
interaction would enhance the possibility of temporary clus-
ter formation, i.e., association effect,6 which significantly af-
fects the optical absorption spectra in dense mercury
vapor.4,7 In principle, atomic motions in the presence of
many-body interaction could be simulated with the molecu-
lar dynamics method combined with the density-functional
electronic-structure calculations,8 but the construction of
phase diagrams and extensive equation-of-state data for fluid
mercury has not yet been accomplished through such simu-
lations.

On the other hand, the accurate determination of inter-
atomic interactions in diatomic molecules and small clusters
has been achieved, owing to recent progress in ab initio
quantum-chemical methods9,10 and spectroscopic studies.11 It
has been revealed that the repulsive part of the potential en-
ergy curve of Hg2 in the ground state is unusually soft as
compared to other rare-gas atoms.11 The origin of the soft
repulsion has been ascribed to the admixture of 6s and 6p
states at short ranges, which also contributes to the increment
of binding energies in clusters.12 The outcome of those
quantum-chemical analyses would provide a basis for the
construction of a theory which facilitates first-principles pre-
dictions of fluid phase diagrams.

In this paper, we propose a new equation of state for the
expanded fluid mercury which we refer to as the variational
associating fluid theory. The theory can treat microscopic
interatomic interactions, mesoscopic clustering �association�
effect, and macroscopic phase transitions in a coherent fash-
ion, making it possible to predict various thermodynamic
quantities without introducing phenomenological state-
dependent potentials. The development of such first-
principles theory would be indispensable for estimating
phase diagrams of other liquid metals whose critical points
are not easily accessible through experiments.

In Sec. II, we construct interatomic many-body poten-
tials through quantum-chemical calculations. Free energies
are then formulated in Sec. III on the basis of the soft-sphere
variational theory. Numerical results on the gas-liquid coex-
istence curves and various thermodynamic quantities are pre-
sented and compared with experimental data in Sec. IV. Con-
cluding remarks and future issues are given in Sec. V.

II. MANY-BODY POTENTIAL

We consider a system composed of N mercury atoms
with positional vectors �ri� �i=1, . . . ,N�. The total potential
energy function V�r1 , . . . ,rN� can generally be decomposeda�Electronic mail: kitamura@scphys.kyoto-u.ac.jp

THE JOURNAL OF CHEMICAL PHYSICS 126, 134509 �2007�

0021-9606/2007/126�13�/134509/8/$23.00 © 2007 American Institute of Physics126, 134509-1

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.2712443
http://dx.doi.org/10.1063/1.2712443
http://dx.doi.org/10.1063/1.2712443


into a pairwise summation of suitably chosen binary poten-
tials and the remaining many-body contribution, that is,

V�r1,¯,rN� = 1
2 �

i,j=1

�i�j�

N

Vdimer��ri − r j�� + Vmb�r1,¯,rN� . �1�

Specifically, we take Vdimer�r� as a diatomic potential energy
curve of Hg2 in the ground state correlating to Hg�61S�
+Hg�61S� asymptote.9,11 We adopt the analytic formula by
Schwerdtfeger et al.9 based on spin-orbit corrected scalar
relativistic coupled cluster calculations using large uncon-
tracted �11s10p9d4f3g2h� basis set �cc-ULB+SO scheme�,
which reads

Vdimer�r� = �E
e2

aB
�
j=3

9
a2j

��rr/aB�2j , �2�

with �E=1.11, �r=1.0143, a6=−1.123 860�102, a8

=−1.095 406�105, a10=1.138 508�107, a12=−4.533 23
�108, a14=9.225 373�109, a16=−9.403 784�1010, and
a18=3.801 021�1011. This potential takes on a minimum
value of Vdimer�r�=−0.043 eV at r=7.06aB, with aB denoting
the Bohr radius.

The basic idea of this work is to evaluate the many-body
potential Vmb�r1 , . . . ,rN� explicitly for particular geometries
of clusters and crystalline solids, and to express
Vmb�r1 , . . . ,rN� /N as a function of z �mean coordination
number� and rnn �nearest-neighbor distance�; these are the
two relevant parameters controlling the M-NM transition.13

For this purpose, we have carried out spin-orbit diatomics-
in-molecules �DIM� calculations12 to evaluate Vmb�z ,rnn� /N
for small HgN clusters with the geometries illustrated in Fig.
1: Hg3 �D3h�, Hg4 �Td�, Hg5 �D3h�, and Hg7 �D5h�. These
geometries may be characterized by z=2, 3, 3.60, and 4.29,
respectively. We have assumed breathing motions so that the
distance rnn of all the nearest-neighbor bonds within a cluster
has been changed simultaneously. Numerical calculations
have thereby been performed in the range of 5.3�rnn/aB

�6.5. In this range, mercury clusters remain nonmetallic,
with a finite energy gap between the ground and first-excited
energy levels.12

We have likewise evaluated Vmb�z ,rnn� /N for face-
centered cubic �fcc� �z=12� and body-centered cubic �bcc�
�z=8� structures of bulk solid. These crystalline structures
are considered to be metallic, judging from the overlap of 6 s
and 6p bands in the density of states calculated by Mattheiss
and Warren Jr.14 We thus regard the system as a mixture of
ions with net charge number Z=2 and conduction electrons
with number densitiy ne=Zn. The accurate evaluation of the
cohesive energies for solid mercury requires careful treat-
ment of the relativistic effect,15 electrons in the 5d band,15

and electron correlation.16 Simple nearly free electron treat-
ment with local pseudopotentials is not applicable to liquid
mercury, but Chekmarev et al.17 showed that addition of em-
pirical corrections leads to considerable improvement of the
theory so that reliable predictions of liquid structures and
cohesive energies can be achieved at the ambient condition.
By following their approach, the cohesive energy per atom
may be expressed in a following form:

V

N
= 1

2 �
i�1

Ni�eff�sirnn� +
U0�n�

N
, �3�

where �eff�r� describes the density-dependent effective pair
potential between ions and U0�n� is the energy independent
of the ionic structure. Expressions for �eff�r� and U0�n� are
presented in the Appendix. The summation in Eq. �3� de-
scribes the interaction of a reference ion with surrounding Ni

ions in the ith nearest-neighbor shell located at a distance
sirnn away from the reference ion. The parameter values for
fcc lattice �z=12� are s1=1, s2=	2, N1=12,N2=6, and n
=	2/rnn;

3 for bcc lattice �z=8�, s1=1, s2=2/	3, N1=8, N2

=6, and n=3	3/4rnn.
3 The summation has been truncated at

i=2, and the contributions from more distant neighbors �i
�3� have safely been neglected. By subtracting the diatomic
contribution from Eq. �3�, we obtain

Vmb�z,rnn�
N

=
V

N
− 1

2 �
i�1

NiVdimer�sirnn� . �4�

Numerical values of Vmb�z ,rnn� /N so computed are dis-
played in Fig. 2. We find that the many-body interaction is
attractive �Vmb�0� and its magnitude increases as rnn de-
creases and/or z increases. The microscopic origin of the
attraction is attributed to the admixture of excited 6p state
onto the ground 6s state in the electronic wave functions
when many atoms aggregate instantaneously.12 We observe
that the magnitude of Vmb�z ,rnn� /N is remarkably large in the
metallic regime z �8, which means that the short-range re-
pulsive core of the effective interatomic potential in the me-
tallic state is considerably smaller than that in the isolated
dimer or small nonmetallic clusters. Such distinctly different
behavior of the cohesive energies in the metallic and nonme-

FIG. 1. Cluster geometries adopted in the DIM calculations.

FIG. 2. Many-body potential per atom for various values of rnn. The dots
represent the computed data; the solid curves indicate their linear
interpolations.
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tallic states has also been observed in HgN clusters, as indi-
cated by Haberland et al.:18 their experimental data exhibit a
crossover from nonmetallic to metallic branch in the range
N
15–100, which may correspond to z
7–9 if the cluster
geometry is icosahedral and z
5–8 if it is tetrahedral.19 We
have no convincing theoretical data for Vmb�z ,rnn� /N in the
intermediate-z range where M-NM transition occurs. In this
work, we have linearly interpolated the data at z=4.29 and
z=8 as shown by the solid curves in Fig. 2. Though this is a
crude treatment of the M-NM transition, we shall see later
that the overall feature of the resultant gas-liquid coexistence
curve is consistent with experimental observations. The ac-
curate determination of Vmb�z ,rnn� /N for the entire range of z
is deferred to a future study. For each z �z=1,2 , . . . ,12�, we
have thus expressed Vmb�z ,rnn� /N as a smooth function of
rnn, as exhibited in Fig. 3.

III. EQUATION OF STATE

In this section, we formulate the equation of state for
fluid mercury by extending the conventional fluid variational
theory of simple fluids20,21 to the cases of nonsimple fluids.5

In so doing, the attractive many-body potentials shown in
Fig. 3 are taken into consideration. Unlike typical associating
fluids such as water,22 the directional dependence of intermo-
lecular interactions may play a minor role in the case of fluid
mercury, because both the van der Waals interactions in the
gas phase and metallic bonding in the liquid phase are essen-
tially isotropic. Accordingly, we expect that either a hard-
sphere or soft-sphere fluid would serve as an appropriate
reference system to mimic the interatomic correlation in fluid
mercury.

Ross21 proposed an approximate soft-sphere variational
theory, where correlation functions for the soft-sphere fluid
are replaced by those for the hard-sphere fluid, and the soft-
core effect is incorporated through an additional empirical
correction term in the free energy. We adopt his theory and
take the inverse sixth power potential as a reference,23 with
the recognition that the repulsive part of Vdimer�r� is rather
soft due to the induction effect and approximately
proportional11 to 1/r6.2. Thus, we write the free energy per
atom f �F /NkBT as5

f�n,T;�� = f id − sHS
ex +

n

2kBT
�

�

�

dr4	r2Vdimer�r�gHS�r�

+ Vmb�z,rnn�
NkBT

�
HS

+ f6. �5�

Here,

f id = ln�� 2	
2

MkBT
�3/2

n� − 1 �6�

represents the ideal-gas free energy with M =3.331
�10−22 g denoting the mass of a Hg atom. The quantities
with subscript “HS” are evaluated for the hard-sphere fluid
with core diameter �. The excess entropy is evaluated in the
Carnahan-Stirling approximation,20

sHS
ex = − �

4 − 3�

�1 − ��2 , �7�

with �=	n�3 /6 designating the packing fraction. The last
term on the right-hand side of Eq. �5�,

f6 = − 0.932 71� − 0.495 05�2 − 2.129 24�3

+ 0.500 30�4, �8�

represents the soft-sphere correction obtained by Young and
Rogers.23 The radial distribution function gHS�r� for the hard-
sphere fluid is available in parametrized form by Trokhym-
chuk et al.24

The coordination number z of an atom in the fluid may
be defined as the number of nearest-neighbor atoms con-
tained within a sphere of suitably chosen volume
v�=4	rmax

3 /3� encompassing that atom. The instantaneous
value of z differs from atom to atom due to structural disor-
der. In light of the observations in Figs. 2 and 3, we expect
that an atom with larger z and/or smaller rnn may experience
a stronger attractive force than that with smaller z and/or
larger rnn. Accordingly, we take a statistical average of the
quantity Vmb�z ,rnn� /N over all possible realizations of z and
rnn. Strictly speaking, the average should be taken for the
reference soft-sphere system, but since it is difficult to get
probability distribution functions of z and rnn for soft-sphere
fluids we replace them by the hard-sphere counterparts for
simplicity. We also treat z and rnn as statistically independent
variables, neglecting their mutual correlations. We thus
evaluate the term �¯�HS in Eq. �5� as

Vmb�z,rnn�
NkBT

�
HS

= �
z=1

zmax

pHS�z�
��

rmaxdrnnHHS�rnn�Vmb�z,rnn�/NkBT

��
rmaxdrnnHHS�rnn�

. �9�

Here, pHS�z� is the distribution function of z for the hard-
sphere fluid. Through simple geometrical considerations
within the excluded-volume approximation,7 we arrive at an
expression as follows:

FIG. 3. Many-body potential per atom for various values of z.
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pHS�z� =
pHS�0�

z!

�nv − ���nv − 2��¯�nv − z��
�1 − ��z

for 1 � z � zmax, �10�

and pHS�0� is determined from the normalization
�z=0

zmaxpHS�z�=1. In this work, we take the maximum value of
z as zmax=12 �corresponding to the fcc lattice�, and v is cho-
sen as v= �zmax+1�	�3 /6, leading to rmax= �zmax+1�1/3� /2
=1.176�. In this case, we can prove that pHS�0�= �1−��zmax,
and average coordination number is given by

�z� = �
z=0

zmax

zpHS�z� = zmax� , �11�

which is proportional to the packing fraction.
The distribution function HHS�rnn� represents the prob-

ability of finding a nearest-neighbor particle at distance rnn

from the reference particle. The properties of this function
were discussed in detail by Torquato.25 He obtained an ana-
lytic expression for HHS�rnn� in terms of a dimensionless
distance x�rnn/� as

�Hnn�rnn� = 24��a0x2 + a1x + a2�exp�− ��8a0�x3 − 1�

+ 12a1�x2 − 1� + 24a2�x − 1��� , �12�

with

a0 = 1 + 4�g���, a1 =
3� − 4

2�1 − ��
+ 2�1 − 3��g��� ,

a2 =
2 − �

2�1 − ��
+ �2� − 1�g���, g��� =

1 − �/2

�1 − ��3 .

We note that HHS�rnn� is a decreasing function of rnn with a
peak at rnn=�; the peak becomes sharper as � increases. Our
treatment of cooperative interaction represented by Eq. �9� is
analogous to the associating fluid model of liquid water by
Truskett et al.,22 except for the anisotropic interaction in the
latter.

For given n and T, the total free energy f�n ,T ,�� of Eq.
�5� is minimized with respect to the variational parameter �
as ��f�n ,T ,�� /���n,T=0. The pressure P, entropy S, internal
energy U, and Gibbs free energy G are then calculated in a
standard way as p� P /nkBT=n��f /�n�T, s�S /NkB

=−���fT� /�T�n, u�U /NkBT= f +s, and G /NkBT= f + p, re-
spectively; the derivatives in these formulas should be evalu-
ated under the constraint that f be minimized with respect to
�. We remark that both Eqs. �10� and �12� depend on n so
that their density derivatives also contribute to the pressure.

IV. NUMERICAL RESULTS

A. Gas-liquid coexistence curves

At sufficiently low temperatures, the derivative ��P /�n�T

can take on a negative value, indicating the onset of the
first-order gas-liquid transition. The saturation densities in
the gas and liquid phases, ngas and nliq, are obtained in ac-
cordance with the conditions of two-phase equilibrium:
P�ngas ,T�= P�nliq ,T� and G�ngas ,T�=G�nliq ,T�. The gas-
liquid coexistence curves so obtained are displayed in Fig. 4

��m-T diagram; �m�Mn� and in Fig. 5 �T-P diagram�. It can
be seen that our coexistence curves reproduce the experimen-
tal data1,3,26 reasonably well. The critical density, tempera-
ture, and pressure are predicted to be �c=5.82 g/cm3, Tc

=1774 K, and Pc=1.97 kbars, which are in good agreement
with the corresponding experimental values,1 �c�exp�
=5.8 g/cm3, Tc�exp�=1751 K, and Pc�exp�=1.67 kbars. At
the melting point �T=234 K and P=1 bar�, our theory yields
�liq=Mnliq=14.02 g/cm3, S /NkB=6.0, and U /N
=−0.056 Ry/atom, which compare with the corresponding
experimental values:27 �liq�exp�=13.65 g/cm3, S�exp� /NkB

=8.3, and U�exp� /N=−0.034 Ry/atom.
In Fig. 4, we also plot the average of gas and liquid

densities �d=M�ngas+nliq� /2. Experimental data1,26 reveal
that d�d /dT�0 for sufficiently low temperatures and in the
vicinity of the critical point, whereas d�d /dT0 in the range
of T
1400–1700 K. It is remarkable that the present theory
likewise predicts the behavior d�d /dT0 above 1500 K.
Ross and Hensel28 invoked a modified two-state van der
Waals model and pointed out that the positive slope of

FIG. 4. Gas-liquid coexistence curve on the mass density-temperature plane.
The thick solid curve corresponds to the present result; the dashed curve
represents the experimental data �Refs. 1 and 3�. The mean density �d in this
work is plotted by the dotted curve; the corresponding experimental data
�Refs. 1 and 26� are shown by dots. The thin solid curves depict the contours
of constant mean coordination numbers.

FIG. 5. Gas-liquid coexistence curve on the temperature-pressure plane. The
thick solid curve indicates the present result; the thick dashed curve refers to
the experimental data �Refs. 1 and 3�. The dots represent the corresponding
critical points. Thin solid curves indicate isochores at respective densities,
compared with experimental data �Refs. 1 and 3� �thin dashed curves�.
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d�d /dT, which is absent in simple rare-gas fluids, is inti-
mately related to the M-NM transition in the liquid phase.
We suppose that the strong cohesive force associated with
metallization tends to increase the values of nliq in that range.

The gas-liquid coexistence curve is determined through
a delicate balance between the free energies in the two
phases, and hence it is sensitive to the adopted theoretical
model. When fluid mercury is treated as a partially ionized
nonideal plasma, the resultant coexistence curve on the �m-T
plane becomes too sharp, and the values of nliq are underes-
timated especially in the M-NM transition range.29,30 Plasma
theories assume that the delocalized electrons extend uni-
formly over the entire space. Such assumption may not be
appropriate in expanded fluid metals: Spatial distributions of
electronic wave functions may be governed by the local
atomic arrangement, as pointed out by Chacón et al.31 in
their tight-binding models of fluid alkali metals. The present
model significantly improves our previous plasma-theoretical
treatment,30 but it should be noted in Fig. 4 that our coexist-
ence curve still exhibits small deviation from the experimen-
tal data in the M-NM transition range at around 9 g/cm3. We
shall come to this point later in Sec. IV C.

B. Structures

The present theory cannot describe atomic structures of
the real system, but qualitative arguments on the structures
may be possible through the correlation functions of the ref-
erence hard-sphere fluid with optimized core diameters. We
see in Fig. 6 that the optimized value of � along the coex-
istence curve remains virtually constant �� /aB
5.58–5.60�
over a wide density range �m=2–12 g/cm3. It is notable that
this value is close to the observed first peak position of the
radial-distribution function, 5.67aB, which is likewise almost
unchanged within the liquid phase as revealed by the x-ray
diffraction experiments.2 By substituting the optimized �
into Eq. �11�, we find that the average coordination number
is proportional to the density as �z�
0.49�m �g/cm3� along
the coexistence curve �Fig. 7�. These features corroborate the
picture of inhomogeneous expansion.2,32

In Fig. 7, the distribution function pHS�z� is illustrated
for three different points on the coexistence curve. In the

low-density gas phase, the distribution has a sharp peak at
z=0, indicating that the many-body interaction does not con-
tribute appreciably to the equation of state. As the density
increases, the position of the peak shifts toward large-z side
and the peak height becomes lower, in qualitative agreement
with the results of the reverse Monte Carlo simulation by
Arai and McGreevy.32 At the critical point, the three- and
four-body interactions �z=2 and 3� are predicted to be domi-
nant, but the fluctuation is so large that the atoms having
larger z also contribute to the cohesive energy. At the normal
liquid density at 293 K, the peak is located at z=7 and hence
the significant part of the distribution is contained in the
metallic domain.

The contours of �z�=3 and 5 obtained from Eq. �11� are
superposed on the phase diagram in Fig. 4. We find that �z�
depends not only on �m but also on T. This is because the
radius rmax of the first coordination region depends on the
optimum core diameter � and the latter becomes small as T
increases.

C. Thermodynamic quantities

Isochores at �m �g/cm3�=1, 5, 10, and 12 are plotted and
compared with experimental data by Götzlaff3 �taken from
Ref. 1� in Fig. 5. The present theory shows fairly good agree-
ment with experiments at the lowest and highest densities,
but tends to overestimate the pressure in the M-NM transi-
tion regime �10 g/cm3�. Pressure-density relations at con-
stant temperatures �1723 and 1813 K� are likewise presented
in Fig. 8. We find that the agreement between theory and
experiment is good below the critical density, whereas our
equation of state turns out too stiff in the liquid phase at
around 9 g/cm3.

We have also computed isochoric thermal pressure coef-
ficient �v���P /�T�n, along the coexistence curve. As mani-
fested in Fig. 9, the present theory agrees fairly well with the
experimental results at low and high densities, but theoretical
values are too large at intermediate densities of 9–12 g/cm3,
suggesting that the effective interatomic interaction is esti-
mated to be too repulsive in this range.

The specific heats at constant volume �Cv� and constant
pressure �Cp� are evaluated respectively as

FIG. 6. Optimized values of � along the coexistence curve. The solid curve
with filled circles correspond to the gas phase; the dashed curve with open
circles correspond to the liquid phase.

FIG. 7. Distributions of coordination number in the reference hard-sphere
fluid.
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Cv

N
= � �

�T
�U

N
��

n
,

Cp

N
=

Cv

N
+

T

n2

�v
2

��P/�n�T
. �13�

In Fig. 10, the predictions of Eq. �13� at P=2 kbars are il-
lustrated and compared with direct calorimetric measure-
ments by Levin and Schmutzler.33 It turns out that the overall
agreement between theory and experiment is fairly good for
Cv. Levin and Schmutzler found a shallow minimum of Cv at
�m=9.2 g/cm3, and they speculated that it might be caused
by the omission of the electronic contribution to the heat
capacity as the transition from metallic to nonmetallic phase
occurs.33 Such minimum has not been detected in this work,
however; Cv decreases monotonically with decreasing den-
sity and eventually approaches 3/2 corresponding to the
ideal-gas value of the monoatomic gas. The value of Cp ob-
tained from Eq. �13� is somewhat larger than the measured
value at the highest density ��m=12.4 g/cm3�, but both the-
oretical and experimental data exhibit strong critical diver-
gence of Cp as the density decreases and approaches �c. In
the gas phase, Cp decreases rapidly toward the ideal-gas
value of 5 /2.

The adiabatic sound velocity is defined and calculated as

cs =	� �P

��m
�

S
=	 1

M
�� �P

�n
�

T
+

T

n2

�v
2

Cv/N
� . �14�

In Fig. 11, theoretical values of cs at P=2 kbars are pre-
sented and compared with the experimental measurements
by Kohno and Yao.34 In the low-density gas phase, Eq. �14�
reduces to the ideal-gas expression cs=	5kBT /3M. At densi-
ties higher than about 4 g/cm3, our theory tends to overesti-
mate the sound velocity, though a qualitative trend of the
experimental data is reproduced. The deviation between
theory and experiment is enlarged particularly in the M-NM
transition range around �m=9 g/cm3. The experimental
curve exhibits an inflection at �m= 9 g/cm3, whereas our
theoretical curve shows a rather smooth density dependence.
The inflection was reproduced through the molecular dynam-
ics simulation by Munejiri et al.,35 who deduced an effective
interatomic pair potential from measured static structure fac-
tors and claimed that change in the repulsive part of the
potential causes the inflection.

FIG. 9. Isochoric thermal pressure coefficient along the gas-liquid coexist-
ence curve. The solid curve represent the present result; dots depict the
experimental data �Refs. 1 and 3�.

FIG. 10. Specific heats Cv and Cp evaluated with Eq. �13� at P=2 kbars
�solid curves�. The black and white circles with an error bar depict experi-
mental data by Levin and Schmutzler �Ref. 33�.

FIG. 11. Adiabatic sound velocities at P=2 kbars. The solid curve repre-
sents the prediction of Eq. �14�; the dots with error bars are experimental
data by Kohno and Yao �Ref. 34�; the dashed curve is the result for mon-
atomic ideal gas.

FIG. 8. Pressure-density curve at constant temperatures. The black and
white circles refer to the experimental data �Refs. 2 and 3�.
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V. CONCLUDING REMARKS

Previous theoretical analyses of thermodynamic proper-
ties in the expanded fluid mercury were limited to empirical
modifications of the van der Waals equations1,28 or computer
simulations using density- or temperature-dependent effec-
tive pair potentials adjusted to reproduce existing experimen-
tal data.35–37 These methods would not be useful if experi-
mental data are not available in advance. In contrast, the
variational associating fluid theory developed here is the first
to predict thermodynamic quantities of fluid mercury by us-
ing quantum-chemical interatomic interactions as input,
without resorting to empirical state-dependent pair poten-
tials. A salient feature of the present scheme lies in its cross-
hierarchical nature, bridging the gap between macroscopic
thermodynamics and microscopic interatomic interactions by
taking additional account of the mesoscopic association ef-
fects. Our theory is also advantageous from the practical
point of view, in a sense that various thermodynamic quan-
tities can be obtained over a wide density-temperature range
without massive computations. Though the theory has been
applied exclusively to mercury in this work, the formalism is
quite general and would be applicable to other fluids after
suitable modifications.

We have stressed the importance of the attractive many-
body interaction among atoms, which becomes strong as the
local coordination number �z� increases and the nearest-
neighbor distance �rnn� decreases. The statistical average of
the potential has been carried out by taking into account
fluctuations of z and rnn in the reference hard-sphere fluids.
As exposed in Figs. 2 and 3, the many-body potential in
mercury is relatively weak in the nonmetallic, small-z re-
gime, while it becomes substantially strong in the metallic,
large-z regime. As the density increases, the atomic coordi-
nation increases and a strong cohesive force is produced,
which plays a dominant role in the gas-liquid transition.
Along the coexistence curve, we have found that the average
coordination number is nearly proportional to the density
while the optimized core diameter �and hence the distance of
the closest approach� is virtually constant, supporting the in-
homogeneous expansion mechanism. We have also com-
puted such thermodynamic quantities as isochoric thermal
pressure coefficient, sound velocity, and specific heats, which
show reasonable agreement with experimental data.

In the M-NM transition region at around 9 g/cm3, how-
ever, our equation of state systematically overestimates the
pressure, and fails to account for the abrupt change of the
isochoric thermal pressure coefficient and sound velocity de-
tected by experiments. To elucidate possible origins of those
discrepancies, we mention two issues to be investigated in
the future: First, we should improve the data in Figs. 2 and 3
in the intermediate-z regime by performing accurate
electronic-structure calculations and see how the present
equation of state is modified. The second problem is the
possibility of heterophase fluctuation in the M-NM transi-
tion, characterized by inhomogeneous mixing of metallic and
nonmetallic domains.30,38 The possibility of an inhomoge-
neous structure was suggested through recent experimental
observations, such as anomalous sound attenuation34 and fast

sound.39 The present theory may overlook the emergence of
a heterophase fluctuation, because the structural information
is included solely in the hard-sphere reference system char-
acterized by only one parameter �. On the other hand, the
previous mesoscopic simulation by the author30 was based
on the coarse-grained theory, where the interatomic many-
body interaction was not treated correctly. Further develop-
ment of the theory is needed so as to treat thermodynamics,
structures, and electronic states on an equal footing.
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APPENDIX: COHESIVE ENERGIES OF METALLIC
SOLIDS

In the conventional local pseudopotential theory of
nearly free-electron metals,20 the pair potential between ions
is calculated as

��r� =
�Ze�2

r
+

1

2	2�
0

�

dkk2�BS�k�
sin�kr�

kr
, �A1�

where

�BS�k� =
4	�Ze�2

k2 � 1

�e�k�
− 1�� Vp�k�

4	Ze2/k2�2

. �A2�

Here, Vp�k� refers to the Fourier transform of the bare
electron-ion pseudopotential Vp�r�, and �e�k� designates the
dielectric function of the homogeneous electron liquid at
density ne, where strong exchange and Coulomb correlations
are incorporated through the static local-field correction
G�k�.40,41 Chekmarev et al.17 modified Eq. �A1� by adding
the repulsive Born-Mayer potential of the form �BM�r�
=A�e2 /aB�exp�−Br /aB� to obtain the improved effective ion-
ion interaction as

�eff�r� = ��r� + �BM�r� . �A3�

The coefficients A and B are adjusted17 so that the pair-
distribution functions computed with Eq. �A3� agree with
experimental data.

The structure-independent energy per ion may be evalu-
ated as

U0�n�
N

=
ZFeg

Ne
+

EH

N
−

n

2
��k = 0� +

EBS
self

N

+ Ip +
e2

aB
�C1

rs
+

C2

rs
2 � . �A4�

Here, Feg/Ne denotes the free energy per electron of the ho-
mogeneous electron liquid, whose analytic expressions are
available in the literature.40 The Hartree energy is defined
as20
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EH

N
= ne� dr�Vp�r� +

Ze2

r
� . �A5�

The self-part of the band-structure energy is calculated in
accordance with Eq. �A2� as20

EBS
self

N
=

1

4	2�
0

�

dkk2�BS�k� . �A6�

The ionization potential Ip is an energy required to remove
valence electrons from an isolated atom. The final term on
the right-hand side of Eq. �A4� corresponds to the empirical
correction which ensures mechanical stability and a correct
value of the cohesive energy.17 Here, we have introduced the
dimensionless electron-density parameter rs=ae /aB, with ae

= �3/4	ne�1/3 denoting the Wigner-Seitz radius.40

When the Ashcroft empty-core pseudopotential20 with
the core radius Rc is adopted for Vp�r�, we have Vp�k�
= �−4	Ze2 /k2�cos�kRc� and ��k=0�=4	�Ze�2�DL

2 +Rc
2�.

Here, DL represents the long-range screening distance of the
electrons defined as DL

2 =limk→0�1/k2�e�k��=ae
2��	� /4rs�

−�2�0�rs��, with �= �4/9	�1/3; �0�rs�
=limk→0�G�k� / �k /kF�2� is related to the long-wavelength
limit of the local-field correction G�k�, with kF= �3	2ne�1/3

denoting the Fermi wave number.40 An analytic expression
for G�k� was presented by Ichimaru and Utsumi.40,41

In applying the above formalism to liquid mercury, we
follow Chekmarev et al.17 and adopt Rc=0.915aB, A=200,
and B=2. The sum of the first and second ionization poten-
tials for an isolated Hg atom amounts to Ip /kB=3.388
�105 K. In Eq. �A4�, we have set C1=−0.197 and C2=0.6
so that the observed cohesive energy of 0.67 eV/atom is
reproduced for the fcc lattice �z=12�; although the rhombo-
hedral structure is slightly more stable than fcc in the ground
state, the linear muffin-tin orbital �LMTO� calculation by
Bose42 showed that the relative difference between the cohe-
sive energies of these two lattice structures is as small as 2%.
Our theory predicts the optimum lattice constant of the fcc
solid to be 6.07aB, in good agreement with the LMTO
result,42 6.04aB.
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